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ABSTRACT: Accurate prediction of the intersystem crossing rates is important
for many different applications in chemistry, physics, and biology. Recently, we
implemented the ab initio multiple spawning (AIMS) molecular dynamics
method to describe the intersystem crossing processes, where nonradiative
transitions between electronic states with different spin multiplicities are mediated
by spin−orbit coupling. Our original implementation of the direct AIMS
dynamics used the complete active space self-consistent field (CASSCF) method
to describe multiple coupled electronic states on which multidimensional
Gaussian wave packets were propagated. In this work, we improve the
computational efficiency and versatility of the AIMS dynamics by interfacing it
with the density functional theory (DFT). The new AIMS-DFT and the earlier
AIMS-CASSCF implementations are used to investigate the effects of electronic
structure methods on the predicted intersystem crossing rate constants and the
lowest triplet state lifetime in the GeH2 molecule. We also compare the rates and lifetimes obtained from the AIMS simulations
with those predicted by the statistical nonadiabatic transition state theory (NA-TST). In NA-TST, the probabilities of spin
transitions are calculated using the Landau−Zener, weak coupling, and Zhu−Nakamura formulas. Convergence of the AIMS rate
constants with respect to the simulation time and the number of initial trajectories (Gaussian wave packets) is analyzed. An
excellent agreement between AIMS-DFT and AIMS-CASSCF can be explained by cancelation of two effects: higher energy
barriers and a stronger spin−orbit coupling in DFT relative to CASSCF. The rate constants obtained with the AIMS-DFT
dynamics are about a factor of 2 larger than those predicted by the statistical NA-TST. This is likely due to the importance of the
nonlocal interstate transitions missing from the NA-TST description.

I. INTRODUCTION

Intersystem crossings (ISC), nonradiative transitions between
the electronic states of different spin multiplicities mediated by
spin−orbit coupling (SOC), are important in a variety of
different systems. Because SOC is stronger in molecules that
contain heavy elements, many metal complexes are charac-
terized by relatively fast ISCs between electronic states. For
example, ISCs play a crucial role in the deactivation process in
organometallic complexes proposed for the use in OLEDs,1

dye-sensitized solar cells,2 and other devices.3 In metal−sulfur
proteins, such as [NiFe]-hydrogenase4 and rubredoxin,5

nonradiative transitions between the electronic states of the
active sites could play important roles in catalytic activity and
electron transfer. Even in organic molecules without heavy
elements, where SOC is much weaker, ISCs can compete with
other types of excited state relaxation.6−11 Hence ISCs, along
with internal conversions and radiative processes, are central to
the photochemistry and photophysics of many different
molecular systems.12−19

The ISC rates can be calculated using two different
approaches. The time-independent approach uses statistical
mechanics and requires the knowledge of molecular properties
at few critical points on the potential energy surfaces (PESs) of

the relevant electronic states. The time-dependent approach is
based on the propagation of the classical or semiclassical nuclei
on PESs, as in molecular dynamics. One of the statistical
approaches is the nonadiabatic transition state theory (NA-
TST),20,21 an extension of the conventional single-state
transition state theory to reactions that involve multiple
electronic states. In NA-TST, the ISC rate constants are
calculated from the molecular properties at the two critical
points on PESs: a minimum corresponding to reactants and a
minimum energy crossing point (MECP), which is the lowest
energy point on the crossing seam of two spin-diabatic PESs.
To carry out the NA-TST rate calculations, the density of
rovibrational states at the reactants and MECP, as well as
interstate transition probability, must be known. The density of
states can be obtained using the rigid rotor and harmonic
oscillator models; however, more sophisticated methods can be
used. The probability of the SOC-mediated transition can be
calculated using the simple Landau−Zener (LZ) formula,22−24

the weak coupling (WC) formula25,26 that accounts for
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quantum tunneling and interference between reaction paths, or
the more complex Zhu−Nakamura (ZN) formulas.27

In the time-dependent approach, there are no assumptions
about the importance of any particular PES geometries, and the
ISC rates are obtained by averaging different reaction pathways
through nonadiabatic molecular dynamics simulations. Thus, in
addition to solving the time-independent Schrödinger equation
for electrons, the time-dependent Schrödinger equation
(TDSE) for nuclei has to be solved. In quantum dynamics,
the nuclei are treated as quantum wave packets. In general, this
requires the knowledge of full PESs due to the nonlocal nature
of quantum wave packets. Therefore, applications of quantum
dynamics are limited to small systems, for which the
multidimensional PESs can be constructed. To avoid the
construction of full PESs, in ab initio molecular dynamics
(AIMD), the electronic structure calculations are done “on-the-
fly” as nuclei propagate along the classical or semiclassical
trajectories. The most common type of nonadiabatic AIMD is
the trajectory surface hopping (TSH) method, in which a
swarm of classical trajectories represents a nuclear wave packet.
Each trajectory is propagated on a PES of the specific electronic
state. Switches (hops) between electronic states occur in a
stochastic manner with a probability dependent on the state
populations and SOC between the states.
In contrast to TSH, in the ab initio multiple spawning

(AIMS) method,28 the nuclear wave packets are represented by
the frozen multidimensional Gaussian nuclear basis functions
(NBFs). This representation ensures the locality of the wave
function, and therefore still allows the use of the “on-the-fly”
AIMD approach. The AIMS dynamics accounts for quantum
effects in a natural way: the expansion coefficients (amplitudes)
of the nuclear wave function in the basis of NBFs are
propagated by solving the TDSE. The positions and momenta
of NBFs are propagated using the classical equations of motion.
The nuclear basis set is expanded in a physically meaningful
way by adding (spawning) new NBFs in the regions of strong
interstate coupling. If no approximations are used, the AIMS
method converges to the exact solution of TDSE as the number
of NBFs increases. The AIMS method to study ISCs has been
interfaced with the GAMESS29 and MOLPRO30 electronic
structure packages.
In our previous work, we extended the AIMS method,

originally developed to describe internal conversion processes,
to ISC dynamics using the multireference CASSCF method for
electronic structure calculations.29 Multireference methods can
describe ground and excited electronic states at different
molecular geometries, including bond breaking and dissocia-
tion, in a qualitatively correct manner. However, choosing the
CASSCF active space to describe all the geometries accessible
in an AIMD simulation could be a very challenging task. Also,
the CASSCF method does not account for most of the dynamic
correlation between electrons, which could result in very
inaccurate electronic state energies, and hence in flawed
nonadiabatic AIMD simulations. In this work, we explore the
possibility of using a robust and computationally efficient DFT
method to perform the AIMS dynamics simulations. Although
DFT is a single-reference method, which can have difficulties
describing the bond breaking and dissociation processes, it has
three major advantages over the CASSCF method: (1) it
recovers a significant part of the dynamic correlation energy;
(2) it is less computationally expensive, and therefore can be
applied to larger systems and slower ISCs when used for the
AIMS dynamics simulations; (3) it is a “black box” method that

eliminates the need for constructing the CASSCF active spaces.
Here, we apply our new AIMS-DFT implementation to the ISC
kinetics and dynamics involving nonadiabatic transitions
between the lowest singlet 1A1 and triplet 3B1 states of GeH2.
We compare the AIMS-DFT and AIMS-CASSCF dynamics29

results and analyze how different electronic structure methods
affect the predicted ISC rates and excited state lifetime. In
addition, we compare the AIMS molecular dynamics results
with those obtained from the statistical NA-TST calculations
where transition probabilities between electronic states are
computed using the ZN, LZ, and WC formulas.
The paper is organized as follows. In section II, the NA-TST

and the AIMS nonadiabatic dynamics are briefly described. In
section III, the details of the NA-TST and AIMS calculations
are provided. Section IV reports and discusses the ISC rate
constants and the excited state lifetime obtained using different
statistical and molecular dynamics methods. The summary and
concluding remarks are presented in Section V.

II. THEORETICAL METHODS

A. Nonadiabatic Transition State Theory. The detailed
discussion of NA-TST can be found in our recent review.31 The
NA-TST rate constant as a function of internal energy E
is20,21,31,32

∫
ρ

ρ ε ε ε= − ⊥ ⊥ ⊥k E
h E

E P d( )
1

( )
( ) ( )

R

E

0
MECP trans

(1)

where h is the Planck constant, ε⊥ is the reaction coordinate
energy orthogonal to the crossing seam between two spin-
diabatic PESs, ρR(E) and ρMECP(E − ε⊥) are the densities of
rovibrational states of reactants and at MECP, and Ptrans(ε⊥) is
the probability of transition between the PESs. It is important
to point out that in the case of ISC, there is only one
coordinate orthogonal to the crossing seam between two PESs
with different spin multiplicities. This is contrary to the case of
internal conversion through a conical intersection, where two
such coordinates are present.31

The LZ formula,26,33 expresses the double passage transition
probability as

ε = −⊥P P( ) 1trans LZ
2

(2)
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In eq 3, HSOC and ΔG = G1 − G2 are the SOC and the
difference of the gradients of two PESs at the MECP,
respectively; μ⊥ is the reduced mass of the degree of freedom
orthogonal to the crossing seam; EMECP is the energy of MECP
with respect to the reactants. In contrast to the LZ formula, the
following WC formula accounts for quantum tunneling and
interference between reaction pathways.25,26,34
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Here G̅ = |G1G2|
1/2 is the geometric mean of the PES gradients

at the MECP, and Ai is the Airy function. On the other hand,
the ZN formulas35−37 provide more rigorous estimates for the
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transition probabilities by taking into account both tunneling
and nonlinear behavior of the potential energy curves along the
reaction path. The double passage ZN probability for a sloped
intersection can be written as

ε ψ= −⊥P P P( ) 4 (1 ) sin ( )trans ZN ZN
2

(5)

where PZN and ψ define a single passage probability and a total
phase, respectively. In contrast to the WC formula, the ZN
formulas cover all strength of spin−orbit coupling with PZN
given by
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The spin-adiabatic parameters a and b(ε⊥) together with the
phases σ, δ, and ψ are given in SI (eqs S3−S27). To obtain
harmonic frequencies at the MECP for degrees of freedom
parallel to the crossing seam, first, an effective Hessian is
constructed.31 Then the projection operator is applied to
remove the translational, rotational, and reaction degrees of
freedom. Finally, the effective Hessian is diagonalized to obtain
the 3N-7 harmonic frequencies of the crossing seam. These
frequencies are used to calculate the density of vibrational states
at the MECP. The rovibrational densities of states at the MECP
and at the reactants are calculated as convolutions of the
harmonic vibrational states density38 with the rotational states
densities.39

B. Ab Initio Multiple Spawning for ISC Dynamics. The
detailed review of the AIMS method to describe internal
conversion dynamics can be found elsewhere.28,40−42 Our
implementation to study the ISC dynamics is described in the
previous work.29 Briefly, the total wave function is a linear
combination of the products of electronic and nuclear wave
functions:

∑ ∑ψ χ γ α ϕ= ̅ ̅ ̅ ρC t R R t P t t r R( ) ( ; ( ), ( ), ( ), ) ( ; )
I k

N t

k
I

k
I

k
I

k
I

k
I

I

( )I

k

(9)

In eq 9, ϕI is the wave function of the electronic state I. The
nuclear wave function is a superposition of the frozen Gaussian
NBFs χk

I with time-dependent complex amplitudes Ck
I; k labels

NBFs, and NI(t) is the number of NBFs on the electronic state
I. The NBFs χk

I are parametrized with the time-independent
width αρk

, and the time-dependent average position R̅k
I(t),

momentum P̅k
I(t) and phase γk̅

I(t). The positions and momenta
are propagated according to the classical Hamilton equations;
the phase is propagated semiclassically. The time-independent
Gaussian width, αρk

, depends only on the type of the nucleus

and does not depend on either the NBF (trajectory) index k or
the electronic state index I.43

The following TDSE written in matrix form is solved for the
complex amplitudes Ck

I ,

∑= − − ̇ +−

≠
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The overlap of the NBFs and its time derivative are expressed
as

χ χ= ⟨ | ⟩S( )II kl k
I

l
I

(11)
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∂
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| ⟩S
t

( )II kl k
I

l
I

(12)

The diagonal matrix element, HII, is the sum of the kinetic
and potential energies of the electronic state I. The off-diagonal
elements are the effective SOC matrix elements:

χ ϕ ϕ χ χ ϕ ϕ χ= ⟨ | ̂ | ⟩ = ⟨ |⟨ | ̂ | ⟩| ⟩H H H( )IJ kl k
I

I e J l
J

k
I

I J l
J

SO (13)

Eq 13 can be simplified by using the first-order saddle-point
approximation,44

χ ϕ ϕ χ ϕ ϕ χ χ⟨ |⟨ | ̂ | ⟩| ⟩ ≈ ⟨ | ̂ | ⟩⟨ | ⟩H H R( )
k
I

I J l
J

I J k
I

l
J

SO SO C (14)

where RC is the centroid position of the product of the
Gaussian NBFs χk

I and χl
J.

We treat the electronic state components with different
magnetic quantum numbers Ms arising from the same state
with spin S as a single spin-diabatic state. This approximation
could lead to the loss or rotation invariance;31,45 however, the
effect is expected to be insignificant for the system with
relatively weak SOC considered here. To calculate the
electronic SOC matrix elements, we use the Breit−Pauli
spin−orbit operator with one- and two-electron terms.46 The
effective SOC is calculated as a root-mean-square over the
magnetic quantum numbers Ms and Ms′,

∑ ∑ϕ ϕ= ⟨ | ̂ | ⟩ = |⟨ | ̂ | ′ ′⟩|
=− ′=− ′

′

H H SM H S M
I J

M S

S

M S

S
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2

S S

(15)

If during the propagation of NBF χk
I on electronic state I the

SOC between states I and J becomes large, then a NBF χl
J on

the state J could be added (spawned). The spawning occurs
only if the dimensionless effective coupling parameter

ϕ ϕ χ χ
Λ =

⟨ | ̂ | ⟩⟨ | ⟩

−

H R

E E

( )
I J k

I
l
J

I J
eff

SO C

(16)

is larger than a predefined threshold.47 In eq 16, EI and EJ are
the potential energies of the electronic states I and J. New
NBFs are created with no initial population. The population
transfer between states occurs during the propagation of the
NBF amplitudes Ck

I (eq 10).
Population transfer between singlet and triplet electronic

states is described by the following kinetics equation:

⇄F F
k

k

3 1
1

3

(17)

where F3 and F1 are the populations of the triplet and singlet
states; k3 and k1 are the ISC rate constants. Assuming that
initially only triplet state is populated (F3(t0) = 1), the solution
of the rate eq 17 is48

τ
τ

τ= − −
−

+⎜ ⎟
⎛
⎝

⎞
⎠

F t F t k
t t

k( ) ( ( ) ) exp3 3 0 1
0

1
(18)
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where τ = 1/(k1 + k3) is the triplet state lifetime. The
population of state I is a sum of the populations from each NBF
propagated on this state (Fk

I).

∑=
=

F FI

k

N

k
I

1

I

(19)

The rate constants k1, k3 are obtained by least-squares fitting
the triplet state population F3 with eq 18.

III. COMPUTATIONAL DETAILS

In our implementation, the AIMS code propagates NBFs and
their complex amplitudes, while the GAMESS suite of
programs calculates the electronic state energies, energy
gradients, molecular orbitals and SOC.29 In this work, the
GAMESS calculations on GeH2 were performed using the
state-specific complete active space self-consistent field
(CASSCF)49 and unrestricted DFT (B3LYP)50−52 methods
with the 6-31G* basis set. In the CASSCF calculations, the full
valence active space with 6 electrons on 6 orbitals was used.
SOC was computed with the CAS-CI, and the partial 2-electron
method (HSO2P).53 In the AIMS-CASSCF dynamics, the
orbitals for CAS-CI were obtained from the state-averaged
CASSCF calculations. Because currently GAMESS is not
capable of calculating SOC with the DFT methods, in the
AIMS-DFT dynamics, SOC was obtained with the CAS-CI
method using the high-spin α-set of DFT orbitals. The CAS-CI
active space was the same as in the CASSCF calculations.
The lowest energy singlet 1A1 and triplet

3B1 electronic states
of GeH2 were included in the AIMS molecular dynamics
simulations. No spatial symmetry restrictions were imposed
during the simulations. To avoid any numerical problems with
Verlet integration of the classical equations of motion, small
time steps (0.1 fs in the region of strong coupling and 0.2 fs
everywhere else) were used. The choice of the effective
coupling parameter threshold (0.2) was dictated by con-
vergence of the 3B1 population decay with respect to this
threshold (Figure S1). It is important to note that a smaller
threshold of 0.1 was used in our previous work,29 therefore, the
CASSCF rates and lifetimes reported in two studies are slightly
different. For spawning to occur, in addition to Λeff < 0.2, the
overlap between the parent and the child NBFs must be larger
than 0.5. The widths of the Gaussian NBFs were 30 bohr−2 and
4.7 bohr−2 for the Ge and H atoms, respectively.43 Each AIMS
simulation was initialized with a single NBF on the excited 3B1

state. The initial conditions for the NBF position and
momentum were obtained from the Wigner distribution54,55

generated using the zero-point energy (ZPE) of the ground
state equally distributed between the kinetic and potential
energy.

IV. RESULTS AND DISCUSSION

The GeH2 geometries, relative energies, vibrational frequencies,
and SOC for the lowest energy singlet (1A1) and triplet (3B1)
states, as well as for the MECP, calculated with the
CASSCF(6,6)/6-31G* and UB3LYP/6-31G* levels of theory
are reported in Table 1. The bond lengths and angles calculated
with CASSCF and DFT agree well. The harmonic frequencies
predicted by DFT are slightly higher than the ones calculated
with CASSCF. The SOC values computed using the high-spin
α DFT orbitals are somewhat higher than those obtained using
the CASSCF state-averaged orbitals. The higher SOC values
are expected to increase the ISC rate constants. The energy

difference between the minima of 1A1 and
3B1 states predicted

by DFT calculations is higher by almost 2000 cm−1 compared
to CASSCF. The 1A1 to MECP energy barrier obtained with
DFT is by 2217 cm−1 higher than the CASSCF barrier. More
importantly, the 3B1 to MECP barrier predicted by DFT (1051
cm−1) is significantly higher than the same CASSCF barrier
(717 cm−1). The higher DFT barrier is expected to result in a
smaller 3B1→

1A1 ISC rate constant and a longer lifetime of the
3B1 excited state.
Figure 1 depicts how the geometry of GeH2 changes with

time in one of the AIMS simulations. For clarity, only the first
four basis functions are presented, resulting from three
spawning events. One could expect that the spawning events
would look like bifurcation points where the child basis
function is added at the point of maximum coupling and the
geometries of the two basis functions match. However, in the
AIMS method when a new basis function is added at the point
of maximum coupling, this function is propagated back in time
to the point where the spawning is initiated (coupling between
two states becomes larger than the effective coupling parameter
Λeff). This back-propagation is essential to capture the
population transfer not only after the coupling reached its
maximum, but before that moment as well. This is the reason
why the child basis functions in Figure 1 appear before the
point of matching geometries. The details of spawning
procedure can be found elsewhere.28 For all four basis
functions, the amplitude of r2 variation is larger compared to
r1 reflecting the nonequilibrium energy distribution between
these degrees of freedom. This distribution depends on the
initial conditions (positions and momenta) and is different for
each AIMS simulation (initial trajectory). In addition, the
distribution can be different for NBFs within one AIMS
simulation. For instance, NBF1, NBF2, and NBF3 have similar
angle amplitude variations, whereas for NBF4, there is less
energy in the bending degree of freedom and more energy in
the r1 stretch.
To allow the direct comparison of the AIMS-DFT and

AIMS-CASSCF results, the same number of initial NBFs
(trajectories) and simulation time were used. A total number of
48 AIMS simulations were run for 150 fs, each starting with a
single NBF on the excited 3B1 state. At time t = 150 fs, each
simulation contained on average 25 NBFs resulting in about
1200 total NBFs spawned from the 48 initial NBFs. The
population of the 3B1 excited state as a function of time is
plotted in Figure 2. The average population of the 3B1 state at

Table 1. Bond Length (r), Angle (θ), Energy Relative to the
Singlet Minimum (ΔE), Harmonic Vibrational Frequencies
(ω), Zero-Point Vibrational Energy (ZPE), and SOC
Constant for the 1A1 Minimum, 3B1 Minimum, and MECP
Geometries Calculated Using the CASSCF(6,6)/6-31G* and
UB3LYP/6-31G* Levels of Theory

1A1
3B1 MECP

CASSCF DFT CASSCF DFT CASSCF DFT

r, Å 1.621 1.609 1.564 1.559 1.541 1.531

θ, deg 92.4 90.2 118.7 119.0 132.8 136.2

ΔE, cm−1 0 0 7484 9367 8201 10418

ω, cm−1 924 941 806 811 1795 1845

1839 1880 1991 1966 2151 2177

1844 1896 2052 2063

ZPE, cm−1 2304 2359 2425 2420 1973 2011

SOC, cm−1 374 406 367 405 352 389
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each given time was calculated by averaging the populations
from all 48 simulations; the values were grouped into 2 fs bins,
and a mean value was obtained for each bin. After 150 fs,
approximately 40% of the population was transferred from the
excited state in the AIMS-DFT simulations, compared to 45%
in AIMS-CASSCF. Therefore, the population transfer rate
predicted by AIMS-DFT is slightly slower than in AIMS-
CASSCF, resulting in the slightly lower rate constants and

longer excited state lifetime. For AIMS-DFT, a first-order decay
fit with eq 18 predicts the rate constants k3 = 3.50 × 1012 s−1

(3.42 × 1012 s−1, 3.58 × 1012 s−1) for the 3B1→
1A1 transitions,

and k1 = 1.99 × 1012 s−1 (1.69 × 1012 s−1, 2.29 × 1012 s−1) for
the reverse 1A1 →

3B1 transitions. The lifetime of the
3B1 state,

τ, is 182 fs (170 fs, 197 fs). The 95% confidence intervals are
reported in parentheses; the R2 value for the fit is 0.696. The
corresponding AIMS-CASSCF values are k3 = 3.78 × 1012 s−1

(3.86 × 1012 s−1, 3.71 × 1012 s−1), k1 = 1.58 × 1012 s−1 (1.32 ×

1012 s−1, 1.85 × 1012 s−1), and τ = 186 fs (175 fs, 199 fs); the R2

value is 0.725.
The plot showing the convergence of the AIMS-DFT fitted

rate constants for the forward and backward reactions with
respect to the total simulation time is presented in Figure 3a.
For the simulation time less than 120 fs, the fitting gives the
unphysical results predicting k1 to be larger than k3. After 120
fs, k1 starts to converge, and between 145 and 150 fs, it does
not change significantly. With respect to the number of initial
trajectories (Figure 3b), the fitting provides poor results for less
than 30 initial NBFs (trajectories). The k1 constant oscillates
and sometimes even becomes negative. Only for more than 30
initial trajectories is the convergence observed. From the
analysis of Figure 3, we can conclude that the forward rate
constant k3 is predicted with significantly higher accuracy than
the reverse constant k1. To predict k1 accurately, a larger
number of longer trajectories is needed. It is important to point
out that the goodness-of-fit data only provides information
about the fitting procedure itself, and does not give an insight
into the error coming from the insufficient sampling (number
and length of trajectories). For instance, in Figure 3a, the k1
constant changes almost by an order of magnitude, but the

Figure 1. Dependence of the GeH2 geometry on time in one of the AIMS simulations. First, second, and third columns show angle θ, and the Ge−H
distances r1 and r2, respectively. Blue lines represent NBFs on the excited 3B1 state, red lines correspond to NBFs on the ground 1A1 state. The first
row depicts the spawning of NBF1 propagating on 3B1 state to produce NBF2 on 1A1 state. In the second row, NBF2 spawns NBF3 back to the 3B1

state. The third row shows another spawn of NBF1 on 3B1 to produce NBF4 on 1A1 state.

Figure 2. Population of the 3B1 state as a function of time calculated
from all 48 simulations using UB3LYP/6-31G*. Gray lines represent
the populations from individual simulations; black line is the average
population. The first-order decay fit using eq 18 is shown with the red
line. The rate constants obtained from the fit are k3 = 3.50 × 1012 s−1

for the 3B1 →
1A1 transitions, and k1 = 1.99 × 1012 s−1 for the reverse

1A1 →
3B1 transitions. The corresponding

3B1 state lifetime is 182 fs.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.8b00883
J. Phys. Chem. A 2018, 122, 3480−3488

3484



confidence interval only decreases by a factor of 2. If one is
interested in correctly predicting branching ratios that require
accurate values for both k1 and k3, the convergence analysis
must be performed to ensure the sufficient sampling. By
contrast, obtaining the rate constant for the irreversible

reaction, using the following equation = −
τ( )F t( ) exp
t

3 , is

significantly easier and requires a smaller number of trajectories
and a shorter simulation time. Figure 3b shows that the
accurate value of the rate constant, assuming irreversible ISC,
can be obtained from as little as six initial trajectories.
This conclusion is not very surprising because, by assuming

that the reaction only proceeds in one direction, one effectively
defines the asymptotic behavior of the exponent, i.e.,
population of the excited state goes to zero as time goes to
infinity. For larger systems with more degrees of freedom, a
larger number of trajectories will be required to achieve a
similar convergence of the ISC rate constants. However,
predicting the rate of irreversible ISC is still expected to require
much smaller number of relatively short trajectories.
The rate constants as functions of internal energy predicted

by NA-TST using results of the DFT calculations are presented
in Figure 4. Because the LZ formula does not account for
quantum tunneling, the probability of transition for internal
energies below MECP should be zero. However, because NA-
TST accounts for the zero-point energy (ZPEMECP = (ω1 +
ω2)/2), the actual threshold below which the LZ rate constants

are zero is EMECP + ZPEMECP. This corresponds to the
thresholds of 12429 cm−1 for 1A1 →

3B1 transition, and 3062
cm−1 for 3B1 →

1A1 transition. When transition probability is
calculated using the WC and ZN formulas, which account for
tunneling, the rate constants are nonzero even for the internal
energies below EMECP + ZPEMECP.
The internal energy averaged over all 48 AIMS trajectories is

4870 cm−1 with respect to the 3B1 minimum, and 14237 cm−1

with respect to the 1A1 minimum. These energies correspond to
the NA-TST rate constants of k3 = 2.37 × 1012 s−1, k1 = 1.73 ×
1011 s−1, and the 3B1 state lifetime τ = 393 fs, for the WC
transition probability (Figure 4). The values obtained with the
LZ transition probability are k3 = 2.16 × 1012 s−1, k1 = 1.58 ×

1011 s−1, and τ = 432 fs. The corresponding NA-TST rate
constants found with ZN formulas are k3 = 1.85 × 1012 s−1, k1 =
1.35 × 1011 s−1, and lifetime τ = 504. The AIMS-CASSCF,
AIMS-DFT and NA-TST rate constants and lifetimes are
reported in Table 2. The ISC rate constants calculated using
the ZN and WC formulas are similar in the tunneling regime,
but start to deviate from each other near the MECP. However,
all formulas predict transition probabilities approaching each
other in the high-energy limit. Keeping in mind the poor
accuracy of the LZ formula in the vicinity of MECP and the
erroneous behavior of the WC formula for moderate and strong
coupling (probability can be larger than unity), the ZN
formulas are expected to provide the most reliable transition
probabilities for the NA-TST rate calculations.
The NA-TST predicts a longer lifetime than the AIMS

dynamics, for both CASSCF and DFT. As was already noted in
our previous work,29 this discrepancy between the AIMS
dynamics and NA-TST results can be explained by nonlocal
effects: in the NA-TST, a transition between the two states can
occur only at the MECP, whereas in the AIMS molecular
dynamics, transitions occur anywhere close to the intersection
seam where the SOC between electronic states is large. In the
present nonoptimized implementation, a 150 fs AIMS-DFT
simulation starting from a single trajectory takes about 2 days
on a single Intel Xeon X5650 core. By contrast, the similar
AIMS-CASSCF simulation takes 8−10 days. The statistical NA-
TST calculations with the LZ and WC probabilities take about

Figure 3. (a) Convergence of the AIMS-DFT rate constants with
respect to the simulation time (48 initial trajectories). (b)
Convergence of the rate constants with respect to the number of
initial trajectories (150 fs simulation time). Blue and red lines
represent k3 and k1 constants for a reversible reaction (eq 18),
respectively. Dashed black line corresponds to the fit for an irreversible
reaction. Error bars represent 95% confidence interval.

Figure 4. 3B1 →
1A1 rate constant k3 and the 1A1 →

3B1 rate constant
k1 as functions of the internal energy obtained with the LZ (blue), WC
(dashed black), and ZN (red) transition probability. The plotted rate
constants are calculated with NA-TST using the DFT results. The
internal energy corresponding to k3 is relative to the

3B1 minimum; the
internal energy corresponding to k1 is relative to the 1A1 minimum.
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a minute, while the calculations using the ZN probabilities
require about 10 h.
The AIMS-DFT molecular dynamics method presented in

this work can be further improved with the more rigorous
approach to calculate the SOC matrix elements. The GAMESS
package does not have the capability to calculate SOC with
DFT. In principle, DFT-SOC can be implemented within the
formalism of the linear response time-dependent density
functional theory (LR-TDDFT).56 The studies of the ISC
dynamics using the ground state DFT, as described in this
work, are only possible for the lowest-energy states of each spin
multiplicity. In the future, we plan to develop an extension
based on TDDFT to investigate ISCs between excited
electronic states.

V. CONCLUSIONS

We described the implementation of the AIMS method to
study the ISC dynamics using the electronic properties
obtained with DFT. The population decay from the excited
3B1 to the ground 1A1 state of GeH2 was used as a test to
compare the performance of the AIMS dynamics utilizing
different electronic structure methods: CASSCF and DFT. The
rate constants for the 3B1 →

1A1 and the reverse 1A1 →
3B1

ISCs, as well as the lifetime of the 3B1 state were calculated. The
ISC rate constants obtained from the AIMS dynamics were
compared with the values calculated using the statistical NA-
TST approach. In NA-TST, the probability of transitions
between the 3B1 and 1A1 states was calculated with the
Landau−Zener, weak coupling, and Zhu−Nakamura formulas.
The AIMS-DFT dynamics predicts the 3B1 →

1A1 rate
constant k3 = 3.50 × 1012 s−1 and the reverse 1A1 →

3B1 rate
constant k1 = 1.99 × 1012 s−1. These values are very close to
those predicted by AIMS-CASSCF (k3 = 3.78 × 1012 s−1 and k1
= 1.58 × 1012 s−1). The lifetimes of the 3B1 excited state
obtained with the CASSCF-based (186 fs) and DFT-based
(182 fs) AIMS dynamics are essentially the same. We believe
that this agreement is mostly coincidental and can be explained
by the cancellation of two effects influencing the rates. While
the higher DFT energy barriers reduce the ISC rates, the
stronger DFT spin−orbit coupling increases these rates.
Compared to the AIMS-DFT dynamics, the statistical NA-
TST predicts a longer (by about factor of 2) lifetime of the 3B1

excited state. The longer 3B1 state lifetime, and the lower ISC
rates, predicted by NA-TST are likely related to neglecting the
interstate transitions away from the MECP and possibly to the
assumption of equal distribution of internal energy among
vibrational degrees of freedom. By contrast, in the AIMS
molecular dynamics, the interstate transitions can occur at
different points around the crossing seam of two PESs.
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Cheung, K.-Y.; Wang, H.; Mak, C. S. K.; Chan, W.-K. Metallated
Conjugated Polymers as a New Avenue Towards High-Efficiency
Polymer Solar Cells. Nat. Mater. 2007, 6 (7), 521−527.
(3) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer,
T. The Triplet State of Organo-Transition Metal Compounds. Triplet
Harvesting and Singlet Harvesting for Efficient OLEDs. Coord. Chem.
Rev. 2011, 255 (21−22), 2622−2652.
(4) Kaliakin, D. S.; Zaari, R. R.; Varganov, S. A. Effect of H2 Binding
on the Nonadiabatic Transition Probability Between Singlet and
Triplet States of the [NiFe]-Hydrogenase Active Site. J. Phys. Chem. A
2015, 119 (6), 1066−1073.
(5) dePolo, G. E.; Kaliakin, D. S.; Varganov, S. A. Spin-Forbidden
Transitions Between Electronic States in the Active Site of
Rubredoxin. J. Phys. Chem. A 2016, 120 (43), 8691−8698.
(6) Richter, M.; Marquetand, P.; Gonzaĺez-Vaźquez, J.; Sola, I.;
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