2018 IEEE 34th International Conference on Data Engineering

ArrayBridge: Interweaving declarative array processing
in SciDB with imperative HDF5-based programs

Haoyuan Xing*, Sofoklis Floratos*, Spyros Blanas*, Suren BynaT, Prabhat', Kesheng Wuf, Paul Brown?

* The Ohio State University
{xing.136, floratos.1, blanas.2}@osu.edu

Abstract—

Scientists are increasingly turning to datacenter-scale com-
puters to analyze massive arrays. Despite decades of database
research that extols the virtues of declarative query processing,
scientists still write, debug and parallelize imperative HPC
programs even for the most mundane queries. This impedance
mismatch is due to the cumbersome and costly data format
conversions that are needed to use scientific data management
tools, such as SciDB, in an HPC setting. Our goal is to make
declarative array manipulations from SciDB interoperable with
imperative, file-centric analyses from HDF5-based programs.

This paper describes ArrayBridge, a bi-directional array view
mechanism for the HDFS5 file format, that allows scientists to use
SciDB, TensorFlow and HDF5-based analysis code in the same
file-centric pipeline without converting between file formats. In
addition to fast querying over HDF5 array objects, ArrayBridge
produces arrays in the HDFS5 file format as easily as it can
read from it. ArrayBridge also supports time travel queries from
imperative codes through the unmodified HDF5 API, and auto-
matically deduplicates between versions for space efficiency. Our
performance evaluation in a large scientific computing facility
shows that ArrayBridge exhibits statistically indistinguishable
performance and I/O scalability to the native SciDB storage
engine and is 3x faster than TileDB.

I. INTRODUCTION

Scientists are increasingly turning to datacenter-scale com-
puters to understand phenomena that would otherwise be
impossible or intractable to approach experimentally. Scientific
advances in domains as diverse as plasma simulation [1],
cosmology [2], and climate modeling [3] require processing
many terabytes of array data. Many of these arrays are stored
in scientific file formats like HDF5 [4] and netCDF [5]. Usage
data from petaflop-scale computing facilities corroborates that
HDF5 and netCDF remain among the most popular building
blocks for scientific computing today [6].

Scientific data management systems like SciDB [7] have
not been widely adopted in large scientific computing fa-
cilities. One challenge is that ingesting data into SciDB is
slow: parallel loading of modestly-sized (~100 GiB) arrays
in SciDB takes hours and uses at least 4x more space than
the size of the input for data staging. Furthermore, once the
data is loaded in the system it can no longer be accessed by
HPC tools, such as ParaView for visualization [8], Catalyst
for in situ processing [9], FastQuery for indexing [10], nor
by custom C or Fortran code that is essential for many
problem-specific optimizations. Modern analytics frameworks

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00092

t Lawrence Berkeley National Laboratory
{sbyna, prabhat, kwu}@lbl.gov

977

§ Paradigm4, Inc.

pbrown@paradigmé.com

such as TensorFlow [11] and Theano [12] are increasingly
being used in scientific data processing pipelines along with
more traditional HPC software. Prior research corroborates
that it is non-trivial to port an entire scientific data processing
pipeline to one system [13].

We argue for stronger interoperability between the scientific
database system and the tools outside it. This would allow
scientists to mix and match storage, processing and analytics
software as they see fit for the problem at hand. ArrayBridge is
the first step towards realizing this vision. ArrayBridge imple-
ments a bi-directional view mechanism for multi-dimensional
array objects in the HDFS file format. ArrayBridge exposes an
operator-centric interface, which makes SciDB, TensorFlow,
and legacy C or Fortran code seamlessly interoperable by pro-
ducing, accessing and updating versioned array objects directly
in the HDFS file format. By directly interfacing to SciDB and
TensorFlow, ArrayBridge does not require scientists to wait for
hours for a dataset to be converted to another format before
issuing the first query.

Previous research has considered how database systems
can bypass data loading [14], [15], [16], [17], [18], but has
largely focused on achieving good read performance. Scien-
tists, however, also desire to serialize objects in the database
to array formats like HDF5, and do so efficiently. Yet, HDF5
has an inherent single-writer, multiple-readers (SWMR) design
constraint [19], [20]. This creates a scalability bottleneck
because a single writing process cannot utilize the massive I/O
concurrency of the parallel file system in a modern scientific
computing facility. ArrayBridge efficiently materializes array
objects in the HDF?S file format by writing in parallel through
a virtual view. The view controls the I/O concurrency by
partitioning parallel writes into many independent streams.
This bypasses the single-writer design constraint that limits the
1/O scalability of file format libraries. When reading, scientists
access a single array object through the view without any
modifications to their applications.

Finally, many scientific processes are iterative and naturally
produce versioned array objects. Although SciDB supports
time travel queries, scientists lack a principled way of access-
ing past object versions when the data are stored in an HDF5
file instead. Saving versions as different objects creates bloated
files that duplicate unmodified chunks. ArrayBridge imple-
ments multi-versioning and discards duplicate array chunks in
HDFS files, which in turn conserves I/O bandwidth and storage

IEEE
computer
® psoaety

space. ArrayBridge permits time travel queries from existing
applications (frequently version-oblivious C or Fortran code)
through the unmodified HDFS5 file format API. Versions are
reconstructed in an opaque manner to applications by carefully
using the virtual dataset feature of HDF5. Under the hood,
ArrayBridge deduplicates common regions between versions
and reduces the storage footprint of the HDFS5 file.

Our extensive experimental evaluation in NERSC, a large
scientific computing facility, shows that ArrayBridge com-
pletely bypasses the cumbersome multi-hour data loading
process of SciDB for TiB-sized array datasets. ArrayBridge
exhibits statistically indistinguishable I/O scalability and per-
formance to the native SciDB storage engine and is about 3 x
faster than TileDB. In addition, ArrayBridge produces arrays
in the HDF5 format as efficiently as SciDB serializes the
database in its proprietary format for backup. ArrayBridge is
shown to have near-optimal speedup up to 128 nodes and it
can evaluate an ad-hoc aggregation query on a 38 TiB HDF5
dataset in minutes.

II. BACKGROUND

A. The SciDB database system

SciDB organizes data into multi-dimensional arrays. Every
cell in a SciDB array contains one or more attributes (values),
similar to a tuple in relational databases. An array is stored and
processed in chunks using the regular chunking strategy [21].
SciDB compresses chunks using Run Length Encoding (RLE).

SciDB adopts a shared-nothing model, and partitions the
chunks across all instances in a cluster. Metadata is stored
in the SciDB catalog, which is a centralized PostgreSQL
database. Each instance processes its own data, and only
redistributes data across instances if the query plan explicitly
asks so. One instance acts as the coordinator.

During query processing, the SciDB coordinator parses an
AQL or AFL query to generate a query plan for optimization.
The coordinator also orchestrates the evaluation of partial
query fragments among instances, and returns the final result
to the user. The query plan is a graph of array operators.
During the optimization phase, each operator reports the
schema of its output array. Every operator exposes a chunked-
based iterator interface that returns one chunk in the output
upon request.

Loading data into SciDB: A user can load data into SciDB
using the 1oad () operator, which supports loading in parallel
from all instances. Parallel loading requires a separate file for
each instance. Because popular formats like CSV may serialize
multi-dimensional arrays in a different order than SciDB,
loading from these formats is a two-step process: First, the user
issues a load () statement to create a one-dimensional array
where the coordinates and the variables are saved as separate
attributes, akin to a relational table. Therefore, loading an 7-
dimensional array with a attributes requires storage space for
a table with r 4 a attributes. The second step is a redimension
operation that converts this table to an r-dimensional array.

978

Supported file formats: Plain text formats like comma-
separated value (CSV) files are very versatile, but they are
also verbose and impose tokenization and parsing overheads.
These disadvantages are exacerbated as the data volume grows.
Binary formats are thus more common in large-scale scientific
computing, as they trade versatility for compactness and
performance. SciDB supports two binary formats for data input
and output: the opaque and binary formats [22].

The opaque format simply copies each RLE-encoded chunk
along with its metadata information directly onto disk. This
format is mainly used for database backups. An application
that reads or produces data in this format needs to understand
how SciDB organizes the chunk data internally. Hence, the
opaque format is not suitable for scientific applications that
desire interoperability.

The binary format concatenates the binary representation
of every attribute for each cell, and serializes cells in row-
major order. This process is time-consuming as it requires
extracting, converting and copying cells from their native RLE
representation into the binary format.

Saving SciDB objects to disk: A user saves SciDB objects
on disk using the save () operator. SciDB provides two
separate writing modes. In the Serial mode, the data is shuffled
to the SciDB coordinator which writes all the data to a
single file. This way, processing and managing the data is
straightforward, but the writing throughput is limited to the
I/O capacity of one instance. In the Partitioned mode, each
instance writes the data it stores to a separate file. This way,
the writing is parallelized, but the user needs to deal with the
complexity of maintaining partition information and adapting
existing tools to read partitioned files.

B. The HDF' file format

The HDF5 format [4] is a prominent scientific data format.
Data in HDFS5 files is organized using two key objects: datasets
and groups. A dataset is a multi-dimensional array containing
the same type of elements. The data in an HDF5 dataset
can be split into multiple chunks, each of which stored in
a separate contiguous block in the file. HDF5 uses the same
chunking method as SciDB. Similar to directories in a file
system, groups organize data objects such as datasets and other
groups into a hierarchical structure.

An HDF5 array is always logically dense. However, appli-
cations can register a well-defined value as the fill value of a
dataset. If no chunk has been created, HDF5 will return the fill
value on access. This saves space for arrays with contiguous
empty regions, such as a triangular matrix.

The virtual dataset feature: A recent feature of HDFS5 is
virtual dataset support [23], [24] that combines data from
multiple source datasets. A virtual dataset can be accessed
as an ordinary dataset, but does not store actual data. A
virtual dataset defines a list of mappings my, ms, ms, ..., My,
that describe where the actual data is stored. A mapping is
represented as a tuple < d, src,dst >; a source dataset d,
where the actual data is stored; a source selection src marks
the elements in d that are parts of the virtual dataset; and a

Declarative analysis

IAQL/AFL

SciDB coordinator

Imperative analysis
and visualization
Dataflow
systems

iy,

SciDB instances

i1y,

\\\\\\uuumuu%l LU Query executor
\ A 4 E f 5
Save API H Scan API ‘ Storage engine ‘
ArrayBridge

l HDFS5 file format library

T

Parallel file system

Fig. 1: Through ArrayBridge, scientists intermingle declarative and
imperative analyses on the same dataset. ArrayBridge uses the HDF5
library for storage and is integrated with the SciDB query engine.

target selection dst marks the logical positions of the source
elements in the virtual dataset.

When a program reads or writes a region in a virtual dataset,
the HDFS library traverses the mapping list to find all the
mappings that intersect with the queried region, and then prop-
agates the reading or writing operation to the corresponding
source datasets sequentially. As of version 1.10, the HDF5
library does not support removing items from the mapping
list, therefore, the only way to modify a virtual dataset is to
recreate the list from scratch.

III. SYSTEM OVERVIEW

ArrayBridge allows imperative manipulations and declarative
queries to be issued against the same array object. An overview
of the system is shown in Figure 1. ArrayBridge exposes
two interfaces: a read interface which scans an array and
a write interface that saves into an array. Our prototype
implementation of ArrayBridge uses the HDF5 library for
storage and it integrates with the SciDB query engine.

Users can query HDF5 data using AQL/AFL queries. We
refer to an HDF5-resident array as an external SciDB array,
to distinguish it from the native SciDB arrays. Whenever an
external array is queried, control is routed to ArrayBridge
which returns the underlying HDF5 data. The new operator
create_array_hdf5 () declares an external array. The user
specifies the name and the schema of the array, as well as the
HDFS5 file and the dataset name, as such:

create_array_hdf5 (arrayl, <vall:double>
[1=0:999,100,0], "datal.hdf5:vall");

This statement creates a 1000-element array with one
double attribute, stored in HDF5 dataset vall in the file
datal.hd£5. This populates metadata about the array schema
in the SciDB catalog (a PostgreSQL database).

One SciDB array can contain multiple attributes (columns),
whereas data in HDFS is organized into single-attribute data-
sets. Hence, an external array can contain more than one HDF5
datasets with the same shape, each represented as one attribute

979

_scan_hdf£5()

Instance 10
Parent
operator

10 11

m

11

scan_hdf5 ()

Instance 11
Parent
operator

_scan_hd£5()

Parent
operator

L chunkPtr

Instance 12

Fig. 2: An operator-centric runtime process data directly from exter-
nal HDF5 arrays using the scan_hdf5 operator in ArrayBridge.

of the array. Users create multiple attributes in an external
array by listing all the attributes and the corresponding datasets
in the create_array_hdf5 () statement.

IV. READING ARRAY OBJECTS IN THE HDF5 FORMAT

This section presents how ArrayBridge reads HDF5 data and
exposes them to SciDB. After an external array is created,
a user retrieves the contents of the external array using the
scan_hd£5 operator. Depending on the query, the scan_hdf5
operator either reads the entire array or selectively retrieves
specific chunks of the array.

A. Design of the Scan operator

The internal interface to the scan_hdf5 () operator consists
of two functions: Start(obj, attr) and Next(). The operator is
initialized by calling Start() with two parameters that indicate
the requested array object obj and the requested attribute attr
in that object. After the operator is initialized, calling Next()
repeatedly iterates through the array and returns the next chunk
assigned to this instance.

Given that ArrayBridge processes data concurrently on
multiple nodes, one aspect of the design is how to assign the
chunks of an array to different instances. Database systems
(including SciDB) store assignment information in a catalog.
This design choice is limiting, however, because imperative
applications can change the shape of external array objects
through direct calls to the HDF5 API and leave behind stale
metadata. ArrayBridge has significant more leeway on when
to map chunks to instances because external files on a parallel
file system are visible to all instances. ArrayBridge thus
assigns chunks to instances at query time. Assigning chunks
to instances at query time mitigates load skew and presents an
opportunity to update stale metadata to their correct values.

B. Implementation of the Scan Operator

The pseudocode of the scan_hdf5() implementation is
shown in Algorithm 1.

The Start() method: Before the scan operation commences,
all instances first determine how to partition the chunks to
parallelize the scan operation. We identify each chunk by
its coordinates, and use a mapping function p() to abstract

Algorithm 1: The scan_hdf5 implementation for SciDB.

Function Start(Array obj, Attribute attr)
(f,d) < lookup (obj,attr) in the SciDB catalog
open the HDFS5 file f and the HDFS dataset d
empty CP
foreach chunk p; in dataset d do

| if p(p:) = this instance then add p; into CP
end
chunkPtr <+ first element in C' P
¢ < a new RLE chunk with unique elements
end
Function Next()
r <— region at chunkPtr to read from
call H5Dread(d,r, c) to read data into chunk c
advance chunkPtr
return c

end

different chunk assignment algorithms [25]. We use the round-
robin assignment in our implementation.

Each instance creates an ordered array C'P in memory that
stores all the chunks that the mapping function has assigned
to this instance. When Start(obj, attr) is called, the catalog
is consulted to translate an (obj,attr) reference into the
appropriate HDF5 file name f and the dataset d. Start() then
opens file f, reads the array shape information for dataset d,
and iterates over all chunk positions. Instance ¢ adds chunk
j to its local C'P if and only if p(j) = 4. Finally, the chunk
read pointer chunkPtr is initialized to the first chunk.

The Next() method: Next() reads the chunk at the co-
ordinates pointed by chunkPtr from the HDF5 dataset, and
advances chunkPtr. Reading data from an HDFS5 file into
memory is done by calling H5DRead () and passing the source
dataset d, the source region r, and the destination buffer ¢ to
store the in-memory data. The HDFS5 library uses the C array
representation for in-memory data.

SciDB operators exchange data in compressed run-length
encoded (RLE) format. We found that compressing HDF5 data
into the RLE representation after every read was a perfor-
mance bottleneck. This predominantly impacts dense arrays
that HDFS5 is designed for, which do not compress well with
RLE. Hence, we decided against compressing data using RLE
in ArrayBridge. Each scan operator in ArrayBridge creates a
single RLE-compressed chunk ¢ where each element is unique,
and then reuses this chunk in every call to H5DRead ().

V. SAVING ARRAY OBJECTS IN THE HDF5 FORMAT

Many post-processing and visualization workflows are con-
ducted over file-centric APIs. It is thus important to efficiently
serialize arrays into popular scientific data formats such as
HDFS5. This section presents how ArrayBridge materializes
array objects into external HDFS5 files. The two key features
that ArrayBridge supports are (1) parallel writing that bypasses
the single-writer limitation of HDF5, and (2) time travel so that
imperative kernels can access previous versions of a dataset
over the HDF5 API without modifying the code. We describe
each in turn.

980

¥
| |

Instance 2
| ArrayBridge

¥

‘ Instance 1

¥
Instance 3 ‘

i

a

t)

‘ HDFS5 file format library 1
v

RARE|

Data

Data Virtual View

Parallel file system

Fig. 3: The virtual view mechanism bypasses the single-writer
limitation of the HDF5 file format by directing write streams from
different instances into separate objects. Existing imperative analyses
access a single object through the view.

A. Balancing efficiency and interoperability

Serializing array data into the HDFS5 format exposes a
dilemma between writing efficiency and interoperability. To
write data in parallel, one can produce multiple HDFS5 files.
Splitting a single dataset into multiple files, however, makes
analysis more cumbersome. Conversely, storing the entire
dataset in a single file makes it straightforward to manage
and analyze the HDF5 dataset from existing applications, but
it limits the write throughput to the I/O capacity of one
instance. This fundamental Single-Writer, Multiple-Readers
(SWMR) design constraint of HDFS5 is a roadblock to parallel
writing and it prevents any analytical query engine from taking
advantage of the highly concurrent I/O subsystems found in
modern scientific computing facilities.

ArrayBridge supports a novel writing mode, the Virtual
View mode, to allow for explicit control of the I/O concur-
rency regardless of the number of files being accessed. This
avoids the artificial dilemma between writing efficiency or
interoperability with the Serial and Partitioned writing modes
of SciDB. The Virtual View mode utilizes the virtual dataset
feature of the HDF5 format, which presents the data in several
HDFS5 files as a single dataset to the application accessing it.
As shown in Figure 3, in the Virtual View mode each instance
writes data to separate HDF5 files, and then a virtual HDF5
dataset maps these files into one logical object. The benefit
of the Virtual View mode is that it combines the efficiency of
parallel writing into separate files with the interoperability of
producing a single file for the small upfront cost of creating
the virtual dataset.

B. Serializing arrays into HDF5

ArrayBridge exposes a save () operator to support the HDFS
format. This allows a user to write data back to external
HDFS5 files. ArrayBridge supports Serial and the Partitioned
writing modes with SciDB semantics: In the Serial mode, data
is shuffled to the coordinator, and the coordinator writes the
data into an HDFS file. In the Partitioned mode, each instance
creates a different file and saves the data assigned to it to a
dataset with the same shape as the original array. The chunks
that have not been assigned to the local instance are empty:

HDFS5 logically fills them with a fill value but does not store
any additional data.

The Virtual View mode starts by having every instance write
its chunks to a separate file, just like in the Partitioned mode.
In addition to writing the chunks, each instance also maintains
two regions: one is the source region in the local file (src),
the other is the target region in the virtual dataset (dst). After
the chunks are written, the Virtual View mode needs to create
the virtual dataset.

ArrayBridge implements two methods to create the virtual
dataset. The first method is parallel mapping. Each instance
appends its mappings into the virtual dataset, using the src
and dst objects it created during the writing process. The
virtual dataset needs to be recreated, as it cannot be updated
directly. Thus, each instance needs to read the mappings
in the virtual dataset, append its own mapping to it, and
recreate the dataset using the new mapping list. Because only
one instance can update the virtual dataset at a time, the
parallel mapping technique uses file locking to ensure mutual
exclusion. This crude synchronization method allows each
instance to update its own mapping without waiting for other
instances to exchange mapping data. However, because each
update recreates the dataset, O(n?) mappings will be written
for a cluster with n instances.

The second method of creating the virtual dataset is co-
ordinator mapping. Each instance transmits the src and dst
regions to the coordinator, which concatenates the per-instance
mapping lists and creates the virtual dataset. This requires
all instances to synchronize on a barrier and wait for the
coordinator to create the virtual dataset. The coordinator
mapping technique writes O(n) mappings for a cluster with
n instances. We evaluate the performance trade-offs of these
two techniques in Section VI-C.

C. Backward-compatible time travel in HDF5

An oft-requested feature is the ability to query past versions of
a dataset to understand how a dataset evolved or to explain the
processing steps to the final result. This subsection introduces
the time travel capability in ArrayBridge that transparently
deduplicates regions that are identical between dataset versions
that are stored in the HDFS file. This reduces the storage foot-
print of versioned datasets and is interoperable with imperative
applications that access former versions through the existing
HDF5 APL

Because analyses predominantly access the latest version
of a dataset, ArrayBridge always fully materializes the latest
version to minimize reconstruction costs. Past versions are
stored under a separate group in the HDFS5 object hierarchy.
All versions can be accessed as ordinary HDFS5 datasets by
applications via the HDF5 APIL. A user produces a versioned
dataset by passing a parameter in the save () operator; Array-
Bridge accesses old versions as ordinary HDF5 datasets via
an explicit call to the scan_hdf5() operator. ArrayBridge
supports three techniques for saving a versioned dataset: Full
Copy, Chunk Mosaic and Delta.

981

=/
T
T T 1
EEB speed = PreviousVersions = VersionData
2=V BB vo £ V1 BB vo
— = Group
— BB Dataset
— | Data
. oo — [=3 Mapping
—r [J Empty

Fig. 4: An example of the Chunk Mosaic technique. The latest version
is the fully-materialized dataset speed. Old versions are virtual
datasets in the PreviousVersions/ group.

Full Copy: The Full Copy technique incurs the cost of
materializing every past version. For example, if a query calls
save () to update the dataset speed to version V2, Array-
Bridge renames dataset speed as PreviousVersions/V1.
After this metadata operation is completed, the save () oper-
ator creates a new dataset named speed that stores the latest
version V2.

Chunk Mosaic: The Chunk Mosaic technique only stores
the chunks that are updated and creates a virtual dataset to
“stitch together” the past version. An example of the Chunk
Mosaic technique is illustrated in Figure 4.

The Chunk Mosaic technique proceeds in two steps. The
first step is creating an HDF5 dataset that stores the previous
versions of the array chunks that are updated. The unmodified
chunks are empty. (Recall that the HDF5 library does not
store empty chunks). This dataset has the same shape as the
original dataset, and is hidden away in an HDF5 group labeled
VersionData/. For example, in Figure 4, the HDF5 dataset
VersionData/V0 only stores the chunks of version v0 of the
speed dataset that were updated in version v1. Because many
analytical engines do not readily convey which chunks were
updated to the save () operator, our current implementation
discovers which chunks changed by comparing the chunk
that is being saved with the chunk that already exists in the
latest version of the dataset. We acknowledge that tighter
integration with a particular query engine can avoid reading
the entire chunk to discover the differences. (For example,
SciDB can convey precisely which cells were updated through
the insert () operator.) We plan to explore opportunities for
tighter integration as part of our future work.

The second step of the ChunkMosaic technique creates a
virtual dataset under the PreviousVersions/ group in the
HDF5 file. This dataset combines the unmodified chunks of the
latest version and the updated chunks in the VersionData/
group into a single view. This virtual view will be accessed
by applications to retrieve this old version. In the example
shown in Figure 4, suppose that the update creates version v2
which is stored in dataset speed. The Chunk Mosaic technique
first creates the virtual dataset PreviousVersions/V1. If a
chunk was modified, the virtual dataset chunk is mapped to
the versionData/V1 dataset that contains the original chunk
in the previous version; otherwise the chunk is unmodified
and is mapped to its latest version at speed. Finally, the
mappings in the dataset PreviousVersions/V0 that point
to speed are modified to point to PreviousVersions/V1.

Chunk Mosaic produces a series of chained virtual datasets
that can reconstruct any previous version by either referencing
the latest fully-materialized version or a former version of a
chunk in the VersionData/ group.

Delta: A disadvantage of the Chunk Mosaic technique is
that it will materialize the entire chunk even when an update
has only changed a single cell in this chunk. The Delta
technique is a refinement of the Chunk Mosaic technique that
only stores the cells that changed (the delta) back on disk.

The Delta technique only stores the modified cells by
carefully using an HDF5 chunk filter to discard cells that were
not updated when materializing the previous version. (Recall
that the ArrayBridge always materializes the latest version for
efficiency reasons.) The HDF5 library supports chunk filters
as a mechanism to allow user-defined data manipulations on
the I/O path of the HDFS library. Chunk filters are loaded
dynamically and sit between the internal storage manager in
HDFS5 and the I/0O layer. A popular use of the chunk filter
functionality has been applying domain-specific storage opti-
mizations and compression. ArrayBridge uses a chunk filter
to sequentially store the updated cells and then truncates the
buffer that will be forwarded to the I/O layer for storage. This
allows ArrayBridge to issue I/O requests that are proportional
in size to the number of updated cells in each chunk.

This I/O-oriented optimization comes at the expense of CPU
cycles when it comes to creating the mappings that will allow
version-oblivious code to reconstruct the historic version of an
object. Whereas the Chunk Mosaic technique would create as
many mappings as chunks (as shown in Figure 4, under the
group PreviousVersions), the Delta technique may need
one mapping per cell if the updated region cannot be expressed
as a contiguous or strided hyper-rectangle. We evaluate this
performance trade-off in Section VI-C.

Reconstructing old versions: Old versions are reconstructed
automatically by the HDFS5 library when one accesses a
dataset in the PreviousVersions group. When using the
Chunk Mosaic technique, the HDFS5 library follows the virtual
mappings to read the actual chunk. When using the Delta
technique, the chunk filter reads the latest materialized chunk
and the modified cells from the disk and combines them to
the actual chunk using the information in the virtual mapping.
We refer interested readers to the virtual dataset design doc-
ument for more information how the reconstruction process
is implemented in HDF5 [23]. The strength of versioning in
ArrayBridge is that this reconstruction procedure is opaque to
programs that access the HDF5 file: old versions appear as
different datasets to programs and can be read without any
modification to the program or the HDF5 library.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of ArrayBridge. We
consider the following questions:

o (§VI-B) How does ArrayBridge perform when reading data
from a parallel file system in a typical HPC environment?
How much time and space does loading take in SciDB?

982

60 - Z = SciDB + ArrayBridge
R o B Native SciDB
=1 N m SDS/Q
£ 20 4. ? O Native TileDB
= B =
g101 = g
© s B} :
2 54 -
g Bda =
9] I 8 -
> 27 % i1 -1 ;g et
0] e : B - -
8 14 Q! Qli QL : o
0.5 1 i -
T T T T T T T T
1 2 4 8 16 32 64 128
Nodes

Fig. 5: Response time when aggregating a 1.5 TiB dataset.

e (§VI-C) How efficient is the save mechanism of Array-
Bridge, and how does it scale? How effective is the time
travel mechanism in deduplicating versioned array objects?

o (§VI-D) Does ArrayBridge scale to a real multi-TiB simu-
lation dataset that would be infeasible to load in SciDB?

A. Configuration and methodology

We evaluate our implementation on the Edison computer of
the National Energy Research Scientific Computing (NERSC)
facility. Edison is a Cray XC30 supercomputer with 5,586
compute nodes. Each node has two 12-core 2.4Ghz Intel “Ivy
Bridge” CPUs and 64 GiB of memory. File storage is provided
via the Lustre [26] parallel file system. Lustre distributes the
content of a file across multiple I/O servers, called Object
Storage Targets (OST), to provide I/O concurrency for highly-
parallel applications. Each file is divided into a user-defined
stripe size and then stripes are distributed to the requested
OSTs in a round-robin fashion. The stripe count is the number
of OSTs a file is distributed to. The file system we use has a
total of 248 Lustre Object Storage Targets (OSTs) and more
than 30 PiB of total storage. The reported peak I/O throughput
exceeds 700 GiB/sec.

We evaluate ArrayBridge with the SciDB 15.12 Community
release. We configure 8 instances per node and a 16 MiB
chunk size according to the SciDB guidelines. The HDF5
datasets are chunked using the same chunk size (16 MiB).
Unless specified otherwise, we follow the facility-wide I/O
tuning recommendations that suggest striping each file to 72
Lustre OSTs with a 1 MiB Lustre stripe size.

One challenge in reporting performance results from large
HPC facilities is that the computers are always busy with
multiple concurrent jobs. This brings high variability in I/O
performance. When the variability is significant, we report
performance in a box plot to convey the effect of variance.

B. Scan performance

This subsection evaluates the efficiency of analyzing HDF5
data using ArrayBridge through queries on synthetic datasets.

140 60
%120 1 =] Coordi_nator 5 sciDB+_
° [} Scanmng. T 50 ArrayBridge
8100 | | ™ Aggregation 3 O Native SciDB
k3 O Redistribution 8
° o 40 =
E e E -0
3 8 30 B-
S 60 A 5 -
&)
© ¢ 20
£ w £ -8
2 g
3 20 G 10
==
0 — 0
16 3264 16 3264 1% 5% 10%
SciDB + Native . .
ArrayBridge SciDB Region size

Fig. 6: SciDB time breakdown
when aggregating 1.5 TiB.

Fig. 7: Impact of selectivity on
response time.

Declarative analysis with ArrayBridge: The first question
is what is the scan performance of ArrayBridge to scan
a one-dimensional dataset of 192 billion double numbers
(approximately 1.5 TiB data). For comparison purposes with
prior work, we use SciDB [7], the SDS/Q system [16] and
TileDB [27]. Figure 5 shows the query response time as the
number of nodes varies from 1 to 128.

All implementations scale near perfectly from 1 to 32 nodes.
In this region, TileDB takes at least 3x more time than the
other systems. TileDB organizes arrays into fragments that
are stored in separate directories in the underlying file system.
Profiling shows that this slowdown is because of the overhead
of creating and closing fragments, which triggers excessive I/O
to different Lustre OSTs for metadata operations. SDS/Q out-
performs SciDB and ArrayBridge with 1 and 2 nodes because
the workload is CPU bound, but the performance equalizes as
the workload becomes I/O bound. The ArrayBridge peak I/0
performance is about 28 GiB/s with 32 nodes.

ArrayBridge and SciDB stop scaling beyond 32 nodes,
while SDS/Q and TileDB continue to do so. Profiling SciDB
confirms that this slowdown is not caused by ArrayBridge.
Figure 6 shows the time breakdown when using 16, 32, and
64 nodes. The culprit for the increased query response time is
the redistribution cost: it takes far more time to merge partial
aggregates in SciDB than an MPI_Reduce operation in SDS/Q.

Overall, the performance of ArrayBridge is statistically
indistinguishable from the native SciDB engine.

Performance with selective queries: Some queries selec-
tively access data. To evaluate the effect of implicit indexing
in SciDB, we also run a block selection query that randomly
aggregates one contiguous region of the 1.5 TiB dataset
using 8 nodes. We vary the size of the selected region from
1% to 10% of the dataset. The result is shown in Figure
7. The response time of ArrayBridge and native SciDB is
statistically indistinguishable regardless of the selected region
size. This shows that the SciDB chunk index does not bring
a performance advantage over scanning a chunked HDFS5 file
directly even when only retrieving a subset of a dense array.

Imperative analysis with ArrayBridge: An important ques-
tion is whether the scan performance can be realized for

TensorFlow + ArrayBridge J 6.78
TensorFlow, binary :| 53.1
TensorFlow, CSV ‘ 287
0 5‘0 160 150 260 250 360

Query response time (minutes)
Fig. 8: TensorFlow comparison with an 8 billion element array.

—— SciDB + ArrayBridge —— SciDB + ArrayBridge
- - - Native SciDB - - Native SciDB -

o
1=}
15}

o
o o
S o

N

]

N
\

Cumulative response time (hours)
@
Cumulative response time (mins)
IS
S

o

o
o

20 40 60 80 100 0 1000 2000 3000 4000 5000

Total queries Total queries

(a) Aggregating a 1 TiB dataset (b) Aggregating a 16 GiB dataset
that does not fit in memory. that fits in the SciDB buffer pool.

Fig. 9: Cumulative time to load and complete multiple queries.

imperative programs that read data in the HDF5 format. We
turn to TensorFlow [11] to demonstrate this. Users describe
computations in TensorFlow as a dataflow graph where they
specify both the nodes (operators) of the graph and the edges
(data dependencies) between nodes. The unit of data move-
ment between nodes in TensorFlow is a multi-dimensional
array (a tensor) which is returned directly by the Scan API
of ArrayBridge.

An evaluation of the scan performance of ArrayBridge in
TensorFlow reveals that the I/O performance of the native
TensorFlow scan kernels can be slower by two orders of
magnitude. Figure 8 shows the query response time when
aggregating an array with eight billion numbers in 16 MiB
chunks from a single thread. Variance in this experiment is
less than +10%. Scanning through ArrayBridge completes
this query in about 7 minutes. The same query takes 8x
longer when reading from a binary file and 42 longer when
reading from a CSV file using the TensorFlow operators. This
comparison does not include data conversion times from HDF5
into binary or CSV, which would have increased the time to
the answer even further. We thus conclude that ArrayBridge
provides compelling I/O performance over the native Tensor-
Flow scan which is not optimized for data-intensive analyses.

Time to insight experiment: The evaluation now considers
the data loading time in SciDB and how this impacts work-
loads with multiple queries. We repeatedly aggregate the same
dataset using both ArrayBridge and native SciDB in an 8-node
cluster. For ArrayBridge, we query the HDF5 dataset directly;
for native SciDB, we load the binary dataset in parallel. We use
two synthetic datasets: the first is only 16 GiB and comfortably
fits in the local buffer pool (chunk cache) of each SciDB
instance; the other is 1 TiB which is nearly twice as big as
the local memory in each node. Figures 9a and 9b report the
cumulative query response time of loading and evaluating the
first n queries. (n = 0 reflects the dataset loading time.)

For the 1 TiB dataset (Figure 9a), it takes more than 7.5
hours for the native SciDB to load the data, redimension it,

801
O CSV format i , ,
< 100001 | O SciDB binary 5 S ﬁggg opaque
£ B SciDB 'opaque’ =
s] £ &0
g 100 | g
S S 401
o 10 4 o
3 S
@ 7]
e 1 o
o o 201
£ E
ol 1 FH P
L) 1 2 4 8 16 32
Partitioned Serial (8G) (2560)

Writing mode

Fig. 10: Time to save a 64 GiB
dataset in different formats.

Nodes (Data volume)

Fig. 11: Time to save 8
GiB/node in different formats
with the Serial writing mode.

and return the first query result. The redimension operation
alone takes a little more than 7 hours. In comparison, it only
takes ArrayBridge about 1.5 minutes to answer the first query!
ArrayBridge provides the answer 300x faster by skipping the
time-consuming loading process. Loading the data into SciDB
does not significantly accelerate subsequent queries either.

This holds even for the 16 GiB dataset (Figure 9b) which
fits entirely in the buffer pool. (Recall that the scan_hdf£5 ()
operator issues 1/O requests to the HDFS file on every call,
whereas native SciDB performs all I/O through the buffer
pool.) We conclude that caching and prefetching by the parallel
filesystem can be as effective as a buffer pool in curtailing
redundant I/O to cold storage for a full scan access pattern.

Another advantage of querying HDFS data directly in its
native format is reducing the space overhead of loading. As
described in Section II, importing an array into SciDB requires
importing the original data into a flat array with coordinate
information, and then converting it to the redimensioned
SciDB format. For a one-dimensional array, this occupies 3 x
more space than the original data.

C. Save performance

SciDB supports multiple formats for exporting data, including
the widely used comma-separated value (CSV) format, the
SciDB ‘binary’ format, and the proprietary ‘opaque’ format.
(See Section II for details.) We evaluate the performance of
saving in these formats by storing a synthetic two-dimensional
64 GiB dataset of double numbers with 8 nodes, using both
the serial and partitioned writing modes.

Figure 10 reports the median query response time of each
format/mode combination. (Note that the vertical axis is log-
arithmic.) As the figure indicates, the CSV and the SciDB
‘binary’ formats are very slow to write into. Even with 8
nodes writing CSV data in parallel, the writing throughput per
node is only ~ 20 MiB/s due to the overhead of converting
doubles into a text representation. The SciDB binary format
is almost 5x faster as it avoids text conversions and merely

984

25 Partitioned, HDF5

§ O Partitioned, SciDB 'opaque’ format

g o0 O Virtual View, TileDB

= Virtual View, parallel mapping, HDF5

3 B Virtual View, coordinator mapping, HDF5 =

8 15

©

©

o

£ 101

2

[0

E 5

l_ %

0 T T T T T T

1 2 4 8 16 32
(96G) (192G) (384G) (768G) (1.5T) (3T)

Nodes (Data volume)

Fig. 12: Time to save 96 GiB/node using the Partitioned and the
Virtual View writing modes in HDFS5, TileDB and SciDB’s proprietary
“opaque” formats.

reconstructs the binary on-disk representation from the RLE
encoding. The ‘opaque’ format is 10x faster than the SciDB
‘opaque’ format, as it merely dumps the RLE-encoded chunks
on disk. Although the ‘opaque’ format is intended for backups
and is not designed to be interoperable across applications,
we report save times for the SciDB ‘opaque’ format in the
experiments that follow as it better approximates the peak
aggregate writing capability of a SciDB cluster.

Problem of serial writing: We evaluate the performance of
the serial writing mode by saving a synthetic two-dimensional
dataset with 8 GiB data per node to disk. (Recall that the serial
writing mode produces a single output file by redirecting all
data to a single SciDB instance.) We vary the number of nodes
from 1 to 8, and report the save time for both the HDF5
format and the SciDB ‘opaque’ formats. Figure 11 shows
the median query response time. Although the computational
power and I/O capacity increase with the number of nodes, the
aggregate writing throughput does not increase accordingly
as the single writing instance is the bottleneck; hence, the
response time increases as the data volume increases. Profiling
the result further shows that both shuffling time and writing
time double when the number of nodes doubles. Although
materializing arrays using the serial mode produces a single
file, its performance does not scale.

Writing in parallel: We now consider the performance of
writing HDFS files in parallel using the partitioned and virtual
view modes. We generate a synthetic two-dimensional dataset
with 96 GiB data per node. Figure 12 compares the query
response times of saving this dataset using each format/mode
combination.

In terms of scaling, partitioned writing performs well.
Writing HDFS in partitioned mode scales perfectly from 1
to 16 nodes, maintaining a writing throughput of about 450
MiB/s per node. Writing into the SciDB ‘opaque’ format using
partitioned mode also scales perfectly from 1 to 8 nodes, which
records a per-node writing throughput of about 1 GiB/s. The
writing throughput of the ‘opaque’ format decreases at larger

< 350
2

_. 5 = Full Copy 8 300 B Full Copy

% B Chunk Mosaic 2 B Chunk Mosaic

= 4 B Delta = 250 B Delta

S °

5 200

2 34 >

g 8 150

< 2 ®

5 & 100

N 2

o 11 e
2 50
£

0 - = 0

1% 10% 100%
Update dispersion

1% 10% 100%
Update dispersion

(a) Size of new version. (b) Time to store new version.

Fig. 13: Space and time needed to update a 3.1 GiB dataset.

scale and matches the writing throughput of the HDFS5 format
for 32 nodes. However, the disadvantage of the partitioned
writing mode is that it produces one file per SciDB instance.
At 32 nodes, the output is contained in 256 files, which can
be cumbersome to manage.

The query response time of the virtual view mode with local
mapping technique is indistinguishable from the partitioned
writing for clusters up to 4 nodes. However, the response time
goes up while scaling beyond 8 nodes: at 16 nodes, it takes
almost 1.5x longer to write data in the local mapping mode
compared with the partitioned mode; it’s almost 10x as much
when using 32 nodes. This is because of the substantial cost
of updating virtual datasets, where each instance reads and
re-writes all prior mappings. Profiling shows that updating the
virtual dataset takes about 90% of the time for 32 nodes.

The coordinator mapping technique significantly amelio-
rates this overhead, as the coordinator collects all the mappings
and creates the virtual dataset once. For 32 nodes, the coordi-
nator mapping technique reduces the virtual dataset creation
time to about 30 seconds, or less than 10% of the query time.
This allows the user to save a 3 TiB array using virtual view
within 7 minutes, and preserves the advantage of allowing
imperative analysis kernels to access it as a single dataset.

To evaluate the efficiency of the HDF5 virtual mapping
mechanism, we also compare the performance of saving in the
HDFS5 format with TileDB [27], which also supports viewing
a partitioned array as a single object. In TileDB, different
processes can write to different fragments (files) in parallel
without conflicts. Akin to the virtual dataset functionality of
HDFS5, the TileDB library scans all the fragments that intersect
with the accessed region, and combines the result at query
time. We implemented a version of the save () operator in
ArrayBridge that stores data in TileDB. The result shows that
saving to the TileDB format takes about 4 ~ 5x more time
than saving in the HDF5 format with virtual view. About
60% of the time is spent on metadata operations. This is
corroborated by the observation that merely listing the contents
of the directory that stores a 1.5 TiB array in the TileDB format
using ‘1s -1’ takes more than 30 minutes as all Lustre OSTs
are contacted to retrieve the size of every fragment.

985

@
© L J
§ 50 = Full Copy & ”
8 40 | B Chunk Mosaic -
o W Delta - |
1S -
= 30 - * L]
[L B -
2 . T I
% 20) -- = - T
210 jee e = & - = = 2 & = =
(]
S o
S B V8 V7 V6 V5 V4 V3 V2 VI VO
£ 3
a3 Version accessed

Fig. 14: Time to read an old version.

Time Travel: The evaluation now considers how effective is
deduplicating versioned datasets for time travel queries when
compared with the Full Copy technique.We use a synthetic
3.1 GiB dataset of double numbers with a 16 MiB chunk size.
To create a new version, we update a fixed number of N
elements in a strided access pattern, where N = 1% of the
total elements in the array. We change the dispersion of the
updates by scattering them to 1% of the chunks, 10% of the
chunks, and to the entire dataset (100%).

Figure 13a compares the size of a new version. An update
using the Full Copy technique occupies as much space as
the original, since it always duplicates the entire dataset. In
contrast, the space usage of the Chunk Mosaic is proportional
to the number of chunks being updated. The Delta technique is
even more storage-efficient as it only materializes the updated
cells regardless of the dispersion of the updates.

Figure 13b compares the time to store a new version.
We note that the Chunk Mosaic technique has comparable
performance for a significant space advantage over Full Copy.
The Delta technique works well for very few updates, but
its performance deteriorates due to the time spent in creating
mappings. The Delta technique would take significantly longer
if cells were selected uniformly at random.

Figure 14 reports the time to read an old version after 10
updates that change 1% of the elements and scatter the updates
to 10% of the chunks. Reading the current version with any
technique requires no reconstruction, and neither does reading
any version with Full Copy. Delta has higher reconstruction
cost over Chunk Mosaic as it operates on individual cells
versus entire chunks. Overall, the time to read an old version
is proportional to the versions that need to be accessed to
perform the reconstruction. The time to reconstruct a version
would increase if the updates were more dispersed, as more
chunks would need to be accessed. These results suggest that
workloads that frequently perform time travel queries should
intersperse fully-materialized (“Full Copy”) versions in the
version chain. The distance to these fully-materialized versions
imposes an upper bound on the number of versions needed for
reconstruction and hence limits the worst-case access time.

D. ArrayBridge with particle-in-cell (PIC) simulation data

We evaluate the performance of ArrayBridge when analyzing
a scientific dataset that would be infeasible to load into SciDB

126 1S Optimal scaling 0
—6— ArrayBridge ;
64 1 |-« SDS/Q L x
32 /é/
1] Y é/
@ /
@ /
& 8- /é
4+ /zs/
X/
2 /0
14 o

T T T T T T T T
16 32 64 128
Nodes

Fig. 15: Speedup when analyzing 38 TiB of Particle-In-Cell simula-
tion data in HDF5 with ArrayBridge and SDS/Q [16].

due to its massive size. In addition, we compare with the
SDS/Q system for querying HDF5 data from prior work [16].

The workload comes from the plasma physics domain.
The scientific application uses VPIC [1], a general purpose
particle-in-cell simulation code, for modeling kinetic plasmas
with billions of particles. Studying micro-phenomena requires
simulating a 3D field with very high resolution. For this
problem, on simulation step produces results that are stored in
a single 38 TiB HDF?5 file on the parallel file system which
is striped to 244 Lustre OSTs.

This 3D dataset consists of four variables: one variable per
component of the 3D velocity vector ¥ = (v, vy, v;), and one
variable for the energy E. The analysis intent is to aggregate
the velocity ||| = y/v2 +vZ +v2 and energy E for high-
energy particles (£ > 2.0) over a grid. This analysis can
be succinctly conveyed in a SciDB AFL query that directly
accesses the HDF5 data via ArrayBridge.

The scalability of this aggregation query over the output
of a single simulation step (a 38 TiB array dataset) is shown
in Figure 15 as a function of the single-node performance
of ArrayBridge. ArrayBridge on a single node takes more
than a day to return the final answer. ArrayBridge scales
near-optimally up to 128 nodes, returning the final answer
in about 17 minutes. Overall, ArrayBridge aggregates 38 TiB
of array data in minutes for this AFL query, whereas loading
and redimensioning this dataset using a SciDB cluster of the
same size would have taken more than a week.

SDS/Q is on average about 5% faster than ArrayBridge for
this query up to 32 nodes. However, SDS/Q stops scaling lin-
early after 64 nodes and becomes slower than ArrayBridge at
128 nodes. We remark that SDS/Q is a relational query engine
that is limited to SQL-like queries. Array-centric operations
(like matrix multiplication) are not supported in SDS/Q but
can easily be expressed as AQL/AFL queries in ArrayBridge.

986

VII. DISCUSSION

Error handling and fault tolerance: In a nutshell, Array-
Bridge propagates errors and does not itself dictate any error
handling strategy. It is up to the caller of the interface to
determine what to do when a failure happens.

SciDB is designed to tolerate failures as long as a chunk
can be accessed by at least one node. If an entire node fails,
this is detected by the SciDB coordinator through a heartbeat
mechanism and the query will restart. Because scan_hdf£5 ()
and save () retrieve running SciDB instances at query time,
they assign chunks only to healthy nodes. The save () opera-
tor requires manual removal of a partially-materialized version
in the HDFS5 file on restart. ArrayBridge also exposes I/O
errors that may result from the HDF5 library or the parallel
file system itself. Currently, such errors are propagated to the
SciDB coordinator which in turn aborts the entire query.

In TensorFlow, the user specifies how the operators are
distributed among compute nodes. Both node failure and I/O
errors would result in a failure of the entire query. The user
can then restart the query and possibly alter the distribution
of operators to avoid failed compute nodes. Imperative HPC
programs are frequently ad-hoc codes with no fault tolerance
provisions. Errors are handled by calling MPI_Abort () to
stop the entire program.

Replacing the SciDB storage engine with ArrayBridge: The
experimental results demonstrate that ArrayBridge performs
competitively to be considered as a possible storage backend
for SciDB. A natural question to ask is what are the limitations
of HDF5 compared to the native SciDB storage engine.

The main weakness of using HDF5 as a replacement for
the SciDB storage engine is that it does not work in a shared-
nothing cluster where nodes do not share a parallel filesystem.
Installing the popular Hadoop distributed filesystem is not a
solution, as its append-only nature does not permit writes and
updates to an HDFS file. In addition, the HDFS5 format does not
support features that are primarily geared towards enterprise
environments and the cloud. These include user authentication
and permission management, transactional storage to avoid
data corruption, and data replication for fault-tolerance in
commodity clusters. Finally, HDFS5 is optimized for dense low-
dimensionality arrays but many problems naturally produce
sparse arrays of high dimensionality. It is unlikely that HDFS5
would perform nearly as well for sparse workloads.

ArrayBridge preserves the flexibility of using either HDF5
or the native SciDB storage format if it is advantageous to
the workload. We consider the hybrid approach taken by Ar-
rayBridge more palatable to users compared with exclusively
using a single data storage format.

VIII. RELATED WORK

Array database systems

Database systems can store multi-dimensional datasets by
materializing array offsets as attributes of a relational ta-
ble [28]. Some solutions build new primitives to express array
operations within the DBMS [29], [30], while SciQL [31]
extends SQL to support the array data model. Also, new

query languages have been proposed for querying arrays
declaratively. AQL [32] is one of the earliest array query lan-
guages. AML [33] expresses array operations as a combination
of operators, each of which reads one or more arrays and
returns an array. In contrast, SciDB [7] has been designed for
arrays: all operators accept and return arrays without additional
extensions.

Another research topic for array database systems is storage.
Soroush et al. investigate different storage management and
chunking strategies for array storage and propose a two-layer
chunking strategy [21]. A related challenge is accessing cells
along different dimensions efficiently to avoid performing
very small I/Os or reading unnecessary data. Novel chunking
and storage optimizations have been proposed to address
this problem [34]. SciDB uses a similar chunk-based storage
as ArrayStore [21], and supports bitmap indices as well as
RLE compression within a chunk to accelerate sparse array
processing. It supports two query languages, an operator-
based language AFL (similar to AML), and a SQL-style query
language AQL.

Scientific data formats

HDF5 [4] and NetCDF [5] are two widely used portable
scientific data formats. The HDF5 library provides a set of
tools to organize different arrays and their metadata, such
as particles [35] or biological images [36] in a hierarchical,
semi-structured way. Optimizing HDF5 performance on HPC
platforms is a well-studied problem; prior solutions have
explored how to tune large array processing programs to
improve I/O performance [35], [37]. TileDB proposes using
flexible tiling to address the problem of accessing sparse data
for efficient writes [27].

Array versioning

The ability to query earlier versions of a database has been
extensively studied in the context of temporal databases that
operate on two notions of time, valid time and transaction time
[38]. SQL Server supports time-travel queries on the transac-
tion time dimension to access prior states of the database [39].
Prior research has also investigated versioned array storage.
Soroush et al. propose versioned array storage to support both
querying a specific array version and extracting the history of
an array object [40]. Seering et al. use a materialization matrix
to determine which version to materialize while storing the
remaining versions as deltas [41]. DataHub [42] extends the
idea of version control to entire relational datasets for data-
intensive collaborations. Bhattacherjee et al. investigate the
trade-offs between storage size and recreation time for version-
ing techniques [43]. These versioning techniques, however, are
not integrated with HDF5 and do not reconstruct old versions
in an opaque manner for version-oblivious applications.

In situ processing

Prior research has considered how data management systems
can bypass the onerous data loading process. A non-exhaustive
list includes in situ querying of CSV files PostgreSQL [14];
symbiotically querying TIFF data with MonetDB in Data
Vaults [15]; transparent loading with ScanRAW [17]; just-

987

in-time query processing in ViDa [18]; and processing data
in the Hadoop file system [44], [45]. This prior work has
predominantly focused on read performance, and does not
consider how to efficiently materialize data in an array format.

Recent work has investigated in situ query mechanisms for
data in the HDF5 format. SDS/Q [16], [46] introduces a light-
weight relational query engine to directly process data in the
HDFS5 format, in addition to using bitmap-based indices [10],
[47] to accelerate highly-selective queries. In the context
of MapReduce, analysis frameworks have proposed querying
HDFS5 and NetCDF data directly [48], [49]. ParaView Catalyst
is an imperative analysis framework for in situ processing
and visualization of simulation data [9]. ParaView Catalyst
operates on data volumes that may be infeasible to materialize
on disk. In contrast, a core assumption behind ArrayBridge
is that the data of interest are already materialized on disk.
ArrayBridge supports analyses that cannot be performed in situ
because of their complexity, such as array join processing [50]
and similarity-based joins [51].

Beyond file-centric interfaces

ArrayBridge uses the HDFS5 file format for interoperability
between declarative and imperative analyses in a file-centric
HPC pipeline. Tighter integrations between imperative and
declarative analysis kernels are feasible. Weld proposes a com-
mon intermediate representation to optimize across disjoint
libraries without materializing data on disk [52].

IX. CONCLUSIONS AND FUTURE WORK

Querying massive binary arrays in HDF5 format from SciDB
or TensorFlow requires is a multi-hour format conversion
process, even if it is done in parallel. ArrayBridge lets sci-
entists run SciDB and TensorFlow queries over multi-TiB
array datasets in the HDF5 format without performing any
data conversion. In addition to fast scans, ArrayBridge can
materialize objects in the HDF5 format nearly as efficiently
as SciDB serializes its database in its proprietary binary format
for backup. For backwards compatibility, existing applications
access partitioned HDF5 objects as a single logical dataset
through the virtual view mechanism in ArrayBridge. Finally,
ArrayBridge efficiently stores versioned objects by dedupli-
cating unmodified chunks between versions. Past versions are
accessible via the standard HDF5 API, which enables time
travel queries from version-oblivious imperative code.

Our future work looks at workloads that use the time travel
feature of ArrayBridge extensively. Astronomical surveys such
as ASAS-SN [53] and PTF [54] are promising candidates,
as time travel queries naturally occur in the detection of
supernovae. Another promising direction is considering how to
bring the features of ArrayBridge to the cloud and the Hadoop
distributed file system. SciDB and TensorFlow can run in a
cloud environment, but many array-centric HPC applications
are not readily portable. We envision that ArrayBridge will
mediate I/O to seamlessly allow these applications to execute
in a shared-nothing environment. ArrayBridge is open source
and the code is available at: http://code.osu.edu/arraybridge

ACKNOWLEDGEMENTS

We acknowledge the contributions of Damodar Yekkuluri in
running the VPIC experiment. This work was supported in part
by a Google Research Faculty Award; the U.S. National Sci-
ence Foundation under grants I1I-1422977, I111-1464381, CNS-
1513120, SHF-1747447; the Office of Science, Office of Ad-
vanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231. This
research used resources and data generated from resources
of the National Energy Research Scientific Computing Center
(NERSC), a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

[11

[2]

[4]
[5]
[6]
[71
[8]
[9

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan,
“Ultrahigh performance three-dimensional electromagnetic relativistic
kinetic plasma simulation,” Physics of Plasmas, vol. 15, no. 5, 2008.
S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann, “HACC: Extreme scaling and performance across diverse archi-
tectures,” in SC, 2013.

“WCRP Coupled Model Intercomparison Project, Phase 5" CLIVAR
Exchanges Special Issue, No. 56, vol. 15, no. 2, 2011.

M. Folk, A. Cheng, and K. Yates, “HDF5: A file format and 1/O library
for high performance computing applications,” in SC, vol. 99, 1999.
R. Rew and G. Davis, “NetCDF: an interface for scientific data access,”
IEEE CG&A, vol. 10, no. 4, 1990.

Z. Zhao, “Automatic library tracking database
https://www.nersc.gov/assets/altdatNERSC.pdf, 2014.
P. G. Brown, “Overview of SciDB: large scale array storage, processing
and analysis,” in SIGMOD, 2010.

J. Ahrens, B. Geveci, and C. Law, “ParaView: An end-user tool for large
data visualization.” Visualization Handbook, Elsevier, 2005.

N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion et al.,
“The ParaView coprocessing library: A scalable, general purpose in situ
visualization library,” in IEEE LDAV, 2011, pp. 89-96.

L. Gosink, J. Shalf, K. Stockinger, K. Wu, and W. Bethel, “HDF5-
FastQuery: Accelerating complex queries on HDF datasets using fast
bitmap indices,” in SSDBM, 2006.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al.,
“TensorFlow: A system for large-scale machine learning,” in OSDI,
2016, pp. 265-283.

R. Al-Rfou, G. Alain, A. Almahairi, C. Angermiiller, D. Bahdanau,
N. Ballas et al., “Theano: A python framework for fast computation
of mathematical expressions,” CoRR, vol. abs/1605.02688, 2016.

P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung, M. Balazinska
et al., “Comparative evaluation of big-data systems on scientific image
analytics workloads,” PVLDB, vol. 10, no. 11, 2017.

I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki,
“NoDB: efficient query execution on raw data files,” in SIGMOD, 2012.
M. Ivanova, M. Kersten, and S. Manegold, Data Vaults: A Symbiosis
between Database Technology and Scientific File Repositories. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 485-494.

S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data
analysis directly on scientific file formats,” in SIGMOD, 2014.

Y. Cheng and F. Rusu, “SCANRAW: A database meta-operator for
parallel in-situ processing and loading,” TODS, vol. 40, no. 3, 2015.
M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki,
“Just-in-time data virtualization: Lightweight data management with
ViDa.” in CIDR, 2015.

D. Robinson and Q. Koziol, “Metadata cache issues under SWMR and
their solutions,” 2013.

The HDF5 Group, “Single-Writer/Multiple-Reader (SWMR) documen-
tation,” 2015.

E. Soroush, M. Balazinska, and D. Wang, “ArrayStore: a storage
manager for complex parallel array processing,” in SIGMOD, 2011.
“SciDB reference guide,” 2016.

Q. Koziol, E. Pourmal, and N. Fortner, “RFC: HDF5 Virtual Dataset,”
The HDF Group, Tech. Rep. RFC THG 20130424.v9, December 2014.

at NERSC,”

988

[24]

[25]

[26]
[27]

[28]
[29]
[30]
[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[40]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

N. Rees, H. Billich, A. Gotz, Q. Koziol, E. Pourmal, M. Rissi, and
E. Wintersberger, “Developing HDF5 for the Synchrotron community,”
ICALEPCS, 2015.

F. Rusu and Y. Cheng, “A survey on array storage, query languages, and
systems,” arXiv:1302.0103, 2013.

“The Lustre file system,” http://www.lustre.org.

S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The TileDB
array data storage manager,” PVLDB, vol. 10, no. 4, 2016.

P. Baumann, “Management of multidimensional discrete data,” VLDBJ,
vol. 3, no. 4, 1994.

A. R. van Ballegooij, “RAM: a multidimensional array DBMS,” in
EDBT, 2004.

N. Widmann and P. Baumann, “Efficient execution of operations in a
DBMS for multidimensional arrays,” in SSDBM, 1998.

Y. Zhang, M. Kersten, M. Ivanova, and N. Nes, “SciQL: bridging the
gap between science and relational DBMS,” in IDEAS, 2011.

L. Libkin, R. Machlin, and L. Wong, “A query language for multidi-
mensional arrays: design, implementation, and optimization techniques,”
SIGMOD, vol. 25, no. 2, 1996.

A. P. Marathe and K. Salem, “Query processing techniques for arrays,”
VLDBJ, vol. 11, no. 1, 2002.

T. Shimada, T. Tsuji, and K. Higuchi, “A storage scheme for multidi-
mensional data alleviating dimension dependency,” in /CDIM, 2008.

S. Byna, A. Uselton, D. K. Prabhat, and Y. He, “Trillion particles,
120,000 cores, and 350 TBs: Lessons learned from a hero I/O run on
Hopper,” in Cray User Group meeting, 2013.

M. T. Dougherty, M. J. Folk, E. Zadok, H. J. Bernstein, F. C. Bernstein,
K. W. Eliceiri, W. Benger, and C. Best, “Unifying biological image
formats with HDF5,” Comm. of the ACM, vol. 52, no. 10, 2009.

M. Howison, K. Quincey, D. Knaak, J. Mainzer, and J. Shalf, “Tuning
HDFS5 for Lustre file systems,” in JASDS’10.

R. T. Snodgrass and I. Ahn, “A taxonomy of time in databases,” in
SIGMOD 85, 1985, pp. 236-246.

D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu,
“Immortal DB: Transaction time support for SQL Server,” in SIGMOD
’05. New York, NY, USA: ACM, 2005, pp. 939-941.

E. Soroush and M. Balazinska, “Time travel in a scientific array
database,” in ICDE, 2013.

A. Seering, P. Cudre-Mauroux, S. Madden, and M. Stonebraker, “Effi-
cient versioning for scientific array databases,” in ICDE, 2012.

A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore,
S. Madden, and A. G. Parameswaran, “Datahub: Collaborative data
science & dataset version management at scale,” in CIDR, 2015.

S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. Parameswaran, “Principles of dataset versioning: Exploring the
recreation/storage tradeoff,” in VLDB, vol. 8, no. 12, 2015.

A. Abouzied, D. J. Abadi, and A. Silberschatz, “Invisible loading:
access-driven data transfer from raw files into database systems,” in
EDBT, 2013.

D.J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, and J. Gramling, “Split query processing in Polybase,” in
SIGMOD, 2013, pp. 1255-1266.

B. Dong, S. Byna, and K. Wu, “Parallel query evaluation as a scientific
data service,” in CLUSTER, 2014.

K. Wu, “FastBit: an efficient indexing technology for accelerating data-
intensive science,” Journal of Physics, vol. 16, no. 1, 2005.

Y. Geng, X. Huang, M. Zhu, H. Ruan, and G. Yang, “SciHive: Array-
based query processing with HiveQL,” in Trustcom, 2013.

Y. Wang, W. Jiang, and G. Agrawal, “SciMATE: A novel MapReduce-
like framework for multiple scientific data formats,” in CCGrid, 2012.
J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker, “Skew-
aware join optimization for array databases,” in SIGMOD, 2015.

W. Zhao, F. Rusu, B. Dong, and K. Wu, “Similarity join over array
data,” in SIGMOD, 2016.

S. Palkar, J. J. Thomas, A. Shanbhag, M. Schwarzkopt, S. P. Amaras-
inghe, and M. Zaharia, “A common runtime for high performance data
analysis,” in CIDR ’17, 2017.

T. W.-S. Holoien et al., “The ASAS-SN bright supernova catalogue -
III. 2016,” Monthly Notices of the Royal Astronomical Society, vol. 471,
no. 4, pp. 4966-4981, 2017.

A. Rau et al., “Exploring the optical transient sky with the Palomar
Transient Factory,” Publications of the Astronomical Society of the
Pacific, vol. 121, no. 886, pp. 1334-1351, 2009.

