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A B S T R A C T

Quantification of mesoscale microstructures of polycrystalline materials is important for a range of practical
tasks of materials design and development. The current protocols of quantifying grain size and morphology often
rely on microstructure metrics (e.g., mean grain diameter) that overlook important details of the mesostructure.
In this work, we present a quantification framework based on directionally resolved chord length distribution
and principal component analysis as a means of extracting additional information from 2-D microstructural
maps. Towards this end, we first present in detail a method for calculating chord length distribution based on
boundary segments available in modern digital datasets (e.g., from microscopy post-processing) and their low-
rank representations by principal component analysis. The utility of the proposed framework for capturing grain
size, morphology, and their anisotropy for efficient visualization, representation, and specification of poly-
crystalline microstructures is then demonstrated in case studies on datasets from synthetic generation, experi-
ments (on Ni-base superalloys), and simulations (on steel during recrystallization).

1. Introduction

Material structure, i.e., microstructure, plays an essential role in
guiding all materials innovation efforts aimed at improving the prop-
erty combinations [1,2]. One of the central challenges in the field
comes from the lack of rigorous approaches for the quantification of the
microstructure. Our focus in this work is on the microstructures en-
countered in metallic samples, where the shape and size distributions of
the individual grains (i.e., volumes of uniform crystal lattice orienta-
tion) dominate the microstructural considerations. These polycrystal-
line microstructures are typically studied at length scales in the range of
0.1 to 100 μm, where the grains are separated by grain boundaries. The
grain structure in polycrystalline materials is naturally associated with
a number of potential measures of the microstructure that can be used
in the effort to capture its salient features. These measures include

distributions of sizes, shapes, and orientations of grains and their in-
terfaces [3–5]. In this work, we focus our attention on the rigorous
quantification of the grain size and morphology characteristics because
of their anticipated strong impact on a range of mechanical and phy-
sical properties [6–14]. One such well-known effect is in the depen-
dence of the effective yield strength of the material on the average grain
size (e.g., Hall–Petch laws [6,7]). While there is general agreement on
the importance of the grain size in controlling the properties of the
material, the exact definitions, measures, and characterization techni-
ques used in the quantification of the grain size vary significantly
among the practitioners. For example, given a microstructure image,
protocols employed in practice include estimations of the grain size
based on either intercept lengths or grain areas/volumes or grain
boundary lengths/areas, which contributes to inconsistencies in the
reports of the average grain size.
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Area-based estimations of the grain size are becoming the methods
of choice in modern characterization efforts that yield digital pixelated
datasets (e.g., digital optical micrographs, back-scattered electron
images from scanning electron microscope, electron back-scattered
diffraction maps). Grain areas can be readily extracted from such da-
tasets by simply counting the number of pixels contained in each grain.
Once the grain area is known, it is common practice to estimate the
grain size as the diameter of an equivalent circle (henceforth referred to
as the grain diameter) of the same area as the grain. The use of the grain
diameter thus implicitly assumes that the grain shape is close to a circle.
Similar approaches are being adopted for 3-D datasets, in which grain
diameter can be obtained from the average grain volume and the
consideration of an equivalent sphere [15,16]. The diameters of in-
dividual grains are typically averaged to provide for a scalar measure of
the grain size of the material. As an extension of this approach, grain
diameters are also often reported as distributions (i.e., histograms) that
quantify the number fraction or the area fraction for each discretized
bin of grain diameters [17]. Alternatively, some authors have fit the
sampled grain diameters to log-normal distributions [18,19,11,12].

Despite its utility and wide adoption, the use of grain diameter leads
to a loss of information regarding the distributions of grain shape and
its alignment. Within the area-based approaches, some efforts have
accounted for the grain shape by fitting the grain areas to equivalent
ellipsoids (instead of circles/spheres) [20,3], and obtaining distribu-
tions of the major axis length, the minor axis length, and their in-
clination angles (e.g., [21]). The fundamental limitation of these ap-
proaches is that the grains in many samples do not really fit any specific
idealized shape. This is particularly the case in microstructures of so-
lidified [22], welded [11,12], or additively manufactured metals [16].

The approaches of estimating the grain size based on intercepts (or
chords) have the potential to overcome the limitations of the area-based
approaches described above. Grain size estimations based on chord
lengths have a long history going back to early methods for metallo-
graphic observations [23]. Furthermore, chord length distribution
(CLD), which describes the probability of finding chords of a specified
length in the microstructure [24], is expected to be highly relevant to
properties related to free paths in heterogeneous materials (e.g., plastic
properties [4,8,9], transport properties [24,25]). Chords are defined as
line segments traversing the entire grain, which originate on one grain
boundary and end on the next grain boundary encountered. Chords are
typically sampled by placing test lines on the microstructure, and either
measuring distances between intersections of the test lines and grain
boundaries or counting the number of such intersections [26]. In most
reported studies, chord lengths were sampled either in randomly se-
lected directions [26–28] or in a few specifically selected directions
(e.g., along principal axes of the microstructure image [29,11,12]). For
example, Lehto et al. [11,12] developed an image processing algorithm
to obtain chord lengths in four directions of the microstructure (0°, 45°,
90°, and 135°, with subsequent averaging according to the standard
[27]) to obtain the average grain size as well as its spatial variations in
highly heterogeneous samples of welded steel.

A limited number of prior studies [8,9,30] have targeted chord
lengths in directions beyond the principal axes. Fromm et al. [8] in-
troduced a grain size and orientation distribution function (GSODF)
that was evaluated using chord lengths in specific directions in each
grain related to its slip systems. The grain size estimated in this manner
was incorporated into a Taylor-type polycrystal plasticity model of
h.c.p. α-Ti to study the effects of crystallographic texture and grain size
distribution on the macroscopic mechanical response of the material.
Sun and Sundararaghavan [9] extended the above concept by ac-
counting individually for the available slip lengths for each slip system
in a selected grain and modeled its evolution during the imposed large
plastic strains on the sample. Turner et al. [30] presented a scan-line
approach to computationally efficient calculations of CLDs for the full
range of directions in 2-D and 3-D microstructures, and demonstrated
their approaches on a number of composite microstructures. Their

algorithm scans over all pixels of digital microstructure images and
simply counts the number of voxels inside every microstructure con-
stituent along the scan line. While such pixel-based computations are
straightforward along the principal axes of microstructure images,
other directions require special treatment such as the use of Bresenham
lines [31].

In this contribution, we approach the quantification of the grain
structure in metallic samples using angularly resolved CLD and its low-
rank representation using principal component analysis (PCA). In this
effort, we will develop and utilize an approach that takes advantage of
the grain boundary segments that can be identified and extracted from
modern characterization techniques such as electron back-scattered
diffraction (EBSD) [3]. This method of CLD calculations offers an al-
ternative to the scan-line approach [30] mentioned earlier that identi-
fies boundaries only indirectly by the changes in phase content (or
grain orientation) between neighboring pixels. A potential advantage of
explicitly representing the grain (or phase) boundary segments with
continuous coordinates is that it lends itself to easier conversion to a
conformal finite element mesh [32] for the analyses of mechanical re-
sponse. The second contribution of this work is in the extraction of the
low-dimensional representations that are likely to be highly valuable in
at least two aspects: (i) classification and visualization of large and
diverse ensembles of microstructures, and (ii) the formulation of data-
driven process–structure–property linkages [33–36]. In this work, we
will focus mainly on the viability of using PCA as an effective di-
mensionality-reduction strategy in the classification of a diverse set of
grain morphologies in polycrystalline microstructures.

2. Angularly Resolved Chord Length Distribution

2.1. New Boundary-based Approach for CLDs

In the present study, we develop and employ an approach based on
geometrical considerations of boundary segments in the micro-
structures being studied. Boundary segments, defined as straight seg-
ments between two adjacent points along a grain boundary, can be
extracted from routine post-processing of datasets obtained from both
experiments (e.g., grain boundaries established by thresholding mis-
orientations in EBSD maps) and simulations (e.g., grain boundary
contours tracked by recrystallization simulations [37]). At the core of
the approach presented here is the computation of coordinates of in-
tersection points between test lines and boundary segments.

We start by considering two arbitrary line segments, AB and CD, in
2-D space with end points A(xA,yA), B(xB,yB), C(xC,yC), and D(xD,yD),
respectively. The parametric equations describing all the points on
these line segments can be expressed as [38]:

= + tP A B A( ),AB AB (1a)

= + tP C D C( ),CD CD (1b)

with tAB ∈ (0,1) and tCD ∈ (0,1).
The coordinates of the intersection point between the two segments

can be found by setting PAB = PCD, which yields a system of two linear
equations (corresponding to two coordinates in two dimensions) with
two unknowns, tAB and tCD. Bourke [39] provided solution for the
problem as follows:

=t
x x y y y y x x
y y x x x x y y

( )( ) ( )( )
( )( ) ( )( )

,AB
D C A C D C A C

D C B A D C B A (2a)

=t
x x y y y y x x
y y x x x x y y

( )( ) ( )( )
( )( ) ( )( )

,CD
B A A C B A A C

D C B A D C B A (2b)

which gives the coordinates of the intersection point, T(xT,yT), as

= +x x t x x( ),T A AB B A (3a)

= +y y t y y( ).T A AB B A (3b)
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The intersection point T(xT,yT) exists within the two segments if tAB
and tCD both have values in the range between 0 and 1 [39].

The advantage of the geometric considerations described above is
that they allow matrix-based computations. In the present context, it
entails determination of intersection points for a number of test lines
and boundary segments without looping through individual boundary
segments or test lines. The intersection points so obtained can be fur-
ther used for calculations of chord lengths, also in a matrix-based form.
Consider, for example, a grain boundary map consisting of numerous
grain boundary segments and a set of M parallel test lines placed on the
boundary map parallel to the x axis (see Fig. 1a–b). Eqs. (3) can be
implemented such that coordinates of the intersection points are stored
into matrices with M rows (enumerated by m for each test line) and K
columns (enumerated by k). In our example with horizontal test lines,
the y coordinates of intersection points along each test line are constant
and known as equal to the y coordinate of the test line. Consequently,
only the matrix of the x coordinates, denoted by X, needs to be com-
puted and stored. Furthermore, chord lengths along each test line are
simply equal to differences in the x coordinates of neighboring inter-
section points (stored as the ΔX matrix). Therefore, chord lengths can
be obtained by two operations on the X matrix: row-wise sorting of
elements and subsequent calculation of pairwise differences of the
neighboring elements (Fig. 1c).

These matrix-based computations that avoid loops through
boundary segments and test lines are efficient for relatively small mi-
crostructure maps. However, since such approach relies essentially on
construction of an “interaction” matrix between all boundary segments
and all test lines, these computations may become prohibitively
memory-intensive for maps with a large number of boundary segments.
For these situations, the algorithm can be modified to sequential com-
putations of intersection points by considering one test line at a time.
This alternative approach results in the identical procedure with the
only difference that the X and ΔX matrices shown in Fig. 1c consist of a
single row each corresponding to a single test line per loop. When
identifying intersection points between boundary segments and a single
test line, computations can be further accelerated by considering only
boundary segments that do intersect the current test line rather than the
whole boundary map. These boundary segments can be found from the
condition that the y coordinate of the test line lies between the y co-
ordinates of the end points of the boundary segments.

Once the intersection points and consequently chord lengths are
identified employing either matrix-based or sequential approach, bin-
ning chord length values provides for their distribution (Fig. 1d). From
the binned chord length counts, CLD, as a step probability function, can
be estimated as follows (no implicit summation on repeated index):

=
=

P N l
N l

,l
i i

i
n

i i1 (4)

where i enumerates chord length bins (from 1 to n), Ni is the number of
chords sampled in the interval of the ith chord-length bin, whose center
corresponds to the chord length li. Pl reflects the probability of finding a
voxel that belongs to a chord of length l (within the range Δl used in the
binning of the chord lengths). The CLD function defined in Eq. (4)
implicitly satisfies the condition of ∑Pl = 1.

We also note that in all CLD analysis that follows, we will exclude
intersection points between the test lines and the outer edges of a mi-
crostructure map from the calculations. Such line segments do not sa-
tisfy the definition of the chord (as a segment traversing the entire
grain). It should be recognized that such exclusion makes for a much
more efficient use of the limited information in a microstructural map
compared to a complete removal of grains touching the edges (which is
often done in practice). The exclusion of these line segments can be
implemented by omission of the first and the last elements in each row
of the ΔX matrix. The only situation that we envision when such ex-
clusion is not recommended is periodic microstructures (not considered

in this work); in this case, the edge line segments on the opposite sides
along each test line should be summed to construct a single chord.

2.2. Angularly Resolved CLDs

The procedure described above for the calculation of chord length
distribution for a grain structure in the x direction can be readily ex-
tended to an arbitrary direction. As discussed by Turner et al. [30], CLD
can be calculated along directions other than the principal axes by ei-
ther rotating the microstructure (or its image) or defining testing lines
in the given direction. While image-based CLD calculations considered
by Turner et al. require special image processing algorithms in the first
case and special Bresenham lines in the second case, our method based
on line segments allows both approaches within the same framework
utilizing linear transformation of a set of line segments. In this work, we
adopted the workflow with rotation of the boundary segments (i.e.,
microstructure) because our tests showed that this approach is more
computationally efficient than rotation of the test lines. Since the grain
boundary segments are defined by coordinates of their end points, the
set of grain boundary segments can be rotated with the aid of a trans-
formation matrix, Q:

=b Qb, (5)

where b denotes the set of coordinates of end points of grain boundary
segments, and b′ is the same set after transformation defined by matrix,
Q. For our purposes, the transformation of interest is the active in-plane
rotation about the axis normal to the plane containing the boundaries.
Transformation matrix for active1 counter-clockwise rotation by an
angle θ in xy plane about the z axis is defined as:

= cos sin
sin cos

Q
(6)

For sampling chord lengths in the microstructure at an angle θ
(counter-clockwise from the x axis), one needs to rotate the boundary
segments clockwise using −θ in Eq. (6). Fig. 2a–b is a demonstration of
finding intersection points between test lines and boundary segments
rotated (clockwise) using Eqs. (5) and (6) to a few −θ angles shown
together with the corresponding CLDs computed in these directions as
described in Section 2.1.

With the aid of rotation of grain boundary segments defined in Eqs.
(5) and (6), angularly resolved CLDs (AR-CLDs) can be computed for
the entire range of directions in 2-D, i.e., for θ∈ [0°,180°). The selected
range takes advantage of the two-fold symmetry of lines in 2-D, i.e.,
CLDs in directions defined by θ and θ+ π are identical. Fig. 2c presents
an example of an AR-CLD obtained for a synthetic microstructure by
sampling directions in [0°,180°) with a 1° step and with test lines
placed, for each direction, at a spacing equal to the grid step (see fur-
ther details in Section 4.1).

The approach presented here is quite different from the scan-line
method of Turner et al. [30] in that we do not use a voxelized de-
scription of the microstructural image. Instead, we only utilize con-
tinuous coordinates of the end points of the boundary segments. As a
result, the present approach (i) does not require the representation and
storage of the microstructure data on a regular grid, (ii) eliminates the
need to loop over each pixel of the microstructure (which offers po-
tential computational benefits for high-resolution data), and (iii) works
naturally in any direction without special considerations such as
Bresenham lines.

We finally note that the present approach to obtaining AR-CLDs can
be parallelized owing to the independence of CLD calculations in dif-
ferent directions in the microstructure. This independence allows for

1 Active rotation is rotation of the object (in this case boundary segments) in
respect to a fixed coordinate system, as opposed to passive rotation of the co-
ordinate system in respect to a fixed object [40].
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distribution of calculations in different directions among different CPUs
(i.e., “trivial” parallelization).

To verify our algorithm, we compared results of CLD calculation as
presented here to those obtained with the commercial software EDAX/
TSL OIM [41], widely used by the materials characterization commu-
nity. Verification test was carried out on an EBSD map experimentally
measured in a Ni-base superalloy IN100 shown in Fig. 3a (see more
details in Section 4.2). The CLDs are shown in two directions: along x
and y axes because OIM software allows CLD calculations only along
the principal axes. The CLDs using the present approach are obtained as
described in Section 2.1 with 0° rotation for CLD along x axis and −90°
rotation of grain boundary segments (using Eq. (5)) for CLD along y
axis. The comparison (Fig. 3b) shows excellent agreement between the
results, verifying the algorithm presented in this work. Since the present
algorithm is independent of the rotation angle, the agreement shown in
Fig. 3 attests to the reliability of our method for CLDs computed in any
direction.

2.3. Summary of the Workflow

The workflow for the boundary-based approach presented in this

work for obtaining AR-CLDs can be summarized as follows:

1. Identify boundary segments for the microstructure constituents of
interest as an array of coordinates of the segment end points.

2. Define a set of test lines (parallel to one of the principal axes, e.g., x
axis) as an array of coordinates of their end points. Ensure that the
test lines cover the microstructure map and have a sufficiently small
spacing compared to the characteristic size of the constituents (e.g.,
equal to grid step for voxelized maps).

3. Obtain intersection points between the test lines and the boundary
segments using either matrix-based (small maps) or sequential
(large maps) algorithms making use of Eqs. (2) and (3) and calculate
chord lengths as pair-wise differences of sorted elements of the co-
ordinate matrix. Estimate a distribution by binning chord length
values and estimate the CLD as a step probability function (Eq. (4)).

4. Repeat Step 3 for multiple directions in the microstructure by ro-
tating the boundary segments to θ∈ [0°,180°) with a small angular
step (e.g., 1°) to obtain the AR-CLD.

5. Visualize the AR-CLD as a polar map, where the radial coordinate
corresponds to the chord length, l, the azimuthal coordinate re-
presents the direction in which CLD is probed (i.e., θ angle), and the

(a) Rotated maps

(b) Chord Length Distributions

(c) Angularly Resolved Chord Length Distribution

Fig. 2. Illustration of obtaining chord length distributions in different directions by clockwise rotations of boundary segments: (a) examples of rotated boundary
segment maps to different angles θ, (b) chord length distributions obtained along these directions, (c) angularly resolved chord length distribution calculated by
sampling all directions in the range θ∈ [0,180°) with a 1° step. Note that only few test lines are shown in (a) for illustration purposes, whereas many more test lines
are used throughout this paper (e.g., with spacing equal to the grid step for EBSD maps).

M.I. Latypov et al. Materials Characterization 145 (2018) 671–685

675



color expresses the CLD, Pl(θ).

3. Principal Component Analysis

One of the main appeals of metrics such as the mean grain diameter
is that they provide simple representations of complex microstructures
by a single scalar quantity, which allows for convenient microstructure
specification, comparison of effects of different sets of processing con-
ditions on the microstructure as well as for incorporation of the mi-
crostructure into property prediction models. Richer statistical de-
scriptions, such as the AR-CLD, on the other hand, come at the cost of
significantly higher dimensionality. For example, the AR-CLD calcu-
lated for a synthetic microstructure in Fig. 2c contains 14,320 unique
features (probability values for 80 chord length bins for each of the 179
sampled directions). While AR-CLDs provide for visually intuitive re-
presentations of microstructures, their relative quantitative compar-
isons or direct incorporation into practically useful models is challen-
ging.

For overcoming the dimensionality burden for these purposes, data
reduction techniques, such as principal component analysis (PCA) may
be employed [42]. PCA is a linear, distance-preserving, transformation
of data to a new orthogonal basis [42,43] that optimizes the capture of
the variance in the data in the minimum number of terms (corre-
sponding to the new PC basis). As a result, the number of variables in
the new basis (i.e., principal component scores) required to represent
the data with sufficient details is often dramatically smaller than the
number of the original variables. This feature along with the property of
preserving distances (which allows quantitative relative comparisons of
the data points), renders PCA an extremely useful dimensionality re-
duction method for efficient visualization, noise reduction, and model
development [42].

In the context of microstructure quantification, PCA can be used for
reducing the dimensionality of statistical descriptions, and specifically
AR-CLDs of ensembles of microstructures. In this case, PCA can be
thought of as identification of patterns (basis vectors) in AR-CLDs and
weights of these patterns (PC scores) that efficiently capture the var-
iance in the statistical description of the microstructure ensemble. Once
these patterns and their scores are identified, AR-CLD of any kth mi-
crostructure in the ensemble (or a new microstructure to be added to
the ensemble) can be represented by their linear combination [44,45]:

= +
=

P P ,l
k

j

J

j
k

jt l
( )

1

( )

(7)

where αj(k) are the PC scores, ϕjt are basis vectors, obtained by PCA, and
〈Pl〉 is the ensemble average AR-CLD. The dimensionality reduction

effect is achieved by truncating the series in Eq. (7) to the first R
principal components such that R≪ J, which capture a desired level of
variance in the ensemble and thus satisfies the equality condition in Eq.
(7) to an approximation with well-defined accuracy. PCA applied on
statistical description of microstructures has already proved useful for
establishing quantitative processing–structure–property relationships in
heterogeneous metallic materials [34,35,36,33].

4. Case Studies

4.1. Synthetic Datasets

The viability and advantages of the microstructure quantification
framework described above is first evaluated critically on synthetic
microstructures obtained with a priori known and controlled grain
shape characteristics. Synthetic microstructures were generated for this
study using the open-source software Dream.3D2 [46], which allows the
user to specify parameters controlling the size and shape distributions
of the microstructural constituents (i.e., grains in the present applica-
tion). The Dream.3D algorithm for the synthetic generation first seeds
ellipsoids and subsequently adjusts iteratively their shapes and posi-
tions to fill up the allocated volume, while trying to match the user-
specified size and shape characteristics as closely as possible [47].

In this study, Dream.3D was employed for creating microstructures
with various grain morphologies. Dream.3D only generates 3-D volume
elements, whereas our focus in this study is on the analysis of 2-D maps
generated by most of materials characterization equipment. To obtain
2-D microstructures from Dream.3D, we first generated 3-D re-
presentative volume elements (RVEs) with some out-of-plane thickness
(255 × 255 × 65 voxels) and then extracted 2-D middle sections
normal to the out-of-plane direction (z axis). For synthetic generation,
the following classes of microstructures (inspired by those encountered
in real metal samples) were considered: (i) equiaxed grains (e.g., an-
nealed metal), (ii) coexisting small and large grains (e.g., partially re-
crystallized metal), and (iii–iv) pancake-shaped grains along the x and y
directions (e.g., deformed metal). Microstructures of these classes were
obtained using different sets of input parameters selected to achieve the
targeted morphologies. Specifically, precursor ellipsoids with equal
axes were used for equiaxed microstructures, whereas 10 : 1 : 1 ratios
between the major axis and the two minor axes were assigned for mi-
crostructures with elongated grains. The microstructures with bimodal
(duplex) grain size distributions were generated as pseudo composites
consisting of phases with equivalent crystal structures but two distinct

Fig. 3. Verification of the present approach to CLD calculation by comparison with results obtained using commercial software EDAX/TSL OIM: (a) test micro-
structure of IN100, (b) CLDs obtained along x and y axes.

2 Open source https://github.com/BlueQuartzSoftware/DREAM3D.
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size distributions. For all RVEs, the identical equivalent grain diameter
(based on the notion of an equivalent sphere) was targeted during
generation.

The 2-D EBSD maps obtained in Dream.3D were analyzed using the
open-source MTEX toolbox3 [48,49] in MATLAB. Specifically, MTEX
was used to segment the spatial orientation data with the misorienta-
tion angle threshold of 5° to obtain grains and their boundary segments.
Grain boundary segments were then used as input for the algorithm of
AR-CLD calculation as described in Section 2.3. Calculations of AR-
CLDs were carried out with the aid of the matrix-based approach by
placing test lines with a spacing equal to the grid step size in the syn-
thetic EBSD maps and by sampling the whole range of directions,
θ∈ [0°,180°) with a 1° step.

Fig. 4 shows exemplar EBSD maps of (i)–(iv) grain morphology
classes generated in Dream.3D and their corresponding AR-CLDs as well
as traditional characteristics of the grain size and shape. The conven-
tional grain size measure based on the mean grain diameter (discussed
in Section 1) was computed for all the generated microstructures. The
calculated values indicate that all four synthetic EBSD maps have very
similar mean grain diameter, in accordance with the values of the
equivalent sphere diameter input into the Dream.3D code for the gen-
eration of these microstructures. It means that these different micro-
structures would be nearly indistinguishable in terms of the mean grain
diameter used frequently in literature. Salient details about such mi-
crostructures and their differences can be revealed through distribu-
tions of the size and shape metrics (Fig. 4c). For example, extending the
analysis of the grain diameter from the mean only to its distributions
allows for identifying one predominant mode in the equiaxed micro-
structure and more than one mode in the bimodal microstructure (i–ii).
For microstructures with non-equiaxed grains (iii–iv), one could get
more insight by fitting grains into equivalent ellipsoids, which allows
for analysis of aspect ratios and inclination angles between one of the
sample directions and the major axes of the ellipsoids. Specifically,
large mean aspect ratios indicate the elongated shape of the grains,
whereas distribution of inclination angles (in respect to x axis) shows
the expected preferential alignment of pancake shaped grains nearly
parallel to the x and y axes of (iii–iv) microstructures, respectively.

The previous exercise shows that studying the size and morphology
aspects of the microstructures requires separate analyses and re-
presentations, whose choice depends on the nature of the micro-
structure. At the same time, it is seen that all these microstructural
characteristics can be readily captured in AR-CLDs and intuitively re-
presented by their polar visualizations (Fig. 4b). Indeed, the micro-
structure with equiaxed grains is represented by a circular pattern of
high AR-CLD intensity, whose radius corresponds to the most probable
chord length. The radius of high-intensity ring is equal in all directions
of the microstructure, which indicates the statistical morphological
isotropy. The AR-CLD obtained for the microstructure with populations
of smaller and larger grains also has an axisymmetric pattern but with
two rings of high probability that signifies the presence of two modes in
the CLD. The microstructures with pancake-shaped grains have AR-
CLDs with characteristic elliptical patterns, oriented according to the
preferred alignment of the grains. It is seen that these elliptical patterns
are slightly deviated from a perfect alignment with the corresponding
sample axes, which resulted from the stochastic nature of micro-
structure generation in Dream.3D. These deviations also agree with the
modes in inclination angle distributions shown in (Fig. 4c) equal to
178.9° (instead of ideal 0° or 180°) and 87.3° (instead of ideal 90°) for
(iii) and (iv) microstructures, respectively.

This example illustrates that AR-CLDs alone capture the essential
information on the size, shape, and preferred spatial alignment of the
grains. Furthermore, all these features are easily inferred from the polar
visualizations of AR-CLDs, which facilitates distinction, and both

qualitative and quantitative comparison of microstructures. We finally
note that the computational algorithms and protocols for AR-CLDs were
identical for all four microstructure classes considered, and did not
require prior knowledge on the grain structure type.

In addition to statistical description and intuitive visual re-
presentation, it is often of interest to obtain a low-dimensional re-
presentation of microstructures for quantification, specification, and
use in models. Mean grain diameter is a scalar description widely used
for these purposes. We first note that if an averaged measure is re-
quired, the mode of CLD can be readily computed by its averaging over
sampling directions (i.e., θ angles) and finding the chord length cor-
responding to the maximum value of the averaged CLD. Mean chord
length can be also obtained during CLD calculations. Alternatively, PCA
of AR-CLDs of an ensemble of microstructures can be carried out for
obtaining low-dimensional representation as introduced in Section 3.
To test and demonstrate the use of PCA on AR-CLDs, we generated a
series of 30 synthetic EBSD maps of four classes: 10 equiaxed, 10 bi-
modal, 10 pancake-shaped with five of them aligned along the x axis
and five of them aligned along the y axis. To obtain several maps within
each class, generation was performed multiple times with the same
input statistics as each run of Dream.3D produces a similar but unique
instantiation of the targeted microstructure. For each synthetic EBSD
map, AR-CLD was calculated as described above. PCA was then per-
formed on the set of AR-CLDs which yielded 30 basis maps or patterns
(equal to the number of the samples in the ensemble) sorted according
to their explained variance. The virtue of PCA is that only few of them
are often sufficient to capture a large portion of the variance. For our
synthetic dataset, the first three principal components (whose bases are
shown in Fig. 5a) collectively explain 96.5% of variance in the dataset
as seen in Fig. 5c. It follows then that the first three scalar PC scores (or
weights of the first three patterns) can be used for low-dimensional
representation of the microstructures. The fact that the first three
principal components carry essential details of AR-CLDs can be seen in
Fig. 5d, where AR-CLD calculated for one of the microstructures in the
ensemble is compared against the reconstructed AR-CLD using Eq. (7)
with only the first three principal components (i.e., with R= 3). It is
evident that the reconstructed AR-CLDs has all the salient features of
the original AR-CLD: the presence of a bimodal distribution in the CLD,
the corresponding chord lengths, and morphological isotropy. Fig. 5b
depicts the low-dimensional representation in terms of the first three PC
scores (or weights of AR-CLD patterns represented by basis maps), in
which each symbol corresponds to a microstructure of the ensemble. It
is seen that EBSD maps corresponding to the four microstructure classes
are clearly clustered in the PCA space signifying the similarity of the
microstructures within a cluster in terms of their AR-CLDs. This clus-
tering is obtained purely as a result of PCA in an unsupervised fashion,
i.e., without any prior labeling of the microstructures belonging to
different classes. Such low-dimensional representations can be thus
used for classification and comparison of polycrystalline micro-
structures, as a result of various processing histories, for example.

The properties of PCA also allow a meaningful interpretation of the
observed clustering by inspection of the corresponding basis maps
(shown in Fig. 5a). For such interpretations, one starts with the en-
semble-averaged statistics and systematically adds the features in each
basis map, one at a time. In doing so, it is important to recognize that
each basis map has both positive and negative values. For instance, as
one proceeds along PC1, the red colored elements of the PC1 basis map
are added and the blue colored ones are removed, where the color in-
tensity reflects the actual amounts removed or added. Therefore, it
should be clear that as one moves along the positive PC1 direction, one
is adding equiaxed components at the smaller length while removing
the equiaxed components at the higher length as well as the x- and y-
pancake components. Similarly, the PC2 basis map adds y-pancake
components and removes x-pancake components, as one moves along
PC2 axis. In general, higher-order principal components add more
complex features compared to the lower-order principal components.3 Open source https://mtex-toolbox.github.io/.
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These observations demonstrate the tremendous benefits of orthogonal
representations (e.g., obtained by PCA) in seeking low-dimensional
visualizations. The quantification framework for synthetic micro-
structures presented here is expected to be of significant value in vali-
dation of synthetically generated RVEs that are statistically equivalent
to the experimentally observed microstructures, essential for many
multiscale materials modeling efforts [47,50].

4.2. Experimental Datasets

Our next case study aimed at quantification of experimentally
measured microstructures of metallic samples. As a specific example,
we considered Ni-base superalloys used for turbine disks [51]. These
Ni-base superalloys are typically produced by powder metallurgy routes
that include isothermal forging and annealing as a final thermo-me-
chanical operation. The annealing step results in formation of annealing
twins and, in some cases, in preferential grain growth leading to bi-
modal grain size distribution. Annealing twins play an important role in
the performance of the superalloys in service. On one hand, twins serve
as effective barriers to dislocation slip [52–54] and increase the yield
(or flow) strength of the material. On the other hand, in the absence of
extrinsic defects (e.g., pores), annealing twins often serve as sites for
crack initiation [55–58] and significantly affect the fatigue life, a lim-
iting factor for the deployment of the alloys in service. Consequently, a
rigorous quantification of microstructures with annealing twins is im-
portant for this application. As twin morphology usually differs from
that of parent grains (whose shapes are also altered by the traversing

twins), detecting preferred shape and the morphological orientation of
constituents induced by the presence of twin boundaries (of different
length fractions) is of special interest. These microstructure character-
istics, while not apparent from such common metrics as the grain dia-
meter, are significant based on observations of strain localization and
fatigue crack initiation along long twin boundaries in grains favoring
localization [59–61].

With this motivation, we consider two superalloys, IN100 and René
88DT [62], whose microstructures were previously studied in relation
to fatigue crack initiation [60]. These superalloys had different grain
size distributions and different fractions of annealing twin boundaries.
Here we analyze microstructures of both alloys (exemplified in Fig. 6a)
in terms of AR-CLDs calculated on EBSD maps of four regions in both
IN100 and René 88DT (acquired as described in [60]). Grains were
segmented based on a threshold misorientation angle of 5°, whereas
annealing twin boundaries were identified as the boundaries with
misorientations of 60° around ⟨111⟩ crystal axes and tolerance of 5°
[63]. For each EBSD map, AR-CLDs were computed twice: once con-
sidering all boundaries (including twin boundaries) and once ignoring
the twin boundaries. Since these experimental EBSD maps had a sub-
stantial number of grain boundary segments, AR-CLDs were computed
using sequential algorithm for obtaining chord lengths by placing test
lines with a spacing equal to the EBSD grid step in the complete range of
directions, θ∈ [0°,180°), with a 1° step. Chord length statistics obtained
in four different regions of the same sample were combined to provide
better sampling for AR-CLDs in each case (with and without twin
boundaries).

Fig. 5. Results of principal component analysis of AR-CLDs of an ensemble of 30 synthetic microstructures consisting of equiaxed, bimodal, and pancake-shaped
grains: (a) ensemble-average AR-CLD and two first patterns (or basis maps) corresponding to the most variance in AR-CLD of the ensemble, (b) low-dimensional
representation of AR-CLDs of the ensemble shown as 3-D projection of the PCA space in terms of the first three PC scores (corresponding to the shown basis maps), (c)
variance captured (individually and cumulatively) by first 15 principal components (with first three of them explaining 96.5%), (d) illustration of reconstruction of
AR-CLD of a microstructure in the ensemble using first three principal components.
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The results obtained with and without considering twin boundaries
in the two alloys reveal interesting features of the grain morphology
and the effect of the twin boundaries on AR-CLD (Fig. 6b). First, when
twin boundaries are considered, the peak intensities in the AR-CLD of
René 88DT correspond to shorter chords compared to those in the AR-
CLD of IN100 in agreement with the smaller grain diameter in René
88DT reported earlier (43 μm vs. 26 μm [60]). The AR-CLD of IN100
also exhibit non-zero intensities in a wider range of chord lengths
compared to AR-CLD of René 88DT, which captures the presence of a
number of large grains seen in IN100 boundary map (i.e., bimodal size
distribution). In addition, it is seen that both microstructures are, for
the most part, morphologically isotropic with and without twin
boundaries. Given a number of high-aspect ratio regions surrounded by
twin boundaries seen in the maps (Fig. 6a, especially for René 88DT),
the overall axisymmetry of AR-CLDs (considering twin boundaries)
indicate the absence of preferred morphological orientation of an-
nealing twins.

Further interesting observations can be made from the comparison
of AR-CLDs of all boundaries against AR-CLDs neglecting the twin
boundaries for the two alloys. It is seen that, in IN100, twin boundaries
(constituting 26% boundary length fraction) have a minor effect on the
AR-CLD with only a slight increase of probability of short chord lengths
while keeping the overall distribution very similar to that obtained
without twin boundaries. In contrast, the effect is much more dramatic
in René 88DT with 54% twin boundary length fraction, where non-zero
probability shifts from chord lengths of 10–50 μm to 2–18 μm range
(compare AR-CLD maps for René in Fig. 6b). These results indicate how
the large fraction of annealing twin boundaries in René 88DT sig-
nificantly shortened, in the statistical sense, chords in the micro-
structure. However, the fraction of 26% annealing twin boundaries in
IN100 was insufficient for such statistically significant changes in the
AR-CLDs. As in the previous case study, all these observations – on the
grain size and morphology, the modality of the size distribution, and
the effect of twin boundaries on CLDs – are made by intuitive

(a) Boundary maps

(b) Angularly resolved chord length distributions

Rene 88DT IN100

Rene 88DT IN100

0.00 0.06 0.00 0.03

(54% twin boundaries) (26% twin boundaries)

without twin boundaries without twin boundarieswith twin boundaries with twin boundaries

100 µm100 µm 100 µm 100 µm

60°<111>60°<111>

(c) Principal component analysis
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Fig. 6. Quantification of experimentally measured grain structures of IN100 and René 88DT: (a) grain and twin boundaries extracted from EBSD maps of IN100 and
René 88DT and (b) their AR-CLDs with and without consideration of twin boundaries; (c) principal component analysis results including low dimensional re-
presentation, first two basis maps, and AR-CLD of IN100 with twin boundaries reconstructed using first two principal components. The AR-CLDs were obtained with
the bin size of Δl= 1 μm.
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interpretation of AR-CLD maps. These insights would have otherwise
required analysis of multiple traditional size and morphology measures
or distributions.

To complete the analysis, we apply PCA to get low-dimensional
representation of the AR-CLDs for the experimentally measured mi-
crostructures (Fig. 6c). High-fidelity low-dimensional representation of
microstructures with bimodal grain size distributions (e.g., IN100 with
twin boundaries) is of special interest because they cannot be well re-
presented by commonly used mean grain diameter and standard de-
viation that assume Gaussian (or normal) distribution of the grain
diameter (with a single mode) [28]. To carry out PCA, two AR-CLDs
(with and without twin boundaries) for each of the four regions of each
alloy were calculated and considered separately, which provided 16
AR-CLDs in total. The low-dimensional representation of these 16 AR-
CLDs in terms of the first two PC scores (Fig. 6c) features four distinct
clusters that correspond to (i) René 88DT with twin boundaries, (ii)
René 88DT without twin boundaries, (iii) IN100 with twin boundaries
(iv) IN100 without twin boundaries. Clustering of the AR-CLDs from
four different regions close to the combined AR-CLDs of each alloy
(marked by crosses in Fig. 6c) indicate small variations of the grain size
morphology between the studied regions. The corresponding basis
maps show how these principal components capture different modes in
the AR-CLDs. Finally, it is seen that, for this dataset, the first two
principal components (capturing 96% variance) suffice for a mean-
ingful reconstruction of the original AR-CLDs (Fig. 6c) even with bi-
modal AR-CLD obtained for IN100 with twin boundaries. AR-CLDs and
their low-rank representations obtained by PCA therefore provide for a
versatile framework for quantification and representation of micro-
structures with diverse grain size and shape distributions, including
those observed experimentally. One of the potential applications of this
framework (particularly in the context of Ni-base superalloys with twin
boundaries) is assessing the statistical equivalence (or difference) of
microstructures with non-trivial size distributions of the constituents
ensuing from complex processing paths.

4.3. Simulation Datasets

We further tested our quantification framework, and its scalability
in particular, on a computational dataset of microstructure evolution
during static recrystallization. Static recrystallization is a phenomenon
frequently observed in heavily deformed metals during which the de-
formed microstructure is swept by nucleation and subsequent growth of
recrystallizing grains [64]. The deformed microstructure is primarily

constituted by subgrains, i.e., grains possessing predominantly low-
angle rather than high-angle boundaries, which are known to act as
nuclei for primary static recrystallization, especially in high-stacking
fault energy f.c.c. alloys [64]. Understanding and predicting micro-
structure evolution during recrystallization is of engineering interest
because the recrystallized microstructure significantly differs from the
initial deformed one (both in terms of crystallographic texture and
grain morphology) with strong dependence on the thermo-mechanical
conditions as well as an impact on the properties and their anisotropy.
One of the key challenges in such predictions is that successful nu-
cleation during recrystallization belongs to a class of rare events as only
each thousandth candidate subgrain, if at all, has a substantial ad-
vantage to evolve into a recrystallized grain consuming the others.
Obtaining statistically significant data on such rare events and their
dependence on the process variables demands monitoring myriads of
candidate sites under controlled conditions, which requires a combi-
nation of experimental and computational studies. The computational
tools aiming for statistical significance yield massive microstructure
data which in turn require efficient approaches to microstructure ana-
lysis. In addition to large population sizes, microstructural evolution
during recrystallization can be morphologically anisotropic with mul-
timodal size distributions of the constituents. The datasets on re-
crystallizing microstructures therefore provide for a unique opportunity
to test the quantification framework presented in this work.

The detailed descriptions of the computational approach utilized in
the present study and the microstructural setup were reported pre-
viously [65]; only the essential details of these simulations are re-
iterated here. The simulations were executed with the open source
OpenMP-parallelized GraGLeS model4 solver [37] with the objective to
follow the preferential evolution of a large number of individual sub-
grains within their neighborhood during isothermal annealing of cold-
rolled Fe–2.4%Si non-grain-oriented steel. The driving force for sub-
grain growth was considered to originate from capillary effects and the
difference in the dislocation density across subgrain boundaries.

The initial microstructure was synthesized based on experimental
data (on grain orientations, shapes, and dislocation density) available
for the steel after cold rolling to 70% thickness reduction [66]. The
subgrain structure was constructed using a hierarchical Poisson-Vor-
onoi tessellation5 First, 10,000 rectangular parent grains (with 20:1
aspect ratio) were instantiated (Fig. 7a), followed by their synthetic
subdivision into 1000 equiaxed subgrains each so that the initial mi-
crostructure contained 9.83 million equiaxed subgrains (Fig. 7b).

The described simulations allowed continuous monitoring of the
microstructure evolution, including subgrain area, topology, and the
geometry of subgrain boundaries. For the purposes of the present study,
the subgrain boundary contours were written to file each 100th in-
tegration step. Note that during the simulated recrystallization process,
the fraction of high-angle boundaries tend to increase, which makes the
classical conceptual distinction between “grains” and “subgrains” po-
tentially too simplified so that we continue to refer to them as subgrains
and consider all boundaries in the analysis. The contour points of
subgrain boundaries exported during the simulations were paired to
constitute boundary segments for the AR-CLD analysis. Since the da-
tasets contained extremely large numbers of boundary segments (up to
tens of millions per time step), sequential approach was utilized with
trivial parallelization of CLD calculations in different directions. In
addition, the subgrain boundary map at the first studied time step
(T= 500), which contained the largest number of boundary segments,
was split into four sub-domains analyzed separately with subsequent
merging of the chord length statistics. The AR-CLDs were computed for
subgrain boundaries obtained at different time steps of the simulations
considering the entire range of directions, θ∈ [0°,180°), with a 1° step

x (RD)

y (ND)

(a) Rectangular grain structure (b) Equiaxed subgrain structure

4200 µm

Fig. 7. The initial configuration of the 2-D synthetic microstructure for re-
crystallization simulations built as a polycrystalline aggregate of rectangular
parent grains (a) with aspect ratio of 20 : 1 subdivided into equiaxed subgrains
(b). The total number of subgrains is 9.83 × 106.

4 Open source https://github.com/GraGLeS.
5 Open source https://github.com/GraGLeS/IMM_MicrostructureGenerator.
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and at least 500 test lines for each direction.
Fig. 8 distills results of the simulations predicting the subgrain

structure evolution and the corresponding AR-CLD calculations. The
predicted subgrain growth, exemplified by subgrain boundary maps at
two time steps in Fig. 8a, is clearly captured in the corresponding AR-
CLDs (Fig. 8b). Indeed, one can see significantly higher probabilities of
finding short chords at the early stages compared to AR-CLDs later in
the process that reflect more distributed probabilities of chords in a
wide range of lengths.

An interesting observation in the AR-CLDs is the anisotropic prob-
ability pattern seen in the AR-CLDs (Fig. 9) corresponding to the early
stages of recrystallization, which was inherited, to a certain degree, to
the end of the studied time interval (Fig. 8b). Indeed, the peak prob-
ability in AR-CLD corresponds to small chords (< 10 μm) along the
rolling direction (RD, parallel to x axis), whereas the probability of
chords of the same lengths in the normal direction (ND, parallel to y
axis) is lower. This lower probability of small chords along ND is
compensated by the presence of chords in a wider range of lengths (up
to 30 μm).

The anisotropic pattern of non-zero probability in AR-CLD indicates
the non-equiaxed shape of subgrains with some elongation in ND. It is a
surprising observation because subgrains in the initial microstructure

were generated equiaxed (Fig. 7b), which was expected to lead to re-
latively isotropic growth. The observations made with AR-CLDs, how-
ever, suggest that, as soon as the structure starts to evolve, the net
subgrain boundary migration progresses differently in the principal
directions (and particularly in RD vs. ND).

While anisotropic growth was observed in classical experiments on
recrystallization in single- and bi-crystals [67] and attributed to in-
clination-dependent grain boundary mobilities, the present morpholo-
gical anisotropy detected with AR-CLDs originated in part from the
synthetic microstructure instantiation. Particularly, we attribute the
transient subgrain shape anisotropy to differences in the dislocation
content and disorientation between adjacent subgrains. First, for a
randomly picked subgrain pair, the difference in the driving force is
likely to be higher when the two subgrains belong to different parent
grains compared to neighboring subgrains within the same parent
grain. Second, by design, subgrains within the same parent grain have
lower disorientation to each other on average compared to their
neighbors in adjacent parent grains. Both contributions act con-
comitantly causing multiple subgrains to migrate farther in the direc-
tion of the neighboring parent grain (i.e., ND) than in the elongation (or
major axis) direction of parent grains (i.e. RD).

We conclude our examination in this case study with PCA of the AR-
CLDs obtained for subgrain structures at 44 time steps
(T= {500,1000,1100,…,5200}) of the recrystallization simulation.
Fig. 10a depicts the results of PCA of these 44 AR-CLDs shown in terms
of the time evolution of the first three PC scores that collectively cap-
ture 98.7% variance in the AR-CLDs. This representation effectively
captures substantial changes in the subgrain scale structure during the
transient between the deformed and the recrystallized states in the
early stages of the process as well as the decrease in the rate of evo-
lution towards the end of the simulated time period.

The basis maps (Fig. 10b) identify the main changes in the AR-CLDs
during the recrystallization process. For example, the pattern of
minimum (negative) values in the first basis map resembles the pattern
of high intensity of AR-CLD at the beginning of the process (T= 500).
Accordingly, the first PC basis indicates negative values for the very
short chords (in all directions), and relatively small positive values for
the larger chords (again in all directions). Therefore, an increase in the
first PC score captures a loss of these short chords and a very small

Fig. 8. Summary of the results of the recrystallization case study: (a) partial subgrain structure renderings at two time steps, T, of the recrystallization simulation
illustrating the predicted subgrain growth (the corresponding AR-CLDs in (b) are marked with asterisks); (b) AR-CLDs obtained for the subgrain structure at different
time steps, T, with the bin size of Δl= 3.36 μm.

0.0 0.4

Τ = 500 Τ = 1000

RD

ND

82 µm

Fig. 9. Close-up of AR-CLD patterns at T= 500 and T= 1000 (their locations
in Fig. 8b are indicated with dashed circles, chord length ranges are shown with
arrows).
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increase in the distribution of the larger chords. The other two PC
scores and bases similarly capture the salient changes in AR-CLD at
different stages of the microstructure evolution. Finally, it is interesting
to note that the PC1 and PC2 scores asymptote with time, indicating
that the corresponding changes in AR-CLD are complete. At the same
time, the PC3 score has not yet reached a steady-state value, suggesting
that the corresponding changes are not yet complete. These are likely
signatures of a continuing transition from the regime controlled by the
difference in stored elastic energy to that dominantly driven by ca-
pillarity, which is expected within the classical sequence of static re-
crystallization followed by the stage of grain growth.

The results demonstrate the successful application of the present
framework to recrystallization simulation datasets with tens of millions
of boundary segments. In the absence of the proposed framework, the
simulation output on subgrain morphology and size would have been
likely discussed qualitatively by visual inspection or solely in terms of
the grain diameter, thereby missing finer details of the subgrain size
and shape evolution as identified in the present case study. The results
are of immediate value both for improved interpretation of simulation
results and for guiding synthetic microstructure generation. Indeed, the
idealized shape and size equality of the parent grains used for building
the initial microstructure was found to affect the geometrical path
along which the subgrain structure evolves. The latter indicates the
need in improved microstructure generators that aim not only at higher
grain shape variety, which tools like Dream.3D already offer, but
especially at more efficient scaling solutions. These solutions could
provide extremely large RVEs for simulations that capture rare events
such as nucleation during static recrystallization.

5. Discussion

In this work, we presented a grain boundary-based approach for
fully automated calculations of AR-CLDs for digital microstructures,

and demonstrated their application to quantification and representation
of polycrystals with diverse grain morphologies and size distributions.
It was shown through the case studies that AR-CLDs capture important
morphological details that may be otherwise overlooked by metrics
such as the mean grain diameter. It was also demonstrated that polar
visualizations of AR-CLDs provide for intuitive representation of grain
structures, from which the range of chord lengths (related to grain size),
their distribution (e.g., unimodal vs. multimodal), the shape (e.g.,
equiaxed vs. non-equiaxed) and the preferred alignment of grains can
be all readily inferred from a single plot.

We envision that the presented approach is especially suitable for
incorporation into routine post-processing of EBSD datasets. The
MATLAB code developed for AR-CLD in this work is open-sourced and
made available to the community on GitHub.6 The code is compatible
with open-source MTEX toolbox, which is being actively developed and
increasingly adopted for EBSD and texture analysis. Other EBSD post-
processing software can be also used for exporting boundary segments
from which AR-CLDs can be calculated as described in Section 2.3. For
many practical situations of EBSD analysis, the presented im-
plementation is quite efficient as seen in the summary of the CPU times
needed for AR-CLD computations (Table 1). AR-CLDs in all directions
with a 1° step for a typical EBSD map took 1–6 min on a personal
computer. We note that these CPU times are reported for AR-CLD cal-
culations with a large number of test lines placed at each EBSD pixel
(i.e., spacing equal to EBSD grid step). Such dense sampling was
adopted for making full use of all the information available in the EBSD
map, which is motivated by high cost of the experimental data. Of
course, the users can opt to reduce the number of scan lines to reduce
the CPU time as needed for their specific application. Relevant to the
computational cost, we also demonstrated that two algorithms can be
employed depending on the situation: (i) matrix-based (no loops over
test lines) for the cases of moderate size boundary maps and/or abun-
dance of memory, (ii) sequential looping over test lines for large maps
and/or limited memory. The algorithms for large microstructure maps
can be further accelerated by parallelized computations owing to the
independence of CLD calculations in different directions. In future
studies, further acceleration can be explored by streaming instructions
for CPUs or, even more efficiently, for GPUs, which will be especially
important for potential extensions of the present approach to 3-D mi-
crostructures.

We have also shown that PCA can be successfully applied on AR-
CLDs when low-dimensional measures of microstructure descriptions
are sought. Typically low-dimensional representations are obtained by
averaging statistical distributions, e.g., mean grain diameter. The virtue
of PCA as an alternative to averaging is that it allows for identification
of salient features in terms of which microstructure features vary the
most in the given ensemble. In addition, a few principal components
often suffice for meaningful reconstruction of the original AR-CLD re-
gardless of the distribution type (including bimodal, anisotropic, etc.),
which is not always the case using conventional Gaussian metrics (i.e.,
mean and standard deviation). In addition to efficient representation,
PC scores of AR-CLDs can serve as succinct and robust descriptors of the
grain structure and thus facilitate the formulation of quantitative pro-
cessing–structure–property relationships. Our prior research has al-
ready shown the potential of such microstructure representations for
establishing processing–structure [33] and structure–property re-
lationships using emerging data science strategies [34–36]. A potential
application of the present quantification framework is the development
of statistical data-driven models that capture a microstructure–property
relationship (e.g., yield strength) as a function of PC scores of AR-CLD.
The potential advantage of such statistical models as compared to
classical ones (e.g., Hall-Petch relationship) is that the combined effects
of grain size, shape, and their alignment captured in AR-CLDs (but
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Fig. 10. Results of the principal component analysis shown in terms of (a) the
time evolution of the first three PC scores and (b) the corresponding basis maps.

6 Repository address: https://github.com/mined-gatech/AR-CLD-bnd.
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overlooked by grain diameter) can be accounted in the microstruc-
ture–property relationship.

While our focus in this work was on mesoscale microstructure
quantification of polycrystalline metals, the approach is sufficiently
abstract and versatile to be utilized at other length scales as well as on
other material systems. Such versatility was achieved by formulating
the approach based on boundary segments defined by the coordinates
of their end points without any restriction to them being boundary
segments of grains in metals. The presented ideas can be therefore
adopted by communities focused on other material systems, such as
geological [3] and biological materials, food [68], and other systems, in
which the size and morphology of constituents are of interest.

6. Conclusions

In this work, we have presented a framework based on angularly
resolved chord length distribution (AR-CLD) and principal component
analysis (PCA) for quantification of polycrystalline mesostructures with
the following conclusions.

1. AR-CLDs can be calculated based on algorithms for finding inter-
section points between arrays of line segments, i.e., test lines and
grain boundary segments defined by continuous coordinates of their
end points.

2. From the case study on synthetic microstructures, we demonstrated
that AR-CLDs capture differences in both size and shape character-
istics of predominantly equiaxed and elongated grains with align-
ment in different directions as well as the character of the size dis-
tribution (unimodal, duplex/bimodal, etc.). In addition to intuitive
polar visualization of AR-CLDs, these different microstructures can
be efficiently represented by principal components of AR-CLDs ob-
tained by PCA.

3. The AR-CLD analysis of the effects of annealing twin boundaries on
grain shape and morphology revealed (i) the absence of preferential
alignment of twin boundaries in the microstructure, (ii) a small ef-
fect of 26% annealing twin boundaries in IN100 and significant ef-
fect of 54% annealing twin boundaries in René 88DT on chord
length distribution, (iii) successful low-dimensional representation
of microstructures containing annealing twins using principal com-
ponents of AR-CLDs that allows for comparison of experimentally
measured microstructures with various grain size and shape dis-
tributions.

4. The analysis of evolving subgrain boundary networks predicted by
recrystallization simulations demonstrated scalability of the pre-
sented algorithm for AR-CLD calculations, allowed detection of
morphologically anisotropic subgrain growth and its quantitative
description in terms of principal components of AR-CLDs as well as

identified potential for improvements in computational re-
crystallization studies by reducing biases introduced in synthetic
microstructure generation.

Acknowledgments

The authors gratefully acknowledge the support by their respective
funding agencies and grants: MIL – National Science Foundation
(United States) NSF grant #1664172 SI2-SSI:LIMPID: Large-scale IMage
Processing Infrastructure Development; MK – the German Research
Foundation (Germany) DFG grants GO335/44-1 and BA4253/2-1; IJB –
the Office of Naval Research under contract N00014-17-1-2810; LST –
the French State through the program Investment in the Future oper-
ated by the National Research Agency (France) (ANR) and referenced
by ANR-11-LABX-0008-01 (LabEx DAMAS); TMP – NSF grant
#1650972 EAGER: Collaborative 3D Materials Science Research in the
Cloud; SRK - the Office of Naval Research (United States) ONR grant
N00014-15-1-2478.

Data Availability

The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.

References

[1] D.T. Fullwood, S.R. Niezgoda, B.L. Adams, S.R. Kalidindi, Microstructure sensitive
design for performance optimization, Prog. Mater. Sci. 55 (6) (2010) 477–562,
https://doi.org/10.1016/j.pmatsci.2009.08.002.

[2] R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L.C. Brinson, D.W. Apley, W.K. Liu,
W. Chen, Computational microstructure characterization and reconstruction: re-
view of the state-of-the-art techniques, Prog. Mater. Sci. 95 (2018) 1–41, https://
doi.org/10.1016/j.pmatsci.2018.01.005.

[3] A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (Eds.), Electron Backscatter
Diffraction in Materials Science, Springer, Boston, MA, 2009, , https://doi.org/10.
1007/978-0-387-88136-2.

[4] B.L. Adams, S.R. Kalidindi, D.T. Fullwood, Microstructure Sensitive Design for
Performance Optimization, Elsevier Science, 2012, https://www.sciencedirect.
com/book/9780123969897/microstructure-sensitive-design-for-performance-
optimization.

[5] U.F. Kocks, C.N. Tomé, H.-R. Wenk, Texture and Anisotropy: Preferred Orientations
in Polycrystals and their Effect on Materials Properties, Cambridge University Press,
Cambridge, UK, 2000, https://doi.org/10.1007/978-0-387-88136-2.

[6] E. Hall, Variation of hardness of metals with grain size, Nature 173 (4411) (1954)
948.

[7] N. Petch, XVI. The ductile fracture of polycrystalline α-iron, Philos. Mag. 1 (2)
(1956) 186–190.

[8] B.S. Fromm, B.L. Adams, S. Ahmadi, M. Knezevic, Grain size and orientation dis-
tributions: application to yielding of α-titanium, Acta Mater. 57 (8) (2009)
2339–2348, https://doi.org/10.1016/j.actamat.2008.12.037.

[9] S. Sun, V. Sundararaghavan, A probabilistic crystal plasticity model for modeling
grain shape effects based on slip geometry, Acta Mater. 60 (13–14) (2012)
5233–5244, https://doi.org/10.1016/j.actamat.2012.05.039.

[10] S. Berbenni, V. Favier, M. Berveiller, Micro-macro modelling of the effects of the
grain size distribution on the plastic flow stress of heterogeneous materials,
Comput. Mater. Sci. 39 (2007) 96–105, https://doi.org/10.1016/j.commatsci.2006.
02.019 (1 SPEC. ISS).

[11] P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, J. Romanoff, Influence of grain size
distribution on the Hall-Petch relationship of welded structural steel, Mater. Sci.
Eng. A 592 (2014) 28–39, https://doi.org/10.1016/j.msea.2013.10.094.

[12] P. Lehto, J. Romanoff, H. Remes, T. Sarikka, Characterisation of local grain size
variation of welded structural steel, Weld. World 60 (2016) 673–688, https://doi.
org/10.1007/s40194-016-0318-8.

[13] H. Bunge, F. Wagner, P. Van Houtte, A new way to include the grain shape in
texture simulations with the Taylor model, J. Phys. Lett. 46 (23) (1985) 1109–1113.

[14] G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline
ferromagnets, IEEE Trans. Magn. 26 (5) (1990) 1397–1402.

[15] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk, A framework for automated
analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical
characterization, Acta Mater. 56 (6) (2008) 1257–1273, https://doi.org/10.1016/j.
actamat.2007.11.041.

[16] A.T. Polonsky, M.P. Echlin, W.C. Lenthe, R.R. Dehoff, M.M. Kirka, T.M. Pollock,
Defects and 3D structural inhomogeneity in electron beam additively manufactured
Inconel 718, Mater. Charact. (September 2017), https://doi.org/10.1016/j.
matchar.2018.02.020.

[17] L.S. Toth, S. Biswas, C. Gu, B. Beausir, Notes on representing grain size distributions
obtained by electron backscatter diffraction, Mater. Charact. 84 (2013) 67–71,
https://doi.org/10.1016/j.matchar.2013.07.013.

Table 1
Wall-clock CPU times for the case studies carried out on a 4.2GHz desktop with
16GB RAM. Synthetic case study was performed using matrix-based approach
with 1 CPU, sequential approach was used for the rest of the case studies em-
ploying trivial MATLAB parallelization with 4 CPUs. The CPU times are shown
for AR-CLD calculations only excluding I/O operations.

Dataset # Segments # Test lines CPU time

Synthetic 1.2 × 104 ≥250 56 s
René 88DT without TBs 3.8 × 104 ≥625 28.5 s
René 88DT with TBs 8.3 × 104 ≥625 47.0 s
IN100 without TBs 1.9 × 105 ≥1800 3.9 min
IN100 with TBs 2.3 × 105 ≥1800 5.4 min
ReX (T= 5000) 3.8 × 104 ≥500 25.9 s
ReX (T= 3000) 7.4 × 104 ≥500 38.7 s
ReX (T= 2000) 2.2 × 105 ≥500 1.4 min
ReX (T= 1400) 1.2 × 106 ≥500 7.4 min
ReX (T= 1000) 5.8 × 106 ≥500 32.4 min
ReX (T= 500) 1.2 × 107 ≥500 49.0 min

M.I. Latypov et al. Materials Characterization 145 (2018) 671–685

684

https://doi.org/10.1016/j.pmatsci.2009.08.002
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1016/j.pmatsci.2018.01.005
https://doi.org/10.1007/978-0-387-88136-2
https://doi.org/10.1007/978-0-387-88136-2
https://www.sciencedirect.com/book/9780123969897/microstructure-sensitive-design-for-performance-optimization
https://www.sciencedirect.com/book/9780123969897/microstructure-sensitive-design-for-performance-optimization
https://www.sciencedirect.com/book/9780123969897/microstructure-sensitive-design-for-performance-optimization
https://doi.org/10.1007/978-0-387-88136-2
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0030
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0030
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0035
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0035
https://doi.org/10.1016/j.actamat.2008.12.037
https://doi.org/10.1016/j.actamat.2012.05.039
https://doi.org/10.1016/j.commatsci.2006.02.019
https://doi.org/10.1016/j.commatsci.2006.02.019
https://doi.org/10.1016/j.msea.2013.10.094
https://doi.org/10.1007/s40194-016-0318-8
https://doi.org/10.1007/s40194-016-0318-8
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0065
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0065
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0070
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0070
https://doi.org/10.1016/j.actamat.2007.11.041
https://doi.org/10.1016/j.actamat.2007.11.041
https://doi.org/10.1016/j.matchar.2018.02.020
https://doi.org/10.1016/j.matchar.2018.02.020
https://doi.org/10.1016/j.matchar.2013.07.013


[18] M. Fátima Vaz, M. Fortes, Grain size distribution: the lognormal and the gamma
distribution functions, Scr. Metall. 22 (1988) 35–40, https://doi.org/10.1016/
S0036-9748(88)80302-8 (higher x).

[19] S.P. Donegan, J.C. Tucker, A.D. Rollett, K. Barmak, M. Groeber, Extreme value
analysis of tail departure from log-normality in experimental and simulated grain
size distributions, Acta Mater. 61 (15) (2013) 5595–5604, https://doi.org/10.
1016/j.actamat.2013.06.001.

[20] D.M. Saylor, J. Fridy, B.S. El-Dasher, K.-Y. Jung, A.D. Rollett, Statistically re-
presentative three-dimensional microstructures based on orthogonal observation
sections, Metall. Mater. Trans. A 35 (7) (2004) 1969–1979, https://doi.org/10.
1007/s11661-004-0146-0.

[21] P. Hovington, P. Pinard, M. Lagacé, L. Rodrigue, R. Gauvin, M. Trudeau, Towards a
more comprehensive microstructural analysis of zr-2.5nb pressure tubing using
image analysis and electron backscattered diffraction (ebsd), J. Nucl. Mater. 393 (1)
(2009) 162–174, https://doi.org/10.1016/j.jnucmat.2009.05.017.

[22] A.K. Dahle, K. Nogita, J.W. Zindel, S.D. McDonald, L.M. Hogan, Eutectic nucleation
and growth in hypoeutectic Al-Si alloys at different strontium levels, Metall. Mater.
Trans. A 32 (4) (2001) 949–960, https://doi.org/10.1007/s11661-001-0352-y.

[23] E. Heyn, Short reports from the metallurgical laboratory of the Royal Mechanical
and Testing Institute of Charlottenburg, Metallographist 5 (1903) 37–64.

[24] S. Torquato, B. Lu, Chord-length distribution function for two-phase random media,
Phys. Rev. E 47 (4) (1993) 2950–2953, https://doi.org/10.1103/PhysRevE.47.
2950.

[25] A.P. Roberts, S. Torquato, Chord-distribution functions of three-dimensional
random media: approximate first-passage times of Gaussian processes, Phys. Rev. E
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59 (5) (1999) 4953–4963,
https://doi.org/10.1103/PhysRevE.59.4953.

[26] ASTM Standard, E112-13, Standard Test Methods for Determining Average Grain
Size, ASTM International, West Conshohocken, PA, 2013, https://doi.org/10.1520/
E0112.

[27] ASTM Standard, E1382-97(2015), Standard Test Methods for Determining Average
Grain Size Using Semiautomatic and Automatic Image Analysis, ASTM
International, West Conshohocken, PA, 2015, https://doi.org/10.1520/E1382-
97R15.

[28] ASTM Standard, ASTM E1181-02(2015), Standard Test Methods for Characterizing
Duplex Grain Sizes, ASTM International, West Conshohocken, PA, 2015, https://
doi.org/10.1520/E1181-02R15.

[29] H. Singh, A.M. Gokhale, S.I. Lieberman, S. Tamirisakandala, Image based compu-
tations of lineal path probability distributions for microstructure representation,
Mater. Sci. Eng. A 474 (1–2) (2008) 104–111, https://doi.org/10.1016/j.msea.
2007.03.099.

[30] D.M. Turner, S.R. Niezgoda, S.R. Kalidindi, Efficient computation of the angularly
resolved chord length distributions and lineal path functions in large microstructure
datasets, Model. Simul. Mater. Sci. Eng. 24 (7) (2016) 75002, https://doi.org/10.
1088/0965-0393/24/7/075002.

[31] J.E. Bresenham, Algorithm for computer control of a digital plotter, IBM Syst. J. 4
(1) (1965) 25–30, https://doi.org/10.1147/sj.41.0025.

[32] S.J. Owen, J.A. Brown, C.D. Ernst, H. Lim, K.N. Long, Hexahedral mesh generation
for computational materials modeling, Procedia Eng. 203 (2017) 167–179, https://
doi.org/10.1016/j.proeng.2017.09.803.

[33] E. Popova, T.M. Rodgers, X. Gong, A. Cecen, J.D. Madison, S.R. Kalidindi, Process-
structure linkages using a data science approach: application to simulated additive
manufacturing data, Integr. Mater. Manuf. Innov. 6 (1) (2017) 54–68, https://doi.
org/10.1007/s40192-017-0088-1.

[34] M.I. Latypov, S.R. Kalidindi, Data-driven reduced order models for effective yield
strength and partitioning of strain in multiphase materials, J. Comput. Phys. 346
(2017) 242–261, https://doi.org/10.1016/j.jcp.2017.06.013.

[35] M.I. Latypov, L.S. Toth, S.R. Kalidindi, Microstructure-sensitive models for non-
linear composites, Comput. Methods Appl. Mech. Eng. (2018) (Under Review),
arXiv preprint arXiv:1807.11313, https://arxiv.org/abs/1809.07484.

[36] A. Khosravani, A. Cecen, S.R. Kalidindi, Development of high throughput assays for
establishing process–structure–property linkages in multiphase polycrystalline
metals: application to dual-phase steels, Acta Mater. 123 (2017) 55–69, https://doi.
org/10.1016/j.actamat.2016.10.033.

[37] C. Mießen, N. Velinov, G. Gottstein, L.A. Barrales-Mora, A highly efficient 3D level-
set grain growth algorithm tailored for ccNUMA architecture, Model. Simul. Mater.
Sci. Eng. 25 (8) (2017), https://doi.org/10.1088/1361-651X/aa8676.

[38] S.R. Ghorpade, B.V. Limaye, A Course in Calculus and Real Analysis, The Australian
Mathematical Society, 2008, p. 211.

[39] P. Bourke, Intersection Point of Two Line Segments in 2 Dimensions, http://
paulbourke.net/geometry/pointlineplane/, (1989) (accessed Sep. 21, 2018).

[40] D. Rowenhorst, A.D. Rollett, G.S. Rohrer, M. Groeber, M. Jackson,
P.J. Konijnenberg, M. De Graef, Consistent representations of and conversions be-
tween 3D rotations, Model. Simul. Mater. Sci. Eng. 23 (8) (2015), https://doi.org/
10.1088/0965-0393/23/8/083501.

[41] EDAX, OIM Analysis: User Manual, v.8, (2016).
[42] R. Bro, A.K. Smilde, Principal component analysis, Anal. Methods 6 (9) (2014)

2812–2831, https://doi.org/10.1039/C3AY41907J.
[43] K. Pearson, LIII. On lines and planes of closest fit to systems of points in space,

Philos. Mag. Ser. 6 2 (11) (1901) 559–572, https://doi.org/10.1080/
14786440109462720.

[44] S.R. Niezgoda, A.K. Kanjarla, S.R. Kalidindi, Novel microstructure quantification
framework for databasing, visualization, and analysis of microstructure data,
Integr. Mater. Manuf. Innov. 2 (1) (2013) 1–27, https://doi.org/10.1186/2193-
9772-2-3.

[45] S.R. Niezgoda, Y.C. Yabansu, S.R. Kalidindi, Understanding and visualizing mi-
crostructure and microstructure variance as a stochastic process, Acta Mater. 59
(16) (2011) 6387–6400, https://doi.org/10.1016/j.actamat.2011.06.051.

[46] M.A. Groeber, M.A. Jackson, DREAM.3D: a digital representation environment for
the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov. 3 (2014) 1–17,
https://doi.org/10.1186/2193-9772-3-5.

[47] M. Groeber, S. Ghosh, M.D. Uchic, D.M. Dimiduk, A framework for automated
analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic
structure generation, Acta Mater. 56 (6) (2008) 1274–1287, https://doi.org/10.
1016/j.actamat.2007.11.040.

[48] F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with MTEX - free and
open source software toolbox, Solid State Phenom. 160 (2010) 63–68, https://doi.
org/10.4028/www.scientific.net/SSP.160.63.

[49] F. Bachmann, R. Hielscher, H. Schaeben, Grain detection from 2d and 3d EBSD
data-specification of the MTEX algorithm, Ultramicroscopy 111 (12) (2011)
1720–1733, https://doi.org/10.1016/j.ultramic.2011.08.002.

[50] M. Diehl, M. Groeber, C. Haase, D.A. Molodov, F. Roters, D. Raabe, Identifying
structure-property relationships through DREAM.3D representative volume ele-
ments and DAMASK crystal plasticity simulations: an integrated computational
materials engineering approach, JOM 69 (5) (2017) 848–855, https://doi.org/10.
1007/s11837-017-2303-0.

[51] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University
Press, 2006, https://doi.org/10.1017/CBO9780511541285.

[52] V. Randle, Grain boundary engineering: an overview after 25 years, Mater. Sci.
Technol. 26 (3) (2010) 253–261, https://doi.org/10.1179/
026708309X12601952777747.

[53] T. Ezaz, M.D. Sangid, H. Sehitoglu, Energy barriers associated with slip–twin in-
teractions, Philos. Mag. 91 (10) (2011) 1464–1488, https://doi.org/10.1080/
14786435.2010.541166.

[54] S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Sequential slip transfer of mixed-character
dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent ato-
mistic-continuum study, npj Comput. Mater. 2 (December 2015), https://doi.org/
10.1038/npjcompumats.2015.16.

[55] J.C. Stinville, E. Martin, M. Karadge, S. Ismonov, M. Soare, T. Hanlon, S. Sundaram,
M.P. Echlin, P.G. Callahan, W.C. Lenthe, V. Miller, J. Miao, A.E. Wessman,
R. Finlay, A. Loghin, J. Marte, T.M. Pollock, Fatigue deformation in a polycrystal-
line nickel base superalloy at intermediate and high temperature: competing failure
modes, Acta Mater. 152 (2018) 16–33, https://doi.org/10.1016/j.actamat.2018.03.
035.

[56] R.C. Boettner, A.J. McEvily Jr., C.Y. Liu, On the formation of fatigue cracks at twin
boundaries, Philos. Mag. 10 (103) (1964) 95–106, https://doi.org/10.1080/
14786436408224210.

[57] J.C. Stinville, W.C. Lenthe, J. Miao, T.M. Pollock, A combined grain scale elastic-
plastic criterion for identification of fatigue crack initiation sites in a twin con-
taining polycrystalline nickel-base superalloy, Acta Mater. 103 (2015) 461–473,
https://doi.org/10.1016/j.actamat.2015.09.050.

[58] C.A. Stein, S. Lee, A.D. Rollett, An analysis of fatigue crack initiation using 2D
orientation mapping and full-field simulation of elastic stress response, superalloys,
Superalloys, 2012: Proceedings of the 12th International Symposium on
Superalloys, Wiley, 201210.1002/9781118516430.ch48.

[59] A. Heinz, P. Neumann, Crack initiation during high cycle fatigue of an austenitic
steel, Acta Metall. Mater. 38 (10) (1990) 1933–1940, https://doi.org/10.1016/
0956-7151(90)90305-Z.

[60] J.C. Stinville, W.C. Lenthe, M.P. Echlin, P.G. Callahan, D. Texier, T.M. Pollock,
Microstructural statistics for fatigue crack initiation in polycrystalline nickel-base
superalloys, Int. J. Fract. (2017) 1–20, https://doi.org/10.1007/s10704-017-
0241-z.

[61] M.I. Latypov, J.-C. Stinville, J.R. Mayeur, T.M. Pollock, I.J. Beyerlein,
Micromechanical study of elastic strain localization in René 88DT with annealing
twin boundaries (In Preparation).

[62] D.D. Krueger, R.D. Kissinger, R.G. Menzies, Developement and introduction of a
damage tolerant high temperature nickel-base disk alloy, Rene 88DT, Superalloys
1992, vol. 7, The Minerals, Metals & Materials Society, 1992.

[63] W.C. Lenthe, J.-C. Stinville, M.P. Echlin, T.M. Pollock, Statistical Assessment of
Fatigue-Initiating Microstructural Features in a Polycrystalline Disk Alloy,
Superalloys 2016: Proceedings of the 13th International Symposium, Wiley, 2016, ,
https://doi.org/10.1002/9781119075646.ch61.

[64] R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen,
M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Current issues
in recrystallization: a review, Mater. Sci. Eng. A 238 (2) (1997) 219–274, https://
doi.org/10.1016/S0921-5093(97)00424-3.

[65] M. Kühbach, On the significance of microstructure property topography and ca-
pillary contributions for nucleating abnormal grain growth and recrystallization,
Acta Mater. (2018) (Under Review).

[66] N. Leuning, S. Steentjes, A. Stöcker, R. Kawalla, X. Wei, J. Dierdorf, G. Hirt,
S. Roggenbuck, S. Korte-Kerzel, H.A. Weiss, W. Volk, K. Hameyer, Impact of the
interaction of material production and mechanical processing on the magnetic
properties of non-oriented electrical steels, AIP Adv. 8 (2018), https://doi.org/10.
1063/1.4994143.

[67] G. Ibe, K. Lücke, Growth selection during recrystallization of single crystals,
Recrystallization, Grain Growth and Textures, 1966, p. 434.

[68] A. Derossi, T. De Pilli, C. Severini, Statistical description of fat and meat phases of
sausages by the use of lineal-path distribution function, Food Biophys. 7 (3) (2012)
258–263, https://doi.org/10.1007/s11483-012-9264-1.

M.I. Latypov et al. Materials Characterization 145 (2018) 671–685

685

https://doi.org/10.1016/S0036-9748(88)80302-8
https://doi.org/10.1016/S0036-9748(88)80302-8
https://doi.org/10.1016/j.actamat.2013.06.001
https://doi.org/10.1016/j.actamat.2013.06.001
https://doi.org/10.1007/s11661-004-0146-0
https://doi.org/10.1007/s11661-004-0146-0
https://doi.org/10.1016/j.jnucmat.2009.05.017
https://doi.org/10.1007/s11661-001-0352-y
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0115
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0115
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.47.2950
https://doi.org/10.1103/PhysRevE.59.4953
https://doi.org/10.1520/E0112
https://doi.org/10.1520/E0112
https://doi.org/10.1520/E1382-97R15
https://doi.org/10.1520/E1382-97R15
https://doi.org/10.1520/E1181-02R15
https://doi.org/10.1520/E1181-02R15
https://doi.org/10.1016/j.msea.2007.03.099
https://doi.org/10.1016/j.msea.2007.03.099
https://doi.org/10.1088/0965-0393/24/7/075002
https://doi.org/10.1088/0965-0393/24/7/075002
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1016/j.proeng.2017.09.803
https://doi.org/10.1016/j.proeng.2017.09.803
https://doi.org/10.1007/s40192-017-0088-1
https://doi.org/10.1007/s40192-017-0088-1
https://doi.org/10.1016/j.jcp.2017.06.013
https://arxiv.org/abs/1809.07484
https://doi.org/10.1016/j.actamat.2016.10.033
https://doi.org/10.1016/j.actamat.2016.10.033
https://doi.org/10.1088/1361-651X/aa8676
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0190
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0190
http://paulbourke.net/geometry/pointlineplane/
http://paulbourke.net/geometry/pointlineplane/
https://doi.org/10.1088/0965-0393/23/8/083501
https://doi.org/10.1088/0965-0393/23/8/083501
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0205
https://doi.org/10.1039/C3AY41907J
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1186/2193-9772-2-3
https://doi.org/10.1186/2193-9772-2-3
https://doi.org/10.1016/j.actamat.2011.06.051
https://doi.org/10.1186/2193-9772-3-5
https://doi.org/10.1016/j.actamat.2007.11.040
https://doi.org/10.1016/j.actamat.2007.11.040
https://doi.org/10.4028/www.scientific.net/SSP.160.63
https://doi.org/10.4028/www.scientific.net/SSP.160.63
https://doi.org/10.1016/j.ultramic.2011.08.002
https://doi.org/10.1007/s11837-017-2303-0
https://doi.org/10.1007/s11837-017-2303-0
https://doi.org/10.1017/CBO9780511541285
https://doi.org/10.1179/026708309X12601952777747
https://doi.org/10.1179/026708309X12601952777747
https://doi.org/10.1080/14786435.2010.541166
https://doi.org/10.1080/14786435.2010.541166
https://doi.org/10.1038/npjcompumats.2015.16
https://doi.org/10.1038/npjcompumats.2015.16
https://doi.org/10.1016/j.actamat.2018.03.035
https://doi.org/10.1016/j.actamat.2018.03.035
https://doi.org/10.1080/14786436408224210
https://doi.org/10.1080/14786436408224210
https://doi.org/10.1016/j.actamat.2015.09.050
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0290
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0290
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0290
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0290
https://doi.org/10.1016/0956-7151(90)90305-Z
https://doi.org/10.1016/0956-7151(90)90305-Z
https://doi.org/10.1007/s10704-017-0241-z
https://doi.org/10.1007/s10704-017-0241-z
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0310
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0310
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0310
https://doi.org/10.1002/9781119075646.ch61
https://doi.org/10.1016/S0921-5093(97)00424-3
https://doi.org/10.1016/S0921-5093(97)00424-3
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0325
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0325
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0325
https://doi.org/10.1063/1.4994143
https://doi.org/10.1063/1.4994143
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0335
http://refhub.elsevier.com/S1044-5803(18)31374-3/rf0335
https://doi.org/10.1007/s11483-012-9264-1

	Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures
	Introduction
	Angularly Resolved Chord Length Distribution
	New Boundary-based Approach for CLDs
	Angularly Resolved CLDs
	Summary of the Workflow

	Principal Component Analysis
	Case Studies
	Synthetic Datasets
	Experimental Datasets
	Simulation Datasets

	Discussion
	Conclusions
	Acknowledgments
	Data Availability
	References




