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Stain Formation on Deforming Inelastic Cloth
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Abstract—We propose a novel approach to simulating the formation and evolution of stains on cloths in motion. We accurately capture
the diffusion of a pigmented solution over a complex knitted or woven fabric through homogenization of its inhomogeneous and/or
anisotropic properties into bulk anisotropic diffusion tensors. Secondary effects such as absorption, adsorption and evaporation are
also accounted for through physically-based modeling. Finally, the influence of the cloth motion on the shape and evolution of the stain
is captured by evaluating the inertial (e.g., centrifugal and Coriolis) forces experienced by the solution. The governing equations of
motion are integrated in time directly on a deforming triangle mesh discretizing the inelastic cloth for efficiency and robustness. The
deformation of the cloth can be precomputed or integrated through simplified two-way coupling, by using off-the-shell cloth simulations.
Finally, numerical experiments demonstrate the plausibility of our results in practical applications by reproducing the usual shape and
behavior of stains on various fabrics.

Index Terms—Cloth animation, inhomogeneous and anisotropic cloth material, stain formation, deforming surfaces.
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1 INTRODUCTION

D ESPITE the large number of physically-based methods
for both cloth animation and fluid simulation, very

limited effort has been devoted to the simulation of stain
formation on cloth in motion: the complexity in accounting
for inertial forces and anisotropic effects that the absorption,
adsorption, and diffusion of a liquid solution on knitted or
woven textiles involve has thwarted the efficient simulation
of such phenomena. However, with the rapid improvement
in computing power and the advent of virtual worlds,
simulating the formation and evolution of stains on moving
cloth could have a wide range of applications in computer
games, special effects in movies, digital arts, and augmented
reality.

Stains on fabric, textile, or even paper are formed when
a pigmented fluid such as ink, wine, or water gets into the
fibers of the medium, starting a process of diffusion, ab-
sorption, adsorption, and evaporation. The solution, which
forms stains, consists of solute and solvent, typically, pig-
ment particles and water/alcohol respectively. When a drop
of such solution falls on the surface of cloth, it begins
to spread throughout the cloth involving the macroscale
motion of the liquid and the diffusion of both solute and
solvent. Water will evaporate into open air, in the cells with
non-zero solvent density. The solution can enter the space in
the fabric, i.e., become absorbed. The solute and sometimes
the solvent can also form a thin layer adhered to the surface,
i.e., becomes adsorbed. Since knitted or woven cloth mate-
rials are often highly anisotropic and inhomogeneous, the
evolution of a stain in time depends heavily on the pattern
of threads or yarns of the textile. Moreover, the motion of the
cloth itself can have a dramatic effect on the stain formation:
inertial forces (be they centrifugal or Coriolis) that the fluid
experiences will bias the propagation of the stain, adding
further complexity to the phenomenon.

• S. Liu is with the School of Computer Science and Technology, Tianjin
University, Tianjin, China. E-mail: lsg@tju.edu.cn

• X. Wang and Y. Tong are with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI, 48824.

Manuscript received Feb 14, 2017.

We present a simple physically-based approach to cap-
ture the evolution of a fluid density (i.e., stain) over a
moving and deforming cloth. Using homogenization theory,
we construct the bulk anisotropic diffusion tensor based
on the composition and the weaving pattern of the fabric.
The resulting diffusion tensor is mapped onto the cloth
by specifying the local alignment of the fabric. The fluid
motion is then calculated directly on the mesh by storing the
velocity field as a tangent vector field. The velocity field is
influenced by the movement of the deforming cloth through
locally estimated inertial forces. Interactions between stain
and textile including absorption, adsorption and evapora-
tion are also modeled by keeping track of the density fields
of various components of the solute and solvent. Our ap-
proach generates realistic visual simulation of stains, which
we demonstrate by showing complex stain evolutions on
deforming cloth made of a variety of inhomogeneous and
anisotropic materials.

1.1 Related Work
Stain formation relates to many research efforts in computer
graphics. We briefly cover the most relevant works here to
motivate our technique and its various components.

Ink simulation over planar fibrous medium. Over the
years, researchers have developed numerous efficient tech-
niques for 3D fluid simulation in graphics [1]. Recently, re-
duced models for fluid simulation on surfaces have received
increased attention due to their efficiency compared to a
full-blown simulation of the 3D Navier-Stokes equations. In
particular, work has been dedicated to simulate watercolor
painting and Chinese ink painting, both of which involving
diffusion of pigments in paper. Curtis et al. [2] simulated
watercolor effects such as dry-brushing, intentional back-
runs, and flow patterns. Kunii et al. [3], [4] modeled the
interactions between ink and paper with partial differential
equations, which are essentially Fick’s law of diffusion.
Chu et al. [5] simulated ink dispersion in absorbent paper
by solving the lattice Boltzmann equation. Van Laerhoven
et al. [6], [7] presented a physically based technique for
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(a) without fictitious force (b) without Coriolis forces (c) all inertial forces

Fig. 1: Stain on a bunny rotating around a vertical axis.

creating images with watery paint in real time. Simulating
Chinese calligraphy and Chinese landscape painting based
on ink diffusion on paper has also been proposed by various
researchers [8]–[12]. Morimoto et al. [13] presented a method
for visualization of cloth dyeing. However, their method
focused on simulating the dyeing process, and is not suited
for the stain formation on textile surfaces. Liu et al. [14]
proposed a simulation of stains on flat anisotropic media, in-
cluding a simplified treatment of diffusion, infiltration, and
evaporation. Liu and Chen [15] presented an extension for
simulating hand-painted printing patterns on cloth based on
the physical process of the ancient folk handicraft. While all
these methods can generate realistic simulation of pigment
distributions in flat 2D domains, they often use no or very
simplified fluid advection, and cannot be directly extended
to model stain evolution on moving and deforming cloth.

Fluid and droplet simulation on curved surfaces. Fluid
motion on non-flat surfaces was simulated by Stam [16]
through the use of 2D parameterization, which can in-
duce noticeable artifacts. Intrinsic (i.e., parameterization-
free) methods were later proposed to simulate surface flows
directly on triangle meshes [17]–[20], and a model-reduced
approach based on eigenvector bases has been recently
offered as well [21]. Auer et al. [22] leveraged the Closet
Point Method (CPM) to numerically approximate the wave
equation and the incompressible Navier-Stokes equations
on arbitrary surfaces in realtime on GPU. Wang et al. [23]
presented a technique to simulate shallow water equations
on the surfaces, targeting surface tension driven effects, after
introducing a simulation of water drops on hydrophobic
or hydrophilic leaves [24]. Zhang et al. [25] offered a fast
Lagrangian method for such droplet simulations using tri-
angle meshes to represent the drops, while Jung and Behr
[26] introduced GPU-based real-time simulation of droplet
flows. Finally, Djado et al. [27] simulated the motion of wa-
ter drops on a surface, realistically capturing condensation
on a surface or human sweating in real time.

Treatment of fields on non-flat surfaces was also studied

extensively in geometry processing. For example, de Goes
et al. [28] introduced a representation of arbitrary 2-tensor
fields on triangle meshes. Azencot et al. [29] proposed a
novel discretization for the covariant derivative of vector
fields on discrete surfaces with various appealing proper-
ties. Liu et al. [30] presented a unified discretization of the
covariant derivative that offers closed-form expressions for
both local and global first-order derivatives of vertex-based
tangent vector fields on triangulations. Clarenz et al. [31]
provided a multi-scale method in surface processing by
incorporating anisotropic diffusion equations. Singer and
Wu [32] presented vector diffusion maps, an algorithmic
and mathematical framework for analyzing data sets, where
scalar affinities between data points are accompanied by
orthogonal transformations. Diamanti et al. [33] designed
N-PolyVector fields, including their topology, parallel trans-
port, smoothness and singularities, with complex polynomi-
als. Recently, Ren et al. [34] presented an efficient simulation
approach reproducing sophisticated surface flow phenom-
ena based on the shallow-water equations.

Flows on deforming surfaces. Recently, flow simulation
on moving surfaces has started to emerge. For instance,
Angst et al. [35] proposed a method for wave simulations on
deforming meshes, while Neill [36] developed a framework
for simulating fluid flows on deformable surfaces, where
only the average acceleration of the underlying surface is
considered for the calculation of inertial forces. Hegeman
et al. [37] presented an approach to solving Navier-Stokes
equations on surfaces based on the unique properties of
conformal cube maps. Jeong and Kim [38] also introduced a
combustion model of heat transfer and fuel consumption for
the propagation of a fire front on a point cloud surface. They
proposed angular Voronoi weights for a discrete Laplace-
Beltrami operator that shows better isotropic diffusion on
inhomogeneous point clouds than the cotangent or moving
least-squares schemes. While all these methods treat curved,
deforming surfaces composed of either homogeneous or
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isotropic media, they do not account for the full inertial
effects of the surface motion, and are thus not directly
applicable for stain formation on moving surfaces with
inhomogeneous and anisotropic materials.

Dealing with inhomogeneous and anisotropic materials.
In order to efficiently handle highly inhomogeneous and/or
anisotropic materials without having to capture the mi-
croscopic features of a medium, homogenization theory
[39], [40] offers various ways to replace the microscopic
structures by an effective locally homogenous material with
similar macroscopic properties. In particular, Owhadi et
al. [41] proposed a general homogenization technique which
optimally simulates the macroscopic effect of an elliptic
equation in divergence form with highly varying micro-
scopic material properties. This idea was extended to deal
with elasticity homogenization to approximate deformable
objects made of arbitrary fine structures of various lin-
ear elastic materials with a dynamically-equivalent coarse
model [42] (see also [43] for a localized homogenization
technique). We adopt this class of homogenization methods
in our approach for efficiency.

1.2 Contributions

We offer a complete simulation pipeline for the simulation
of fluid-induced stain formation and evolution on deform-
ing inelastic cloth with inhomogeneous and/or anisotropic
material properties such as weaving patterns. The complex
time evolution of the pigment density over the cloth is
computed through a mixed explicit-implicit integrator us-
ing a multistep splitting method. Figure 2 illustrates an
overview of our pipeline: we preprocess the inhomogeneous
(and possibly anisotropic) cloth material through homoge-
nization to get effective diffusion tensors; we then specify
material properties directly on a triangle mesh representing
a discretization of the cloth; the fluid motion is computed
in a splitting fashion as in semi-Lagrangian simulation [1],
including fluid acceleration due to inertial forces (i.e., cen-
trifugal and Coriolis forces due to the local acceleration
of the cloth) and gravity, advection, diffusion, infiltration,
adsorption, and evaporation. All steps are handled though
explicit integration, with the exception of the (parabolic)
diffusion process for which an implicit integration is used
to enforce stability. Our exposition basically follows the
flowchart of our pipeline.

The main contributions of our method include:

• a homogenization procedure for evaluating bulk
diffusion tensors of fabrics with arbitrary knitting
patterns;

• a modified anisotropic Laplacian matrix to simulate
velocity diffusion directly on curved surfaces;

• an efficient evaluation of fictitious (i.e., inertial)
forces induced by the coupling between surface and
fluid, including the Coriolis effects based on local
comoving and corotational frames;

• a framework incorporating realistic stain evolution,
including absorption, adsorption, and evaporation.

Note that many of the components of our framework are
not novel, but we adapted them for the specific application

Advection Diffusion Acceleration 

Absorption Adsorption Evaporation 

Homogenization 

Fig. 2: Flowchart of our simulation framework.

of stain simulation on deforming surfaces. Homogenization
is extensively used and tested in other contexts in physical
simulation, although not for stain formation. Anisotropic
scalar field diffusion has also been developed in various
forms, but our anisotropic velocity diffusion is novel to the
best of our knowledge. Inertial forces were also used in fluid
simulation, but the Coriolis effects have been overlooked for
corotating local frames on surfaces in existing methods. We
provided detailed explanation for absorption, adsorption
and evaporation as implementation details, but we do not
claim novelty on these procedures.

2 HOMOGENIZING BULK MATERIAL PROPERTIES

We represent fabric (or any other inhomogeneous material)
by a weaving pattern of cells for efficient simulation. As
described in [13], there are three types of cells in a textile
model including warp cell, weft cell and gap cell. Figure 3b
shows an example distribution of different cells for a swatch
of fabric (Figure 3a). A given weaving pattern determines
whether each warp (weft) cell is orientated up or down.
By changing the arrangement of warp cells and weft cells,
we can approximate the structure of textiles with different
weaving styles such as plain weave, satin weave and twill
weave. Gap cells, instead, denote the gaps among warps
and wefts. Note that the diffusion of a fluid stain can be
different between different pairs of cells. For instance, stains
over a fabric with hydrophobic fibers may diffuse quickly
between gap cells, but slowly between warp and weft cell.

Homogenization consists in establishing a bulk diffusion
tensor that effectively averages the diffusion coefficients of
the different cells on a piece of fabric—so that the overall
anisotropic diffusion of stains in the fabric is properly cap-
tured without resorting to the computationally-intractable
modeling of each individual thread. Figure 3c gives the
basic layout of an input diffusion tensor field. A 2× 2-
matrix is used to denote the diffusion property of each cell.
Each element in the matrix can be obtained according to
the layout of the cells and the diffusion characteristics of the
textile such as tortuosity and porosity. One method to obtain
the input tensor field is to use the Weisz-Zollinger model
(see, e.g., [44]), which defines five types of connectivity
based on cell positions and porosity: a) fibers in different
layers, b) perpendicular fibers in the same layer, c) fiber and
gap, d) gap and gap, and e) parallel fibers in the same layer.
The permeability (diffusion) coefficient between two textile
cells is computed as D = KdiffT , where Kdiff is a coefficient
determined by the properties of both the stain (dynamical
viscosity) and textile (porosity), and T is the tortuosity,
which can be different for different types of cell connectivity.
We allow the user to choose between specifying a pattern
of diffusion tensors, or specifying a cell pattern and D. In
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(a) Pattern. (b) Cells.
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Fig. 3: 2D homogenization: (a) Weaving pattern. Dark: Weft.
Light: Warp. (b) Cell-based approximation. (c) Layout of diffusion
tensor for one block of the period domain.

the latter case, we average the boundary permeability to
construct the diffusion tensor through

S = 1/2 [Dleft +Dright, 0; 0, Dtop +Dbottom].

The original highly inhomogeneous material property
can only be resolved with an extremely high mesh resolu-
tion. By using the homogenization theory [39], we can sim-
ulate the long-time behavior effectively and avoid the high
frequency tensor field. We assume that the material pattern
is periodic, and the user input swatch is a representative tile
of this pattern. We construct a mesh of a topological torus
with the specified tensor field. An “effective” tensor, which
produces a similar diffusion in a region containing a large
number of tiles, can then be evaluated as

Seff
ij =

1

|Ω|

∫

Ω
[S(x, y)(ei +∇fi(x, y))] · ejdxdy, (1)

where |Ω| is the total area of domain Ω, Seff is the effective
bulk diffusion tensor, S(x, y) is the diffusion tensor field, ei
(i = 0, 1) is the unit vector in i-th direction, and fi is the
solution to the following Poisson equation

∇ · [S(x, y)(∇fi(x, y) + ei)] = 0. (2)

Roughly speaking, (f1 +x, f2 +y) is a new (harmonic) pa-
rameterization of the domain, in which the diffusion tensor
is properly stretched. As suggested in [41], the heteroge-
neous multi-scale structures can be accurately simulated at
a coarse level under the assumptions of ergodicity and scale
separation by transferring bulk (averaged) information from
sub-grid scales to computational scales. The diffusion tensor
is a special case of such heterogeneous structures, and can
thus be averaged this way. In 1D, this is the same as taking
a simple harmonic mean, but in 2D, this expression has to
be evaluated numerically in general. The discretization of
Equation 2 will be discussed when we address the simula-
tion of diffusion in Sec. 3.2.

3 STAIN SIMULATION ON INELASTIC CLOTH

The motion of a solution (i.e., a solute within a solvent)
along the fibers of a fabric is governed by the restricted
Navier-Stokes equations, in which the normal velocity is
ignored; i.e., we can assume that the normal acceleration is
balanced by the constraint that the fluid stays on the surface.
We can thus express the motion as a set of partial differential
equations:

u̇+ u · ∇u = ∇ · (Sv∇u)−∇pext/ρ+ aext, (3)
σ̇f +∇ · (σfu) = ∇ · (Sf∇σf ) + If , (4)
σ̇s +∇ · (σsu) = ∇ · (Sf∇σs) + Is, (5)

Fig. 4: From left to right: layout, diffusion with original
tensor field, diffusion with effective tensor, and diffusion
with direct average tensor.

where ẋ = ∂x/∂t denotes the time derivative, u is the tan-
gential velocity field, ρ is the density of the incompressible
fluid, pext is the external pressure (ignored in our tests), aext
is the external body force (including tangential components
of the gravity and inertial forces as detailed in Sec. 4), σf
is the solvent fluid density (per unit area), σs is the solute
density, and If (Is) are the interaction terms that we will
review in Sec. 5. Aside from the solute density, the above
equations are equivalent to the generalized shallow wave
equations in [23] with σf = Hρ, where H is the height of
the solvent in the normal direction. We also assume that
the motion of the solvent is not influenced by the solute,
and that the viscosity/permeability tensors are different
for the tangent velocity field (Sv) and the densities(Sf ).
These tensors are evaluated through the aforementioned
homogenization procedure, as we assume that the fluid is
partially flowing on the surface and partially permeating
through the porous media.

As shown in Figure 2, we follow a typical splitting
method for time integration as in [1]. In each iteration, we
first compute the external forces (Sec. 4); then, we advect
the velocity and solvent and solute densities (Sec. 3.1);
next, we perform the diffusion processes (Sec. 3.2); and fi-
nally, we handle the additional interaction terms, adsorption
and evaporation (Sec. 5). For boundaries between differ-
ent weaving patterns, the effects are treated through the
accumulation of one-ring triangles, each of which belongs
to one pattern. For boundaries of the surface, we follow
no-transfer and free-slip boundary conditions, and set the
normal component of the velocity to 0 and allow the tangent
component to slip along the boundary.

3.1 Advection

Our velocity advection essentially follows the procedure
described in [36]: the surface is triangulated and the velocity
field is discretized as one 2D vector ui = (uxi , u

y
i )> per

vertex in the XY-plane of the tangent frame Fi stored at
vertex i. Fi is defined by setting the direction zi to be
the area-weighted average unit normal of the one-ring,
yi = (zi × eij)/|zi × eij |, where eij is one of the incident
edges of vertex i, and xi = yi × zi.

The key difficulty in the velocity advection is the calcu-
lation of ∇u, which, on a curved surface, is the covariant
derivative of u. It provides a way to compare ui and uj for
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adjacent vertices, since a direct differencing of the compo-
nents would not produce the true coordinate-frame inde-
pendent “vector gradient”. One approximation of ∇u is to
map the 2D tangent field to 3D through Fi for comparison;
however, much numerical diffusion would be introduced as
the edges are not infinitesimally small. Thus, we follow the
approach proposed in [36] and use a 2×2 rotation matrix
Rij to align the vector expressed in Fj to Fi. The 2× 2
rotation matrix Rij can be regarded as parallel transporting
a vector from vertex j to vertex i along the edge connecting
the two. Thus Rijuj − ui produces the covariant derivative
∇u integrated along the edge. To obtain the rotation angle
for the 2D rotation matrix, we map the 1-ring of vertex i to a
flat 2D topological disk through the geodesic polar map by
rescaling the sum of tip angles to 2π. If the local edge eik is
the chosen edge to construct Fi, the direction of the edge eij
can be represented by the angle αij that it forms with the
chosen x-axis in the 2D domain. Assuming the sum of tip
angles for all the triangles adjacent to vertex i is γi, αij is the
sum of all the tip angles of the triangles between eik and eij
in the counterclockwise order rescaled by 2π/γi. Likewise,
eji makes an angle αji with the x-axis in the local frame
of vertex j. Thus, the rotation matrix Rij can be expressed
through the angle θij = αij − αji + π, and we have:

Rij =

[
cos θij − sin θij
sin θij cos θij

]
. (6)

Following the semi-Lagrangian advection method [1] on the
surface, we first backtrack vertex i within in its flattened
one-ring using the current velocity ui by a time step h,
evaluating the barycentric coordinates (λi, λj , λk) within
the triangle tijk, and update the velocity ui by:

ut+h
i = λiu

t
i + λjRiju

t
j + λkRiku

t
k.

Note that one can extend this method to include the case
when the backtracked point is outside of the one-ring by
simply following the strip of triangles being traversed, so
there is no time step size limitation to this semi-Lagrangian
approach.

For density field advection, we use a finite-volume ap-
proach instead to enforce mass conservation of both solvent
and solute. Since σf and σs advect in the same fashion,
we use σs to illustrate the process. We discretize the solute
density by assigning a value σs,i for the Voronoi region of
vertex i, and we update it via

σt+h
s,i = σt

s,i − h/Vi
∑

j∈N(i)

Fij ,

where N(i) is one-ring of vertex i, Vi is the Voronoi region
area, and Fij is the flux through the interface between the
Voronoi regions of i and j. This flux is evaluated through

Fij = σ↑ij(uij · eij)wij ,

where uij = 1/2(uxi xi + uyi yi + uxj xj + uyj yj), with (xi, yi)

denoting the local tangent plane in frame Fi, σ
↑
ij is the

upwind density (i.e., σs,i if uij · eij > 0 and σs,j otherwise),
and wij is the usual cotan weights, measuring the ratio
between the dual Voronoi edge length and |eij |,

wij = −1

2
(cotαij + cotβij), (7)

where αij and βij are the opposite angles of eij in the two
incident triangles.

3.2 Diffusion

As our diffusion is performed directly on the curved tri-
angulated surface representing an inelastic cloth, we need
to specify the material on the mesh via a homogenized
diffusion tensor per triangle. The fabric geometry can be
specified by the weft and warp directions. Aside from
genus-1 surfaces, the surface cannot be covered by one
consistent weaving pattern, so we partition the surface into
a few patches, each with a smooth weft direction field e
that induces the warp direction as its 90◦ rotation e⊥. In
our tests, we specify these patterns manually. For more
practical designs, one may use tools such as [45]. We delay
the discussion on how to calculate these fields to the end of
this section, since it is essentially using the same discretized
operators involved in the diffusion process. The main opera-
tor in this process is the modified Laplacian operator∇·S∇,
which, using a piecewise linear finite element method, can
be discretized as a linear operator LS , i.e., a matrix with
elements:

LS,ij =
∑

eij∈T

∫

T
∇φi · (ST∇φj),

where φi is the linear basis function for vertex i, and
ST = (e, e⊥)S(e, e⊥)> is the diffusion tensor aligned to
the specified direction field within triangle T . Note that for
a diffusion tensor S equal to identity, LS reduces to the
usual cotan formula as expected since it leads to a uniform
isotropic diffusion.

In order to remove stringent constraints on time step
sizes, temporal discretization of the diffusion process is
performed using an implicit integration,

M(σt+h − σt)/h = LSσ
t+h,

where M is the mass matrix with Mij =
∑

eij∈T
∫
T φiφj ,

which is often simplified through mass lumping to become
just a diagonal matrix with Mii being one third of the one-
ring area for vertex i. Thus, the above diffusion process is
turned into a linear system: (M + hLS)σt+h = Mσt.

The diffusion process of the velocity field involves the
covariant derivative ∇u as the one described in the ad-
vection process. However, using the same discretization of
covariant derivative with rotationsRij that align the tangent
vectors at vertices i and j, we can approximate the Bochner
Laplacian in the metric of Sv by replacing each entry in the
N ×N -matrix (N is the number of vertices in the patch)
LS,ij with a 2×2-matrix LS,ijRij with the term Rii set to
the identity matrix, and obtain a 2N×2N -matrix. Implicit
integration results in the following linear equations

Mii(u
t+h
i − uti) = h

∑

j∈N(i)

LSv,ij (Rij u
t+h
j − ut+h

i ). (8)

Finally, in order to obtain a smooth weft direction field
e, we simply use (at least) one user specified direction for
each patch, and solve the discretized version of the equation
∇·∇e = 0 while enforcing the user constraint(s).
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Fig. 5: The comparison shows that both translational (miss-
ing in a) and rotational (missing in a and b) inertia forces are
necessary for the comoving and corotational frames. A solid
ball is indicates the motion of the center of mass (without
diffusion) in an inertial coordinate system.

4 FICTITIOUS FORCES

An important dynamical aspect of stain formation on cloth
is the effects of inertial forces, often referred to as fictitious
forces as they do not arise from any direct physical inter-
action, but from the acceleration the non-inertial reference
frame of the cloth itself. Thankfully, we can easily evaluate
these forces from the movement of its local frames in time.

For a deforming triangle mesh, each frame Fi attached
to a vertex i is time dependent. It can be seen as a comoving
and corotating frame for the one-ring neighborhood. Similar
to [46], we compute the rotation Ui that best aligns the
original frame F̄i at vertex i to its current frame Fi (i.e., that
minimizes the difference between Fi and UiF̄i) through:

Ui = argmin
R∈SO(3)

∑

j∈N(i)

[(vj − vi)−R(v̄j − v̄i)]2,

where SO(3) is the set of all 3D rotations, vi and v̄i are
respectively the current and original locations of vertex i.
Instead of performing a polar decomposition as [46], we
directly find the minimum using the Kabsch procedure
in [47]. Assuming that the position of vertex i is pi, the
inertial force (acceleration) experienced by a moving object
at location r in the frame Fi centered at pi can be expressed
in this frame as the tangential components of

ainertia,i = −F>i p̈i − F>i F̈ir − 2F>i Ḟiṙ,

where the second term (the sum of the centrifugal force and
the Euler force) on the right hand side vanishes (since the
fluid velocity is measured at the vertex which corresponds
to r = 0), the first term is called the linear inertia force
due to the translation of the local frame, and the last term
is the Coriolis force due to the rotation of the local frame
and the local velocity ṙ = u. In mechanics and physics,
the Coriolis force, was first described by Gustave-Gaspard
Coriolis in 1835, which acts on objects that are in motion
relative to a rotating reference frame. The effects of Coriolis
force are to pull the trajectory to bend to the right for
counterclockwise rotation of the reference frame, or to the
left for clockwise rotation, in order to keep the trajectory
straight in a nonrotating inertial frame. For instance, due to
the Coriolis effects, large scale cyclones rotate in opposite
ways in the Northern and Southern hemispheres.

The total body force is given by

aext = ainertia + (g − (g ·n)n),

where g is the gravitational acceleration and n is the surface
normal.

Given the motion of the mesh stored as a sequence of
vertex locations, we can easily calculate the linear inertia
force by centered differencing,

p̈ti =
pt+h
i − 2pti + pt−hi

h2
.

As F>Ḟ for F in the rotation group SO(3) is in the
Lie algebra so(3), i.e., is an antisymmetric 3×3 matrix, we
evaluate the Coriolis force as 2 ω×(ui

0 ), where ω is found
through



0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 =

(F t)>F t+h − (F t+h)>F t

2h
,

where we antisymmetrized the first-order estimate
(F t)>(F t+h−F t)/h of F>Ḟ to get a proper antisymmetric
matrix corresponding to the cross product with the angular
velocity ω.

5 STAIN-SURFACE INTERACTION

In addition to diffusion, the solution interacts with the fabric
through penetration, adsorption and evaporation, and both
solvent and solute are involved. The solute is separated into
three parts: one dissolved in the solution, one absorbed by
the textile fibers, and the other deposited in the fibers. The
solvent is partially absorbed by the fabric fibers, and it also
partially evaporates.

For the absorption process of the solution by the fab-
ric, the penetration depth and the absorption speed can
be evaluated through the Lucas-Washburn equation [48],
which indicates that this speed is inversely proportional to
the penetration depth. We use a simplified formula with
the absorption speed dependent on how far the surface is
from becoming saturated, assuming that the surface is thin
and thus reaches the saturation capacity σsat quickly. We
calculate the absorbed solvent density σp as

σ̇p = Kp(σsat − σp),

where Kp is the absorption speed constant. We can use a
simple explicit scheme at each vertex by writing

σt+h
p = σt

p + min(Kph/(1 +Kph)(σsat − σt
p), σt

f ),

where σf is the maximum amount of solvent left to be
absorbed. We also maintain the absorbed solute density σs,p,
which evolves as

σ̇s,p = Kp(σsat − σp)σs/σf .

The absorbed solvent and solute go through the same
adsorption and evaporation process as their free flowing
counterparts, but they are assumed to be held in place and
not to be diffusing much.

Adsorption is the process in which the solute is gradu-
ally deposited into the textile fibers, making it difficult to
be dissolved again by the solvent. We model this effect via
the Langmuir adsorption theory [49], which assumes mono-
layer adsorption, so the adsorbent will not adsorb further
after the adsorbate is covered. Before reaching adsorption
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Fig. 6: The stain induced by various initial fluid velocities.

equilibrium, the adsorption rate is proportional to the area
of the blank surface, while the desorption rate is propor-
tional to the coverage. We can calculate the adsorption rate
and the desorption rate as KaVd(1−θ)C and KdVdθC resp.,
where Vd is the total adsorption capacity determined by the
material and porosity, θ denotes the coverage of the surface,
C represents the concentration of the single layer adsorbed
solute, whileKa andKd are the adsorption rate and desorp-
tion rate, respectively. When the adsorption is balanced with
desorption, we obtain the maximum adsorption capacity
Ad = VdK/(1 + K), where K = Ka/Kd. We calculate the
change of adsorbed solute σs,a as the difference between
adsorption and desorption, which is equal to

σ̇s,a = Kd(Ad − σs,a). (9)

This differential equation is explicitly discretized exactly as
in the absorption process.

Finally, we also must account for the fact that the sol-
vent in the solution evaporates. The change of the amount
of solvent is directly proportional to the surface area,
σ̇p = −Kevap, where Kevap is the evaporate coefficient.
However, the effective exposed area of the boundary cells
is greater than that of the inside cells. So the evaporation of
the boundary cell will be faster, and the above calculation
should be changed into

σ̇f = −aevapKevap, (10)

where aevap is boundary coefficient (we use 1.2 in all our
tests). Note that the amount evaporated in each step is
bounded by the total amount left.

The combined effects can be formulated as

interactf = −Kp(σsat − σp)− aevapKevap (11)
interacts = −Kp(σsat − σp)σs/σf −Kd(Ad − σs,a). (12)

We have now reviewed all the variables involved in the
entire system, including the velocity field, solvent and so-
lute on the fabric, absorbed solvent, absorbed solute, and

adsorbed solute, and all of which are updated in each time
step as we described.

6 RESULTS

We now present a series of results of our integrator of stain
evolution on inelastic cloth. We implemented our frame-
work and performed our tests on a Windows 7 system with
Intel Core i7@2.8GHz and 12GB RAM. The cloth simulation
are loaded as a dynamic sequence of meshes with fixed
connectivity. While our code is not optimized for speed, tests
ran at interactive rates, as with most other 2D surface flow
simulations.

We begin with a few tests describing the benefits of some
of te key components of our approach.

Homogenization. We tested our homogenization of the
diffusion/permeability tensor on an inhomogeneous rect-
angle. As shown in Figure 4, the homogenized diffusion
tensor produces diffusion results that closely resemble the
original tensor field, while the direct averaging of the tensor
fields in the original domain results in a completely different
stain. We used a knitting pattern to compute the tensor
field in the top row with D set to 1 for gap-to-gap, 100
for weft-to-weft, 500 for warp-to-warp, 10 for gap-to-weft,
50 for gap-to-warp, and 200 for weft-to-warp. The tensor
field in the bottom row has alternating columns of isotropic
material, one with diffusion coefficient 1 and the other 100;
in this case, the effective bulk tensor is anisotropic unlike
the average tensor, properly capturing the net effect of
generating a faster diffusion along the vertical direction.

Inertial forces. In the rotating planar region test (Fig-
ure 5), we show that without fictitious force, the fluid mo-
tion clearly fails to account for the motion of the underlying
mesh. If we only ignore the influence of rotation through
the Coriolis effects, as was often done in graphics, the fluid
still deviates significantly from the physical trajectory. When
the bunny model undergoes rigid motion (Figure 1c), our
procedure leads to realistic fluid motion, taking inertial
forces as well as gravity into account. When the underlying
surface is deforming, we can still capture the translation
and rotation of the local frames, as shown in Figures 7
and 8. In the static flag example (Figure 6), we also tested
the influence of the initial velocity (four random outgoing
velocity fields to simulate a splash) has on the stain shape.
The influence of the direction is as obvious in the deforming
flag in Figures 7a and 7b. Figure 8b shows the trail of the
fluid turning right under the Coriolis effect as compared
to the straight track in Figure 8a when only the outward
going translation inertial force is used (corresponding to
centrifugal force from the reference frame rotating at the
center of the table).

Additional tests were performed to simulate effects
when fluids are constantly added to the surface, by fixing
the solvent and solute densities in a certain region. We did
the tests for all the above experiments, and the results for
the rotating bunny with different patterns are shown in
Figure 9. By using a light textile, we can also show the effects
of the solution influencing the deformation by including the
mass and momentum of the liquid in the update for cloth
simulation. As shown in Figure 10, this simple approach
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(a) (b)

Fig. 7: Simulation on a waving flag.

is adequate for visually plausible results, although more
careful treatment of the coupling can replace it if needed.

Absorption, adsorption, evaporation, and anisotropy.
In Figure 11, we can see the necessity of absorption, ad-
sorption, and evaporation for the ring-like halo effects of
stains that are common in certain materials. The halo also
changes shape according to the anisotropy due to the textile
patterns. Stains near a corner formed by three different
textile patterns can also be handled, as shown in Figure 11d.

Effects of parameters. In the following, we assume the
use of the metric system for units. We take rather large time
steps (h between 0.01s and 0.025s) due to the stability from
the diffusion. The gravitational acceleration is 9.8m/s2. Note
the densities that we use are not the volumetric densities (for
the solvent, it is 1kg/m3) but surface densities, and they are
not considered parameters but variables. The ratio between
the maximum and minimum eigenvalues of the bulk dif-
fusion matrix in our examples can range from 1 to over 1
million. We also demonstrate the effects of the absorption
speed Kp, which controls how fast the fluid is absorbed into
the material, and σsat, which controls the capacity of the
material to hold fluids, for example, it is small for printing
paper and large for tissues. In Figure 12, we show Kp from
0.01 to 0.2, and σsat from 2 to 8. Similarly, the adsorption
parameters Kd and Ad (which is computed from some other
parameters, but in simulation, we manipulate Ad directly).
The difference on the visual results between absorption and
adsorption is that the latter only takes in the solute.

Finally, we generated a few additional examples to
show the entire process of the formation of the stain in
the accompanying video. Table 1 shows the breakdown of
computation time.

Limitations. We did not consider the possible chemical
reactions between the stain and the fabric. We did not take
into account the optical properties of stain either, which may
significantly influence the rendering of results. Our imple-
mentation is still a proof-of-concept, and there is much space
for improvement, in particular, the inertia force computation
can be parallelized in a GPU implementation. As we focus
on the framework for stain evolution, in particular the
homogenization procedure and the fictitious forces, we did
not carefully examine the dependence of discretization of
covariant derivatives on the triangulation of the surface, and
alternatives to upwinding finite-volume schemes for density
update. However, most of these issues are not intrinsic to
our framework, and can be addressed by improving certain
components in the framework.

(a) (b)

Fig. 8: Stain on a dropping tablecloth.

(a) (b)

(c) (d)

Fig. 9: Stain on a rotating bunny with different diffusion
tensors (a) and (c), and when fluid is constantly added to
the initial spot (b) and (d).

7 CONCLUSION

We have presented an efficient technique to simulate the
evolution of a liquid solution staining an inelastic fabric.
Instead of resorting to the computationally intensive direct
simulation involving large numbers of threads or yarns,
we analyze the pattern of the textile and use effective bulk
diffusion tensors on the surface to accurately capture the for-
mation and evolution of stains over highly inhomogeneous
materials. Our system handles the resulting anisotropic dif-
fusion process with a simple modification to the (Bochner)
connection Laplacian. The one-way coupling from the mesh
motion to the fluid is modeled by an accurate approximation

Name #V #F Inert Adv Diff Def
tablecloth 2.5K 4.8K 16 15 <1 NA
flag 2.5K 4.8K 15 15 <1 NA
flag(2-way coupling) 2.5K 4.8K 16 16 <1 671
Rotating cloth 10K 19.6K 94 47 <1 NA
bunny 35K 70K 359 156 55 NA
bunny(added fluid) 35K 70K 375 172 62 NA
bunny(multi tensors) 35K 70K 358 172 62 NA

TABLE 1: Statistics. From left to right: number of vertices,
number of triangles, time for inertia force computation,
time for momentum advection, time for diffusion, and time
for deformation with two-way coupling. All timings are in
milliseconds.
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(a)

(b)

(c)
(d)

Fig. 10: Waving flag with two-way coupling between solid
and fluid (a) without Coriolis force and (c) with Coriolis
force. The same stains shown on the rest shape (b) and (d).

of inertial forces (including centrifugal and Coriolis effects).
We also account for the absorption, adsorption, and evap-
oration processes, and model them as independent ODEs
for each vertex. The resulting stain simulation is visually
plausible and exhibits complex behaviors depending on the
fabric, solution, and motion of the inelastic cloth.

In the future, we wish to explore multi-layered textile
model for diffusion, the effects of possible chemical reac-
tion, two-way coupling, wetting, possible use of dynamical
texture for adding back high frequencies taken out during
homogenization, and learning parameters from real stains
on textile. Adding fictitious forces due to elastic stretching
may also be visually interesting for very specific materials.
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(a) (b)

(c) (d)

Fig. 11: Anisotropic diffusion without (a) and with (b,c) the
influence of absorption, adsorption, and evaporation. (d)
shows the behavior near a corner at three different tiling
patterns.

Fig. 12: Effects of different absorption speeds (increasing
from top to bottom) and absorption saturation densities
(increasing from left to right). Higher speed of absorption
means that the fluid is absorbed fast until it is saturated, and
the stain boundary is less blurry. Higher saturation means
that liquid stops at a shorter distance on the surface.
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Fig. 13: Effects of different adsorption speeds (increasing
from top to bottom) and adsorption saturation densities
(increasing from left to right). The effects are similar to those
of absorption, but the solvent is not adsorbed so it may carry
the remaining little solute further even when the saturation
limit is high.
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ble, circulation-preserving, simplicial fluids,” ACM Transactions on
Graphics (TOG), vol. 26, no. 1, p. 4, 2007.

[19] O. Azencot, S. Weißmann, M. Ovsjanikov, M. Wardetzky, and
M. Ben-Chen, “Functional fluids on surfaces,” in Computer Graph-
ics Forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 237–246.

[20] O. Azencot, O. Vantzos, M. Wardetzky, M. Rumpf, and M. Ben-
Chen, “Functional thin films on surfaces,” in Proceedings of the 14th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
ACM, 2015, pp. 137–146.

[21] B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun, “Model-
reduced variational fluid simulation,” ACM Transactions on Graph-
ics (TOG), vol. 34, no. 6, p. 244, 2015.

[22] S. Auer, C. B. Macdonald, M. Treib, J. Schneider, and R. Wester-
mann, “Real-time fluid effects on surfaces using the closest point
method,” in Computer Graphics Forum, vol. 31, no. 6. Wiley Online
Library, 2012, pp. 1909–1923.

[23] H. Wang, G. Miller, and G. Turk, “Solving general shallow wave
equations on surfaces,” in Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Euro-
graphics Association, 2007, pp. 229–238.

[24] H. Wang, P. J. Mucha, and G. Turk, “Water drops on surfaces,” in
ACM Transactions on Graphics (TOG), vol. 24, no. 3. ACM, 2005,
pp. 921–929.

[25] Y. Zhang, H. Wang, S. Wang, Y. Tong, and K. Zhou, “A deformable
surface model for real-time water drop animation,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 18, no. 8, pp.
1281–1289, 2012.

[26] Y. Jung and J. Behr, “Gpu-based real-time on-surface droplet flow
in x3d,” in Proceedings of the 14th international conference on 3D web
technology. ACM, 2009, pp. 51–54.

[27] K. Djado, R. Egli, and F. Granger, “Particle-based drop animation
on meshes in real time,” Computer Animation and Virtual Worlds,
vol. 23, no. 3-4, pp. 301–309, 2012.

[28] F. de Goes, B. Liu, M. Budninskiy, Y. Tong, and M. Desbrun,
“Discrete 2-tensor fields on triangulations,” Computer Graphics
Forum, vol. 33, no. 5, pp. 13–24, 2014.

[29] O. Azencot, M. Ovsjanikov, F. Chazal, and M. Ben-Chen, “Discrete
derivatives of vector fields on surfaces – an operator approach,”
ACM Transactions on Graphics, vol. 34, no. 3, pp. 29:1–29:13, 2015.

[30] B. Liu, Y. Tong, F. D. Goes, and M. Desbrun, “Discrete connection
and covariant derivative for vector field analysis and design,”
ACM Transactions on Graphics, vol. 35, no. 3, pp. 23:1–23:17, Mar.
2016. [Online]. Available: http://doi.acm.org/10.1145/2870629

[31] U. Clarenz, U. Diewald, and M. Rumpf, “Anisotropic geometric
diffusion in surface processing,” in Proceedings of the Conference on
Visualization ’00, 2000, pp. 397–405.

[32] A. Singer and H.-T. Wu, “Vector diffusion maps and the connec-
tion laplacian,” Communications on Pure and Applied Mathematics,
vol. 65, no. 8, pp. 1067–1144, 2012.

[33] O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-Hornung,
“Designing n-polyvector fields with complex polynomials,” Com-
puter Graphics Forum, vol. 33, no. 5, pp. 1–11, 2014.

[34] B. Ren, Y. T., L. C., X. K., and H. S. M., “Real-time high-fidelity
surface flow simulation,” IEEE Transactions on Visualization and
Computer Graphics, vol. PP, no. 99, pp. 1–1, 2017.

[35] R. Angst, N. Thuerey, M. Botsch, and M. Gross, “Robust and
efficient wave simulations on deforming meshes,” in Computer
Graphics Forum, vol. 27, no. 7. Wiley Online Library, 2008, pp.
1895–1900.

[36] P. Neill, “Fluid flow on interacting, deformable surfaces,” Ph.D.
dissertation, 2008.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 9, SEPTEMBER 2016 11

[37] K. Hegeman, M. Ashikhmin, H. Wang, H. Qin, X. Gu et al., “Gpu-
based conformal flow on surfaces,” Communications in Information
& Systems, vol. 9, no. 2, pp. 197–212, 2009.

[38] S. Jeong and C.-H. Kim, “Combustion waves on the point set
surface,” in Computer Graphics Forum, vol. 32, no. 7. Wiley Online
Library, 2013, pp. 225–234.

[39] A. Bensoussan, J.-L. Lions, and G. Papanicolau, Asymptotic analysis
for periodic structures. Elsevier, 1978.

[40] V. V. Jikov, O. Oleinik, and S. M. Kozlov, Homogenization of differ-
ential operators and integral functionals. Springer, 1994.

[41] H. Owhadi and L. Zhang, “Metric-based upscaling,” Communica-
tions on Pure and Applied Mathematics, vol. 60, no. 5, pp. 675–723,
2007.

[42] L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun, “Numerical
coarsening of inhomogeneous elastic materials,” in ACM Transac-
tions on Graphics (TOG), vol. 28, no. 3. ACM, 2009, p. 51.

[43] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving
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