A Behavior-Driven Approach to Intent Specification
for Software-Defined Infrastructure Management

Flavio Esposito*, Jiayi Wang®*, Chiara Contoli’, Gianluca Davolif, Walter Cerronif, Franco CallegatiT

*Saint Louis University, USA
{flavio.esposito,holly.wang} @slu.edu

Abstract—One of the goals of Software-Defined Networking
(SDN) is to allow users to specify high-level policies into lower
level network rules. Managing a network and decide what policy
set is appropriate requires, however, expertise and low level
know-how. An emerging SDN paradigm is to allow higher-
level network level decisions wishes in the form of ‘intents”.
Despite its importance in simplifying network management,
intent specification is not yet standardized. In this work, we
propose a northbound interface (NBI) for intent declaration,
based on Behavior-Driven Development. In our approach, intents
are specified in plain English and translated by our system into
pre-compiled network policies, that are in turn, converted into
low-level rules by the software-defined infrastructure e¢.g. an SDN
controller. We demonstrated our behavior-driven approach with
two practical use cases: service function chaining deployed on
OpenStack, supported by both ONOS and Ryu controllers, and
dynamic firewall programming. We also measured the overhead
and response time of our NBI. We believe that our approach is
far more general and paves the way for a more expressive and
simplified northbound interface for intent-driven networking.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm advo-
cates moving middlebox functionality — Network Functions
(NFs) — from dedicated hardware devices to software ap-
plications that run in virtual environments on top of shared
hardware [1]. One of the key paradigms to effectively sup-
port the deployment of NFV is Software-Defined Networking
(SDN), which enables network programmability by taking
advantage of (mostly) vendor-agnostic open application pro-
gramming interfaces (APIs) [2]. Sharing similar goals with
researchers in programming languages, the focus of network
programmability has typically been on (¢) making (network)
programming easier and more accessible, or (ii) to enable
safer (network) programming, e.g., via formal methods and
verification techniques. Several successful attempts were made
to make network programming safer [3]-[5], or easier to
debug and test [6]-[8]. Most of these approaches rely on
OpenFlow [9], which defines the open southbound API to-
wards network equipment. Despite the successful control-
plane decoupling between programming directives and vendor-
specific data forwarding mechanisms, OpenFlow — the de-
facto standard SDN control plane protocol — is still dependent
on low-level technical details for correct data forwarding, such
as switch IDs, port numbers, MAC addresses, etc.

With the aim of generalizing network programmability
operations, researchers today are seeking new ways to manage
Software-Defined Infrastructures (SDIs) — including SDN and
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NFV environments, cloud computing platforms, and any other
form of communication infrastructure controlled by software.
The main goal is to define a simple and usable northbound
interface (NBI) that provides a high level of abstraction
for programming SDI controllers and easily deploying new
services. Such NBI could be in many cases helpful to make
network programming easier to application developers and
network administrators running DevOps, but also to allow
personnel with less technical skills, e.g. business managers or
technical group leaders, to specify a desired set of operations
or services by merely knowing some (but not many) low-level
aspects.

To inspire the design of such NBI, the Open Networking
Foundation has loosely defined the notion of intent as a
form of network service abstraction at a higher level than
typical policy instantiation or composition in SDIs [10]. In
literature the words “policies” and “intents” have often been
used interchangeably, see for instance [11]. Differently, in this
paper by intent we mean a high-level predicate or keyword
that can be used to program a mechanism directly, or via
instantiation of a policy set. The idea of having an intent-
based network interface is then to declaratively allow “what
should be achieved,” either loosely or tightly, with a high-level
description rather than with a detailed specification of “how it
should be achieved.”

A key challenge that has yet to be addressed, which we plan
to tackle in this paper, is how to provide an intuitive intent pro-
gramming northbound abstraction for SDIs that, even though
not being rigorous as a programming language, is simple and
expressive enough to deploy service policies and mechanisms
on top of any SDI, without requiring neither network operator
expertise nor heavy programming experience.

Recent work attempted at defining domain-specific lan-
guages for network programmability, raising the level of
abstraction [11]-[16]. Although those solutions focus on high-
level policies expression, they still require knowledge of differ-
ent low-level details, e.g., the declarative or functional syntax
of the specification language. Such languages or abstractions
for northbound interfaces: (i) are not simple to use, (i7)
focus on policy specification, not intent, and (77) still require
underlying mechanisms expertise, merely shifting the entry
barrier for network programmability without lowering it.

Two more recent solutions share at the high level our same
design goals [17], [18]. They both attempt to use human
semantics of a text in English to abstract out the low-level



details of a network; these solutions require to either use
a Natural Language Processing [17] or to solve a complex
optimization problem to interpret a set of intents (despite not
calling them intents) [18].

Our Contributions. In this paper, we design and implement
a NBI abstraction layer for SDI management where intents can
be specified in plain English (or even Mandarin Chinese).!
Our design principle is based on Behavior-Driven Develop-
ment (BDD) [19], an agile software development technique,
corollary of the Test-Driven Development paradigm [20]. A
Behavior-Driven Development framework provides the ability
of expressing (network level) wishes in a simple way, i.e.,
using natural language. The expressed wishes, in our case
intents, are then translated into (SDI) policies and implemented
through relevant network mechanisms by means of appropriate
interpreter functionalities. Our focus in this paper is to demon-
strate how it is feasible to allow network programmability
without having to be familiar with the lower level details of
any policy of the underlying SDI.

To this end, we prototyped our approach by applying the
behavior-driven, intent-based SDI management to two practi-
cal use cases: (i) service function chaining on a NFV environ-
ment, deployed on the OpenStack cloud platform,? integrating
our BDD layer with an interpreter that manages two different
SDN controllers — ONOS? and Ryu;* (ii) dynamic firewall
programming with iptables, the native Linux Kernel packet
filtering software tool. While the former use case refers to the
management of a relatively complex SDI, facilitated by the
use of off-the-shelf cloud and SDN controllers, we decided to
include the latter use case to demonstrate that our approach
is not limited to an OpenFlow-based SDN environment to
translate high level intents into policies [21].

How are we different? We are different from the afore-
mentioned relevant work [17], [18] for two main reasons. The
first is that we not only focus on defining an intent-based
NBI taking advantage of natural language features, but we also
consider the support of previously compiled underlying net-
work behaviors. To interpret (or compile) any general English
(or Mandarin) sentence and translate it into an action would
be infeasible [22]. Instead, by restricting the scope of our
framework to pre-defined feasible behaviors, we enable SDI
management to expressed and verified in the form of intents
following the Behavior-Driven Development philosophy. The
second main difference with existing approaches is that we
prove our concept on several application scenarios based on
off-the-shelf SDI software tools demonstrating the flexibility
of our solution.

The rest of the paper is organized as follows: In Section II
we describe our behavior-driven intent NBI design. Then in
Section IIT we describe the workflow of an intent specification,
while in Section IV we discuss some implementation details of
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Fig. 1. Behavior-driven intent specification architecture for SDI management.
Intents specified in English using the Gherkin language are interpreted by the
Gherkin parser and translated by step functions into policies in the form of
instructions for the underlying SDI management tools. The picture shows
the specialized architecture for the case of a SDI based on NFV and SDN
components, as well as the case of a firewall programmed with iptables.

the considered use cases. In Section V we detail the evaluation
of our approach, and we conclude in Section VI.

II. BEHAVIOR-DRIVEN INTENT SPECIFICATION DESIGN

In this section we highlight the main components of our

behavior-driven approach and its design principles. Our intent
specification layer is composed by (i) a language definition
framework based on Gherkin, (i7) an intent-policy interpreter,
the core of our northbound interface, and (ii¢) a set of plugins
that act as a middleware between the intent declaration and
the underlying SDI management layer. The system architec-
ture, specialized for the use cases presented in this paper, is
represented in Figure 1.
Intent definition in plain English with Gherkin. Behavior-
driven development (or BDD) is an agile software devel-
opment technique that was designed to encourage collab-
oration between developers, Quality Assurance (QA) engi-
neers and non-technical or business participants in a software
project [19]. We extended the BDD notion to behavior-driven
SDI management, by focusing its general notion of declar-
ative requirement specification to network programmability
via intent specification. We define our network intents with
Gherkin,® a language used by non-computer scientists to define
requirements in plain English. The following listing shows an
example of Gherkin-generated intent that is possible to specify
with our framework:

Feature: load balancing via NFV
Scenario: modify NF chain after high load
detection
Given traffic is flowing on NFI

And traffic is flowing on switch SWI
When response time of NFI is too high
Then start a new network function NF2
And redirect half of the traffic to NF2

Gherkin was designed so that business (not network) man-
agers would be allowed to express application or service
requirements with little but not null technical expertise. For
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example, a network manager may want to subsequently author
such feature with the aim of expressing another policy to
perform load balancing when the end-to-end delay becomes
higher than a given threshold. The keywords Given, When,
Then, And, are sufficient to compose complex intent predi-
cates, and the language interpreter can be easily extended.

Having shown a concrete example of how simple our
approach can be to specify network intents, we continue this
section describing its three design principles: (z) usability, (i7)
being verification-agnostic, and (#i¢) being controller-agnostic.
Usability. Users, managers, applications and network pro-
grammers have to have the ability to quickly start, stop or
modify basic or complex service behaviors on the SDI, with
minimal coding and network management expertise. It is
then responsibility of the interpreter to convert those English
sentences into a policy set that can be used to program the
underlying SDI via northbound API. Note how existing SDN
controllers, such as ONOS, already have an intent specification
NBI, but programming intents requires low-level expertise.
Verification-agnostic. When we program in a dynamically-
typed language such as Python or JavaScript, we do not have
any proof that the program will be safe. It is (arguably) clear
that writing Python code is easier for newbies. Developers do
however, write unit or integration tests to verify correctness
of their code. Similarly, our intent management layer does
not use any formal verification techniques, but can be used to
verify software-defined network behaviors. For example, we
could specify intents that ensure that a given packet header is
generated after another one is received by a given NF.
Controller-agnostic. Existing intent specification frameworks
are controller-specific. Successful abstractions are by defini-
tion agnostic from the underlying software-defined infrastruc-
ture. In the rest of the paper we show how our approach
can adapt to different controllers and to networks that do not
support a centralized controller.

III. INTENT INTERPRETATION WORKFLOW

In this section, we describe the general workflow of an intent
specification when applied to the use case of a service function
chain deployment. To apply an intent, the workflow first has
to input the specification of the intent in plain (English) text,
and then our intent-policy interpreter binds the policy to the
underlying SDI management tool, e.g., the Ryu and/or ONOS
controllers.

A. General Workflow

Our intents are specified using the Gherkin language, which
enables the description of the desired (virtual) network chain
or other service behavior. Business and network managers
may leverage Gherkin to describe the feature they desire.
Features can represent higher level goals, as well as lower
level protocol policies (i.e., NFV constraints on the software-
defined infrastructure). A feature file may or may not start
with a title, used as tag to group set of intents, and it is
followed by a few lines that provide context and describe the
benefits or the feature itself. A Gherkin specification envisages

a scenario and (possibly) multiple steps; the details of the
intent specifications start with a Gherkin keyword that has the
purpose of providing some context or preconditions, and define
what managers should expect as outcome. Outcomes can be
tests, protocol messages, logs, network service deployment or
termination.

With our approach, not only we are able to express higher-
level intents using Gherkin keywords, but also terms that are
relevant to specific use cases scenarios. Examples of such
terms are those that describe service flows crossing function
chain components, or firewall-ing states, e.g., incoming/outgo-
ing/malicious/dangerous traffic, or blacklist. All those terms
are seen as keywords for each relevant scenario. Such terms
or keywords constitute the information set adopted to achieve
infrastructure-independence in the intent specification, as well
as to implement mappings among layer-specific terms. Once
the intent specification is complete, it is interpreted by our
engine, capable of matching previously defined regular expres-
sions, just as in a standard programming language compiler.

When there is a matching, our interpreter translates the
intents into policies by calling the appropriate callback func-
tion that in turn may call an underlying mechanism. Our
approach may be supported by any SDN controller exposing a
programmable NBI — although our current implementation®
is limited to ONOS and Ryu only — as well as by any other
form of network programmability.

B. Chain Intent Interpretation Workflow

Let us assume that a user, e.g., a startup CTO, a technical
leader or a network manager, wishes to enforce an intent
defined by the deployment of a service function chain on
their infrastructure. The ordered set of network functions
will be implemented on an SDI by means of an OpenFlow-
based controller. The controller, responsible for translating the
service function chain policy into lower-level infrastructure
rules, will then deploy the required service.

With our system, the user, through a user interface such as
a keyboard (or a script), expresses such intent with Gherkin
syntax, defining a feature file. Together with this file, to
support the intent specification, a set of rules called step
functions need to be implemented by the system interpreter.
These steps functions are interpreter functionalities and act as
callbacks; their signature has a regular expression that needs
to be matched against the text subsequent to a defined Gherkin
keyword in the feature (intent) file. For instance, in our use
case the system interpreter generates from the intent/feature
file a JSON policy configuration file that is then sent to
the SDI management tool through a REST API call [23].
The management tool runs an application that exposes the
service function chaining service as a REST API endpoint.
Once such call is received, it is responsibility of the SDI
management tool to translate this policy into lower level rules
that will be applied to the underlying infrastructure through
the ONOS/Ryu controller NBIs. We implemented and tested
this example, as presented in the following sections.

Shttps://github.com/flavioesposito/Be A



virtual machine or container instances. The OpenStack fest
bed we used in our experiments is shown in Figure 2 and
is composed by a network node co-located with a controller
and a compute node, plus two additional compute nodes.
Each node includes several virual elements that form the.
intemal network infrastructure. A set of Open vSwitch (OVS)
virtual bridges provide a programmable, distributed virtual

OpenStack, cach

compute node also runs an instance of the Ryu SDN controllr,
used for controlling the network componens.
With  minor interventi n

networkprogrammabil way. In
the connectivity between OpenStack nodes is provided by
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Fig. 3. Intent Processor Cumulative Distribution Function of overhead: our
system takes on average less than 1s to process 100 intents and about 6s 80%
of the time to process 1000 intents, with peaks never reaching 8 seconds.
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Fig. 4. Effect of dynamic firewall programming via behavior-driven intents.
The solid red curve shows a blacklisted flow and the corresponding reduce
amount of data transferred. The dotted-dashed curve (blue) shows the case of
two whitelisted flows and its related data increase. The dashed black curve
shows the effected of a flow being blacklisted and a flow being whitelisted,
simultaneously.

interpretation, as well as in the resulting policy enforcement
in the underlying SDI.

In our experiment we submit to the Gherkin parser the
following intent, which considers the case of changing the
service chain between two endpoints when network congestion
is detected.

Feature: Adaptive Service Function Chaining
To provide adaptive SFC, deploy service chains
and monitor the network

@firstdeployment
Scenario: First SFC deployment
Given I want to deploy a service chain
from source NODE-A to destination NOCE-C that
includes , exactly in this order, a network
function VF—1, traversed upstream only

And a network function VF—3, traversed
both upstream and downstream
Then deploy service chain
@congestion
Scenario: Congestion
Given that network monitoring service
detects congestion, I want to deploy a service
chain from source NODE-A to destination NOCE-C
that includes, exactly in this order, a traffic
shaping network function VE-T, upstream only
And a network function VF—1, both upstream
and downstream
And a network function VF—3, both upstream
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Fig. 5. Input traffic flow bitrate measured on relevant points of a service
chain deployed on the OpenStack-based SDI.
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Fig. 6. Workflow of the interactions at different layers of the behavior-driven,
intent-based service chain specification.

and downstream

Then update service chain

We start at time { = 30s by generating a 10 Mbits/s
iperf traffic flow between NODE-A and NODE-C (hosted
on Compute3 and Compute2, respectively). Then we send
the Adaptive Service Function Chaining intent specification
listed above to the parser. As a result, we expect the following
chain to be deployed: NODE-A / VF-1 / VF-3 / NODE-C,
where VF-1 and VF -3 are generic virtual functions hosted on
Compute3 and Compute?2, respectively. After the intent has
been correctly interpreted and the relevant policies have been
enforced in the SDI, we verify that the service chain has been
actually deployed. This is shown in Figure 5, which reports
the input traffic flow bitrate measured at relevant VNF ports.
We verify that traffic flow starts crossing VF-1 and VF-3
at around ¢ = 60s. When network congestion is detected,
at around t = 90s, the congestion scenario is executed (see
listing above), resulting in the update of the chain between
the source and destination, as follows: NODE-A / VE-T /
VF-1 / VF-3 / NODE-C. VF-T is a traffic shaper hosted
on Compute3, which is added to the chain in order to limit
the bitrate to 1 Mbits/s. The traffic flow finally stops at around
t = 120s. Chaining is hence properly accomplished for both
scenarios described in the intent specification.

Table I shows the response times of the different software
layers involved in our system, with reference to the workflow
illustrated in Figure 6. The overall time ¢; needed for the



TABLE I
BEHAVIOR-DRIVEN INTENT SPECIFICATION RESPONSE TIME

Mean [ms] Conf. Int. 95% [ms]
t1 2868.999 2632.375 - 3105.622
to 2725.459 2488.884 - 2962.033
ts 4.861 4.724 - 4998
tq 4.997 4.543 - 5.451

complete enforcement of an intent in the system is, on average,
smaller than 3 seconds, which is a quite reasonable value as
a service chain setup time. Most of it, i.e. to, is spent by the
intent-policy interpreter for the computation of the technology-
specific instructions to be submitted to the SDI so as to obtain
the requested service function chain. Times t3 and ¢4 represent
the system calls to the REST interfaces of the SDN controllers
used to steer traffic inside and outside OpenStack nodes. For
each of them, the interpreter awaits for a positive response,
and in turn it returns a positive response to its caller, the intent
processor.

VI. CONCLUSION

In this paper we presented a northbound interface solution
for network intent specification based on Behavior-Driven De-
velopment. Our approach allows intent expressiveness in En-
glish, Mandarin, or any other natural language, by leveraging
the Gherkin programming language. Our prototype includes
an intent processor, an intent-policy interpreter, and several
Software-defined infrastructure specific policy actuators.

To demonstrate the feasibility, practicality and portability of
our approach, we prototyped it over two practical use cases:
service function chaining deployed on OpenStack, supported
by both ONOS and Ryu controllers, and dynamic firewall
programming. We have shown our approach at work with
intents that launched dynamic chaining of network functions
and dynamic access control rules. We also found that the
overhead and response time of our NBI scales reasonably well
with up to 1000 intents. We believe that the expressiveness of
our behavior-driven northbound intent specification could be
in many cases helpful to make network programming easier
to application developers and network administrators running
DevOps, but also to allow personnel with less technical skills,
e.g. business managers or technical group leaders, to specify a
desired set of operations or services by merely knowing some
(but not many) low-level aspects.
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