ApproxJoin: Approximate Distributed Joins

Do Le QuocT, Istemi Ekin Akkus*, Pramod Bhatotia*,
Spyros Blanas®, Ruichuan Chen*, Christof Fetzer', Thorsten Strufe’

fTU Dresden, Germany fNokia Bell Labs, Germany

ABSTRACT

A distributed join is a fundamental operation for processing mas-
sive datasets in parallel. Unfortunately, computing an equi-join over
such datasets is very resource-intensive, even when done in parallel.
Given this cost, the equi-join operator becomes a natural candi-
date for optimization using approximation techniques, which allow
users to trade accuracy for latency. Finding the right approximation
technique for joins, however, is a challenging task. Sampling, in par-
ticular, cannot be directly used in joins; naively performing a join
over a sample of the dataset will not preserve statistical properties
of the query result.

To address this problem, we introduce ApPrROXJOIN. We inter-
weave Bloom filter sketching and stratified sampling with the join
computation in a new operator that preserves statistical proper-
ties of an aggregation over the join output. APPROXJOIN leverages
Bloom filters to avoid shuffling non-joinable data items around the
network, and then applies stratified sampling to obtain a represen-
tative sample of the join output. We implemented APPROX]JOIN in
Apache Spark, and evaluated it using microbenchmarks and real-
world workloads. Our evaluation shows that ApPrROX]JOIN scales
well and significantly reduces data movement, without sacrificing
tight error bounds on the accuracy of the final results. APPROXJOIN
achieves a speedup of up to 9% over unmodified Spark-based joins
with the same sampling ratio. Furthermore, the speedup is accom-
panied by a significant reduction in the shuffled data volume, which
is up to 82X less than unmodified Spark-based joins.

KEYWORDS

Approximate join processing, multi-way joins, stratified sampling,
approximate computing and distributed systems.

ACM Reference Format:

Do Le QuocT, Istemi Ekin Akkus?, Pramod Bhatotia*, Spyros Blanas®,
Ruichuan Chen¥, Christof Fetzer!, Thorsten Strufe’. 2018. ApproxJoin: Ap-
proximate Distributed Joins. In Proceedings of SoCC ’18: ACM Symposium
on Cloud Computing, Carlsbad, CA, USA, October 11-13, 2018 (SoCC ’18),
13 pages.

https://doi.org/10.1145/3267809.3267834

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6011-1/18/10...$15.00
https://doi.org/10.1145/3267809.3267834

*The University of Edinburgh, UK

426

#The Ohio State University, USA

1 INTRODUCTION

The volume of digital data has grown exponentially over the last
decade. A key contributor to this growth has been loosely-structured
raw data that are perceived to be cost-prohibitive to clean, orga-
nize and store in a database management system (DBMS). These
datasets are frequently stored in data repositories (often called “data
lakes”) for just-in-time querying and analytics. Extracting useful
knowledge from a data lake is a challenge since it requires systems
that adapt to variety in the output of different data sources and
answer ad-hoc queries over vast amounts of data quickly.

To pluck the valuable information from raw data, distributed
data processing frameworks such as Hadoop [2], Apache Spark [3]
and Apache Flink [1] are widely used to perform ad-hoc data ma-
nipulations and then combine data from different input sources
using a join operation. While joins are a critical building block of
any analytics pipeline, they are expensive to perform, especially
with regard to communication costs in distributed settings. It is not
uncommon for a parallel data processing framework to take hours
to process a complex join query [49].

Parallel data processing frameworks are thus embracing approx-
imate computing to answer complex queries over massive datasets
quickly [5, 7, 8, 34]. The approximate computing paradigm is based
on the observation that approximate rather than exact results suffice
if real-world applications can reason about measures of statistical
uncertainty such as confidence intervals [24, 37]. Such applications
sacrifice accuracy for lower latency by processing only a fraction
of massive datasets. What response time and accuracy targets are
acceptable for each particular problem is determined by the user
who has the necessary domain expertise.

However, approximating join results by sampling is an inherently
difficult problem from a correctness perspective, because uniform
random samples of the join inputs cannot construct an unbiased
random sample of the join output [22]. In practice, as shown in
Figure 1, sampling input datasets before the join and then joining
the samples sacrifices up to an order of magnitude in accuracy;
sampling after the join is accurate but also 3 — 7x slower due to
unnecessary data movement to compute the complete join result.

Obtaining a correct and precondition-free sample of the join out-
put in a distributed computing framework is a challenging task.
Previous work has assumed some prior knowledge about the joined
tables, often in the form of an offline sample or a histogram [5, 6, 8].
Continuously maintaining histograms or samples over the entire
dataset (e.g., petabytes of data) is unrealistic as ad-hoc analytical
queries process raw data selectively. Join approximation techniques
for a DBMS, like RippleJoin [26] and WanderJoin [34], have not
considered the intricacies of HDFS-based processing where random
disk accesses are notoriously inefficient and data have not been

https://doi.org/10.1145/3267809.3267834
https://doi.org/10.1145/3267809.3267834

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(a) Accuracy (b) Latency

S 103 - — m " —
c\a\’ [Approxjoin, sample during join = [) Approxjoin, sample during join ==
@ 102F Spark, sample before join =X S 50+ Spark, sample before join &3
] 1C Spark, sample after join =3 = Spark, sample after join E3
o 10 € 40
> 100F £
g 10 > 301
810 2
S L
S 102F g 20
< 103F 3 101

104" T f T J ! U 0 T U U J ! U

10 20 40 60 80 90
Sampling fraction (%)

10 20 40 60 80 90
Sampling fraction (%)

Figure 1: Comparison between different sampling strategies
for distributed join with varying sampling fractions.

indexed in advance. In addition, both algorithms are designed for
single-node join processing; parallelizing the optimization proce-
dure for a data processing framework such as Apache Spark is
non-trivial.

In this work, we design a novel approximate distributed join
algorithm that combines a Bloom filter sketching technique with
stratified sampling during the join operation and realize it in a
system called ApPrROXJOIN. As shown in Figure 1, sampling during
the join produces accurate results with fast response times, such
that user-defined latency and quality requirements can be met.

To achieve these goals, ApPrROX]JOIN first employs a Bloom filter
to curtail redundant shuffling of tuples that will not participate in
the subsequent join operations, thus reducing communication and
processing overheads. This step in APPROXJOIN is general and di-
rectly supports multi-way joins, without having to process datasets
in groups of two and chain their outputs, thus, not introducing any
undesired latency in the multi-way join operations. Afterwards,
APPROX]JOIN automatically selects and progressively refines the
sampling rate by estimating the cardinality of the join output using
the Bloom filter. Once the sampling rate is determined, APPROXJOIN
performs stratified sampling over the remaining tuples to produce
an answer that approximates the result of an aggregation over the
complete join result. APPROXJOIN uses the Central Limit Theorem
and the Horvitz-Thompson estimator to remove any bias in the
final result that may have been introduced by sampling without
coordination from concurrent processes, producing a tight bound
of the error for the accuracy of the approximation.

We implemented APPROXJOIN in Apache Spark [3, 54] and evalu-
ated its effectiveness via microbenchmarks, TPC-H queries, and real-
world workloads. Our evaluation shows that ApPROX]JOIN achieves
a speedup of 6 — 9x over Spark-based joins with the same sampling
fraction. APPROX]JOIN leverages Bloom filtering to reduce the shuf-
fled data volume during the join operation by 5 — 82X compared to
Spark-based systems. Without any sampling, our microbenchmark
evaluation shows that ApPrOXJOIN achieves a speedup of 2 — 10X
over the native Spark RDD join [54] and 1.06—3X over a Spark repar-
tition join. In addition, our evaluation with the TPC-H benchmark
shows that APPROX]JOIN is 1.2 — 1.8 faster than the state-of-the-art
SnappyData system [47]. To summarize, our contributions are:

o A novel mechanism to perform stratified sampling over joins
in parallel data processing frameworks, which preserves the
statistical quality of the join output and reduces shuffled data
size via a Bloom filter sketching technique that is directly
applicable to multi-way joins.

427

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

e A progressive refinement procedure that automatically se-
lects a sampling rate to meet user-defined latency and accu-
racy targets for approximate join computation.

e An extensive evaluation of an implementation of APPROX-
Join in Apache Spark using microbenchmarks, TPC-H queries,
and real-world workloads which shows that ApPPROXJOIN out-
performs native Spark-based joins and the state-of-the-art
SnappyData system by a substantial margin.

2 OVERVIEW

APPROXJOIN is designed to mitigate the overhead of distributed join
operations in big data analytics systems, such as Apache Flink and
Apache Spark. We facilitate joins on the input datasets by providing
a simple user interface. The input of APPROX]JOIN consists of several
datasets to be joined, as well as the join query and its corresponding
query execution budget submitted by the user. The query budget
can be in the form of expected latency guarantees, or the desired
accuracy level. Our system ensures that the input data is processed
within the specified query budget. To achieve this goal, APPROXJOIN
applies the approximate computing paradigm by processing only a
subset of input data from the datasets to produce an approximate
output with error bounds. At a high level, ApProXJOIN makes use
of a combination of sketching and sampling to select a subset of
input datasets based on the user-specified query budget. Thereafter,
APPROX]JOIN aggregates over the subset of input data.

APPROXJOIN can also provide a subset of the join output without
any aggregation (i.e., join result rows); however, such an output will
not be meaningful in terms of estimating the approximation error.
Hence, we assume that the query contains an algebraic aggregation
function, such as SUM, AVG, COUNT, and STDEV.

Query interface. Consider the case where a user wants to perform
an aggregation query after an equal-join on attribute A for n input
datasets Ry >4 Ry > ... b Rp, where R;(i = 1,...,n) represents
an input dataset. The user sends the query q and supplies a query
budget gpyager to APPROXJOIN. The query budget can be in the
form of desired latency dg,g;yeq Or desired error bound errgegired-
For instance, if the user wants to achieve a desired latency (e.g.,
dgesired = 120 seconds), or a desired error bound (e.g., errgegired =
0.01 with confidence level of 95%), he/she defines the query as
follows:

-)

SELECT SUM(R;.V + Ry.V + ... + R,,.V)
FROM Ry, Ry, ..., Rp,
WHERE R;.A=Ry. A=..=
‘WITHIN 120 SECONDS
OR

ERROR 0.01 CONFIDENCE 95%

R,.A

APPROXJOIN executes the query and returns the most accurate
query result within the desired latency which is 120 seconds, or
returns the query result within the desired error bound +0.01 at a
95% confidence level.

Design overview. The basic idea of APPROXJOIN is to address the
shortcomings of the existing join operations in big data systems by
reducing the number of data items that need to be processed. Our
first intuition is that we can reduce the latency and computation

ApproxJoin: Approximate Distributed Joins

of a distributed join by removing redundant transfer of data items
that are not going to participate in the join. Our second intuition is
that the exact results of the join operation may be desired, but not
necessarily critical, so that an approximate result with well-defined
error bounds can also suffice for the user.

Figure 2 shows an overview of our approach. There are two
stages in APPROX]JOIN for the execution of the user’s query:

Stage #1: Filtering redundant items. In the first stage, APPROX-
JoIN determines the data items that are going to participate in the
join operation and filters the non-participating items. This filter-
ing reduces the data transfer that needs to be performed over the
network for the join operation. It also ensures that the join oper-
ation will not include ‘null’ results in the output that will require
special handling, as in WanderJoin [34]. APPROXJOIN employs a
well-known data structure, Bloom filter [19]. Our filtering algorithm
executes in parallel at each node that stores partitions of the input
and handles multiple input tables simultaneously, making ApPROX-
Join suitable for multi-way joins without introducing undesired
latency.

Stage #2: Approximation in distributed joins. In the second
stage, APPROXJOIN uses a sampling mechanism that is executed
during the join process: we sample the input datasets while the
cross product is being computed. This mechanism overcomes the
limitations of the previous approaches and enables us to achieve low
latency as well as preserve the quality of the output as highlighted
in Figure 1. Our sampling mechanism is executed during the join
operation and preserves the statistical properties of the output.

In addition, we combine our mechanism with stratified sam-
pling [9], where tuples with distinct join keys are sampled inde-
pendently with simple random sampling. As a result, data items
with different join keys are selected fairly to represent the sample,
and no join key will be overlooked. The final sample will contain
all join keys — even the ones with few data items — so that the
statistical properties of the sample are preserved.

More specifically, APPROXJOIN executes the following steps for
approximation in distributed joins:

Step #2.1: Determine sampling parameters. APPROXJOIN em-
ploys a cost function to compute an optimal sample rate according
to the corresponding query budget. This computation ensures that
the query is executed within the desired latency and error bound
parameters of the user.

Step #2.2: Sample and execute query. Using this sampling rate
parameter, APPROXJOIN samples during the join and then executes
the aggregation query q using the obtained sample.

Step #2.3: Estimate error. After executing the query, APPROXJOIN
provides an approximate result together with a corresponding error
bound in the form of result + error_bound to the user.

Note that our sampling parameter estimation provides an adap-
tive interface for selecting the sampling rate based on the user-
defined accuracy and latency requirements. APPROXJOIN adapts by
activating a feedback mechanism to refine the sampling rate after
learning the data distribution of the input datasets (shown by the
dashed line in Figure 2).

428

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

X

User

Result and
confidence interval

Bias-correcting
error estimation (§3.4) ‘
1 1
|
Execute
aggregate function

A\
Refined
sampling parameter J

Stratified sampling |
and Join (§3.3) |
I
I f :
Construct multi-way Estimate sample
Bloom filter (§3.1) size per stratum (83.2)

I I

Distributed file system (HDFS) Compute ClL.JSter
configuration

Query and budget
(desired latency
OR accuracy)

M

Figure 2: ApproxJoin system overview (shaded boxes depict
our implemented modules in Apache Spark).

3 DESIGN

In this section, we explain the design details of ApPrOXJOIN. We first
describe how we filter redundant data items for multiple datasets to
support multi-way joins (§3.1). Then, we describe how we perform
approximation in distributed joins using three main steps: (1) how
we determine the sampling parameter to satisfy the user-specified
query budget (§3.2), (2) how our novel sampling mechanism ex-
ecutes during the join operation (§3.3), and finally (3) how we
estimate the error for the approximation (§3.4).

3.1 Filtering Redundant Items

In a distributed setting, join operations can be expensive due to
communication cost of the data items. This cost can be especially
high in multi-way joins, where several datasets are involved in
the join operation. One reason for this high cost is that data items
not participating in the join are still shuffled through the network
during the join operation.

To reduce this communication cost, we need to distinguish such
redundant items and avoid transferring them over the network. In
AprpPrOxJOIN, we use Bloom filters for this purpose. The basic idea
is to utilize Bloom filters as a compressed set of all items present at
each node and combine them to find the intersection of the datasets
used in the join. This intersection will represent the set of data
items that are going to participate in the join.

A Bloom filter is a data structure designed to query the presence
of an element in a dataset in a rapid and memory-efficient way [19].
There are three advantages why we choose Bloom filters for our
purpose. First, querying the membership of an element is efficient:
it has O(h) complexity, where h denotes a constant number of hash
functions used in a Bloom filter. Second, the size of the filter is
linearly correlated with the size of the input, but it is significantly
smaller than the original input size. Lastly, constructing a Bloom
filter is fast and requires only a single pass.

Bloom filters have been employed to improve distributed joins
in the past [12, 33, 50, 51]. However, these proposals support only
two-way joins. Although one can support joins with multiple input
datasets by chaining the outputs of two-way joins, this approach
would add to the latency of the join results. ApproxJoIN handles
multiple datasets at the same time and supports multi-way joins

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Algorithm 1: Filtering using multi-way Bloom filter

Input:

n: number of input datasets

|BF|: size of the Bloom filter

fp: false positive rate of the Bloom filter
R: input datasets

// Build a Bloom filter for the join input datasets R
buildJoinFilter(R, |BF|, fp)
begin
// Build a Bloom filter for each input R;
/| Executed in parallel at worker nodes
Vi € {1...n}: BF; « buildInputFilter(R;, |BF|, fp);
/| Merge input filters BF; for the overlap between inputs
/| Executed sequentially at master node
BF « NI BF;;
return BF
// Build a Bloom filter for input R;
// Executed in parallel at worker nodes
buildInputFilter(R;, |BF|, fp)
begin
|pi| := number of partitions of input dataset R;
pi = {pij}, wherej =1, .., |pil
/IMAP PHASE
//nitialize a filter for each partition
forall j in {1...|pi|} do
p-BF;, j « BloomFilter(|BF|, fp);
Vrj € pi,j: p—BFi,j.add(rj .key);
//REDUCE PHASE
/| Merge partition filters to the dataset filter
BF; UPilp-BF; ;;
return BF;

[N

I N S N

10

TR
[

13

14

15

16
17
18
19
20
21
22
23

24

25

without introducing additional latency. Next, we explain in detail
how our algorithm finds the intersection of multiple datasets simul-
taneously.

Multi-way Bloom filter. Consider the case where we want to
perform a join operation between multiple input datasets R;, where
i=1,---,n: Ry ™ Ry ™ ... M Ry. Algorithm 1 presents the two
main steps to construct the multi-way join filter. In the first step, we
create a Bloom filter BF; for each input R;, where i = 1, ..., n (lines
4-6), which is executed in parallel at all worker nodes that have the
input datasets. In the second step, we combine the n dataset filters
into the join filter by simply applying the logical AND operation
between the dataset filters (lines 7-9). This operation adds virtually
no additional overhead to build the join filter, because the logical
AND operation with Bloom filters is fast, even though the number
of dataset filters being combined is n instead of two.

Note that an input dataset may consist of several partitions
hosted on different nodes. To build the dataset filter for these par-
titioned inputs, we perform a simple MapReduce job that can be
executed in distributed fashion: We first build the partition filters
p-BF; j, where j = 1,--- , |p;|, and |p;] is the number of partitions
for input dataset R; during the Map phase, which is executed at
the nodes that are hosting the partitions of each input (lines 15-21).
Then, we combine the partition filters to obtain the dataset filter BF;
in the Reduce phase by merging the partition filters via the logical
OR operation into the corresponding dataset filter BF; (lines 22-24).
This process is executed for each input dataset and in parallel (see
buildInputFilter()).

429

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

(a) Shuffle size vs # inputs (b) Shuffle size vs overlap fraction

8 8
10 Broadcast join mm 10 Repartition join ==
106 Repartition join =2 106 (Bloom filter based join mm
—_ Bloom filter based join =m |
m Q104
=3 =3
2
N 1o
n (2R

1072
3 4 5 1
#Input datasets

20 40 60 80

Overlap fraction (%)

Figure 3: Shuffled size comparison between join mecha-
nisms: (a) Varying numbers of input datasets with the over-
lap fraction of 1%; (b) Varying overlap fractions with three
input datasets.

3.1.1 Is Filtering Sufficient? After constructing the join filter
and broadcasting it to the nodes, one straightforward approach
would be to complete the join operation by performing the cross
product with the data items present in the intersection. Figure 3
(a) shows the advantage of performing such a join operation with
multiple input datasets based on a simulation (see Appendix A.1 of
the technical report [42]). With the broadcast join and repartition
join mechanisms, the transferred data size gradually increases with
the increasing number of input datasets. On the other hand, with
the Bloom filter based join approach, the transferred data size is
significantly reduced even when the number of datasets in the join
operation increases.

This reduction, however, may not always be possible. Figure 3
(b) shows that even with a modest overlap fraction between three
input datasets (i.e., 40%), the amount of transferred data becomes
comparable with the repartition join mechanism. (In this paper,
the overlap fraction is defined as the total number of data items
participating in the join operation divided by the total number of
unique data items of all inputs). Furthermore, the cross product
operation will involve a significant number of data items, potentially
becoming the bottleneck.

In ArprOXJOIN, we first filter redundant data items as aforemen-
tioned in this section. Afterwards, we check whether the overlap
fraction between the datasets is small enough, such that we can
meet the latency requirements of the user. If so, we perform the
cross product of the data items participating in the join. In other
words, we do not need approximation in this case (i.e., we compute
the exact join result). If the overlap fraction is large, we continue
with our approximation technique, which we describe next.

3.2 Approximation: Cost Function

AprpRrOXJOIN supports the query budget interface for users to define
a desired latency (dg.s;req) OF a desired error bound (errgegired)
as described in §2. APPROXJOIN ensures the join operation executed
within the specified query budget by tuning the sampling parameter
accordingly. In this section, we describe how APPROXJOIN converts
the join requirements given by a user (i.e., dgesireds €' desired) into
an optimal sampling parameter. To meet the budget, ApPrROXJOIN
makes use of two types of cost functions to determine the sample
size: (i) latency cost function, (ii) error bound cost function.

I: Latency cost function. In ApPPROX]JOIN, we consider the latency
for the join operation being dominated by two factors: 1) the time to

ApproxJoin: Approximate Distributed Joins

filter and transfer participating join data items, dy;, and 2) the time
to compute the cross product, dcp. To execute the join operation
within the delay requirements of the user, we need to estimate each
contributing factor.

The latency for filtering and transferring the join data items, d;,
is measured during the filtering stage (described in §3.1). We then
compute the remaining allowed time to perform the join operation:

drem = ddesired — ddt (1)
To satisfy the latency requirements, the following must hold:
dcp < drem (2)

In order to estimate the latency of the cross product phase, we
need to estimate how many cross products we have to perform.
Imagine that the output of the filtering stage consists of data items
with m distinct keys Cy, Cy - - -, Cpy,. To fairly select data items, we
perform sampling for each join key independently (explained in
§3.3). In other words, we will perform stratified sampling, such that
each key C; corresponds to a stratum and has B; data items. Let b;
represent the sample size for C;. The total number of cross products

is given by:
m
CPiotal = Z bi 3)
1
The latency for the cross product phase would be then:
dcp = ﬁcompute * CPyotal 4

where Bcompute denotes the scale factor that depends on the com-
putation capacity of the cluster (e.g., #cores, total memory).

We determine Bcompute empirically via a microbenchmark by
profiling the compute cluster in an offline stage. In particular, we
measure the latency to perform cross products with varying input
sizes. Figure 4 shows that the latency is linearly correlated with the
input size, which is consistent with plenty of I/O bound queries in
parallel distributed settings [8, 10, 55]. Based on this observation,
we estimate the latency of the cross product phase as follows:

®)
where ¢ is a noise parameter. Note that APPROXJOIN computes
Beompute only once when the compute cluster is first deployed,
whereas other systems perform the preprocessing steps multiple

times over input data whenever it changes.

Given a desired latency djegireq, the sampling fraction s
CPiotal

2 B;
1

dcp = ﬂcompute * CPtotal +¢

can be computed as:

drem — € 1

)%
2. Bi
1

(ddesired —dgs — 5) " ml
2 Bi
1

s=((6)

ﬁcompute ﬁcompute

Then, the sample size b; of stratum C; can be then selected as
follows:

b; < s+ B;j 7)

According to this estimation, APPROXJOIN checks whether the

query can be executed within the latency requirement of the user.

If not, the user is informed accordingly.

II: Error bound cost function. If the user specified a requirement
for the error bound, we have to execute our sampling mechanism,
such that we satisfy this requirement. Our sampling mechanism

430

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

m C

'g 1;88 | 1 worker node

o 9 worker nodes -e—

O 1000

Q

v 800

a 600 —

c 400

% 200}

- 00— T T T T

12 4 6 8
Input size (xM * 1M)

10

Figure 4: Latency cost function using offline profiling of the
compute cluster to determine Scompute. The plot shows the
latency of cross products with varying input sizes.

utilizes simple random sampling for each stratum (see §3.3). As a

result, the error err; can be computed as follows [35]:
Oi

N

where b; represents the sample size of C; and o; represents the
standard deviation.

Unfortunately, the standard deviation o; of stratum C; cannot
be determined without knowing the data distribution. To overcome
this problem, we design a feedback mechanism to refine the sample
size (the implementation details are in §4): For the first execution
of a query, the standard deviation of ¢; of stratum C; is computed
and stored. For all subsequent executions of the query, we utilize
these stored values to calculate the optimal sample size using Equa-
tion 10. Alternatively, one can estimate the standard deviation using
a bootstrapping method [8, 35]. Using this method, however, would
require performing offline profiling of the data.

With the knowledge of ¢; and solving for b; gives:

®)

erri =za *

oj)2

bi = (Zg *
2 errj

)
With 95% confidence level, we have za = 1.96; thus, b; = 3.84 =

o
(er;i

)2. err; should be less or equal to errgesiyed» SO We have:

bi>3.84% (—)2 (10)

€rldesired
Equation 10 allows us to calculate the optimal sample size given a
desired error bound errgegired-

III: Combining latency and error bound. From Equations 7 and
10, we have a trade-off function between the latency and the error
bound with confidence level of 95%:

O

)

daesired ~ 3.84(
€rldesired i

2 ﬁcompute
F

() Bi)+dg,+e (11)
1

3.3 Approximation: Sampling and Execution

In this section, we describe our sampling mechanism that executes
during the cross product phase of the join operation. Executing ap-
proximation during the cross product enables ApPrROXJOIN to have
highly accurate results compared to pre-join sampling. To preserve
the statistical properties of the exact join output, we combine our
technique with stratified sampling. Stratified sampling ensures that
no join key is overlooked: for each join key, we perform simple ran-
dom sampling over data items independently. This method selects

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Figure 5: Cross-product the bipartite graph of join data items
for key Cy. Bold lines represent sampled edges.

data items fairly from different join keys. The filtering stage (§3.1)
guarantees that this selection is executed only from the data items
participating in the join.

For simplicity, we first describe how we perform stratified sam-
pling during the cross product on a single node. We then describe
how the sampling can be performed on multiple nodes in parallel.

I: Single node stratified sampling. Consider an inner join exam-
ple of J = Ry < Ry with a pair of keys and values, ((k1, v1), (k2,v2)),
where (k1,v1) € Ry and (k2,v2) € Ry. This join operation produces
an item (k1, (v1,v2)) € Jif and only if ky = ka.

Consider that R; contains (Cy, v1), (Co, v2) and (Cy, v3), and that
Ry contains (Cy, va), (Co, v5), (Co, vs) and (Co, v7). The join opera-
tion based on key Cy can be modeled as a complete bipartite graph
(shown in Figure 5). To execute stratified sampling over the join,
we perform random sampling on data items having the same join
key (i.e., key Cp). As a result, this process is equal to performing
edge sampling on the complete bipartite graph.

Sampling edges from the complete bipartite graph would require

building the graph, which would correspond to computing the full
cross product. To avoid this cost, we propose a mechanism to ran-
domly select edges from the graph without building the complete
graph. The function sampleAndExecute() in Algorithm 2 describes
the algorithm to sample edges from the complete bipartite graph.
To include an edge in the sample, we randomly select one endpoint
vertex from each side and then yield the edge connecting these
vertices (lines 19-23). To obtain a sample of size b;, we repeat this
selection b; times (lines 17-18 and 24). This process is repeated for
each join key C; (lines 15-24).
II: Distributed stratified sampling. The sampling mechanism
can naturally be adapted to execute in a distributed setting. Al-
gorithm 2 describes how this adaptation can be achieved. In the
distributed setting, the data items participating in the join are dis-
tributed to worker nodes based on the join keys using a partitioner
(e.g., hash-based partitioner). A master node facilitates this distri-
bution and directs each worker to start sampling (lines 4-5). Each
worker then performs the function sampleAndExecute() in parallel
to sample the join output and execute the query (lines 12-26).

III: Query execution. After the sampling, each node executes
the input query on the sample to produce a partial query result,
result;, and returns it to the master node (lines 25-26). The master
node collects these partial results and merges them to produce a
query result (lines 6-8). The master node also performs the error
bound estimation (lines 9-10), which we describe in the following
subsection (§3.4) . Afterwards, the approximate query result and
its error bounds are returned to the user (line 11).

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

Algorithm 2: : Stratified sampling over join

Input:

b;: sample size of join key C;

Ni; & Ny;: set of vertices (items) in two sides of complete bipartite
graph of join key C;

m: number of join keys

C: set of all join keys (ie., {Vi € {1, ...,m}: C;})

/| Executed sequentially at master node

-

2 sampleDuringJoin()

3 begin

4 foreach worker; in workerList do

5 result; «— worker;.sampleAndExecute();// Direct workers

to sample and execute the query

6 result < 0; // Initialize empty query result

7 foreach C; in C do

8 L result « merge(result;);// Merge query results from workers
9 /| Estimate error for the result
10 result + error_bound < errorEstimation(result);
1 return result + error_bound,;

12 // Executed in parallel at worker nodes
13 sampleAndExecute()

14 begin

15 foreach C; in C do

16 sample; < 0;// Sample of join key C;

17 count; < 0;// Initialize a count to keep track # selected items

18 while count; < b; do

19 // Select two random vertices

20 v « random(Ny;);

21 v’ « random(N>;);

22 /] Add an edge between the selected vertices and update the
sample

23 sample;.add(< v, V" >);

24 count; < count; + 1;// Update counting

25 result; « query(sample;); // Execute query over sample

26 | return result;;

3.4 Approximation: Error Estimation

As the final step, APPROXJOIN computes an error bound for the
approximate result. The approximate result is then provided to
the user as approxresult + error_bound. Our sampling algorithm
(i.e., sampleAndExecute() in Algorithm 2) described in the previous
section can produce an output with duplicate edges. For such cases,
we use the Central Limit Theorem to estimate the error bounds for
the output. This error estimation is possible because the sampling
mechanism works as a random sampling with replacement.

It is also possible to remove the duplicate edges during the sam-
pling process by using a hash table, and repeat the algorithm steps
until we reach the desired number of data items in the sample. This
approach might worsen the randomness of the sampling mecha-
nism and could introduce bias into the sample data. In this case, we
use the Horvitz-Thompson [28] estimator to remove this bias. We
next explain the details of these two error estimation mechanisms.

I: Error estimation using the Central Limit Theorem. Sup-
pose we want to compute the approximate sum of data items after
the join operation. The output of the join operation contains data
items with m different keys Ci, Cy, - - -, Cy, each key (stratum)
C; has B; data items and each such data item j has an associated
value v; ;. To compute the approximate sum of the join output, we
sample b; items from each join key C; according to the parameter

ApproxJoin: Approximate Distributed Joins

we computed (described in §3.2). Afterwards, we estimate the sum
from this sample as 7 = Z;’;l(g—lf Z;’il vjj) + €, where the error
bound ¢ is defined as:

e=tp JVar(?) (12)

Here, tf,l—% is the value of the t-distribution (i.e., t-score) with
f degrees of freedom and a = 1 — confidencelevel. The degree of
freedom f is calculated as:

>

i=1

F=>bi-m (13)

The estimated variance for the sum, Va\r(f), can be expressed as:

m r2
Var(?) = : b))t
Var(?) = ZlB “(Bi = i)y (14)
Here, ri2 is the population variance in the i-th stratum. We use the

statistical theories for stratified sampling [48] to compute the error
bound.

II: Error estimation using the Horvitz-Thompson estimator.
Consider the second case, where we remove the duplicate edges
and resample the endpoint nodes until another edge is yielded. The
bias introduced by this process can be estimated using the Horvitz-
Thomson estimator. Horvitz-Thompson is an unbiased estimator
for the population sum and mean, regardless of whether sampling
is with or without replacement.

Let 7; be a positive number representing the probability that
data item having key C; is included in the sample under a given
sampling scheme. Let y; be the sample sum of items having key
Ciiyi = Zb 1
then computed as [48]:

vj;j. The Horvitz-Thompson estimation of the total is

EVE

) *ep (15)
i=1
where the error bound €; is given by:
ene = ta\Var(ty) (16)

where t has n — 1 degrees freedom. The estimated variance of the
Horvitz-Thompson estimation is computed as:

Va\r(ﬁr):i(l_ *yl +Zz(ﬂ'u_mﬂ] yly.J (17)
i=1

i=1 j#i
where 7;; is the probability that both data items having key C; and
Cj are included.
Note that the Horvitz-Thompson estimator does not depend on
how many times a data item may be selected. Each distinct item of
the sample is used only once [48].

4 IMPLEMENTATION

In this section, we describe the implementation details of ApPrROX-
Join. At a high level, ApPROX]JOIN is composed of two main modules:
(i) filtering and (ii) approximation. The filtering module constructs
the join filter to determine the data items participating in the join.
These data items are fed to the approximation module to perform
the join query within the query budget specified by the user.

432

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

Query Cluster
budget configuration
|
Input
>| ! Filtering | !
query 91y ofjoinitems |
module . :
@ | @ |
. . i Sample - Refined
size | sampleDuringJoin() ; .
: : [samphng +aggregation + error-estimation] | SAMPIing parameter
@ \!/i 5
Input 1
/i ﬁ. Result and
% confidence interval
K K / COG“’“PU Sampling and
. . error estimation submodules
=/ = 0 e AR
Input 2 Approximation module
Input data

in HDFS / Zoom in \ApproxJom system
filtering module N

Tree Reduce

»a’

merged p-BF

buildJoinFilter()

Reference key
O Bloom filter of a partition p-BF
@ 'nput partition
@ Partition after CoGroup
O Partition after sampling

Figure 6: System implementation which shows in detail the
directed acyclic graph (DAG) execution of APPROX]JOIN.

We implemented our design by modifying Apache Spark [3].
Spark uses Resilient Distributed Datasets (RDDs) [54] for scalable
and fault-tolerant distributed data-parallel computing. An RDD
is an immutable collection of objects distributed across a set of
machines. To support existing programs, we provide a simple pro-
gramming interface that is also based on the RDDs. In other words,
all operations in APPROXJOIN, including filtering and approxima-
tion, are transparent to the user. To this end, we have implemented a
PairRDD for approxjoin() function to perform the join query within
the query budget over inputs in the form of RDDs. Figure 6 shows
in detail the directed acyclic graph (DAG) execution of APPROXJOIN.

I: Filtering module. The join Bloom filter module implements the
filtering stage described in §3.1 to eliminate the non-participating
data items. A straightforward way to implement buildJoinFilter() in
Algorithm 1 is to build Bloom filters for all partitions (p-BFs) of each
input and merge them in the driver of Spark in the Reduce phase.
However, in this approach, the driver quickly becomes a bottleneck
when there are multiple data partitions located on many workers
in the cluster. To solve this problem, we leverage the treeReduce
scheme [14, 17, 18]. In this model, we combine the Bloom filters
in a hierarchical fashion, where the reducers are arranged in a
tree with the root performing the final merge (Figure 6). If the
number of workers increases (i.e., APPROXJOIN deployed in a bigger
cluster), more layers are added to the tree to ensure that the load
on the driver remains unchanged. After building the join filter,
APrPRrROXJOIN broadcasts it to determine participating join items in
all inputs and feed them to the approximation module.

The approximation module consists of three submodules includ-
ing the cost function, sampling, and error estimation. The cost
function submodule implements the mechanism in §3.2 to deter-
mine the sampling parameter according to the requirements in
the query budget. The sampling submodule performs the proposed
sampling mechanism (described in §3.3) and executes the join query
over the filtered data items with the sampling parameter. The error

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(a) Approxjoin

(b) Spark repartition join

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

(c) Native Spark join

= 104: = 104r = 10%:
b4 10%F Input loading mmm o 10%F Input loading mmm b4 10 Input loading mmm
S5 103k Bloom filter building S 103k Partitioning ==~ 35 103
£ i Join execution mmm _ £ [Join execution m=m £
E 102 Total e=xa [£ 102 Total === £ 102
> L & > L > L
2 10lF s 2 101 2 10%f
et 5 2 L g [
8 100F EEHE B | & 100 EE 8 100
10! T) T] T T ' 10'17 I ! T i T T I 10'17 o R
1 2 4 6 8 10 20 1 2 4 6 8 10 20 1 2 4 6 8 10 20

Overlap fraction (%)

Overlap fraction (%)

Overlap fraction (%)

Figure 7: Benefits of filtering in two-way joins. We show the total latency and the breakdown latency of (a) ApPROX]JOIN, (b)

Spark repartition join, and (c) native Spark join.

estimation submodule computes the error-bound (i.e., confidence
interval) for the query result from the sampling module (described
in §3.4). This error estimation submodule also performs fine-tuning
of the sample size used by the sampling submodule to meet the
accuracy requirement in subsequent runs.

II: Approximation: Cost function submodule. The cost func-
tion submodule converts the query budget requirements provided
by the user into the sampling parameter used in the sampling
submodule. We implemented a simple cost function by building a
model to convert the desired latency into the sampling parameter.
To build the model, we perform offline profiling of the compute
cluster. This model empirically establishes the relationship between
the input size and the latency of cross product phase by computing
the Beompute parameter from the microbenchmarks. Afterwards,
we utilize Equation 7 to compute the sample sizes.

III: Approximation: Sampling submodule. After receiving the
intersection of the inputs from the filtering module and the sam-
pling parameter from the cost function submodule, the sampling
submodule performs the sampling during the join as described in
§3.3. We implemented the proposed sampling mechanism in this
submodule by creating a new Spark PairRDD function sampleDur-
ingJoin() that executes stratified sampling during the join.

The original join() function in Spark uses two operations: 1)
cogroup() shuffles the data in the cluster, and 2) cross-product per-
forms the final phase in join. In our approxjoin() function, we replace
the second operation with sampleDuringJoin() that implements our
mechanism described in §3.3 and Algorithm 2. Note that the data
shuffled by the cogroup() function is the output of the filtering stage.
As aresult, the amount of shuffled data can be significantly reduced
if the overlap fraction between datasets is small. Note also that
sampleDuringJoin() also performs the query execution as described
in Algorithm 2.

IV: Approximation: Error estimation submodule. After the
query execution is performed in sampleDuringJoin(), the error es-
timation submodule implements the function errorEstimation() to
compute the error bounds of the query result. The submodule also
activates a feedback mechanism to re-tune the sample sizes in the
sampling submodule to achieve the specified accuracy target as
described in §3.2. We use the Apache Common Math library to
implement the error estimation mechanism described in §3.4.

433

5 EVALUATION: MICROBENCHMARKS

In this section, we present the evaluation results of ApPROXJOIN
based on microbenchmarks and the TPC-H benchmark. In the next
section, we will report evaluation based on real-world case studies.

5.1 Experimental Setup

Cluster setup. Our cluster consists of 10 nodes, each equipped
with two Intel Xeon E5405 quad-core CPUs, 8GB memory and a
SATA-2 hard disk, running Ubuntu 14.04.1.

Synthetic datasets. We analyze the performance of ApPROXJOIN
using synthetic datasets following Poisson distributions with A
in the range of [10, 10000]. For the load balancing, the number of
distinct join keys is set to be proportional to the number of workers.

Metrics. We evaluate APPROXJOIN using three metrics: latency,
shuffled data size, and accuracy loss. Specifically, the latency is
defined as the total time consumed to process the join operation
(including the Bloom filter building and the cross product opera-
tion); the shuffled data size is defined as the total size of the data
shuffled across nodes during the join operation; the accuracy loss
is defined as (approx — exact)/exact, where approx and exact de-
note the results from the executions with and without sampling,
respectively.

5.2 Benefits of Filtering

The join operation in APPROXJOIN consists of two main stages: (i)
filtering stage for reducing shuffled data size, and (ii) sampling
stage for approximate computing. In this section, we activate only
the filtering stage (without the sampling stage) in ApPROXJOIN, and
evaluate the benefits of the filtering stage.

I: Two-way joins. First, we report the evaluation results with
two-way joins. Figure 7(a)(b)(c) show the latency breakdowns of
APPROXJOIN, Spark repartition join, and native Spark join, respec-
tively. Unsurprisingly, the results show that building bloom filters
in ApPROXJOIN is quite efficient (only around 42 seconds) compared
with the cross-product-based join execution (around 43x longer
than building bloom filters, for example, when the overlap frac-
tion is 6%). The results also show that the cross-product-based join
execution is fairly expensive across all three systems.

ApproxJoin: Approximate Distributed Joins

(a) Latency with filtering

(b) Shuffled data size with filtering

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(c) Two-, three-, four-way joins

T - r - _ -
£ 10°" Approxjoin . al Approxjoin 2108 spark repapr"ﬁgigonxigm sec] =106
2 r Spark repartition join == 510 [Spark repartition join == c r Native Spark join [sec] ==
‘€ 104 Native Spark join s H Native Spark join 5106 AE_P_rOXJO!n MB] »-1 o
£ <103 o} + Spark repartition join [MB 1104
> o I V.4l Native Spark join [MB] -=107<
0 102 N 10 i
s n102F > r
® 100 101

102 100k

1 2 4 6 8 10 1 2 4 6 8 10 2 3 4

Overlap fraction (%)

Overlap fraction (%)

#Input datasets

Figure 8: Benefits of filtering in multi-way joins, with different overlap fractions and different numbers of input datasets.

When the overlap fraction is less than 4%, APPROXJOIN achieves
2x and 3X shorter latencies than Spark repartition join and native
Spark join, respectively. However, with the increase of the overlap
fraction, there is an increasingly large amount of data that has
to be shuffled and the expensive cross-product operation cannot
be eliminated in the filtering stage; therefore, the benefit of the
filtering stage in APPROXJOIN gets smaller. For example, when the
overlap fraction is 10%, APPROXJOIN speeds up only 1.06X and 8.2x
compared with Spark repartition join and Spark native join, respec-
tively. When the overlap fraction increases to 20%, APPROXJOIN’s
latency does not improve (or may even perform worse) compared
with the Spark repartition join. At this point, we need to activate
the sampling stage of APPROXJOIN to reduce the latency of the join
operation, which we will evaluate in §5.3.

II: Multi-way joins. First, we present the evaluation results with
multi-way joins. Specifically, we first conduct the experiment with
three-way joins whereby we create three synthetic datasets with the
same aforementioned Poisson distribution. We measure the latency
and the shuffled data size during the join operations in APPROXJOIN,
Spark repartition join and native Spark join, with varying overlap
fractions. Figure 8(a) shows that, with the overlap fraction of 1%,
APPROXJOIN is 2.6X and 8x faster than Spark repartition join and
native Spark join, respectively. However, with the overlap fraction
larger than 8%, APPrROX]JOIN does not achieve much latency gain
(or may even perform worse) compared with Spark repartition join.
This is because, similar to the two-way joins, the increase of the
overlap fraction prohibitively leads to a larger amount of data that
needs to be shuffled and cross-producted. Note also that, we do not
have the evaluation results for native Spark join with the overlap
fractions of 8% and 10%, simply because that system runs out of
memory. Figure 8(b) shows that ApProxJOIN significantly reduces
the shuffled data size. With the overlap fraction of 6%, ApPrROXJOIN
reduces the shuffled data size by 16.7X and 14.5X compared with
Spark repartition join and native Spark join, respectively.

Next, we conduct experiments with two-way, three-way and
four-way joins. In two-way joins, we use two synthetic datasets
A and B that have an overlap fraction of 1%; in three-way joins,
the three synthetic datasets A, B, and C have an overlap fraction
of 0.33%, and the overlap fraction between any two of them is also
0.33%; in four-way joins, the four synthetic datasets have an overlap
fraction of 0.25%, and the overlap fraction between any two of these
datasets is also 0.25%.

434

Figure 8(c) presents the latency and the shuffled data size during
the join operation with different numbers of input datasets. With
two-way joins, APPROXJOIN speeds up by 2.2x and 6.1X, and re-
duces the shuffled data size by 45x and 12X, compared with Spark
repartition join and native Spark join, respectively. In addition, with
three-way and four-way joins, APPROXJOIN achieves even larger
performance gain. This is because, with the increase of the number
of input datasets, the number of non-join data items also increases;
therefore, APPROXJOIN gains more benefits from the filtering stage.

III: Scalability. Finally, we keep the overlap fraction of 1% and
evaluate the scalability of ApproxJoIN with different numbers of
compute nodes. Figure 9(a) shows that APPrOXJOIN achieves a lower
latency than Spark based systems. With two nodes, ApPrOXJOIN
achieves a speedup of 1.8X and 10x over Spark repartition join and
native Spark join, respectively. Meanwhile, with 8 nodes, ApPROX-
Join achieves a speedup of 1.7X and 6X over Spark repartition join
and native Spark join.

5.3 Benefits of Sampling

As shown in previous experiments, APPROXJOIN does not gain much
latency benefit from the filtering stage when the overlap fraction is
large. To reduce the latency of the join operation in this case, we ac-
tivate the second stage of APPROX]JOIN, i.e., the sampling stage. For a
fair comparison, we re-purpose Spark’s built-in sampling algorithm
(i.e., stratified sampling via sampleByKey) to build a “sampling over
join” mechanism for the Spark repartition join system. Specifically,
we perform the stratified sampling over the join results after the
join operation has finished in the Spark repartition join system. We
then evaluate the performance of ApprOXJOIN, and compare it with
this extended Spark repartition join system.

I: Latency. We measure the latency of ApproxJoIN and the ex-
tended Spark repartition join with varying sampling fractions. Fig-
ure 9(b) shows that the Spark repartition join system scales poorly
with a significantly higher latency as it could perform stratified
sampling only after finishing the join operation.

II: Accuracy. Next, we measure the accuracy of ApprOxJoIN and
the extended Spark repartition join. Figure 9(c) shows that the accu-
racy losses in both systems decrease with the increase of sampling
fractions, although ApPrOXJOIN’s accuracy is slightly worse than
the Spark repartition join system. Note however that, as shown in
Figure 9(b), APPROX]JOIN achieves an order of magnitude speedup

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(a) Scalability

(b) Latency with sampling

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

(c) Accuracy with sampling

N
=)

% 300 _
9 250 Approxjoin « 1600
2 Spark repartition join = =
€ 2001 Native Spark join £ 1200
> 1501~ E 800
g L
§1007 % 400
3 so- =
0 -

2 4 6 8
#Nodes

Spark repartition join

10 20 40 60 80 No sampling
Sampling fraction (%)

Approxjoin Approxjoin —e—

L Spark repartition join —<—

=
]

©
o
\

Accuracy loss (%)
-
o
I

o
=)

1020 40 60 80

Sampling fraction (%)

Figure 9: Comparison between APPROXJOIN and Spark join systems in terms of (a) scalability, (b) latency with sampling, and

(c) accuracy loss with sampling.

(a) Latency (b) Accuracy loss

Approxjoin mm
Spark repartition join ==

E Approxjoin -e-
[Spark repartition join -«

Accuracy loss (%)
=
T

T T T T
200 400 600 800
Desired latency (seconds)

200 400 600 800
Desired latency (seconds)

Figure 10: Effectiveness of the cost function.

compared with the Spark repartition join system since APPROXJOIN
performs sampling during joins.

5.4 Effectiveness of the Cost Function

APPROX]JOIN provides users with a query budget interface, and
uses a cost function to convert the query budget into a sample
size (see §3.2). In this experiment, a user sends APPROXJOIN a join
query along with a latency budget (i.e., the desired latency the
user wants to achieve). APPROXJOIN uses the cost function, whose
parameter is set according to the microbenchmarks (f = 4.16 =
10~ in our cluster), to convert the desired latency to the sample
size. We measure the latency of ApproxJoIN and the extended
Spark repartition join in performing the join operations with the
identified sample size. Figure 10(a) shows that APPROXJOIN can
rely on the cost function to achieve the desired latency quite well
(with the maximum error being less than 12 seconds). Note also
that, the Spark repartition join incurs a much higher latency than
APPROXJOIN since it performs the sampling after the join operation
has finished. In addition, Figure 10(b) shows that APPROXJOIN can

achieve a very similar accuracy to the Spark repartition join system.

5.5 Comparison with SnappyData using TPC-H

In this section, we evaluate ApPrROxJOIN using TPC-H benchmark.

TPC-H benchmark consists of 22 queries, and has been widely used
to evaluate various database systems. We compare APPROXJOIN
with the state-of-the-art system — SnappyData [47].

SnappyData is a hybrid distributed data analytics framework
which supports a unified programming model for transactions,

435

OLAP and data stream analytics. It integrates GemFine, an in-
memory transactional store, with Apache Spark. SnappyData in-
herits approximate computing techniques from BlinkDB [8] (offline
sampling techniques) and the data synopses to provide interactive
analytics. SnappyData does not support sampling over joins. In
particular, we compare ApPROXJOIN with SnappyData using the
TPC-H queries Q3, 04, and Q10 which contain join operations.
These queries are dominated by joins rather than other operations.
To make a fair comparison, we only keep the join operations and
remove other operations in these queries. This is to focus on the
performance comparison of joins without being affected by the
performance of other parts in the evaluated systems. We run the
benchmark with a scale factor of 10X, i.e., 10GB datasets. If we set
the scale factor even larger to 100X, the evaluated systems take
many hours to process the queries and run out of memory due to
the limited capacity of our cluster.

First, we use the TPC-H benchmark to analyze the performance
of ApproxJoIN with the filtering stage but without the sampling
stage. Figure 11(a) shows the end-to-end latencies of APPROXJOIN
and SnappyData in processing the three queries. APPROXJOIN is
1.34x faster than SnappyData in processing Q4 which contains only
one join operation. In addition, for the query Q3 which consists
of two join operations, APPROXJOIN achieves a 1.3X speedup than
SnappyData. Meanwhile, APPROXJOIN speeds up by 1.2X compared
with SnappyData for the query Q10.

Next, we evaluate APPROXJOIN with both filtering and sampling
stages activated. In this experiment, we perform a query to answer
the question “what is the total amount of money the customers had
before ordering?”. To process this query, we need to join the two
tables CUSTOMER and ORDERS in the TPC-H benchmark, and
then sum up the two fields o_totlaprice and c_acctbal. Since Snap-
pyData does not support sampling over the join operation, in this
experiment it first executes the join operation between the two
tables CUSTOMER and ORDERS, then performs the sampling over
the join output, and finally calculates the sum of the two fields
o_totalprice and c_acctbal.

Figure 11(b) presents the latencies of ApproxJoIN and Snappy-
Data in processing the aforementioned query with varying sam-
pling fractions. SnappyData has a significantly higher latency than
APPROXJOIN, simply because it performs sampling only after the
join operation finishes. For example, with a sampling fraction of

ApproxJoin: Approximate Distributed Joins

(a) Latency for TPC-H queries

(b) Latency vs sampling fraction

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(c) Accuracy vs sampling fraction

160 160 0.2
%‘ 1401 Approxjoin 51407 Approxjoin = 9 Approxjoin —e—
S 120+ SnappyData == 120 SnappyData == 0.15- SnappyData —<—
$ 100 3
£ 8o > 0.1
g 60 @
g 40r 3 0.05-
T 20- <
0 0 \

Q3 Q4 Q10
TPC-H Queries

10 20 40 60 80 No sampling
Sampling fraction (%)

I i I |
10 20 40 60 80
Sampling fraction (%)

Figure 11: Comparison between APPROXJOIN and the state-of-the-art SnappyData system in terms of (a) latency with different
TPC-H queries, (b) latency, and (c) accuracy with different sampling fractions.

60%, SnappyData achieves a 1.77X higher latency than ApPROXJOIN,
even though it is faster when both systems do not perform sampling
(i.e., sampling fraction is 100%). Note however that, sampling is
inherently needed when one handles joins with large-scale inputs
that require a significant number of cross-product operations. Fig-
ure 11(c) shows the accuracy losses of ApProxJOIN and SnappyData.
AprprOX]JOIN achieves an accuracy level similar to SnappyData. With
a sampling fraction of 60%, APPROXJOIN achieves an accuracy loss
of 0.021%, while SnappyData achieves an accuracy loss of 0.016%.

6 EVALUATION: REAL-WORLD DATASETS

We evaluate APPROX]JOIN using two real-world datasets: (a) network
traffic monitoring, and (b) Netflix Prize.

6.1 Network Traffic Monitoring Dataset

Dataset. We use the CAIDA network traces [20] which were col-
lected on the Internet backbone links in Chicago in 2015. In total,
this dataset contains 115, 472, 322 TCP flows, 67, 098, 852 UDP flows,
and 2,801,002 ICMP flows. Here, a flow denotes a two-tuple net-
work flow that has the same source and destination IP addresses.

Query. We use APPROXJOIN to process the query: What is the total
size of the flows that appeared in all TCP, UDP and ICMP traffic? To
answer this query, we need to perform a join operation across TCP,
UDP and ICMP flows.

Results. Figure 12(a) first shows the latency comparison between
AprproxJOIN (with filtering but without sampling), Spark reparti-
tion join, and native Spark join. APPROXJOIN achieves a latency
1.72% and 1.57% lower than Spark repartition join and native Spark
join, respectively. Interestingly, native Spark join achieves a lower
latency than Spark repartition join. This is because the dataset is
distributed quite uniformly across worker nodes in terms of the join-
participating flow items, i.e., there is little data skew. Figure 12(a)
also shows that Approx]JoIN significantly reduces the shuffled data
size by a factor of 300X compared with the two Spark join systems.

Next, different from the experiments in §5, we extend Spark
repartition join by enabling it to sample the dataset before the actual
join operation. This leads to the lowest latency it could achieve.
Figure 12(b) shows that ApPrROXJOIN achieves a similar latency even
to this extended Spark repartition join. In addition, Figure 12(c)
shows the accuracy loss comparison between ApPrOXJOIN and

Spark repartition join with different sampling fractions. As the
sampling fraction increases, the accuracy losses of APPROXJOIN
and Spark repartition join decrease, but not linearly. APPROXJOIN
produces around 42X more accurate query results than the Spark
repartition join with the same sampling fraction.

6.2 Netflix Prize Dataset

Dataset. We also evaluate APPROXJOIN based on the Netflix Prize
dataset which includes around 100M ratings of 17,770 movies
by 480, 189 users. Specifically, this dataset contains 17,770 files,
one per movie, in the training_set folder. The first line of each
such file contains MovielD, and each subsequent line in the file
corresponds to a rating from a user and the date, in the form of
(UserID, Rating, Date). There is another file quali fying.txt which
contains lines indicating MovielD, UserIDs, and the rating Dates.

Query. We perform the join operation between the dataset in
training_set and the dataset in qualifying.txt to evaluate APPROX-
JoiN in terms of latency. Note that, we cannot find a meaningful
aggregation query for this dataset; therefore, we focus on only the
latency but not the accuracy of the join operation.

Results. Figure 12(a) shows the latency and the shuffled data size of
ApproxJoIn (with filtering but without sampling), Spark repartition
join, and native Spark join. APPROXJOIN is 1.27X and 2X faster than
Spark repartition join and native Spark join, respectively. The result
in Figure 12(a) also shows that AppPrROXJOIN reduces the shuffled
data size by 3x and 1.7x compared with Spark repartition join and
native Spark join, respectively. In addition, Figure 12(b) presents the
latency comparison between these systems with different sampling
fractions. For example, with the sampling fraction of 10%, APPROX-
JoiN is 6 and 9x faster than Spark repartition join and native Spark
join, respectively. Even without sampling (i.e., sampling fraction is
100%), APPROX]JOIN is still 1.3% and 2x faster than Spark repartition
join and native Spark join, respectively.

7 RELATED WORK

Over the last decade, approximate computing has been widely
applied in data analytics systems [5, 6, 8, 29, 30, 32, 40, 41, 43-46, 52,
53]. Various approximation techniques have been proposed to make
trade-offs between required resources and output quality, including
sampling [9, 25], sketches [23], and online aggregation [27, 38].

436

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

(a) Latency and shuffled data size

(b) Latency vs sampling fraction

D. L. Quog, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, T. Strufe

(c) Accuracy vs sampling fraction

a1 %12 . >

3 00 Latency [Network] mm |, 3 0 ApproxJoin [Network] mm | R Approxjoin [Network] -e-

S 80l Shuffled data size [Network] B 10 5 100(-Spark repartition join [Network] mm | 7~ 102 [Spark repartition join [Network] -

c . 1 - £ Native Spark join [Network] =3) L

g Latency [Netflix] 74 | 20 g 80r Approxjoin [Netflix] &2 | 2

£ 601 shuffled data size [Netflix] Y |10 o - Spark repartition join [Netflix] =1 > 100~

> 1 v o 60 Native Spark join [Netflix] &= 2 |

c 40 100 N & S

8 | wn 8 40+ 8 10-2— f % P = =

o 38 4L 4 e
0 edlmal mil B I_\‘ L 104711 T \ \

Approonslpark rell\olati‘(e Spar - 10 20 40 60 80 No sampling 10 20 40 60 80
n artltionj'(a)%jo,'n Sampling fraction (%) Sampling fraction (%)

Figure 12: Comparison between APPROX]JOIN, Spark repartition join, and native Spark join based on two real-world datasets:
(1) Network traffic monitoring dataset (denoted as [Network]), and (2) Netflix Prize dataset (denoted as [Netflix]).

Chaudhari et al. provide a sampling over join mechanism by
taking a sample of an input and considering all statistical charac-
teristics and indices of other inputs [22]. AQUA [6] system makes
use of simple random sampling to take a sample of joins of in-
puts that have primary key-foreign key relations. BlinkDB [8] pro-
poses an approximate distributed query processing engine that uses
stratified sampling [9] to support ad-hoc queries with error and
response time constraints. VerdictDB [39], SnappyData [47], and
SparkSQL [11] adopt the approximation techniques from BlinkDB
to support approximate queries. Quickr [5] deploys distributed sam-
pling operators to reduce execution costs of parallel, ad-hoc queries
that may contain multiple join operations. Quickr first injects sam-
pling operators into the query plan and searches for an optimal
query plan among sampled query plans to execute input queries.
Unfortunately, all of these systems require a priori knowledge of
the inputs. For example, AQUA [6] requires join inputs to have pri-
mary key-foreign key relations. For another example, the sampling
over join mechanism in [22] needs the statistical characteristics and
indices of inputs. Finally, BlinkDB [8] utilizes the most frequently
used column sets to perform offline stratified sampling over them.
Afterwards, the samples are cached, such that queries can be served
by selecting the relevant samples and executing the queries over
them. While useful in many applications, BlinkDB and these other
systems cannot process queries over new inputs, where queries or
inputs are typically not known in advance.

Ripple Join [26] implements online aggregation for joins. Ripple
Join repeatedly takes a sample from each input. For every item
selected, it is joined with all items selected in other inputs so far.
Recently, Wander Join [34] improves over Ripple Join by perform-
ing random walks over the join data graph of a multi-way join.
However, their approach crucially depends on the availability of
indices, which are not readily available in “big data” systems like
Apache Spark. In addition, the current Wander Join implementa-
tion is single-threaded, and parallelizing the walk plan optimization
procedure is non-trivial. In this work, we proposed a simple but
efficient sampling mechanism over joins which works not only on
a single node but also in a distributed setting.

Our work builds on recent advancements in approximate com-
puting for stream analytics [32, 41, 44, 46, 52]. More specifically,

437

IncApprox [32] is a stream analytics system that combines approxi-
mate computing and incremental computing [13, 15, 16]. StreamAp-
prox [45, 46] designs a distributed sampling algorithm to take “on-
the-fly” samples of the input data stream. ApproxIoT [52] extends
StreamApprox to supports approximate stream data analytics in
the IoT infrastructure. Finally, PrivApprox [43, 44] makes use of a
combination of randomized response and approximate computing
to support privacy-preserving stream analytics. However, all of
these systems currently do not support approximate joins.

8 CONCLUSION

In spite of decades of research interest in approximate query pro-
cessing, the problem of approximating statistical properties of the
join output remains challenging [4, 21, 31, 36]. In this work, we
address some of the challenges associated with performing approx-
imate joins for distributed data analytics systems. By performing
sampling during the join operation, we achieve low latency as well
as high accuracy. In particular, we employ a sketching technique
(i.e., Bloom filters) to reduce the size of the shuffled data during
a join and we construct a stratified sample during the join in a
distributed setting. We implemented our techniques in a system
called ApproxJOIN using Apache Spark and evaluated its effective-
ness using a series of microbenchmarks and real-world workloads.
Our evaluation shows that ApPROXJOIN significantly reduces query
response time as well as the data shuffled through the network,
without losing the accuracy of the query results compared with the
state-of-the-art systems.

Supplementary material. We provide the analysis of APPROX-
JoIn covering both communication and computation complexities;
and also discuss three alternative design choices for Bloom filters
in the technical report [42].

Software availability. The source code of ApproOX]JOIN is publicly
available: https://ApproxJoin.github.io/

Acknowledgments. This work is supported by the European Unions
Horizon 2020 research and innovation programme under grant
agreements No. 777154 (ATOMSPHERE) and No. 780681 (LEGaTO),
the Alan Turing Institute, and an Amazon AWS Research grant.
This material is based upon work supported by the National Science
Foundation under Grants No. CCF-1816577 and CCF-1747447.

https://ApproxJoin.github.io/

ApproxJoin: Approximate Distributed Joins

REFERENCES

[10]

[11]

[12]

[13

[14

[15

[16]

[17]

[18

[19]

[20

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

Apache Flink. https://flink.apache.org/. Accessed: August, 2018.

Apache Hadoop. http://hadoop.apache.org/. Accessed: August, 2018.

Apache Spark. https://spark.apache.org. Accessed: August, 2018.

Approximate query processing where do we go from here? http://wp.sigmod.
org/?p=2183. Accessed: August, 2018.

Quickr: Lazily Approximating Complex Ad-Hoc Queries in Big Data Clusters. In
Proceedings of the ACM International Conference on Management of Data (SIG-
MOD), 2016.

S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approximate
query answering system. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 1999.

S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden, B. Mozafari,
and L. Stoica. Knowing when you’re wrong: Building fast and reliable approximate
query processing systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2014.

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb:
Queries with bounded errors and bounded response times on very large data.
In Proceedings of the ACM European Conference on Computer Systems (EuroSys),
2013.

M. Al-Kateb and B. S. Lee. Stratified reservoir sampling over heterogeneous data
streams. In Proceedings of the 22nd International Conference on Scientific and
Statistical Database Management (SSDBM), 2010.

G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the outliers in map-reduce clusters using mantri. In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and Implementation
(0SDI), 2010.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark SQL: relational data processing
in spark. In Proceedings of the International Conference on Management of Data
(SIGMOD), 2015.

R. Barber, G. Lohman, 1. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani,
S. Lightstone, and D. Sharpe. Memory-efficient hash joins. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2014.

P. Bhatotia. Incremental Parallel and Distributed Systems. PhD thesis, Max Planck
Institute for Software Systems (MPI-SWS), 2015.

P. Bhatotia, U. A. Acar, F. P. Junqueira, and R. Rodrigues. Slider: Incremental
Sliding Window Analytics. In Proceedings of the 15th International Middleware
Conference (Middleware), 2014.

P. Bhatotia, P. Fonseca, U. A. Acar, B. Brandenburg, and R. Rodrigues. iThreads:
A Threading Library for Parallel Incremental Computation. In proceedings of the
20th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2015.

P. Bhatotia, R. Rodrigues, and A. Verma. Shredder: GPU-Accelerated Incremental
Storage and Computation. In Proceedings of USENIX Conference on File and Storage
Technologies (FAST), 2012.

P. Bhatotia, A. Wieder, I. E. Akkus, R. Rodrigues, and U. A. Acar. Large-scale
incremental data processing with change propagation. In Proceedings of the
Conference on Hot Topics in Cloud Computing (HotCloud), 2011.

P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini. Incoop: MapRe-
duce for Incremental Computations. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC), 2011.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 1970.

CAIDA. The CAIDA UCSD Anonymized Internet Traces 2015 (equinix-chicago-
dirA). http://www.caida.org/data/passive/passive_2015_dataset.xml.

S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver
bullet. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD), 2017.

S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over joins.
In Proceedings of the ACM International Conference on Management of Data (SIG-
MOD), 1999.

G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Found. Trends databases, 2012.
A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and Computing, 2000.

M. N. Garofalakis and P. B. Gibbon. Approximate Query Processing: Taming
the TeraBytes. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), 2001.

P.]J. Haas and J. M. Hellerstein. Ripple joins for online aggregation. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD), 1999.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD),
1997.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without re-
placement from a finite universe. Journal of the American statistical Association,
1952.

438

[29]

(30]

(31]

(32]

@
20,

[40

[41]
[42]

[43]

[44]

[45]

[46

[55]

SoCC ’18, October 11-13, 2018, Carlsbad, CA, USA

N. Kamat and A. Nandi. Perfect and maximum randomness in stratified sampling
over joins. CoRR, 2016.

N. Kamat and A. Nandi. A unified correlation-based approach to sampling over
joins. In Proceedings of the 29th International Conference on Scientific and Statistical
Database Management (SSDBM), 2017.

T. Kraska. Approximate query processing for interactive data science. In Proceed-
ings of the 2017 ACM International Conference on Management of Data (SIGMOD),
2017.

D. R. Krishnan, D. L. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues. IncApprox: A
Data Analytics System for Incremental Approximate Computing. In proceedings
of International Conference on World Wide Web (WWW), 2016.

T. Lee, K. Kim, and H.-J. Kim. Join processing using bloom filter in mapreduce. In
Proceedings of the 2012 ACM Research in Applied Computation Symposium (RACS),
2012.

F.Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random
walks. In Proceedings of the 2016 International Conference on Management of Data
(SIGMOD), 2016.

S. Lohr. Sampling: design and analysis. Cengage Learning, 2009.

B. Mozafari. Approximate query engines: Commercial challenges and research
opportunities. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data (SIGMOD), 2017.

S. Natarajan. Imprecise and Approximate Computation. Kluwer Academic Pub-
lishers, 1995.

N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large
mapreduce jobs. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), 2011.

Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing approxi-
mate query processing. In Proceedings of the 2018 ACM SIGMOD International
Conference on Management of Data (SIGMOD), 2018.

N. Pottiand J. M. Patel. DAQ: A New Paradigm for Approximate Query Processing.
In Proceedings of the International Conference on Very Large Data Bases (VLDB),
2015.

D. L. Quoc. Approximate Data Analytics Systems. PhD thesis, Technische Univer-
sitat Dresden (TU Dresden), 2017.

D. L. Quoc, L. E. Akkus, P. Bhatotia, S. Blanas, R. Chen, C. Fetzer, and T. Strufe.
Approximate distributed joins in apache spark. CoRR, abs/1805.05874, 2018.

D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. Privacy pre-
serving stream analytics: The marriage of randomized response and approximate
computing. CoRR, abs/1701.05403, 2017.

D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. PrivAp-
prox: Privacy-Preserving Stream Analytics. In Proceedings of the 2017 USENIX
Conference on USENIX Annual Technical Conference (USENIX ATC), 2017.

D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe. Approxi-
mate Stream Analytics in Apache Flink and Apache Spark Streaming. CoRR,
abs/1709.02946, 2017.

D. L. Quoc, R. Chen, P. Bhatotia, C. Fetzer, V. Hilt, and T. Strufe. StreamApprox:
Approximate Computing for Stream Analytics. In Proceedings of the International
Middleware Conference (Middleware), 2017.

J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar, H. Bhanawat,
S. Chakraborty, Y. Mahajan, R. Mishra, and K. Bachhav. Snappydata: A hybrid
transactional analytical store built on spark. In Proceedings of the International
Conference on Management of Data (SIGMOD), 2016.

S. K. Thompson. Sampling. Wiley Series in Probability and Statistics, 2012.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu,
and R. Murthy. Hive - A petabyte scale data warehouse using Hadoop. In
Proceedings of the 26th International Conference on Data Engineering, ICDE 2010,
March 1-6, 2010, Long Beach, California, USA, pages 9961005, 2010.

Y. Tian, F. Ozcan, T. Zou, R. Goncalves, and H. Pirahesh. Building a hybrid
warehouse: Efficient joins between data stored in hdfs and enterprise warehouse.
ACM Trans. Database Syst., 2016.

Y. Tian, T. Zou, F. Ozcan, R. Goncalves, and H. Pirahesh. Joins for hybrid ware-
houses: Exploiting massive parallelism in hadoop and enterprise data warehouses.
In In Proceedings of the 2015 International Conference on Extending Database Tech-
nology (EDBT), pages 373-384, 2015.

Z.Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee. ApproxIoT: Approximate
Analytics for Edge Computing. In Proceedings of the 38th IEEE International
Conference on Distributed Computing Systems (ICDCS), 2018.

F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu. CS2: A New Database Synopsis
for Query Estimation. In Proceedings of the 2013 International Conference on
Management of Data (SIGMOD), 2013.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and L. Stoica. Resilient Distributed Datasets: A Fault Tolerant Ab-
straction for In-Memory Cluster Computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation (NSDI), 2012.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving mapre-
duce performance in heterogeneous environments. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI),
2008.

https://flink.apache.org/
http://hadoop.apache.org/
https://spark.apache.org
http://wp.sigmod.org/?p=2183
http://wp.sigmod.org/?p=2183
http://www.caida.org/data/passive/passive_2015_dataset.xml

	Abstract
	1 Introduction
	2 Overview
	3 Design
	3.1 Filtering Redundant Items
	3.2 Approximation: Cost Function
	3.3 Approximation: Sampling and Execution
	3.4 Approximation: Error Estimation

	4 Implementation
	5 Evaluation: Microbenchmarks
	5.1 Experimental Setup
	5.2 Benefits of Filtering
	5.3 Benefits of Sampling
	5.4 Effectiveness of the Cost Function
	5.5 Comparison with SnappyData using TPC-H

	6 Evaluation: Real-world Datasets
	6.1 Network Traffic Monitoring Dataset
	6.2 Netflix Prize Dataset

	7 Related Work
	8 Conclusion
	References

