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Abstract. We present a scalable approach for Detecting Objects by
transferring Common-sense Knowledge (DOCK) from source to target
categories. In our setting, the training data for the source categories
have bounding box annotations, while those for the target categories only
have image-level annotations. Current state-of-the-art approaches focus
on image-level visual or semantic similarity to adapt a detector trained
on the source categories to the new target categories. In contrast, our key
idea is to (i) use similarity not at the image-level, but rather at the region-
level, and (ii) leverage richer common-sense (based on attribute, spa-
tial, etc.) to guide the algorithm towards learning the correct detections.
We acquire such common-sense cues automatically from readily-available
knowledge bases without any extra human effort. On the challenging MS
COCO dataset, we find that common-sense knowledge can substantially
improve detection performance over existing transfer-learning baselines.

1 Introduction

Object detection has witnessed phenomenal progress in recent years, where fully-
supervised detectors have produced amazing results. However, getting large vol-
umes of bounding box annotations has become an Achilles heel of this setting. To
address this scalability concern, transfer-learning methods that transform knowl-
edge from source categories (with bounding boxes) to similar target classes (with
only image labels) have evolved as a promising alternative [37, 17, 32, 39].

Fig. 1. Guess the object?

While recent works [17, 18, 39] have demonstrated
the exciting potential of transfer-learning on object-
centric datasets like ImageNet, it has not yet been
thoroughly explored on more complex scene-centric
datasets like MS COCO. Why is it so?

We hypothesize three key challenges:
(i) Existing transfer learning methods rely only on

similarity knowledge between the source and target
categories to compute the transformations that need to be transferred. Unfortu-
nately, using similarity alone is often insufficient. For example, can you guess the
orange-colored region proposal in the masked image using only the provided sim-
ilarity cues (Fig. 1)? (ii) Existing methods depend on having a robust image-level



2 K. K. Singh, S. Divvala, A. Farhadi, and Y. J. Lee

object classifier for transferring knowledge, which for object-centric datasets like
ImageNet is easy to obtain, but is challenging for scene-centric datasets like MS
COCO (where multiple and potentially small objects like ‘toothbrush’ exist in
each image). If the image classifier does not perform well, then transforming
it into a detector will not perform well either. (iii) Finally, if instances of the
target classes frequently co-occur with the source classes, then the target class
regions can end up being undesirably learned as ‘background’ while training the
detector for the source classes.

Fig. 2. Using the multiple
common-sense cues, can you
now guess the object corre-
sponding to the orange box?
(For answer, see [1])

In this paper, we overcome the above limita-
tions by proposing a new approach for Detecting
Objects by transferring Common-sense Knowl-
edge (DOCK). To overcome the first limitation,
our key idea is to leverage multiple sources of
common-sense knowledge. Specifically, we encode:
(1) similarity, (2) spatial, (3) attribute, and (4)
scene. For example, if ‘spoon’ is one of the target
objects and ‘fork’, ‘table’, and ‘kitchen’ are among
the source categories, we can learn to better de-
tect the ‘spoon’ by leveraging the fact that it is
usually ‘similar to fork’, ‘on a table’, ‘is metal-
lic’, and ‘seen in kitchens’. Fig. 2 shows another
scenario, which builds upon the Fig. 1 example.

In this way, even if a target class does not have a visually/semantically similar
class among the source classes, the other common-sense can help in obtaining a
better detector. All the common-sense knowledge we use is freely-acquired from
readily-available external knowledge bases [23, 29, 27, 38, 19, 44]. Further, our ap-
proach learns all the required common-sense models using source-class bounding
box annotations only and does not require any bounding box annotations for
the target categories.

To address the latter limitations, our idea is to directly model objects at the
region-level rather than at the image-level. To this end, any detection framework
that learns using region proposals with image-level labels for the target object
categories is applicable. In this paper, we use an object proposal classification
and ranking detection framework based upon [5] for its simplicity and competi-
tive performance. It learns an object detector by minimizing an image classifica-
tion loss based on object proposals’ class probabilities. We inject common-sense
into this framework by modulating the object proposals’ class probabilities with
our proposed common-sense prior probabilities. The proposed priors give higher
preference to regions that are more likely (under common-sense) to belong to the
object-of-interest. Interestingly, since the common-sense cues are encoded only
as priors, our algorithm can choose to ignore them when they are not applicable.
This is particularly helpful to alleviate the concern when frequently co-occurring
target classes are incorrectly learned as ‘background’.

We evaluate our approach on the challenging MS COCO dataset [22]. We
find that transferring common-sense knowledge substantially improves object
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detection performance for the target classes that lack bounding box annota-
tions, compared to other contemporary transfer-learning methods [17, 18, 39].
We also perform ablation analyses to inspect the contribution of our proposed
idea of encoding common sense. Finally, we explore the potential of our proposed
framework in the context of webly-supervised object detection.

2 Related Work

Transfer learning for scalable object detection. Existing transfer learning ap-
proaches can be roughly divided into two groups: one that learns using bound-
ing box annotations for both source and target categories [36, 3, 21, 11, 43, 40],
and another that learns using bounding box annotations for source categories
but only image-level annotations for target categories [37, 17, 18, 32, 39]. In this
paper, we are interested in the latter setting, which is harder but likely to be
more scalable. In particular, the recent state-of-the-art deep learning approaches
of [17, 18, 39] adapt an image classifier into an object detector by learning a fea-
ture transformation between classifiers and detectors on the source classes, and
transfer that transformation to related target classes based on visual or semantic
similarity for which only classifiers exist. While our approach also leverages pre-
trained object detectors for encoding visual and semantic similarity, we explore
additional common-sense cues such as spatial and attribute knowledge. More-
over, both [17, 39] use similarity information at the image-level (which works
well on only object-centric datasets like ImageNet), while our approach uses
similarity at the region-level. All these contributions together help us achieve a
significant performance boost on the scene-centric MS COCO dataset.

Use of context. Our use of common-sense is related to previous works on context
which leverage additional information beyond an object’s visual appearance.
Context has been used for various vision tasks including object detection [31, 9,
8, 33, 4, 15], semantic segmentation [28], and object discovery [20, 10]. As context
by definition is something that frequently co-occurs with the object-of-interest,
without bounding box annotations the contextual regions can easily be confused
with the object-of-interest (e.g., a piece of ‘road’ context with a ‘car’). Our
approach tries to address this issue by using external common-sense knowledge
to model context for a target object in terms of its spatial relationship with
previously-learned source objects. This idea is related to [20], which makes use
of already known objects to discover new categories from unlabeled images.

Using external knowledge for vision tasks. Our field has witnessed the rise of
several interesting knowledge bases, including ConceptNet [23], BabelNet [29],
WordNet [27], WebChild [38], Visual Genome [19], ImSitu [44], etc. While re-
sources like WebChild [38] and BabelNet [29] are created automatically by crawl-
ing the web, others are generated with crowd-sourced effort. The key advantage
of these resources is that they contain freely-available rich knowledge.

Such external knowledge bases have been used in several vision tasks includ-
ing image classification [25, 7], VQA [47, 41], visual relationship detection [24,



4 K. K. Singh, S. Divvala, A. Farhadi, and Y. J. Lee

Fig. 3. Proposed framework for transferring common-sense knowledge for object detec-
tion. The base detection network computes a classification matrix XP×C without any
bounding box annotations (Section 3.1). We introduce a common-sense matrix YP×C

that modulates the probabilities of region proposals belonging to various classes based
on common-sense knowledge (Section 3.2). The common-sense matrix is computed us-
ing readily-available knowledge base resources (Section 3.3).

30], and modeling object affordances [46]. However, there has been very lim-
ited work on using external knowledge for object detection [13], especially in the
transfer learning setting in which bounding box annotations for the target classes
are lacking. Tang et al. [39] use word2vec semantic similarity between classes to
perform domain transfer between a classifier and a detector. In contrast, we go
beyond using semantic similarity and explore spatial, scene, and attribute cues.

3 Proposed Approach

In this section, we first briefly describe the base detection network used in our
framework and then explain our proposed approach for injecting common-sense
knowledge into it. Finally, we describe our process for automatically gathering
the different types of common-sense knowledge from existing resources.

3.1 Base Detection Network

Our idea of transferring common-sense knowledge to improve object detection
is generic and could be incorporated into any detection approach that learns
from image-level labels. In our work, we use an object proposal classification
and ranking framework based on [5] for its simplicity and end-to-end nature.

The initial layers of the network consist of convolution layers followed by
spatial pyramid pooling layers to pool features corresponding to image region
proposals (ri). After pooling, the network has two data streams: the recognition
stream assigns a classification score for each region proposal by applying a soft-
max over the classes to produce a P × C recognition matrix Xr, whereas the
detection stream assigns probability of a region proposal to be selected for a spe-
cific class by applying a softmax over the proposals to produce a P ×C detection
matrix Xd. The final probability for each proposal to belong to different classes
is computed by taking their element-wise dot product X = Xr �Xd. The net-
work takes P proposals of a training image as input and outputs the probability



DOCK: Detecting Objects by transferring Common-sense Knowledge 5

for each of them to belong to C classes. This is shown as a P × C classification
matrix X in Fig. 3. Note that the network learns to detect objects while being
trained for the image classification task. The image-level class probabilities are
obtained by summing the probabilities of each class (ci) over the proposals:

Prob(ci) =
P∑

n=1

Xrn,ci , i ∈ (1, C),

where Xrn,ci is the probability of proposal rn belonging to class ci. A binary
cross-entropy loss is applied over the probabilities to learn the detection models.

3.2 Transferring Common-sense

In order to transfer common-sense knowledge from the source categories with
both image and bounding box annotations to the target categories with only
image-level annotations, we augment the above base detection network with
a novel common-sense matrix Y of size P × C (analogous to the classification
matrix XP×C). Each element of Yrn,ci can be thought of as representing a ‘prior’
probability of a proposal rn belonging to class ci according to common-sense
knowledge (see Fig. 3). We will maintain a separate common-sense matrix for
each type of common-sense (similarity, attribute, etc.) and later (Section 3.3)
describe the details for acquiring and merging these matrices.

Assuming we have access to this common-sense matrix Y , we utilize this
information by taking an element-wise dot product of it with the classification
matrix (X) to create a resultant matrix ZP×C :

Prob(ci) =
P∑

n=1

Yrn,ci ∗Xrn,ci =
P∑

n=1

Zrn,ci , i ∈ (1, C),

which now will be used for obtaining the image-level class probabilities over
which a binary cross-entropy loss is applied.

For example, in Fig. 3, the attribute common-sense matrix (which would
encode the common-sense that a ‘zebra’ is striped) would have a low prior prob-
ability (YrP ,zebra) for the proposal rP to be a ‘zebra’. And, the class-similarity
common-sense (which would encode the common-sense that a ‘zebra’ is simi-
lar to a ‘horse’) would have a low value for the zebra head proposal (Yr1,zebra)
compared to the zebra full-body proposal (Yr2,zebra).

Intuitively, the common-sense matrix Y influences the values of the classifi-
cation matrix X during training and over time the common-sense priorities are
transferred from Y to X. To drive home this intuition, we take the example in
Fig. 3. The Probzebra should be high for this training image as it contains a ‘ze-
bra’, i.e.,

∑P
n=1 Zrn,zebra =

∑P
n=1 Yrn,zebra ∗Xrn,zebra should be high. This can

be easily achieved if both Yrn,zebra and Xrn,zebra are high. In this case Yr2,zebra
is high according to common-sense which in turn encourages the network to
have high value for Xr2,zebra. At the same time, due to a low value for Yr1,zebra
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Fig. 4. Similarity Common-sense: For computing the Ys(., zebra) values, all the
proposals of the input image are scored by the detectors of zebra’s semantically similar
classes Szebra. Observe that proposal r2, which contains the zebra’s full-body gets the
highest Ys value.

and YrP ,zebra, the network is discouraged to have a high value for Xr1,zebra and
XrP ,zebra. Therefore, during training itself, the network learns to incorporate
the common-sense prior information of the Y matrix into the X matrix.

3.3 Acquiring Common-sense

Now that we have seen how we transfer common-sense information (i.e., ma-
trix Y ) into the base detection framework, we next explain our approach for
automatically gathering this matrix using existing knowledge resources.

Class Similarity Common-sense. Our goal here is to leverage the semantic simi-
larity of a new target class to previously-learned source classes. For example, as
a ‘zebra’ is semantically similar to a ‘horse’, the proposals that are scored higher
by a ‘horse’ detector should be more probable of being a ‘zebra’. More generally,
for any class ci, the proposals looking similar to its semantically similar classes
should receive higher prior for ci.

To construct the class-similarity common-sense matrix Ys, we tap into the
readily-available set of pre-trained detectors (φ) for the source object classes
(Csource) in the PASCAL VOC [12] knowledge base. Let ci be one of the new tar-
get object classes for which we are trying to learn a detector with just image-level
labels. To find the set of semantically similar source classes (i.e., Sci ⊂ Csource)
to ci, we represent all the classes (ci as well as Csource) using their word2vec
textual feature representation [26] and then compute the cosine-similarity be-
tween them. We choose all classes from Csource with cosine-similarity above a
threshold (0.35) as Sci .

We use the detectors of the classes in Sci to compute the values in Ys as:

Ys(rn, ci) = max
cj∈Sci

φcj (rn), n ∈ (1, P ).

Specifically, we set the value Ys(rn, ci) for a proposal rn to be of class ci as
being equal to the maximum detection probability of the classes similar to ci.
Fig. 4 illustrates how the class-similarity common-sense Ys is assigned in case
of the target ‘zebra’ object class, where Szebra consists of the source object
classes {‘horse’,‘cow’,‘sheep’,‘dog’,‘cat’,‘bird’}. Observe that a correct proposal
(i.e., r2 containing the ‘zebra’ full-body) gets the highest similarity common-
sense probability as it is scored higher by the object detectors in Szebra.
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Fig. 5. Attribute Common-sense: For computing Ya(., clock) values, we apply the
attribute classifiers for the common attributes of ‘clock’ on the proposals. Observe that
r1 containing a ‘clock’ with white & round attributes gets the highest Ya value.

Attribute Common-sense. Attributes are mid-level semantic visual concepts (e.g.,
furry, red, round, etc.,) that are shareable across object categories [14]. For ex-
ample, an ‘apple’ is usually red, a ‘clock’ is typically round, etc. Therefore region
proposals that possess the characteristic attributes of a specific class should be
more probable to belong to that class.

To build the attribute common-sense matrix Ya, we leverage the pre-trained
set of attribute classifiers (θ) from the ImageNet Attribute [35] knowledge base
and the readily-available set of object-attribute relationships from the Visual
Genome [19] knowledge base. Let ci be one of the new target classes for which we
are trying to learn a detector and Aci be its set of common attributes (determined
by the frequency by which it is used to described ci). The classifiers of the
attributes in Aci are used to compute the values of the matrix Ya as

Ya(rn, ci) = max
aj∈Aci

θaj (rn), n ∈ (1, P ).

As the attributes in ImageNet [35] knowledge base (that we use in this work)
have been additionally grouped into sets of color Acol, shape Ashape, and texture
Atext attributes, we adopt this information by updating Ya(rn, ci) as: Ya(rn, ci) =
mean(Y col

a (rn, ci), Y
shape
a (rn, ci), Y

text
a (rn, ci)), where Y col, Y shape, Y text have

been computed over the Acol, Ashape, Atext domains. In Fig. 5, for the ‘clock’
class, the proposal r1 containing its attributes, i.e., white/black and round, get
the highest Y value, while the other proposals (r2, rP ) get lower values as they
lack the characteristic ‘clock’ attributes.

Spatial Common-sense. In our day-to-day experience objects often appear in
characteristic spatial relations with other objects. For example, a ‘bowl’ is typi-
cally on a ‘table’, a ‘backpack’ is typically behind a ‘person’, etc. Therefore region
proposals that have the characteristic spatial relation of a target class to other
source classes should be more probable of belonging to that target class.

To obtain the spatial-relation common-sense matrix Ysp, we utilize the in-
formation about relative locations and sizes of source object classes Csource in
the Visual Genome [19] knowledge base that contains visually-grounded triplets
{object1, relation, object2}.

For each class cj in Csource, we model the relative location distributions γL
cj ,rel

encoding the pixel-wise probability of all other source objects under a given
relation rel. For example, Fig. 6 shows the distribution of objects with respect
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Fig. 6. Spatial common-sense distribution: We model the relative location dis-
tributions γL

cj ,rel
encoding the pixel-wise probability of all other source objects for a

given object cj (shown as a red box) under a given relation rel.

to the ‘along’ relationship for the source ‘person’ object class. In a similar way,
for each class cj in Csource and a given relation rel, we also model the relative
size distributions γS

cj ,rel
. Note that these distributions need to be learned just

once using only the source classes and then can be reused for any of the target
classes (i.e., without bounding box annotations for Ctarget classes).

For a new target class ci from Ctarget, we first gather its most common
relation with respect to source classes cj in Csource using the {object1, relation,
object2} triplet information from [19]1 and then compute the Ysp matrix as:

Ysp(rn, ci) = max
cj∈Cvis

1

2
(γL

cj ,rel(x
center
rn ) + γS

cj ,rel(arearn)),

where xcenter and area denote the center coordinate and the size of a pro-
posal, and Cvis are the subset of classes from Csource that are visible in the given
image with their locations determined by running the pre-trained detectors φ.

In Fig. 7, the proposal rP gets a higher Ysp value for the ‘skateboard’ class
as it is in sync with the ‘along’ relation under the γL

person,along distribution.

Scene Common-sense. Some objects appear more in certain scenes than others;
e.g., a ‘surfboard’ is more likely to be found on a beach. Hence, images depicting
scenes associated with class ci are more likely to contain instances of ci.

To obtain the scene common-sense matrix Ysc, we leverage the SceneUNder-
standing (SUN) [42] and Places [45] knowledge bases. These databases not only
contain information about commonly occurring scene labels for the different ob-
ject classes but also provide access to pre-trained scene classifiers (β). Let SCci

denote the set of scene labels associated with a new target object class ci, and
I be the given image containing the proposals, then Ysc can be computed as:
Ysc(rn, ci) =

∑
sj∈SCci

βsj (I), n ∈ (1, P ). All proposals rn in image I get high

prior for class ci if I depicts the scene that frequently contains instances of class
ci. Note that this scene common-sense knowledge would be helpful in case of
noisy image-level labels (e.g., in the webly-supervised setting), and may not be
relevant when we already have clean human-annotated labels that indicate the
presence/absence of objects in images.

1 For any target class, we gather this information from existing knowledge bases [19,
38] by analyzing the rel that is commonly used to associate it with the source classes.
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Fig. 7. Spatial Common-sense: The Ysp(., skateboard) values are computed by mea-
suring the spatial relationship of proposals with respect to the source ‘person’ class.
Based on our knowledge base [19], ‘along’ is the most common relation between the
‘skateboard’ and ‘person’ class. Observe that the proposal rP gets the highest Ysp value.

4 Experimental Results & Analysis

In this section, we report quantitative and qualitative analyses for validating
the benefit of transferring common-sense knowledge for object detection. We
also conduct ablation studies to dissect the various components of our approach.

Dataset. Recent state-of-the-art transfer learning approaches for object detec-
tion [17, 39] have limited their analysis to ImageNet [34]. While this dataset has
enabled substantial progress in this domain, we believe the time is ripe for ad-
vancing the transfer-learning paradigm to the next level, i.e., the more complex
MS COCO [22] benchmark. The MS COCO dataset is challenging not only in
terms of its diversity (non-iconic views, varying sizes, etc.) but also in number of
classes, and thus poses a tough challenge for methods that do not have access to
bounding box annotations for the target classes. We believe our idea of leveraging
multiple common-sense would be more relevant to address this challenge.

Recall that, in our framework, we use the PASCAL VOC object detectors
as one of our sources of common-sense knowledge (i.e., for similarity and spa-
tial). Hence, we avoid using the 20 VOC classes (Csource) within the MS COCO
dataset and focus our analysis on the remaining 60 object classes (Ctarget). We
train our network with MS COCO 2015 training images, evaluate on the vali-
dation images, and use the standard performance metrics (mAP with 50% IoU
threshold).

Implementation details. Our base network of [4] is initialized with VGG-CNN-
F [6]. We train the network with a learning rate of 10−5 for the first 20 epochs and
10−6 for the next 10 epochs. During training, the images are randomly flipped
horizontally and scaled to one of 5 scales: 800×608, 656×496, 544×400, 960×720,
and 1152×864. During testing, we average the corresponding 10 detection scores
and apply NMS with an overlap threshold of 0.4 after filtering out proposals
with probability less than 10−4. We use MCG [2] object proposals. In order
to combine the common-sense matrices (Ya,Ysp,Ys), we take the average of the
three matrices and obtain Yall, which is used to train the base network. Al-
though our approach involves a few task-specific insights to effectively leverage
common-sense knowledge, we found our approach to be robust to a wide range
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Methods AP APS APM APL

Classification Network (‘No Adapt’ [17]) 3.4 0.9 2.9 6.1
LSDA [17] 4.6 1.2 5.1 7.8
LSDA+Semantic [39] 4.7 1.1 5.1 8.0
LSDA+MIL [18] 5.9 1.5 8.3 10.7
Fine-tuned Detection Network 10.8 1.2 8.9 18.6

Proposed Approach 14.4 2.0 12.8 24.9

Oracle: Full Detection Network [16] 25.2 5.8 26.0 41.6
Table 1. Detection results on MS COCO validation set. Our proposed approach sub-
stantially improves over existing transfer-learning methods.

of choices when constructing these common-sense matrices (e.g. number of sim-
ilar known classes for similarity common-sense, number of common relations
between known/unknown classes for spatial common-sense, etc). For similarity
common-sense, we represent each class name using a 300-d word2vec represen-
tation (obtained using pre-trained model on Google news dataset [26]).

4.1 Quantitative Results

Table 1 presents the results obtained using our approach and compares it to other
relevant approaches. As an upper-bound, we also include the fully-supervised
Fast-RCNN [16] detection result (using VGG-CNN-F and trained with bound-
ing box annotations for the target classes) obtaining 25.2% mAP. While our
approach falls well short of this upper bound, it reveals to us the possibility of
using common-sense for bridging the gap to fully-supervised methods.

Comparison to Transfer-learning. The most relevant state-of-the-art trans-
fer learning methods are LSDA [17], [18] and [39]. However, as [17, 18, 39] neither
report results on the challenging MS COCO dataset nor provide their train-
ing code, we re-implemented LSDA [17]2. Running this baseline on the 60 MS
COCO Ctarget classes yields 4.6% mAP, which is substantially inferior than our
proposed approach (14.4%). We hypothesize the poor performance of the LSDA
frameworks on the MS COCO dataset to the following reasons:

(i) LSDA approaches [17, 18, 39] are inherently limited to exploiting only sim-
ilarity common-sense. While similarity suffices in case of object-centric datasets,
more richer common-sense (such as attribute, spatial, etc., that we use) needs
to be leveraged when dealing with complex scene-centric datasets. Further when
the size of Csource is small (e.g., set of 20 classes in our MS COCO experiments),
similarity fails to work well in gathering meaningful neighbors between Ctarget

and Csource classes. As a result, LSDA methods cannot transform the classifier
successfully. Particularly, the class-invariant transformation of the weights from
conv1 to fc7 layers in LSDA will not generalize well when the similarity over-
lap between the classes in Csource and Ctarget is poor. Our approach alleviates

2 Similar setting as ours: use image-level labels for all training images of MS COCO
and VOC, use bounding box for only 20 VOC classes, and VGG-CNN-F as base
network.
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this concern by explicitly using detection probabilities of the Csource classes for
each image (rather than doing a weight transformation), and also by using other
common-sense knowledge (attribute, spatial, etc., which would weigh more in the
absence of similar Csource classes).

(ii) As MS COCO has images with multiple categories and small objects, the
initial classifier network learned in the LSDA methods is poor (giving only 3.4%
mAP, see Table 1 top-row) and therefore transforming it results in a poor detec-
tor. Our approach alleviates this concern by employing a proposal classification
and ranking detection network (11.7% mAP, see Table 2, ‘Base network’).

(iii) Finally, class co-occurrences in images poses a formidable challenge for
the LSDA methods. For example, in case of the target class ‘spoon’, the top
nearest neighbor (among the 20 Csource classes) is ‘dining-table’, which often co-
occurs with it and thus transferring its detection knowledge will cause confusion
to the detector. Our approach is robust to such cases of incorrect similarities
as the similarity information is only used as a ‘prior’ during our base detection
network training.

Transfer learning by fine-tuned detection network. We also explored an alternate
transfer-learning strategy, where we initialize our base detection network (Sec-
tion 3.1) with pre-trained Fast-RCNN weights from the source categories and
then fine-tune it on the target classes using only image-level labels. While this
method produces a relatively higher mAP of 10.8% than LSDA, it is still lower
than our approach. We believe this is due to the network weights getting overfit
to the 20 Csource classes and subsequently failing to generalize well to the 60
Ctarget classes. In contrast, our approach does not have this overfitting issue as
we initialize our base detection network with the weights from a more general
network (trained on 1000 ImageNet classes) and then use the 20 Csource classes
pre-trained detection models only for computing similarity common-sense.

Alternate approaches for leveraging common-sense. To analyze the sig-
nificance of our proposed approach for leveraging common-sense, we also studied
alternative strategies for leveraging common sense cues that use exactly the same
external knowledge/bounding box information as our approach.

The first strategy uses common-sense as a contextual post-processing tool [9].
Specifically, for a test image, we compute the common-sense matrix Y , and then
modulate its classification matrix X via element-wise multiplication to produce
the final score matrix: Ztest = Xtest · Ytest. Table 2 (‘Post-process’) displays the
result obtained using this post-processing strategy, which obtains 11.8% (and
14.1% when common-sense matrix Y is also used during training). Observe that
the post-processing result is lower compared to our approach, which transfers
common-sense during training only and not during testing. This indicates that
X has already incorporated the common-sense knowledge during training, and
thus using Y is redundant at test time. When Y is introduced during testing,
it is difficult for common sense to fix any incorrect biases that the detector
may have learned (e.g., focusing only on the most discriminative part of an
object). It may even hurt as any mistakes in common-sense information Y cannot
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Method Base network
Alternatives Ablations Ours

Post-process Feature Attr Spatial Sim Joint +Sim(Bbox)

mAP 11.7 11.8/14.1 12.7 12.2 13.0 13.7 14.1 14.4
Table 2. Analysis on the MS COCO dataset: ‘Base network’ is the result obtained
by using our base detection network using no common-sense. ‘Alternatives’ are the al-
ternate strategies for leveraging common-sense knowledge. Their performance is lower
than our model demonstrating the benefit of our proposed approach. ‘Ablations’ show
the improvement obtained using each common-sense cue over the base network. Com-
bining all common-sense cues produces the best result indicating their complementarity.

be circumvented when used directly at test time. In contrast, by transferring
common sense during training, it can guide the algorithm to learn to focus on
the correct image regions.

The second alternate strategy for leveraging common-sense analyzes the pos-
sibility of improving detection performance by simply having access to pre-
trained object/spatial/attribute classifiers. In this case, we trivially append a
45-dimensional feature to the fc7 appearance feature of each proposal during
training. The first 20 dimensions correspond to the detection probabilities of the
20 Csource classes and the remaining 25 dimensions correspond to the attribute
probabilities of the classifiers (θ) pre-trained on the ImageNet attribute knowl-
edge base. While this model yields a boost of 1.0% mAP compared to the base
detection network (see Table 2 ‘Feature’), it is 1.7% lower than our proposed
model. This reveals that merely concatenating external knowledge features to
visual appearance features is insufficient.

4.2 Ablation & Qualitative Analysis

We also analyzed the importance of the various common-sense cues in our pro-
posed approach. Table 2 ‘Ablations’ shows that each common sense gives a boost
over the base network, which only relies on appearance cues. Among the individ-
ual cues, we see that similarity helps the most. (Scene cue was not explored in
this scenario and its influence will be analyzed in the webly-supervised setting.)
Combining attribute, spatial, and similarity common sense (‘Joint’) leads to a
greater boost of 2.4% mAP, which shows their complementarity. Finally, we also
borrow the bounding box regressors trained on the similar Csource classes and
apply them to the Ctarget classes, which further boosts performance to 14.4%.

Taking a closer look at individual classes, we find that using the attribute
common-sense for ‘oven’ (that is usually white/black) results in a boost of 7.3%
AP. By using the spatial common-sense for ‘frisbee’ with respect to the source
object ‘person’, we get an improvement of 10.5% in AP, whereas using the spatial
relation for a ‘bowl’ with respect to the source object ‘table’ gives a boost of
2.2%. For ‘giraffe’ and ‘bed’, we use the common-sense that they are semantically
similar to {‘sheep’, ‘horse’, ‘dog’, ‘cow’, ‘bird’, ‘cat’}, and ‘couch’ respectively,
which leads to an improvement of 28.7% and 12.1% AP, respectively.

We next analyze the importance of using word2vec for similarity common-
sense. For this, we replace word2vec similarity with visual similarity, which re-
sults in 12.1% compared to our 13.7%. Word2vec similarity is more robust than
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Fig. 8. Qualitative detection results on MS COCO (Ours: green boxes; Base network:
red; LSDA+Semantic [39]: Yellow): Observe that our approach produces better detec-
tions than the base network for all three common-sense. For ‘giraffe’ and ‘elephant’, by
using similarity common-sense (i.e., being similar to other animal categories in Csource),
our approach detects the full body extent rather than localizing a discriminative body
part. By using spatial and attribute common-sense, e.g., ‘clock’ being round, ‘spoon’
being metallic, and ‘microwave’ being white/black, we get better detections.

visual similarity (used in LSDA [17]), particularly for challenging dataset like
MS COCO (with small objects and co-occurring objects from different classes).
We also tried WordNet [27] treepath based similarity which also gives an inferior
result of 13.1%.

Fig. 8 shows some qualitative detections (for each of the common-sense) pro-
duced by our approach (green box) and compares them to competing baselines.
We can observe that using common-sense helps improve performance. For ex-
ample, by using spatial common-sense, our approach gets rid of the co-occurring
background for ‘frisbee’ and ‘surfboard’ (person and water, respectively). Inter-
estingly, for ‘frisbee’, our approach uses the spatial common-sense that a ‘frisbee’
often spatially-overlaps with a ‘person’ in order to learn its appearance during
training. It is then able to detect a ‘frisbee’ at test time even when a ‘person’
is not present (see ‘frisbee’ image in the second column). This indicates that
while our approach leverages common-sense as a prior during training to learn
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Handbag Baseball	Bat Spoon	 Wine	Glass

Fig. 9. Example failures: Our approach fails when the object-of-interest is hardly-
visible (‘handbag’) or when source objects with similar attribute (metallic) are cluttered
together (‘spoon’). For ‘wine glass’, we falsely detect the ‘bottle’ because during training
we provided the common-sense that wine-glass is semantically similar to a bottle.

about the object’s appearance, at the same time, our network is not dependent
on common-sense during testing. Fig. 9 shows some failure cases.

Towards webly-supervised detection using common-sense supervision. What hap-
pens when we apply our method in cases when we do not even have explicit
human-annotated image labels for the target class? This is exactly the setting
studied in the webly-supervised domain where images retrieved from the web
are used for training detection models.

We conducted a preliminary investigation wherein we ran our proposed ap-
proach on training images retrieved from the web (i.e., instead of the MS COCO
training imageset). As images retrieved from web are potentially noisy, common-
sense knowledge should be particularly useful in mitigating the noise. Our pre-
liminary results indicate that our proposed idea is promising even in the webly
setting (Base network [5]: 6.8%, vs. Ours: 8.3%).

Further, to analyze potential concerns about the generalizability of our ac-
quired common-sense knowledge, we also tested these webly+commonsense mod-
els on the ImageNet 200 detection valset [34]. Even in this case, our approach
yields interesting performance gains (Base network [5]: 6.2%, vs. Ours: 8.8%).

5 Conclusion

In this paper, we presented DOCK, a novel approach for transferring common-
sense knowledge from a set of categories with bounding box annotations to a set
of categories that only have image-level annotations for object detection. We ex-
plored how different common-sense cues based on similarity, attributes, spatial
relations, and scene could be jointly used to guide the algorithm towards im-
proved object localization. Our experiments showed that common-sense knowl-
edge can improve detection performance on the challenging MS COCO dataset.
We hope our work will spur further exciting research in this domain.
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