
Optimizing Shape Complementarity Scoring Parameters for
Recognition of Authentic Protein Crystal Packing Arrangements

Jeffrey A. Bennett and Christopher D. Snow*

1370 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523-1370, United States

*S Supporting Information

ABSTRACT: The prediction of protein crystal packing
arrangements and the de novo design of new crystal forms
are notoriously challenging problems. For both problems, it is
useful to enumerate high quality packing arrangements. To
efficiently enumerate candidate crystal forms, we have adapted
grid-based fast Fourier transform strategies first developed in
the context of protein docking algorithms. To maximize
performance of the grid-based, shape-complementarity scoring
scheme, we have optimized parameters for the recognition of
authentic protein crystal packing arrangements. To this end, extensive calculations were performed to assess a wide range of grid-
representation parameter spaces for a panel of low-solvent protein crystals. The optimum parameters obtained from the
computations successfully identify authentic protein crystal packing arrangements out of large pools of similar decoy packing
arrangements.

1. INTRODUCTION

1.1. Motivation. Predicting crystal structures from
molecular shape is a longstanding scientific challenge, and a
solution would find applications in structural biology and
pharmacology. In the former case, predicting packing arrange-
ments could prove useful for structure determination via
molecular replacement algorithms. In the latter case, the
method might be adapted to predict crystal structures of small
molecules such as pharmaceuticals. Pharmaceutical molecules
frequently can crystallize into multiple arrangements (poly-
morphs) that can have very different pharmacokinetic proper-
ties.1

However, our current goal is not the prediction of packing
arrangements for a specific sequence. Instead, our goal as
protein engineers is to facilitate the design of novel protein
crystals. For most applications that could use protein materials
such as catalysis, separations, and light harvesting, fine control
over the nanostructure of the material is useful and highly
desirable. Pore size is an especially important feature to control
since pore size is highly correlated to the mass transfer
properties of the material.2−4

In the pursuit of designed protein crystals, “designability” is a
key criterion.5 To identify feasible packing arrangements, it
would be very helpful to have an algorithm capable of efficiently
generating realistic protein crystal packing arrangements.
Candidate new crystal forms are more likely to be designable
if they feature protein−protein interfaces with significant shape
complementarity. Given high quality candidate crystal packing
arrangements, crystal designers could proceed to use computa-
tional design methods5−7 or alternative strategies such as
surface entropy reduction.8,9 Other factors being equal, crystals
with low solvent fraction may be preferable design targets

because protein crystals with less solvent tend to exhibit
superior resolution via X-ray diffraction.10 Dehydration
postcrystallization can also improve diffraction resolution.11−13

Given the need to efficiently search through possible packing
arrangements with high net shape complementarity, we adapted
grid-representation methods that were originally developed for
shape-based protein docking.14 The free parameters for the
algorithm (that control the grid representation of the protein
building blocks) were trained to recapitulate protein crystals
with dense packing arrangements.

1.2. Grid Representations of Protein Shape. This paper
adapts a method originally outlined by Katchalski-Katzir14 and
refined by Gabb15 to derive a three-dimensional (3D) grid
representation for rigid protein building blocks. The algorithm
should apply equally well to monomeric or oligomeric building
blocks. However, for the cases presented here, the building
blocks consisted of individual protein monomers.
Each protein was embedded on an N × N × N grid

corresponding to a box around the protein, with nodes every η
Å in each dimension. Values were assigned to each discrete grid
point based on how close the grid point was to the nearest
protein atom (Figure 1). A grid point was defined as inside the
protein if the distance is less than r, to any atom in the protein.
The value for these interior grid points was set to ρ (a large
negative number). Grid points well outside the protein (more
than r + t Å from the nearest protein atom) were set to 0.
Finally, the surface layer grid points that are more than r Å from
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the closest protein atom, but less than r + t, were set to δ (a
small positive number).
A second copy of the protein (the ligand in the original

docking literature) receives the same treatment, but ρ and δ are
set to different values, ρ is usually set to 1, and δ is set to 0. This
grid construction scheme ensures a discrete correlation score of
0 when the proteins are not in contact, a favorable positive
correlation when only the surface layer of the receptor overlaps
with the ligand, and an unfavorable negative correlation if the
proteins interpenetrate. Negative scores arise from the negative
“core” receptor grid points (ρ < 0) multiplied with the positive
ligand grid points (ρ > 0) leading to a negative value penalty for
the core−core overlap. In this way, an N × N × N overlap
correlation map can be produced that contains the score for
each relative displacement of the ligand protein with respect to
the receptor protein in the defined grid space. The correlations
for translations of the ligand protein can be quickly calculated
using the discrete fast Fourier transform (DFFT).14,15 Notably
DFFT calculations can be readily accelerated using graphics
card (GPU) calculations. Our Python/numpy-based code uses
the pycuda module for GPU acceleration.16 To sample different
rotations, the process of grid generation and DFFT can be
repeated.
Our ultimate application, identifying crystals that could be

designed via surface mutations to the building block proteins
warrants one notable change. Specifically, each protein has its
side chains truncated to α and β carbons (proline residues also
retain the γ carbon). The intent is to trim the most dynamic
portions of the building block protein. Removing these groups
will likely increase the difficulty of finding docking parameters
that can successfully recapitulate the experimental crystal
packing. However, parameters tuned to identify realistic
packing arrangements without explicit surface side chains will
be more useful for de novo protein crystal design.
1.3. Searching Alternative P1 Crystal Structures. The

scoring map produced above provides a rapid lookup of the
score for two monomers given a relative displacement on the

grid. As is, this “base” map is suitable to score the interactions
between exactly two protein monomers. To rapidly assess
prospective crystals, we must account for the relative
interactions between all neighboring monomers defined by the
crystal packing arrangement.
The triclinic P1 crystal space group is fully defined by three

basis vectors (nine degrees of freedom) that specify the unit cell
(Figure 2). Our convention was to represent possible P1 crystal

forms as a decision tree (Figure 3). The first decision is the
orientation of the initial monomer M0 (three degrees of
freedom). For M0 rotations we use a precalculated uniform
sampling of the 3D rotation group SO(3), calculated by
Yershova.17 As the translation of M0 with respect to the
Cartesian origin is arbitrary, M0 is placed at the origin (Figure
4A). The second decision is where to place monomer M1 along
the x-axis (one degree of freedom) (Figure 4B,C). Third, M2 is
placed in the xy-plane (two degrees of freedom) (Figure 4D,E).
Finally, M3 is placed in xyz-space (three degrees of freedom)
(Figure 4F,G). Together these choices yield a search tree for P1

Figure 1. Katchalski-Katzir parameters for grid representation of a
single atom center.

Figure 2. Notation for triclinic cell placements. A single copy of the
protein building block (M0) is placed at the origin with a specified
orientation. Then, M1 is placed along the x-axis. Next, M2 is placed in
the x−y plane. Finally, M3 is placed in all three dimensions.

Figure 3. P1 crystal scoring decision tree.
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crystals (Figure 3) with a maximal docking complementarity
score. All nine degrees of freedom for a P1 crystal are retained.
This selection process defines the unit cell for the crystal, and

all remaining symmetry copies in the crystal can be obtained as
linear combinations of the translation vectors (v1, v2, v3) used
for M1, M2, and M3. At this point, the three angles (α, β, and γ)
for the triclinic parallelepiped are also defined. If the
parallelepiped height is small compared to the size of the
protein building block, it is possible that M0 could interact with
symmetry copies that originate in unit cells that are not
adjacent to the central unit cell enclosing M0. In other words,
since the basis vectors are not orthogonal there could be
symmetry copies that have a small Cartesian distance to M0 but
a large taxicab distance. For example, six translation steps are
required to reach 3 v1 − 3 v3, but this position could be close to
the origin. It is difficult to devise an efficient crystal search
algorithm that includes all possible linear combinations.
Instead, we adopt a simple strategy as necessary to ensure
that all Cartesian neighbors of M0 are housed within
neighboring unit cells. Specifically, we apply a distance cutoff
(e.g., 80 Å) when selecting possible v1, v2, and v3 to eliminate
crystal forms in which M1, M2, or M3 is overly distant from M0.

2. METHODS

2.1. Crystal Packing Scoring. The crystal packing calculation
starts with a discrete grid mapping of the input protein coordinates.
Conversion to a grid representation relies on several parameters: grid
(grid resolution in Angstroms, here 2 Å), N (number of nodes along
one axis, here 128), r (radius in Å from each atom to be counted as
protein interior), t (surface layer thickness in Å), ρ (core grid point

value), and δ (surface grid point value). Parameters r, t, ρ, and δ were
allowed to differ between the receptor and the ligand monomers when
creating the map. For each varied parameter combination, a DFFT
calculation was performed to produce a map that contains interaction
correlation score versus relative ligand monomer placement
coordinates in grid space. Using this base correlation map, we can
evaluate candidate crystal packing configurations.

To score a crystal configuration, we must calculate the score for M0

interacting with each contacting neighbor. This score will be 2-fold
larger than the lattice energy of the crystal. For each successive
monomer, a composite map for the placement energy can be created
using a linear combination of transformed copies of the base
correlation map. For the P1 space group, these transformations are
limited to translational shifts and reflections (annotated code is
presented in the Supporting Information). For example, the score for
placing M1 in the P1 crystal lattice is the sum of placing a monomer at
v1 and at −v1. We therefore prepare a “PickM1” array that includes the
consequences of placing both monomers. The score for M2

placements is similarly calculated with a PickM2 array that places
monomers at v2, −v2, v1 + v2, v1 − v2, −v1 + v2, and −v1 − v2. When
building the PickM2 array, M1 has already been placed earlier in the
decision tree, resulting in v1 being constant for that layer of the
decision tree. The last decision, M3 placement, is modeled as the
addition of 18 new monomers. Once these maps have been created the
energy implications for placing a monomer at a certain grid position
can simply be read off the grid element corresponding to that position.
The total energy for the crystal is therefore the sum of placing
monomers according to the three maps, PickM1, PickM2, and PickM3,
given the full crystal definition v1, v2, v3.

The description above has been simplified for clarity. Real crystals
extend beyond a 3 × 3 × 3 unit cell block; the placement of monomer
M1 also induces symmetry copies at 2 v1, −2 v1, 3 v1, −3 v1, and so on.
So long as the unit cells are not thin with respect to the building block

Figure 4. P1 crystal construction decision tree (A). Place M0 with a specific orientation and calculate the base scoring array (B). Calculate top
scoring M1 grid displacement positions. (C). Place M1 at a trial position along the x-axis and add induced symmetry copies. (D). Given the current
M0 and M1 positions calculate the top scoring M2 grid displacement positions. (E). Place M2 at a trial position in the xy-plane and add induced
symmetry copies. (F). Given the current collection of monomers induced by the previous M1 (v1) and M2 (v2) decisions, calculate the top scoring
M3 grid displacement positions. (G). Sample top scoring M3 placements from the pickM3 array, each of which fully defines the P1 crystal. As
necessary, additional branches of the decision tree can be sampled to consider alternative crystal packing arrangements.
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protein, we have found that it is feasible to truncate this series, thereby
limiting the modeled extent of the crystal to the unit cells that are
(taxicab distance) neighbors of the central unit cell. For the illustration
in Figure 4, the ±1 terms and ±2 terms were included, so the final
model of the crystal includes 125 unit cells (53).
2.2. Parameter Set Scoring Calculations. For each of the 20

dense protein crystals in the training set (PDB codes: 1fw9, 1itx, 1lzn,
1qng, 1rfs, 1sn7, 1tt8, 1v7s, 1xcj, 1zvj, 2f4a, 2f4g, 2vb1, 2vt1, 3lpa, 3lpc,
3lzt, 4itk, 4lzt, and 4nuh), we identified the nearest discrete grid
representation to the authentic crystal structure (v1

WT, v2
WT, and

v3
WT). Then, for each candidate parameter set we stored the scores for

the local solution space around the discretized wild-type crystal
solution. Specifically, the P1 wild-type grid solution was varied ± one
grid node, (2 Å), along the x, y, and z-axes for each of the three basis
vectors. The perturbations result in numerous (39 = 19683) decoy
solutions per parameter set per protein. Decoy crystalline packing
arrangements represent relatively subtle variations of the authentic
packing arrangement found in the experimental crystal structure.
Notably, M0 was left in its original orientation, so that recapitulating
the wild-type solution is reduced to giving v1

WT, v2
WT, v3

WT the top
rank. Scores for all 19 682 perturbed packing arrangements were
recorded and compared to the score for v1

WT, v2
WT, v3

WT.
The parameter space that was searched varied (independently) the

receptor and ligand r = [1.2, 1.5, 1.8, 2.1, 2.4], the receptor t = [1.0,
1.5, 2.0, 2.5, 3], the receptor ρ = [−200, −30, −15, −10, −5], and the
receptor δ = [0.5, 1, 1.5, 2, 4]. This parameter space resulted in 55

parameter combinations. The total number of local search calculations
was 55 parameter sets times 20 dense proteins resulting in 62 500
different combinations of protein and parameter set to test. These
calculations required approximately 9.65 CPU-years, running on ∼115
cores in a computer cluster for about a month. The speed of the
algorithm calculation was increased in exchange for increased memory
load by caching some of the partial maps in memory instead of
reapplying array transformations. Caching reduced the time spent in
the inner loop of the decision tree (varying v3 with fixed v1 and v2)
from 9.1 to 6.7 s.

3. RESULTS

3.1. Scoring Parameter Sets. The primary goal of this
study was to identify the most favorable parameter set for
converting protein structure coordinates into a grid representa-
tion. For a parameter set figure of merit, we determined the
rank for the v1

WT, v2
WT, v3

WT solution in comparison to the
19 682 other decoy solutions. Ideally, the wild-type grid
solution would correspond to a local energy minimum, as it
is derived from the native crystal structure. The score (lower is
better) given to each parameter set for each protein was the
number of decoy crystal candidates that ranked above the wild-
type grid solution. We output the ranking scores for all
parameter sets and sorted the parameter sets by the median
number of scores for each of the 20 training set proteins.
We observed several trends in the top scoring sets (Table 1).

Favored parameter sets had a larger r value and a more negative
ρ. These parameter values correspond to a smoother protein
surface that strongly rejects core overlap. To test the favored
parameter combinations, the calculation was repeated on a

different set of dense protein crystals (PDB codes: 1pwl, 1t41,
1vbw, 2gzr, 3q8j, 4kdw, and 4qvr) to see if the previous
parameter combinations could still discriminate between the
authentic crystal form grid solution and the perturbed decoys.
The optimum parameters also performed very well for the test
set of proteins.

4. DISCUSSION

4.1. Overview. We were somewhat surprised that several
parameter sets successfully ranked the wild-type grid solution as
the best possible solution among similar decoy crystals. As
shown in Table 1, six out of seven test proteins were ranked
perfectly. This is more striking given the use of truncated
monomer models in the creation of the initial correlation map.
The high reliability of the parameters when scoring local
solution space suggests that the protein−protein interfaces
found in dense P1 crystals are indeed in a local free energy
minima; surface complementarity scores could not be improved
through 2 Å perturbations of the protein crystal packing
arrangement. It is currently unknown if the solution space
remains smooth as it moves further from the wild-type crystal
solution.
One illuminating test protein, 4kdw, did not score as well as

the other test proteins. The packing arrangements that ranked
more favorably were more tightly packed than v1

WT, v2
WT, v3

WT.
Upon inspection of the native 4kdw crystal structure we noted
numerous interfacial calcium ions. These calcium ions
(heteroatoms in the PDB model) were not included when
deriving the Katchalski-Katzir/Gabb grid representations.
Therefore, we attribute the less compact wild-type packing
arrangement to the presence of the interfacial calcium ions.

4.2. Outlook. We suggest that the top parameter sets
(Table 1) identified in our thorough search of grid parameter
space will be useful for recognition of authentic protein crystal
packing arrangements. The ability to enumerate realistic
packing arrangements will be useful for efforts toward de novo
prediction of protein crystal packing or in the identification of
feasible packing arrangements for de novo protein crystal design.
For some applications it may prove helpful in the future to
reoptimize the grid generation parameters for finer grid
resolution (e.g., 1 Å grid spacing). To enable a fully unbiased
search of possible crystal packing arrangements we are currently
working to generalize the crystal-building algorithm to other
chiral space groups.
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A Python script that evaluates the shape complementar-

ity score for a 3 × 3 × 3 unit cell block, for 19 682

Table 1. Test Protein Performance for Top Parameter Sets

ligand parameters (LP) and receptor parameters (RP) # decoy crystals ranked above authentic crystal net parameter set performance

LP r [Å] RP δ RP ρ RP t [Å] RP r [Å] 1pwl 1t41 1vbw 2gzr 3q8j 4kdw 4qvr median rank mean rank

2.4 0.5 −200 1 2.4 0 0 0 0 0 4 0 0 0.57

2.4 1 −200 1 2.4 0 0 0 0 0 4 0 0 0.57

2.4 1.5 −200 1 2.4 0 0 0 0 0 4 0 0 0.57

2.4 2 −200 1 2.4 0 0 0 0 0 4 0 0 0.57

2.4 4 −200 1 2.4 0 0 0 0 0 6 0 0 0.86
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perturbed crystal packing arrangements similar to the
experimental solution (PDF)
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