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Abstract—Virtual network services that span multiple data
centers are important to support emerging data-intensive applica-
tions in fields such as bioinformatics and retail analytics. Success-
ful virtual network service composition and maintenance requires
flexible and scalable ‘constrained shortest path management’
both in the management plane for virtual network embedding
(VNE) or network function virtualization service chaining (NFV-
SC), as well as in the data plane for traffic engineering (TE). In
this paper, we show analytically and empirically that leveraging
constrained shortest paths within recent VNE, NFV-SC and TE
algorithms can lead to network utilization gains (of up to 50%)
and higher energy efficiency. The management of complex VNE,
NFV-SC and TE algorithms can be, however, intractable for
large scale substrate networks due to the NP-hardness of the
constrained shortest path problem. To address such scalability
challenges, we propose a novel, exact constrained shortest path
algorithm viz., ‘Neighborhoods Method’ (NM). Our NM uses
novel search space reduction techniques and has a theoretical
quadratic speed-up making it practically faster (by an order
of magnitude) than recent branch-and-bound exhaustive search
solutions. Finally, we detail our NM-based SDN controller im-
plementation in a real-world testbed to further validate practical
NM benefits for virtual network services.

Index Terms—Constrained Shortest Path, Virtual Network
Embedding, NFV Service Chaining, Traffic Engineering.

I. INTRODUCTION

THE advent of network virtualization has enabled new

business models allowing infrastructure providers to

share or lease their physical networks that span multiple data

centers. Network virtualization is being increasingly adopted

to support data-intensive applications within enterprises (e.g.,

retail analytics) and academia (e.g., bioinformatics and high

energy physics) over wide-area federated infrastructures such

as the VMware Cloud [1] and the Global Environment for

Network Innovations (GENI) [2]. A major challenge for in-

frastructure providers is to offer virtual network services that

meet the application Service Level Objective (SLO) demands

on shared (constrained) physical networks. Examples of SLO

demands can refer to technical constraints such as bandwidth,

high reliability, or low latency.

In order to compose and maintain virtual network services,

infrastructure providers need to run management protocols

(within the ‘management plane’) such as e.g., Virtual Network

Embedding (VNE) to satisfy users’ virtual network requests.

VNE is the NP-hard graph matching problem of mapping

a constrained virtual network on top of a shared physical
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infrastructure [3], [4]. Another management protocol example

pertains to Network Function Virtualization service chaining

(NFV-SC) [5], [6], in which a network manager is required

to place Virtual Network Functions (e.g., firewalls, load bal-

ancers, etc) and setup a path across corresponding software-

defined middleboxes to guarantee different high-level traffic

constraints i.e., policies. While virtual network services are

operating, network managers need to also deploy, within the

‘data plane’, traffic engineering (TE) techniques to maintain

profiles or improve network utilization [7].

Successful virtual network service composition and mainte-

nance in both management plane and data plane mechanisms

requires scalable and flexible ‘constrained shortest path man-

agement’ for the following reasons. The constrained shortest

path problem is the NP-hard problem of finding the shortest

path that satisfies an arbitrary number of end-to-end (or path)

constraints [8], and its existing exact solutions are commonly

based on branch-and-bound exhaustive search algorithms [8],

[9], [10] or integer programming. These techniques have

exponential complexity, and hence, limit scalability of the

constrained shortest path management. Such scalability lim-

itations are exacerbated by the complexity of VNE, NFV-SC

and TE algorithms as well as the potentially large scale of sub-

strate networks. Although some heuristics or approximation

algorithms can find constrained shortest paths in polynomial

time (at expense of optimality [11]), these algorithms support

only a specific number of constraints, or a specific cost to

optimize [12], [13], [14]. Thereby, they limit the flexibility of

the constrained shortest path management.

By leveraging constrained shortest paths, we show how we

can enhance network utilization and energy efficiency of VNE,

NFV-SC and TE services by both analytical and empirical

means. Reasons for the observed benefits are as follows:

Firstly, by using a constrained shortest path, we can minimize

a provider’s cost associated with flows allocation subject to

the application SLO constraints in TE [15], [16]. Such costs

potentially hinder long-term infrastructure providers’ revenue

maximization; this can be understood using a simple example:

a path comprising of two physical links to maintain a single

flow has a higher allocation cost than an alternative solution

that uses only one physical link. For example, if the flow SLO

demand is 10 Mbps, a path composed by a single physical

link would need to provision only 10 Mbps, while a path

composed by two links would require 20 Mbps. Secondly, a

more scalable and flexible constrained shortest path approach

can be also beneficial for VNE and NFV-SC [17], [18], [19]

when virtual links are subject to an arbitrary number of

constraints such as bandwidth, latency and loss rate. Other

types of constraints can also be imposed by optimization

methods, such as the column generation approach, typically
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used to speed-up integer programming [8], [17], [18]. This

is because in the aforementioned cases, constrained shortest

paths can be part of the optimal solution, i.e., such paths can

best improve the objective value under arbitrary constraints.

Our Contributions. To achieve the constrained shortest path

benefits and address their management flexibility and scalabil-

ity challenges in virtual network services, we propose a novel

and exact constrained shortest path algorithm viz., ‘Neighbor-

hoods Method’ (NM). Our NM is based on a novel double-

pass search space reduction technique that synergizes dynamic

programming with a branch-and-bound exhaustive-search. In

addition, we propose a novel infeasibility pruning technique

viz., “Look Back”, which benefits from NM’s double pass

design to further ease the constrained shortest paths finding

in practice. Our NM is solving an NP-hard problem, so it is

exponential in its general form. However, our computational

complexity analysis shows that NM has a quadratically lower

complexity upper-bound (halved exponent) than alternative

methods. Moreover, when synergistically used with existing

search space reduction techniques [8], [9], [10], our scalability

evaluation results indicate how NM is faster by an order of

magnitude than recent branch-and-bound exhaustive search

methods, and hence, scales better.

Furthermore, NM is flexible due to its adaptable perfor-

mance and applicability to different constrained shortest path

scenarios with an arbitrary set of (SLO) constraints and an

arbitrary cost function. For example, when we allocate traffic

flow requests with a single path and multiple link constraints,

NM can find some constrained shortest path variants in

polynomial time. Thus, it can substitute diverse existing path

finder algorithms such as the extended version of Dijkstra [20]

and the iterative version of Bellman-Ford [12]. In its general

form, NM can be also used to speed-up finding of all loop-

free, k-constrained shortest or Pareto-optimal paths [9] from

the source to the destination. Thus, NM is also applicable to

diverse virtual network services including those with splittable

and unsplitable flows. We demonstrate such flexibility with

an extensive numerical simulation campaign, testing NM over

diverse network topologies for both online VNE/NFV-SC

with unsplittable flows and for TE with splittable flows. We

found that the number of embedded VN requests and energy

efficiency (and thereby the providers’ revenue) can increase

when the constrained shortest path management is used for

tested VNE/NFV-SC solutions: either one-shot centralized

(i.e., with joined node and link embedding) [17], [18], [19]

or two-stages distributed (i.e., with separate node and link

embedding) [21]. When using the constrained shortest path

management within either linear programming [22] or greedy-

based TE solutions [15], [16], our simulation results indicate

gains of up to 50% in network utilization and lower energy

consumption in some cases.

Finally, we implement an open-source Software-Defined

Networking (SDN) based NM controller that is available

at [23]. Our GENI [2] evaluation experiments with our imple-

mentation prototype confirm our analytical and empirical find-

ings in real-world settings and show no constrained shortest

path overhead (sought by NM) on the virtual network service

management and data plane mechanisms at large scale.

Paper organization. In Section II, we formally state the

constrained shortest path problem using optimization theory.

Section III shows importance of the constrained shortest path

management in VNE/NFV-SC and TE. In Section IV, we

present details of our NM approach. The complexity improve-

ments of our NM w.r.t. recent branch-and-bound exhaustive

search algorithms are presented in Section V. Section VI

describes our NM prototype implementation. Section VII

describes our evaluation methodology, performance metrics

and results. Section VIII concludes the paper.

II. THE CONSTRAINED SHORTEST PATH PROBLEM

The constrained shortest path problem is the NP-hard

problem of finding the shortest path subject to an arbitrary

set of hop-to-hop and end-to-end constraints. In this section,

we define this problem using optimization theory. In the

subsequent section, we motivate the importance of its flexible

and scalable management in diverse virtual network services.

A. Problem Overview

The problem of providing a (shortest) path with multiple

(SLO) constraints is NP-hard [8], and its complete survey can

be found in [11]. Herein, we mention a few representative

solutions that help us present our novel contributions. Most

heuristics group multiple metrics into a single function reduc-

ing the problem to a single constrained routing problem [24],

and then solve the routing optimization separately, e.g., us-

ing Lagrangian relaxation [25]. The exact pseudo-polynomial

algorithm proposed by Jaffe et al. [14] offers a distributed

path finder solution limited to a two-path constraints problem.

Wang et al. [20] use an extended version of Dijkstra algo-

rithm (EDijkstra), where all links with infeasible hop-to-hop

constraints are excluded. EDijkstra runs in polynomial time

but may omit any (path hop count) minimization, desirable

in network virtualization to optimize the physical network

utilization. To minimize the path hop count under a single path

constraint (e.g., delay) an iterative modification of Bellman-

Ford (IBF) algorithm was proposed in [12]. Our approach is

not limited to a single path constraint and can be adapted to

subsume both EDijkstra and IBF as we discuss in Section V.

The authors in [10] propose an exact algorithm for the

constrained shortest path problem, and apply several search

space reduction techniques such as dominated paths (pruning

by dominance and bound) and the look-ahead (pruning by

infeasibility) notion for the exponential complexity exhaustive

search, utilizing the k-shortest path algorithm. We also apply a

similar technique to reduce the constrained path search space,

though without any look-ahead, since it is computationally

expensive. Instead, our design uses a more efficient “Look-

Back” pruning technique (see Section IV-B). In [26], the

authors propose an Exhaustive Breath-First Search (EBFS)

based approach to solve the constrained path finder problem,

focussing on delay. Another more recent work [9] also uses

EBFS with a dominant path space reduction technique to find

multi-criteria Pareto-optimal paths. Alternatively, an exhaus-

tive Depth-First Search (EDFS) can be used as a branch-and-

bound algorithm. For example, the authors in [8] proposed

the “pulse” algorithm that uses EDFS with dominated paths

and look-ahead search space reduction techniques. Both of

EBFS and EDFS algorithms have exponential worst case time

complexity. Our solution however quadratically reduces the

worst case complexity of these algorithms (see Section V).
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B. Constrained Shortest Path Problem

Let l be the number of hop-to-hop or link constraints for

min/max network metrics, e.g., bandwidth, and p be the num-

ber of end-to-end path constraints for additive/multiplicative

network metrics, e.g., delay or loss. Moreover, we denote with

l ⊕ 1 paths with multiple links and a single path constraints,

and with and l ⊕ p paths with multiple links and multiple

path constraints. Given the above notation, we define the

constrained shortest path problem as follows:

Problem 1 (constrained shortest path). Given a physical

network graph G = (V,E), where V is the set of vertices

and E the set of edges; let us denote with D the flow demand

to be transferred and let uij denote a capacity of the directed

edge eij; let fij be a binary variable fij ∈ {0, 1} denoting

a ratio of flow on the edge eij , and let cij denote a cost

of transferring a unit of flow through such edge; finally, let

l̄ and p̄ denote vectors of link (hop-to-hop) and path (end-

to-end) constraints, excluding capacity constraints, where l̄

corresponds to min/max edge eij weights wl̄
ij (i.e., ≥ or ≤,

respectively), and p̄ corresponds to additive edge eij weights 1

w
p̄
ij; the problem of finding constrained shortest path between

source vs and destination vt vertices can be formulated as

follows:

minimize
∑

eij∈E

cijDfij (1)

subject to

Flow Conservation Constraints:

∑

vj∈V

fij −
∑

vk∈V

fki =











1, i = s

0, i 6= s or t

−1, i = t

, ∀vi ∈ V (2)

Capacity Constraints:

Dfij ≤ uij , ∀eij ∈ E (3)

Other Link Constraints:

wl
ijfij ≤ l, ∀eij ∈ E, l ∈ l̄ (4)

Path Constraints:
∑

eij∈E

w
p
ijfij ≤ p, ∀p ∈ p̄ (5)

Existential Constraints:

fij ∈ {0, 1}, ∀eij ∈ E (6)

Finding a shortest path (without constraints) has a poly-

nomial time complexity: consider Equations 3, 4 and 5:

in absence of any link or path constraints, the constraint

matrix of the above optimization problem is unimodular [27].

This condition allows us to solve the optimization problem

using (polynomial) linear programming. Such time complexity

bound does not necessarily hold in presence of at least a single

link or path constraint (l̄ 6= 0 or p̄ 6= 0). In that case, we

have to solve the above optimization problem using (NP-hard)

integer programming [27]. Note that we can always avoid

specifying capacity constraints in Equation 3 by simply setting

1Note that multiplicative constraints (e.g., packet loss) can be converted to
additive by composing them with a logarithmic function to avoid nonlinearity.

all fij = 0, which corresponding physical edge eij capacity

uij is not sufficient to allocate flow demand D. The same

applies for other link constraints (see Equation 3).

In the next section we show how finding a flexible and

scalable solution to Problem 1 benefits a wide range of path

finder subproblems to manage virtual network services.

III. CONSTRAINED SHORTEST PATH FOR VIRTUAL

NETWORK SERVICE MANAGEMENT

Using optimization theory, in this section we motivate the

need for a flexible and scalable constrained shortest path to

manage virtual network services such as Traffic Engineering

(TE), Virtual Network Embedding (VNE) and NFV Service

Chaining (NFV-SC). We also show how such a constrained

shortest path scheme does not introduce any additional inter-

operability issues for aforementioned virtual network services

with respect to traditional shortest path schemes.

A. Finding Virtual Paths in Resource Constrained Scenarios

We begin by considering a variant of the constrained short-

est path that operates on a resource constrained scenario, e.g.,

a natural or man made disaster scenario where connectivity

is scarce. In those cases, one aim is to minimize the overall

physical resource consumption of virtual paths. To this end,

we define the resource optimal constrained path by modifying

the objective of Problem 1 as follows:

Problem 2 (resource optimal constrained path). The resource

optimal constrained path is a path that satisfies an arbitrary

set of link/path constraints using minimal amount of physical

bandwidth:

minimize
∑

eij∈E

Dfij (7)

where fij , eij , D and E are as defined in Problem 1.

Note that by defining an equal weight c to all edges we

seek the minimum hop path that satisfies an arbitrary set of

link/path constraints (e.g., imposed by SLO).

B. Traffic Engineering

TE techniques today can be roughly divided into two

groups: oblivious i.e., no a-priori knowledge of the SLO

demands [28], and demands-aware, when such knowledge is

available [15], [16]. Moreover, the later has a superior per-

formance (e.g., can better utilize substrate network resources)

than the former [28] at the expense of having a centralized

forwarding (or routing) control [15], [16], [29].

We broadly classify demands-aware traffic engineering so-

lutions (see e.g. [15], [16]) with the following network utility

maximization problem:

maximize[min
fi∈F

fairnessi(fi)] (8)

where F denotes a set of all demands (or commodities);

in [16], for example, such commodities are {src, dst, SLO}
tuples; fi ∈ [0, 1] is continuous variable that denotes the ratio

of flow for commodity i with bandwidth demand Di; and

fairnessi(f) is a linear piecewise-defined function whose

definition is based on path service’s demands SLO constraints.

For a complete problem formulation we refer to [22], [30].
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appears in cNH (line 4), or < NH > size is more or equal

to |V | (line 13).

Algorithm 1: Build Neighborhoods (l ⊕ p case)

Input: X:= src, Y := dest

Output: The list of neighborhoods < NH > from X to Y
1 begin

2 cNH ←− X
3 < NH >←−< NH > ∪cNH
4 while Y /∈ cNH do

5 NH ←− ∅
6 foreach Vertex u ∈ cNH do

7 NH ←− NH ∪ adjacent(u)
8 end

9 if < NH > .size < |V | then

10 < NH >←< NH > ∪NH
11 cNH ← NH
12 else

13 Return Y is unreachable.

14 end

15 end

16 end

Backward pass for l⊕p. The best exhaustive search strategy

may depend on the network topology, constraint and cost

functions, and we leave it as a policy for NM. In this

paper, we use EBFS for the backward pass of NM detailed

in Algorithm 2. Note however, that this phase can use any

exhaustive search (e.g., EBFS [9], EDFS [8] or exhaustive k-

shortest path [10]) with the only difference being that we do

not process all neighbors (adjacent vertices) of each vertex u

but only those which are within previous NH (line 10). The

first step is to find the intersection between neighbors of the

destination Y with its previous NH (line 5). This intersection

is not an empty set, it contains at least one vertex v. For

all obtained vertices we again build the intersection of their

neighbors with the penultimate NH (line 16). The second

phase ends as soon as we hit the zero NH (line 6), and as

a result we obtain the collection of all paths with a length of

< NH > size between the source X and the destination Y .

Algorithm 2: Perform Backward Pass (l ⊕ p case)

Input: The list of neighborhoods < NH > from X to Y
Output: All paths < path > from X to Y of < NH > .size length

1 begin

2 path←− Y
3 < path >←−< path > ∪path
4 k ←− 1
5 NH ←−< NH > [size− k]

/* EBFS: */

6 while NH 6=< NH > [0] do

7 < tempPath >←− ∅
8 foreach path ∈< path > do

9 Vertex u←− path[1]
10 foreach Neighbor v ∈ adjacent(u) ∩NH do

11 < tempPath >←− v ∪ path
12 end

13 end

14 < path >←−< tempPath >
15 k ←− k + 1
16 NH ←− NH[size− k]
17 end

18 end

Constraints validation for l⊕p. In this last phase, we check

for candidates optimality, i.e., we check whether or not a

candidate path satisfies all l ⊕ p constraints, and keep the

best candidate. At each consequent iteration, we first build

an additional (N +1) neighborhood, repeat the backward pass

and subsequently obtain all paths of length N + 1, and then

we check their feasibility and update the best known path

candidate, if needed. Similarly to IBF [12], we keep iterating

while the candidate path length is less than the number of

vertices |V | and then return the optimal solution.

We close this subsection with three important remarks: (1)

NM can be used to find k-constrained shortest paths:

the backward path at each iteration returns all possible path

candidates of the same hop count. To find k-constrained

shortest paths we need to keep not a single best (shortest)

path candidate, but a set of k best path candidates at each

iteration and update this set if needed. Clearly, as in the worst

case NM traverses all possible path candidates, its upper bound

complexity does not change (see Section V). (2) NM can be

applied to both directed and undirected graphs making it

an interesting solution even for NFV chain instantiations.

When traversing directed graphs, NM simply uses vertices’

outgoing neighbors during the forward pass and incoming

neighbors during the backward pass. (3) A distinctive feature

of our NM is the construction of the intersection of two

neighborhoods. This leads to a quadratic reduction of path

candidates for exhaustive search algorithms (see Section V).

B. NM Search Space Optimizations

In this subsection we show how NM can be coupled with

existing search space reduction techniques, i.e., dominant

paths or look ahead [8], [9], [10], to speed up its time to

solution. By leveraging the NM’s double pass, we also propose

a variant of the look ahead technique, viz., “Look Back”

without complexity overhead. We first describe the dominated

paths method. Observe that the dominant paths technique is

not applicable in case we wish to use NM as k-constrained

shortest paths, as it removes suboptimal candidates which can

be among k paths.

Dominated paths (pruning by dominance or bound). The

basic idea behind dominated paths states that an algorithm

can avoid evaluating candidate paths when their (multidimen-

sional) distance is longer than other candidates distance, since

they cannot be a part of the shortest solution [9], [10]. Consider

for example Figure 3a: note how path X → A → Y with

distance vector d̄ = [6, 5]T is dominated by X → B → Y

path with distance vector d̄ = [2, 5]T and hence it can be

excluded to avoid unnecessary time-consuming processing.

Path dominance is formally defined as follows:

Definition 1 (dominant path). We say that path P1 dominates

path P2 if and only if:

∃ i ∈ 1, . . . , p, c : di(P1) < di(P2) ∧ dj(P1) ≤ dj(P2),

∀j 6= i ∈ 1, . . . , p, c

where di is a distance corresponding to pi path constraint or

to c path cost.2

In its general form, we can reduce NM’s search space by re-

moving the dominated paths. This is accomplished by keeping

track of only non-dominated paths during its backward pass

(Algorithm 2, line 11). In particular, a path is added to a vertex

v if it is not dominated by any other path to v, or if it is not

dominated by other paths from the source to the destination.

2Note how, if only the cost distance dc(P ) is used in Equation 1, pruning
by path dominance is the well-known pruning by bound technique [8].
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TABLE I: Virtual path embedding algorithms complexity

Case: EDijkstra [20] IBF [12] EDFS [8], EBFS [9], [26] NM

l
Time: O(|V |+ |E| · l) Time: O(|V |+ |E| · l) Time: O(|V |+ |E| · l) Time: O(|V |+ |E| · l)
Space: O(|V |+ |E|) Space: O(|V |+ |E|) Space: O(|V |+ |E|) Space: O(|V |+ |E|)

resource optimal constrained path resource optimal constrained path resource optimal constrained path resource optimal constrained path

l/l⊕ 1

Time: O(|V |log|V |+ |E| · l) Time: O(|V ||E|+ |E| · l) Time: O
(( |E|

|V |

)|V | + |E| · l
)

Time: O(|V ||E|+ |E| · l)

Space: O(|V |+ |E|) Space: O(|V ||E|) Space: O
(( |E|

|V |

)|V |)
Space: O(|V ||E|)

constrained shortest path/ constrained shortest path/
constrained shortest path

constrained shortest path/

constrained path only resource optimal constrained path resource optimal constrained path

l⊕ p N/A N/A

Time: O
(( |E|

|V |

)|V |p + |E| · l
)

Time: O
(( |E|

|V |

)
|V |
2 p + |E| · l

)

Space:O
(( |E|

|V |

)|V |p
)

Space: O
(( |E|

|V |

)
|V |
2 p

)

constrained shortest path constrained shortest path

hop count. The average number of neighbors per vertex b can

be obtained from the hand-shaking lemma3:

b =

∑V
i=v (neighbors of vertex v)

|V |
=

2|E|

|V |
. (11)

Using Equation 11 and based on the fact that the maximum

loop-free path hop count equals to |V − 1|, EDFS and EBFS

time complexities Ol⊕p are:

Ol⊕p = O(2p · bd + |E|l) = O
(( |E|

|V |

)|V |

p+ |E| · l
)

(12)

The space complexity equals to O
((

|E|
|V |

)|V |

p
)

due to the fact

that we have to store p metrics for each path.

NM complexity (l⊕p case). Similar to EDFS and EBFS, NM

can find any variant of the constrained shortest path or k such

paths with l ⊕ p constraints in exponential time utilizing any

instance of an exhaustive search. The neighborhoods contains

non-unique nodes, and the total number of their nodes can

be up to |V |2. For each neighbor, NM checks if it already

appears in the neighborhood O(b). Taking into account the

edge pruning phase, to ensure the constraints satisfaction

and to reduce a search space, the time complexity of the

neighborhoods building step O
l⊕p
1 is:

O
l⊕p
1 = O(|V |2b+ |E|l) = O(|V ||E|+ |E| · l) (13)

During the backward pass, NM builds all possible paths from

the destination node using any exhaustive search methods such

as EDFS or EBFS. However, there is a difference in that,

we process only those vertex neighbors which appear in its

previous neighborhood. This allows us to significantly reduce

the total number of the processing paths: instead of processing

1 + b+ b2 + ...+ bd or O(bd) paths, due to double pass (i.e.,

forward and backward passes) we process only: 1 ∩ bd + b ∩
bd−1+b2∩bd−2+...+b

d
2 ∩b

d
2 +...+bd−2∩b2+bd−1∩b+bd∩1 ≤

1 + b + b2 + ... + b
d
2 + ... + b2 + b + 1 or O(b

d
2 ) paths.

Hence, the time complexity of the backward pass step O
l⊕p
2 is

quadratically lower than for EDFS or EBFS (see Equation 12):

O
l⊕p
2 = O(2p · b

d
2 ) = O

(( |E|

|V |

)

|V |
2

p
)

(14)

The total time complexity of the NM is O
((

|E|
|V |

)

|V |
2

p +

|V ||E| + |E| · l
)

or just O
((

|E|
|V |

)

|V |
2

p + |E| · l
)

. Simi-

3Without loss of generality, we can assume undirected network graphs as

in a directed graph, b equals to the average outdegree: b =
|E|
|V |

.
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Fig. 5: System architecture of our NM prototype (which is a module of the
Floodlight OpenFlow controller [43]) includes four main logical components:
a physical graph discovery service, a path mapping service, a path allocation

service and a user web interface that interacts with the controller. The
prototype source code is publicly available under a GNU license at [23].

larly as for EDFS and EBFS, the total space complexity is

O
((

|E|
|V |

)

|V |
2

p
)

.

VI. NM PROTOTYPE IMPLEMENTATION

In this section, we establish the practicality of our approach

for network virtualization with a prototype implementation

over a Software Defined Networking infrastructure. Our source

code is publicly available at [23]. In particular, our proto-

type implementation extends the Floodlight OpenFlow con-

troller [43]. Our system architecture is shown in Figure 5. Our

prototype includes four main logical components: a physical

graph discovery service, a path mapping service, a path

allocation service and a user web interface that interacts with

the controller. In the rest of the section we describe with some

more details each of the four components of our prototype.

Physical graph discovery. Upon bootstrapping a SDN setup,

all configured OpenFlow switches connect to the controller

allowing a dynamic switch-to-switch link discovery. After this

phase, the NM module tracks all unknown incoming packets

to detect hosts and their corresponding host-to-switch links.

We specify the main physical link properties, such as capacity

and cost (e.g., delay) through an XML configuration file. The

XML configuration file indirection allows our NM prototype to

easily interact with foreign measurement services, for example

for real-time awareness of its link properties. The information
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collected by the path discovery service is then used in the path

mapping and the path allocation steps.

Path mapping. To map constrained virtual link requests,

the path mapping module of our prototype uses information

from the physical path discovery service and runs one of the

following routing algorithm policies: NM for l and l⊕1 cases

(default policy), NM for l⊕ p cases, EDijkstra, IBF or EBFS.

In the current version of our prototype the routing policy is

static and has to be set via our XML configuration file before

starting the Floodlight controller.

Path allocation. In this last phase of the path embedding, the

NM module sets all appropriate flow rules in all switches via

the OpenFlow [44] protocol, along with the computed path

obtained during the path mapping phase. Specifically, using

OpenFlow protocol messages the module assigns active flows

to corresponding queues, i.e., applies an ENQUEUE action,

for guaranteed bandwidth provisioning. In our XML config-

uration file, users may specify also the type of timeout for

each flow i.e., the flow duration time can start from either the

previously matched packet or from the first flow instantiation.

To estimate the available bandwidth on each physical link,

the NM module uses both the capacity information derived

from the XML configuration file, and its allocated bandwidth

queried from the flow stored in the OpenFlow switch.

Web interface. To request virtual links and/or to monitor

physical network states, we have implemented a web user

interface, which uses a RESTful API to communicate with our

NM prototype module. The user interface uses technologies

such as HTML, PHP, AJAX, JavaScript, and CSS.

VII. PERFORMANCE EVALUATION

In this section, we evaluate NM’s scalability and flexibility

performance through simulations and our prototype imple-

mentation in the context of its applicability to several com-

plementary virtual network services. To assess the flexibility

of NM, we compare, with and without it: (i) the embedding

performance of several online VNE and real-time NFV-SC

mechanisms within the management plane; (ii) several traffic

engineering solutions within the data plane. Our goal is to

show how our NM can be used to improve the overall

network utilization (allocation ratio or total flow throughput),

optimality (load balancing or fairness of flows), as well as

energy consumption within both planes; (iii) To assess NM

scalability, we then compare it with related solutions under

different network scales and service requests/topology scenar-

ios when accepting multiple link and multiple path constraints;

(iv) Finally, we confirm our main simulation results with our

NM prototype running over the GENI testbed [2].

Evaluation settings. In our simulations, we used a machine

with an Intel Core i5 processor with dual core CPU of 2.7 GHz

and 8GB RAM. We use the BRITE [45] topology generator

to create our physical and virtual networks. Our results are

consistent across physical networks that follow Waxman and

Barabasi-Albert models [46], that are known to approximate

well subsets of Internet topologies [47]. For lack of space we

only show results relative to Waxman connectivities. In our

NM prototype evaluation instead, we use a physical network

obtained with the GENI testbed [2]. All our results show

95% confidence interval, and our randomness lays in both

the service request (i.e., in its type and constraints to accept)

and in the physical network topology. In most of our physical

topologies, the average node degree equals to 4, a known

common value within Internet topologies [47].

Results summary. Efficiency and Provider’s revenue: During

the virtual network formation (management plane), we found

that using NM within recent VNE or NFV-SC algorithms

increases their allocation ratio while improving the network

utilization by better load balancing (close to the optimal),

which in turn decreases energy consumption. Network Uti-

lization: Our results evaluating NM within the data plane

instead show how utilizing a set of paths found with NM is

beneficial for TE in terms of minimum path hop count, net-

work utilization and in some cases even energy consumption.

Time to Solution (Convergence Time): When we attempted to

allocate flows (virtual links) with multiple link and multiple

path constraints over large scale physical networks using NM

with the proposed search space reduction techniques, we found

a path computation speed-up of almost an order of magni-

tude w.r.t. common exhaustive search algorithms. Moreover,

we also found almost 3 orders of magnitude running time

improvement w.r.t. the same integer programming problem

solved with CPLEX [50]. Prototype Evaluation: Finally, using

our NM prototype over GENI, we were able to reproduce

our main results. Moreover, our measurements show how the

constrained shortest path computation (virtual link or flow

mapping phase in NM) is up to an order of magnitude faster

than the path allocation phase (i.e., setting up appropriate flow

rules within all switches along the found path) on small scale

networks. This along with our scalability results confirm how

at large scale the time needed for a path computation with NM

will have the same order of magnitude as the time needed for

the path allocation introducing no significant bottleneck for

the end-to-end virtual link embedding.

A. Management Plane Evaluation

Simulation settings. To assess the impact of NM on the

virtual network embedding, we include results obtained with

simulated physical networks of 20 nodes (as in similar earlier

studies [17]), following Waxman connectivity model, where

each physical node and each physical link have uniformly

distributed CPU and bandwidth from 0 to 100 units, respec-

tively. Note that we use fairly small scale physical networks

due to complexity of the integer programming formulation.

We attempt to embed a pool of 40 VN (service chain)

requests with 6 virtual nodes and random (linear) virtual

topologies. Each virtual node and each virtual edge have

uniformly distributed CPU and bandwidth demand from 1

to 10 units, respectively. When we tested NM within virtual

network embedding algorithms, we vary the virtual node

degree from 1 (the VN has linear topology) to 5 (VN is a

fully connected topology). Moreover, we also assume that each

virtual edge has a propagation delay stretch latency constraint

uniformly distributed between 1 to 4. We defined propagation

delay stretch the ratio between the propagation delay and the

propagation delay encountered traversing the diameter of the

physical network. When we tested NM within the real-time

service chaining use case, we vary the latency constraint of

virtual links (service-to-service communication) from ∞ (i.e.,

SC is not real-time sensitive) to 1/4 (i.e., SC is highly real-

time sensitive) of the propagation delay stretch.
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Fig. 6: Virtual network (VN) embedding and real-time NFV service chaining (SC) results obtained with physical networks of 20 nodes following Waxman
connectivity model: by addressing the constrained shortest path problem with NM versus using commonly adopted shortest path algorithms (e.g., Disjktra),
the allocation ratio of VNE (a) and real-time NFV-SC (e) can be improved when the virtual node degree increase or when requests are not highly sensitive to
delays. Optimality gap of VNE (c) and NFV-SC (g) can be also improved (resulting in our case into a better load balancing) which leads to a lower energy
consumption (b) and (f) relative to the network idle state [49], respectively. NM’s benefits are due to its ability of finding more path with a lower hop count
that can satisfy latency demands and simultaneously improve objective value for full-mesh VNs (d) and moderate real-time sensitive SC (h) pools.

Evaluation metrics. To demonstrate the advantages of using

NM within the virtual network embedding (VNE) and real-

time service chaining (SC) mechanisms, we compared four

representative VNE algorithms. To compare them, we replace

their (original) Dijkstra-based shortest path with our NM. We

have chosen to compare against [17], [19] as the optimal VNE

scheme formulated as integer programming multi-commodity

flow is the best to our knowledge solution for online VNE (yet

intractable for large scale networks). We refer to this solution

as Optimal and we denote it as Opt. Note however, that Opt

solution can be still suboptimal with respect to the optimal

solution of the offline VNE problem, where all requests are

known in advance. Opt in fact attempts to minimize the ratio

between the provider’s costs of embedding a VN request and

the available substrate resources provided for this request,

with the aim of balancing the network load. We also compare

Opt against its version where a path (or column) generation

approach is used to make Opt more scalable [17]. We refer

to this scheme as PathGen and, even in this case, substitute

its original shortest path algorithm (used to find new paths

within the multi-commodity flow) with our path management

solution (see details in Section III-C). Note that we used

the one-shot VNE approximation algorithm proposed in [36]

as an initial solution for the column generation approach

to avoid two stage VNE limitations when physical network

is initially unbalanced [17]. Finally, we compare against a

Consensus-based Auction mechanism (CAD) [5], [21], the first

policy-based distributed VNE approximation algorithm with

convergence and optimality guarantees. Note that a version

of CAD can be also used to solve the NFV-SC problem [5].

The link embedding of CAD is a policy that runs a shortest

path algorithm to either pre-compute the k-shortest paths or to

find these paths dynamically. For fairness of comparison, we

assume that the latter holds and as in the PathGen case, we

substitute the currently used shortest path algorithm, Dijkstra,

with our NM constrained shortest path finder solution.

In this simulation scenario we have tested the potential

revenue loss by specifying the fraction of VN request accepted

over the VN requested (allocation ratio), to what extent physi-

cal links were utilized (link utilization) and how many paths of

the particular length in total were used per VN pool. Finally,

we used the idle energy model proposed previously [49] to

access the energy consumption of the network:

Energy Consumption =
∑

e∈E

(M − E0)Ue + E0 (15)

where E is a set of physical edges, Ue is an edge e utilization,

and M and E0 are numerical values taken from [49] that

correspond to the maximum and idle energy consumption

of the switch interface, respectively. We use M = 2 and

E0 = 1.7 maximum and idle energy consumptions (measured

in Watts) assuming gigabit channel communications. In our

results, we show an energy consumption increase relative to

the idle network state (in %).
NM improves VNE/NFV-SC allocation ratio and energy

efficiency. Figures 6a and 6e show how including constrained

shortest paths (e.g., found with NM) during column generation

of the PathGen approach can improve overall VNE and NFV-

SC acceptance ratio. Particularly, the highest acceptance (i.e.,

allocation) ratio gains arise in the case ofdense (e.g., full-

mesh) VNs or under moderate real-time sensitivity of NFV-

SCs. Moreover, we can see how in some cases, utilizing NM

within PathGen leads to a lower energy consumption (see

Figures 6b and 6f ). This is due to an improved network

utilization because of a better (closer to the optimal) load

balancing (see Figures 6c and 6g).
These optimality gains in turn arise due to NM’s ability

to find more paths that can satisfy all virtual link constraints

(e.g., bandiwdth and latency) and simultaneously improve the

objective value (see Figures 6d and 6h). These results confirm

our expectations in Section III-C. At the same time, optimality

improvements with NM demonstrate no significant benefits (in

terms of allocation ratio or energy efficiency) for the CAD over

standard shortest path management. This is due to the fact that

in our settings, separate node and link embedding approach
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Fig. 7: Performance analyses of LP-based (Top) and greedy (Bottom) max-min fairness Traffic Engineering (TE) algorithms [15], [16] utilizing the constrained
shortest path management with NM versus their original shortest path management with Dijkstra on Waxman topologies in terms of: (a) and (e) total gained
flow throughput; (b) and (f) cumulative distribution of flow throughput for 25 paths per flow and for average node degree 4 (common for Internet [47]),
respectively; (c) and (g) energy consumption increase relative to the network idle state [49]; and (d) and (h) number of average path hops per flow.

demonstrates the worst performance caused by significantly

limited feasible space for the virtual link mapping. Such

limitations are due to randomized capacities of physical nodes

and edges (i.e., due to initially unbalanced physical network)

further exacerbated by randomized virtual link capacity and

latency constraints.

B. Data Plane Evaluation

In the next set of results we analyze the benefits of using our

solution within the data plane by evaluating NM performance

within standard Traffic Engineering schemes [15], [16], un-

der different physical network topologies and under different

severity of service level objectives.

Simulation settings. To evaluate the impact of NM (used to

compute constrained shortest paths) within Traffic Engineer-

ing [15], [16], we use a physical network topology of 10, 000
nodes, where each physical link has bandwidth uniformly

distributed between 1 and 10 Gbps. We attempt to allocate

flows for 1000 random source destination pairs by solving

max-min fairness problem shown in Equation 8 with the fixed

latency SLO demands. To evaluate the maximum possible

gains, we assume infinite bandwidth demands of the flows

and we omit any constraints imposed by hardware granularity

due to rule count limits or flow quantization limitations [15],

[16]. For clarity, we also assume that all flows have the same

priority. Thus, the fairness of the flow is its total allocated

throughput. We denote with low, medium and high delay SLO

constraints, 4, 1.5, and 1 times of a propagation delay stretch

defined in Section VII-A, respectively.

In the first simulation scenario, we use LP-based solution

(that is costly to address in practice [15], [16]) with fixed

average physical node degree equal to 4 (common for the

Internet [47]), where we vary the maximum number of paths

available for each flow allocation. In the second scenario, we

use instead scalable greedy solution proposed in [16] with

unrestricted number of paths per flow. To this end, once the

best currently available path (or tunnel) gets fully saturated,

we find the next best path dynamically. In this scenario, we

vary average physical node degree from 8 to 1.

Evaluation metrics. To evaluate the performance of NM for

data plane TE solutions, we compare NM with (extended)

Dijkstra algorithm within the greedy-based TE (i.e., in the

second scenario), and their corresponding k-shortest path [31]

and k-constrained shortest path (that uses general version of

NM coupled with Look Back technique) algorithms within

LP-based TE (i.e., in the first scenario). We remark that

NM’s superior performance w.r.t. Dijkstra-based TE is ex-

pected due to its ability of minimizing provider’s associated

cost for flow allocation e.g., minimizing provisioned physical

bandwidth (see Problem 2) under an arbitrary set of (e.g.,

SLO) constraints. This difference is expected to degrade in

the first scenario (where LP-based formulation is used) with

either number of maximum paths per flow or SLO severity

increase, as in this case the k-shortest path set converge

to the k-constrained shortest path set resulting in the equal

LP formulation. However, in the second scenario, as we

allocate bandwidth for flows on their most preferable tunnels

(best paths) first, that superior performance is expected to be

preserved and can vary with different node degree or SLO

severity. For comparison we use the following four metrics:

total gained throughput of all flows, cumulative distribution

of flows’ throughput which corresponds to their fairness,

energy consumption relative to the network idle state (see

Equation 15) and path hop count.

Path hop savings lead to network utilization and flow

fairness gains. In Figure 7a, we show how the correlation

between the total gained throughput across all flows and the

maximum number of paths available per each flow is a loga-

rithmic function — increasing number of paths linearly brings

a logarithmic growth to the total gained throughput. Figure 7e
shows how the total gained throughput of all allocated flows

changes when multiple physical links become available (the

average physical node degree increases). This dependence is an

affine function: the maximum possible total gained throughput

increases linearly with the available physical links.

In both scenarios, we can see how the total flow through-

put and the resulting flow fairness (e.g., the particular flow

throughput) are higher for NM than for Dijkstra-based TE
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(see Figures 7a, 7b, 7e and 7f ). These results demonstrate

how minimizing the total physical bandwidth provisioned for

a single flow with NM can significantly benefit even traffic

engineering solutions. In particular, due to the path hop count

optimization under SLO constraints within the data plane,

NM gains up to 50% of total flow throughput under low

SLO in the first (LP-based) scenario, and up to 20% of total

flow throughput under mid SLO in the second (greedy-based)

scenario w.r.t. Dijkstra-based TE (see Figures 7a and 7e).

Such gains allow, in turn also to improve flow fairness (see

Figures 7b and 7f ). Note that such large throughput gains in

the first scenario (i.e., up to 50%) are partly due to the k-

shortest path [31] and the general version of NM (that finds

k-constrained shortest paths) algorithms difference, i.e., the

former has a higher probability of finding paths with more

shared edges then the later. As expected, NM gains decrease

with the node connectivity, as less physical path choices are

available to map virtual links. Also, for LP-based scenario

these gains decrease with increase of the maximum number

of paths or SLO severity, as both shortest and constrained

shortest path sets converge to each other resulting in equal LP

formulations.
Average path length and energy consumption tradeoff. We

further investigate the reasons why we observed such gains

in total throughput of all flows w.r.t. Dijksra-based TE. In

particular, observing Figures 7d and 7h we note that there are

≈ 2 − 3 hops difference in the average path length between

NM and Dijkstra-based TE when allocating low SLO flows. At

the same time, for the medium SLO constraints this difference

is reduced to circa one hop. Finally, when the SLO constraints

are high, there is no significant physical path length difference.

To understand why the average path length changes with

the constraint severity, note how the longer is an end-to-end

physical path, the lower is the probability that the entire path

satisfies the SLO constraints. On the other hand, the higher

the number of hops, the higher is the number of candidates

paths, and so the higher is the probability of finding one

which satisfies these constraints. This explains the trade-offs

in average path length behavior observed in Figure 7h.
The hop count savings minimize the physical bandwidth

provisioned for a single path, allowing the provider to accept

more flows or allocate more bandwidth for a single flow. As a

result, the overall link utilization increases leading to a higher

energy consumption (see Figures 7c and 7g). We observe

one exception when throughput gains are low and path hop

count savings are high (as observed in the management plane

scenario in Section VII-A). An example of such situation can

be also observed in the second scenario for dense physical

networks (with average node degree ≥ 5) when allocating

flows with low SLO demands. In that case, we can see a small

reduction (of ≈ 2%) in the energy consumption simultaneously

with low throughput gains (of ≈ 5%).

C. Scalability Results

In the next set of results we test the scalability perfor-

mance of NM when accepting multiple link and multiple path

constraints (l ⊕ p case). We remark that in this case only

exponential exact solutions exist for the constrained shortest

path problem due to its NP-hardness [8].
Scalability simulation settings. To assess NM scalability,

we simulate on-line requests for allocating constrained virtual
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Fig. 8: Performance analyses of general NM versus EBFS with dominant
paths, look-back for NM (NM+LB) and look-ahead for EBFS (EBFS+LA)
search space reduction techniques, and versus IBM CPLEX solver for the
constrained shortest path formulation in Problem 2 for low (top row) and
medium (bottom row) SLO constraints in terms of: (a,c) number of traversed
paths to find the optimal virtual path; (b,d) the virtual path computation time.

links (or traffic flows). In particular, we generate physical net-

work topologies of 10, 100, 1K and 10K nodes, where each

physical link has bandwidth uniformly distributed between 1
and 10 Gbps. In addition, we set each physical link with a cost

uniformly distributed between 1 and 10. We attempt to find

the constrained shortest path variant — the resource optimal

constrained path for 10% of physical network nodes random

source-destination pairs, where for each pair we allocate as

many virtual links as possible with the fixed demands. We

denote with low and medium bandwidth constraints, 1 and 4
Gbps, respectively; these values represent approximately 10%
and 45% of the maximum physical link capacity. Similarly,

we denote with low and medium (propagation) delay SLO

constraints, 4 and 2.5 times of a propagation delay stretch

defined in Section VII-A, respectively. In addition, we denote

with low and medium cost constraints, 100 and 50 that

represent 10 and 5 times of the maximum physical link cost.

Scalability evaluation metrics. To evaluate the NM scalabil-

ity, we compare the general version of NM with the EBFS

(common branch-and-bound exhaustive search) algorithm and

with the CPLEX [50] performance (that uses 4 parallel

threads) of solving the common arc-based constrained shortest

path formulation. Both NM and EBFS are coupled with

dominant paths search space reduction techniques. Moreover,

we couple EBFS with a Look Ahead (EBFS+LA) search space

reduction technique [10] and NM with a Look Back (NM+LB)

search space reduction technique - a variant of Look Ahead

without complexity overhead (see Section IV-B).

We compare NM with EBFS and CPLEX across two metrics:

the number of traversed paths required to find the constrained

shortest path and the average path computation time. Note that

in case of CPLEX, the number of traversed paths corresponds

to the total number of iterations.

Dominant paths prevent intractabilities. Figures 8a and 8c
show that dominant paths technique reduces the number of

traversed paths per virtual link to a linear function of a

physical network size for both EBFS and NM. Moreover,

due to its “double pass” technique, NM traverses up to two

orders of magnitude paths less then EBFS. However, we can
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see how EBFS works slightly faster than NM for large scale

physical networks with medium link and path constraints (see

Figure 8d). That can be explained with the more expensive

forward pass of NM for larger physical networks (≥ 10K

nodes). The NM’s unnecessary iterations can be however

reduced by the proposed Look Back technique.

NM scalability with backward pass and look back. Our

experiments show that when NM backward phase is coupled

with a Look Back technique, the number of traversed paths by

NM further reduces. This reduction is almost independent from

the size of the physical network (see Figures 8a and 8c). Using

the Look Back search space optimization does not introduce

any significant path computation overhead, while the same

cannot be said for the Look Ahead search space reduction

technique (see Figures 8b and 8d).

Even though CPLEX uses 4 parallel threads (instead of

a single thread for NM and EBFS) and traverses moderate

number of path (similar to NM without Look Back technique),

it shows the worst performance in all cases. That is due to the

fact, that finding constrained shortest paths with the commonly

utilized arc-based integer programming formulation is NP-

hard and no existing techniques can reduce that complexity

to pseudo-polynomial. On the contrary, NM and EBFS com-

plexities can be reduced to pseudo-polynomial by applying

the dominant paths search space reduction technique [10].

Proposed novel double pass and Look Back search space

reduction techniques further reduce the practical complexity

of finding constrained shortest paths. Thus, NM is almost an

order of magnitude faster in comparison with EBFS and is

almost 3 orders of magnitude faster than CPLEX for large-

scale physical networks, and hence scales better. We remark

that such scalability improvements over existing constrained

shortest path algorithms are essential for the virtual network

service management at large scale. For example, the column

generation approach can generate tens of thousands paths

per a single VN request at large scale. Thus, it will take

100 ms x 10K ≈ 17 minutes when EBFS is used. On the

contrary, we need only 10 ms x 10K ≈ 100 seconds with NM

which significantly reduces VN request blocking probability.

Note that additional scalability results comparison of our NM

with respect to the EDijkstra shortest path scheme can be

found in our prior work [40].

D. Prototype Evaluation

In this final set of results, we use our NM prototype to

estimate the impact of the on-demand constrained shortest

path computation on the end-to-end virtual link embedding

performance. We also confirm our main simulation results.

Experiment settings. Our setup for the performance exper-

iments includes 15 virtual machines (VMs) from the GENI

testbed [2]: Ten of these VMs are OpenFlow Virtual Switches

(OVS) [51], and others are hosts. Each host-to-switch physical

link has 10 Mbps bandwidth and a 0 arbitrary cost, and each

switch-to-switch physical link has both bandwidth (measured

in Mbps) and an arbitrary cost uniformly distributed between

1 and 10. Note, that our arbitrary cost is an additive metric

and therefore can represent any path metric, e.g., delay, losses,

jitter, etc. We request virtual links with low SLO constraints,

i.e., ≥ 1 Mbps bandwidth and ≤ 50 arbitrary cost (5 times

greater than the maximum physical link cost), between 5
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Fig. 9: Performance analysis of the shortest path algorithm such as the
extended version of Dijkstra (ED) versus constrained shortest path algorithms
such as NM (in both l⊕ 1 and l⊕ p cases), EBFS and IBF on a reserved in
GENI small SDN testbed in terms of: (a) total gained throughput; (b) number
of path hops per VL; and (c) average time per VL embedding, i.e., VL path
computation (mapping) and its consequent allocation.

random < src, dst > pairs of hosts, where for each pair of

endpoints we allocate as many virtual links as possible.

Experiment metrics. For each virtual link request we again

measure the total gained throughput and the virtual link path

hop count. In addition, we measure the time required to

compute a path (virtual link mapping), and the time to allocate

the computed path (i.e., set appropriate flow rules within

OpenFlow switches along the computed path). Note that the

overall time for end-to-end virtual link embedding includes

both virtual link mapping and its allocation. Our experiment

goals are twofold: first, we want confirm our simulation results

in real settings; secondly, we want to estimate an overhead of

addressing constrained shortest path problem in real settings.

NM gains are confirmed experimentally. Using real-world

settings, we were able to confirm constrained shortest path

algorithms (i.e., IBF, NM and EBFS) for the online TE pro-

duce superior performance even on a small physical network

scale. This is similar to superior results of the offline TE

which utilizes the constrained shortest path algorithms (see

Section VII-B). Specifically, IBF, NM and EBFS show gains

of up to 12% in total VL throughput (network utilization) and

find almost 1 hop shorter VL path in average, w.r.t. extended

Dijkstra (ED) shortest path scheme as shown in Figures 9a

and 9b. Note however that IBF is applicable only for in l and

l ⊕ 1 cases (see Table I).

NM running time scales well with physical network size.

Figure 9c shows how VL mapping is an order of magnitude

faster for small scale physical networks (of ≈ 101 nodes)

than its allocation for all routing schemes that have been

implemented. This is because the path computation is a local

(in-memory) operation but the virtual link allocation requires

setting up of flow rules within all switches along the loop-free

underlying physical path found. Hence, its speed depends on

the Round Trip Time between switches and the OpenFlow

controller. In reference to Figures 8b and 8d, we can see

how for large scale networks (≥ 10K nodes), the running

time of classical constrained shortest path algorithms such as

EBFS can become prohibitive (up to two orders of magnitudes

larger than in a case of a single path computation for small

scale networks). As a result, the VL mapping time becomes a

bottleneck. On the contrary, NM is just an order of magnitude

slower at large-scale than at small scale. Thus, NM does not

bottleneck the end-to-end VL embedding at large scale.

VIII. CONCLUSION

In this paper, we motivated the problem of achieving a

flexible and scalable constrained shortest path management

approach for virtual network services deployed across multiple
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data centers. To cope with constrained shortest paths NP-

hardness (that limits both its scalability and flexibility), we first

introduced a novel algorithm viz., ‘Neighborhoods Method’

(NM), which utilizes a double pass (a synergy of dynamic

programming and a branch-and-bound exhaustive search) and

“Look Back” search space reduction techniques. Our computa-

tional complexity analysis indicates NM’s quadratically lower

complexity upper-bound than for recent branch-and-bound ex-

haustive search methods, and our scalability evaluation results

show how NM is faster by an order of magnitude than these

methods. Thus, NM scales better for large scale networks of

≥ 10, 000 nodes. Via numerical simulations of diverse network

topology scenarios, we were able to show how the constrained

shortest path management improves the network utilization

(gains were seen up to 50%) and in some cases even in the en-

ergy efficiency of the recent management plane algorithms for

virtual network embedding or network function virtualization

service chaining. Additionally, we found improvements in the

recent data plane algorithms for traffic engineering. Thus, we

demonstrated that our proposed NM is also flexible and can be

applied to diverse virtual network service scenarios. Finally,

we were able to reproduce our main simulation results in a

real-world GENI testbed with an NM implementation, whose

source code is publicly available under a GNU license at [23].

As part of future work, we aim to develop new VNE/NFV-

SC algorithms that can better utilize our proposed constrained

shortest path scheme at larger network scales. To obtain a good

lower bound solution within large network scale simulations,

we can relax integrality constraints of the optimal VNE/NFV-

SC integer programs to e.g., use efficient linear programming.
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