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Cancer Immunity and Gene Expression Data:
A Quick Tool for Immunophenotype Evaluation
Masayuki Hirano

The rapid advancement of next generation sequencing
technology has resulted in accumulation of many datasets in
cancer clinical and research laboratories, many of which do
not have bioinformaticians. Xu and colleagues developed a
user-friendly web-based tool to define the tumor immuno-
phenotype among patients with cancer. By uploading user-
defined datasets on the web, it can systematically track,

analyze, and visualize the status of anticancer immune
activity and the proportion of tumor-infiltrating immune
cells. This tool can help immunologists and clinical
researchers to perform quick, efficient, and comprehensive
analysis of the tumor immunophenotype. Cancer Res; 78(23);
6536–8. �2018 AACR.
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Cancer immunotherapy has been rapidly advancing follow-
ing the discovery that therapeutic blockade of immune check-
points unleashes antitumor immunity (1). Tumor cells exploit
these checkpoints as a major mechanism for immune escape,
especially from tumor-specific T cells. Because many immune
checkpoints are initiated by ligand–receptor interactions, they
can be simply blocked by antibodies or modulated by recom-
binant ligands or receptors. Programmed cell death protein 1
(PD-1) and CTL–associated antigen 4 (CTLA4) are major
immune checkpoint proteins, and antibodies targeting them
induce broad and diverse antitumor immune responses. The
process of tumor immune response can be broken down into
seven steps called the cancer–immunity cycle (2): release of
cancer cell antigen (step 1), antigen capture and presentation by
dendritic cells (DC; step 2), effector T-cell recognition against
the cancer-specific antigen (step 3), effector T-cell trafficking to
tumors (step 4), infiltration of effector T cells into tumors (step
5), T-cell recognition of and binding to cancer cells (step 6),
and killing of the target cancer cells (step 7). Each step of the
cancer–immunity cycle is coordinated by various stimulatory
and inhibitory factors (2). Stimulatory factors promote
immune response, whereas inhibitory factors enable cancer
progression and downregulate immune activity and/or prevent
autoimmunity. Some of the immune checkpoint proteins,
including CTLA4, inhibit amplification of an active immune
response by acting primarily at the level of T-cell development
and proliferation at step 3. PD-1 has an inhibitory function that
regulates active immune responses both in the tumor bed (step
7) and in T-cell development and proliferation (step 3). Under-
standing these steps helps to delineate how cancer interacts
with the immune system and enables step-specific targeting in

cancer immunotherapy to promote targeted treatment strate-
gies for individual immune responses.

Tumors are mixtures of many cell types, including tumor-
infiltrating immune cells as well as malignant cells (3, 4). Fur-
thermore, the immune cells within tumors are composed of
various cell types with different functions [e.g., cytotoxic CD8þ

T cells that affect antitumor activity and regulatory T (Treg) cells
with immunosuppressive function]. Hence, detailed characteri-
zation of tumor immunophenotype is critical for understanding
tumor status to guide cancer treatment. Imaging and cellular
phenotyping assays such as IHC, immunocytochemistry, and
flow cytometry analyses are used for immunophenotype charac-
terization in tumors and provide important cellular contextual
information. In addition to these techniques, genetic and compu-
tational approaches based on immune-specific marker genes or
gene expression signatures can be applied to characterize the
composition of tumor-infiltrating immune cells. Therefore, gene
analysis tools have been developed to provide comprehensive
information about tumor-infiltrating immune cells. The compu-
tational gene analysis tools can be categorized into gene set
enrichment analysis (GSEA) methods and deconvolution meth-
ods (3). Both assay types are based on a matrix of expression
profiles for individual cell subpopulations. Thesemethods recon-
struct tumor-infiltrating immune cell subpopulations, which are
defined in the reference matrix of expression profiles. The GSEA
method is often used to identify genemarkers (3–5). Thismethod
ranks genes according to their expression levels in a sample and
calculates an enrichment score (ES) based on the position of cell
type–specific gene markers in the ranked list. Alternatively, a
single-sample GSEA (ssGSEA) ES can be used, which represents
the degree to which genes are coordinately up- or downregulated
within a single sample (3, 4). Microarray or RNA sequencing
(RNA-seq) data from the tumormicroenvironment can be used to
characterize the immunophenotype and to detect immune cell
type–specific markers and gene expression signatures. A merit of
the GSEA method is that it can be applied to existing tools and
does not require extra sampling compared with conventional
gene expression analysis. It only requires the assembly of gene
signatures related to each immune subpopulation.

Deconvolution methods make use of expression signature
matrices to deduce specific cell proportions from expression data
of cell mixtures (3, 6). The recently developed CIBERSORT tool
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enables deconvolution of 22 human immune cell types (547
genes) and converts a microarray dataset into a gene signature
matrix (3). It uses an algorithm to assess the cell fractions by nu-
support vector regression (n-SVR) and was validated on micro-
array data of cell mixtures derived from lymphoid tissue biopsies.
It showed a high accuracy in the deconvolution of up to nine
immune cell subsets, whereas it demonstrated lower accuracy in
the quantification of gamma–delta T cells (3), illustrating that
while various successful applications of computational method-
ologies have been established, several issues still need to be
improved (7).

As deconvolution methods are based on gene expression pro-
files, cell-lineage–specific DNA methylation patterns can be uti-
lized to detect and to estimate immune cell subsets (8). For this
purpose, a number of programs and tools (8) were developed
using information ranging from a few methylated CpG to
genome-wide loci on microarray platforms (i.e., Illumina Infi-
nium27k and450kDNAmethylation arrays). The epigenome can
be highly variable across different cell types as is apparent from
epigenome-wide association studies (9). These cell type–specific
effects can be useful although the current availability of the
reference methylation patterns from purified cell types is still
limited.

Generally, an issue with many of these computer analyses is
that they often require additional expertise in computer program-
ing and statistical analysis. Some programs can be used to char-
acterize the cancer–immunity cycle, but these commonly require
a long execution time. Therefore, there is a need for tools that are
more user-friendly to the average cancer biologist or immuno-
logist. In this issue of Cancer Research, Xu and colleagues describe
the web-based tool, TIP (tracking tumor immunophenotype;
ref. 10) that utilizes both GSEA and deconvolution methods
to depict the status of anticancer immunity and the proportion
of tumor-infiltrating immune cells, respectively. To estimate
the status of anticancer immunity, they manually collected 178
signature genes (23 sets) that are involved in the seven steps of
the cancer–immunity cycle, with cancer immunity-related key-
words (e.g. checkpoints, chemokines and MHC molecules).
The activity levels of these signature gene sets were calculated
using ssGSEA based on individual gene expression. The stimula-
tory (positive) and inhibitory (negative) gene sets in each
step of the cancer–immunity cycle were calculated separately. To
compare ssGSEA scores between different expression platforms
and different samples, the activity score for each signature set was
generated by estimating the difference between the normalized
ssGSEA scores of positive and negative sets.

TIP is also designed to evaluate the proportion of various
tumor-infiltrating immune cells, such as T cells, B cells, DCs,
natural killer (NK) cells, andmacrophages, using the CIBERSORT
algorithm. When users upload microarray expression profiling
data, TIP will estimate the fractions of infiltrated immune cell
types for each sample by using the original leukocyte gene
signature matrix (LM22) in CIBERSORT. To infer the cell propor-
tion from bulk RNA-seq expression data, they built a gene sig-
nature expression matrix (LM14, involving seven T-cell types, B

cells, CD14 and CD16 monocytes, DC and plasmacytoid
DC, plasma cells, and NK cells) using single-cell RNA-seq data
(scRNA-seq), which is composed of peripheral blood mono-
nuclear cells, CD4þ Th cells, and CD4þCD25þ Treg cells from
the 10�Genomics datasets. For an appropriate signature gene set
for LM14, differentially expressed genes among the 14 cell types
and signature genes from the LM22 were merged. The LM14 gene
signaturematrix is a TPMexpressionmatrix of 973 signature genes
(row) and 14 immune cell types (columns). Users can just upload
bulk RNA-seq expression data (raw count or TPM) or microarray
expression data (log or non-log transformed) as input. The
results (output) can be viewed from both a global and individual
perspective for interactive evaluation. TIP displays the 23 immune
activity scores reflecting the activity status of the seven-step
cancer–immunity cycle for all samples from a global perspective.
The activity scores and the relative proportion of tumor-infiltrat-
ing immune cells across all samples are provided. The expression
pattern and the principal component analysis of 178 step-specific
signature genes are also presented. Conveniently, the overall
activity score for each sample from a global perspective is also
displayed to investigate the immunophenotype in an individual
perspective.

In conclusion, TIP is a very useful web-based tool that will
support tumor immunophenotype profiling and diagnosis.
Immunologists and clinical researchers can perform comprehen-
sive analysis of tumor-infiltrating immune cells easily and effi-
ciently without additional computer and programming skills.
Contamination of normal tissue in tumor samples is always a
big issue for tumor diagnosis and evaluation, therefore, consis-
tency of cancer tissue sampling or combined evaluation with IHC
and/or flow cytometry analysis may be necessary for precise
evaluation and diagnosis. As with CIBERSORT software, cell
fraction data from computational TIP assays are not quite con-
sistent with the data from other biological assays for some cells
types (e.g., monocytes and na€�ve CD4þ T cells assayed by flow
cytometry, and macrophages by IHC). Modification of signature
genes and calculation algorithm, as well as addition of DNA
methylation profiling and clinical phenotype data (survival,
immunotherapy stage and response, etc.), can improve tumor-
infiltrating immune cells evaluation. Computationalmethods for
profiling cellular heterogeneity using various types of large
sequencing data derived from patient tissues and cell mixtures
will likely increase in popularity; these computer algorithms,
including TIP, can also be applied easily to other human diseases.
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