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Abstract

Motivation: Protein pocket information is invaluable for drug target identification, agonist design, virtual
screening, and receptor-ligand binding analysis. A recent study indicates that about half holoproteins
can simultaneously bind multiple interacting ligands in a large pocket containing structured subpockets.
Although this hierarchical pocket and subpocket structure has a significant impact to multiligand synergistic
interactions in the protein binding site, there is no method available for this analysis. This work introduces
a computational tool based on differential geometry, algebraic topology, and physics-based simulation to
address this pressing issue.
Results: We propose to detect protein pockets by evolving the convex hull surface inwards until it touches
the protein surface everywhere. The governing partial differential equations (PDEs) include the mean
curvature flow combined with the eikonal equation commonly used in the fast marching algorithm in the
Eulerian representation. The surface evolution induced Morse function and Reeb graph are utilized to
characterize the hierarchical pocket and subpocket structure in controllable detail. The proposed method
is validated on PDBbind refined sets of 4,414 protein-ligand complexes. Extensive numerical tests indicate
that the proposed method not only provides a unique description of pocket-subpocket relations, but also
offers efficient estimations of pocket surface area, pocket volume, and pocket depth.
Availability: We will release the executable code upon acceptance.
Contact: ytong@msu.edu, wei@math.msu.edu

1 Introduction1

The detection of pockets on protein surfaces is a prerequisite to various2

tasks in computational molecular biophysics and bioinformatics, such as3

the determination of the binding site when one attempts to dock a ligand to4

a protein target and the study of protein functional surfaces. Automatic pro-5

cedures for potential pocket predictions have been evolving along with the6

advance in computational capability. Many methods have been designed7

for protein pocket determination and they can be classified as geometry-8

based, energy-based, sequence-based, or hybrid (Schmidtke et al., 2011).9

We review several common categories of these geometry-based methods,10

namely, probe based methods, grid based methods, Voronoi diagram based11

methods, and marching surface methods that are relevant to our approach.12

Based on the idea of rolling a probe to construct solvent excluded 13

surfaces, many probe-based methods have been introduced to detect pro- 14

tein pockets. The pockets are captured by different behaviors with different 15

probe radii. One type of such methods samples protein surfaces using many 16

small probes, and then determines pockets according to surface depressi- 17

ons (Ruppert et al., 1997; Del Carpio et al., 1993; Brady and Stouten, 18

2000). Another type of such methods uses a large probe radius to create 19

an envelope surface surrounding a protein surface, and then detect the hol- 20

low regions between the envelope and the protein surface(Yu et al., 2009; 21

Masuya and Doi, 1995; Nayal and Honig, 2006). There are also methods 22

using combinations of both types of probes (Kawabata and Go, 2007). 23

The grid based methods, pioneered by Levitt and Banaszak (1992), 24

place a protein inside a regular grid and then scan the grid in a specific 25

order to mark grid points as inside pockets if certain criteria are satisfied 26

(Hendlich et al., 1997; Venkatachalam et al., 2003; Weisel et al., 2007; 27

Hendlich et al., 1997). For instance, grid points can be labeled as not 28
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belonging to pockets either by a cube eraser Venkatachalam et al. (2003)29

or by a probe eraser Weisel et al. (2007). Kufareva et al. (2011) developed a30

grid potential to assist pocket extraction in grids. It is not only a geometry-31

based method but also an energy-based one.32

Voronoi based methods, introduced by Liang et al. (1998), have been33

proposed to compare the differences between alpha shapes and the Delau-34

nay triangulation (dual structure to Voronoi diagram) to find pockets, which35

are represented by the tetrahedra in Delaunay tessellation but not in alpha36

shapes. A new shape descriptor was later introduced to improve the overall37

efficiency of this approach (Xie and Bourne, 2007). Voronoi diagram was38

also used to detect depression regions Kim et al. (2008).39

Marching surface methods, proposed by Kleywegt and Jones (1994),40

detect pockets as isolated cavities formed by offsetting a protein surface41

along outward normals at a uniform speed. Bock et al. (2007) proposed to42

trace points on surface along outward normal direction to check whether43

it has additional intersections with the protein surface, based on which44

protein surface regions are labeled as pocket or non-pocket.45

There are multifunctional tools such as Castp:3.0 (Dundas et al., 2006)46

and FPocket (Le Guilloux et al., 2009) that additionally compute physico-47

chemical properties and meta tools such as MetaPocket (Huang, 2009) that48

combine multiple approaches on top of the geometry. Owing to the adva-49

nces in protein structural determination, databases about protein pockets50

and functional surfaces have been established, such as SitesBase database51

(Gold and Jackson, 2006). Structural databases of protein-ligand comple-52

xes (Wang et al., 2004) can also be used to validate pocket detecting tools.53

Based on large annotated databases and efficient algorithms, web servers,54

such as PocketQuery (Koes and Camacho, 2012) and MSDmotif (Golovin55

and Henrick, 2008), have been developed for large scale pocket search.56

However, many problems in protein pocket detection remain unsolved.57

New analysis based on different sequence identity thresholds of a non-58

redundant set of all holo structures in the PDB indicates that between 47 -59

76% of holoproteins can simultaneously bind multiple, interacting ligands60

in the same pocket that may be comprised of several small but significant61

subpockets (Tonddast-Navaei et al., 2017). The detailed understanding62

of protein-multiligand binding remains of profound importance on many63

fronts, not least of which includes drug discovery. The hierarchical stru-64

cture between pockets and subpockets is a key to the understanding of65

the binding of multiple interacting ligands Tonddast-Navaei et al. (2017).66

Unfortunately, none of the aforementioned methods is designed to describe67

the hierarchical structure of protein pockets. Additionally, the analysis of68

protein-ligand binding and drug targets requires computational tools that69

are able to not only detect protein pockets but also provide more geo-70

metric details, including possible subpockets and pocket area, volume,71

and depth. Although grid based methods can provide a rough estimate for72

pocket volume, they typically suffer from accuracy and efficiency issues.73

These algorithms usually use the entire grid for the calculation, incurring74

extra memory consumption and computation time on grid cells far from75

the protein surface. Further process based on the whole grid will also76

introduce huge time complexity. Voronoi diagram based methods are effi-77

cient in providing area and volume estimates, but lack depth information.78

Finally, the performance of many current methods depends on many para-79

meters that are not intuitive to tune for given specific pocket requirements.80

The objective of the present work is to address these difficulties by using81

geometric partial differential equation (PDE) and algebraic topology.82

Inspired by a physical simulation used for surface coloring in 3D prin-83

ting, in which air pockets are detected and treated (Zhang et al., 2017),84

we start from a convex hull surface wrapping around a protein, and then85

press the surface inward until it is tightly in contact with the protein. The86

space between the convex hull surface and the protein surface is potential87

locations of pockets, and we use the time that the deforming surface pas-88

ses through the point as a Morse function to build an evolving topological89

structure that helps define a pocket hierarchy with desired information.90

Lagrangian (mesh) representations are often used in surface defor- 91

mation as in (Zhang et al., 2017). We opted for an Eulerian (grid) 92

representation, due to the complex surface geometry of the protein, large 93

distortion and potential topological change, which are difficult to handle 94

with a mesh. We encode the surface with an implicit function on a Car- 95

tesian grid. This type of methods was originally introduced in simulating 96

two-phase flow by Sussman et al. (1994). The interface can be defined by 97

the zero level set of an implicit function which has a good control flexibility 98

(Peng et al., 1999; Osher and Fedkiw, 2003). We simplify the procedure 99

significantly for efficiency, by combining a simple surface offsetting and 100

mean curvature flow to achieve our goal. 101

Fig. 1: Illustration of detected pockets of protein 1a4r showed by different
colors.

To detect protein pocket hierarchies associate with geometric PDEs, 102

we use persistent homology in the cubical setting. Persistent homology 103

has flourished recently for analyzing geometry and topology of certain 104

space. Early effort dealt with 0-th order topological persistence (Frosini 105

and Landi, 1999), while high dimension topological persistence was for- 106

mulated by Edelsbrunner et al. (2000). General mathematical theory of 107

persistent homology has been developed by Zomorodian and Carlsson 108

(2005). An efficient software for computing persistent homology on filte- 109

rations of simplicial complexes and cubical complexes has been developed 110

(Mischaikow and Nanda, 2013). While researchers keep enriching persi- 111

stent homology theory, its practical applications in biomolecular analysis 112

and landscape analysis have been developed (Xie and Bourne, 2007; Xia 113

et al., 2015). Differential geometry based persistent homology was propo- 114

sed to proactively predict fullerene isomer curvature stability (Wang and 115

Wei, 2016). Topological landscape tool was built to analyze real world 116

terrain model (Harvey and Wang, 2010). In our approach, as the convex 117

hull surface is deformed, we analyze the persistence of the 0-th dimen- 118

sional topological invariant induced by the moving surface level set to 119

detect potential pocket (equivalent and dual to membranes around cavi- 120

ties formed between the deforming surface and the protein surface). This 121

approach enables us to analyze pocket area, volume, depth and hierarchical 122

pocket-subpocket relation. 123

The rest of the paper is organized as follows. Section 2 discusses the 124

preliminary mathematical background. Section 3 introduces the overall 125

procedures. The implementation of our algorithms is given in Section 4. 126
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Section 5 presents the results and applications of the proposed protein127

pocket detection method. This paper concludes in Section 6.128

2 Math Background129

2.1 Signed Distance Function130

We consider a real-valued function φ defined on a regular Cartesian grid.131

An implicit surface is defined by the level set132

Γ = {r | φ(r) = 0, r ∈ R3}, (1)

which is our surface in the Eulerian form. It is possible to take a Lagrangian133

mesh as the input surface, since the conversion is a standard routine. During134

surface deformation, we rely on the Eulerian representation to handle the135

inevitable topological changes. Level set propagation is governed by a136

general level set equation137

∂φ

∂t
+ v·∇φ = 0, (2)

where v is the velocity of the flow. As tangential velocity does not change138

the shape, we can describe surface deformation by the normal component139

without loss of generality. Thus, one can rewrite the velocity field v as vn,140

where n = ∇φ
|∇φ| , |v| is the propagation speed and the sign of v indicates141

inward or outward motion. The level set equation can be rewritten as142

∂φ

∂t
+ v|∇φ| = 0. (3)

For uniform offset, we can setv to a constant c. A typical surface smoothing143

deformation is achieved by the mean curvature flow, which offsets each144

surface point at the speed given by the mean curvature, i.e., v = −H =145

−∇·n. The mean curvature flow level-set equation is given by Osher and146

Fedkiw (2003)147

∂φ

∂t
− |∇φ|

(
∇·
∇φ
|∇φ|

)
= 0. (4)

We can simplify the above two flows if |∇φ| = 1, which can be achieved148

by choosing φ to be the signed distance function, i.e., |φ(r)| stores the149

distance from r to the zero level set, with its sign being positive (negative)150

for outside (inside) locations. As such, the constant-speed normal flow is151

given by152

∂φ

∂t
+ c = 0, (5)

and the mean curvature flow becomes153

∂φ

∂t
−∆φ = 0. (6)

The use of the mean curvature flow for biomolecular surface generation154

was introduced by Bates et al. (2008). Our procedure will drive the surface155

inward, so the constant c is negative.156

Before propagating the zero level set, we first initialize the signed157

distance function φ by the eikonal equation to transform the Lagrangian158

mesh Γ which is the boundary of a 3D domain Ω into an Eulerian grid159

embedded signed distance function,160

|∇φ(r)| = 1, r ∈ Ω ⊂ R3 (7)

with boundary condition161

φ|Γ=∂Ω = 0. (8)

Fast marching method (FMM), which shares similar ideas from the162

Dijkstra algorithm, is commonly used to solve the eikonal equation on a163

regular grid (Sethian, 1996). Alternatively, fast sweeping method can be164

used (Zhao, 2005). When the regular grid is large, solving this problem in 165

the whole grid is inefficient for both space and time. Typically, a narrow 166

band is used to reduce the memory size. We specify a distance threshold 167

w. Any voxel with a distance above the threshold w will not be used in 168

the calculation. We use the typical choice ofw = 3, which guarantees the 169

accurate solution allowed by the resolution of the grid, since the gradient 170

will be correctly calculated for the 0-th level set. Using any larger w will 171

only slow down the calculation without changing the results. 172

We evolve an initial surface inward without creating sharp corners, so 173

we iteratively update the sign distance function via Eqs. (5) and (6). The 174

normal flow guarantees that the zero level set moves inward while the mean 175

curvature flow offers a smooth surface representation. The property of 176

|∇φ| = 1 is fundamental in simplifying our updating equations. However, 177

the mean curvature flow makes φ deviate from a signed distance function. 178

As typically done in level set methods, we reinitialize the signed distance 179

function by solving the eikonal equation with the zero level set as the 180

boundary every few iterations. 181

2.2 Persistent Homology 182

Another technique we employ in our algorithm is persistent homology, 183

a widely applied algebraic topology tool for data analysis, especially in 184

the field of computational biology and chemistry. It significantly reduces 185

geometric complexity by representing essential geometric properties in 186

terms of a sequence of topological invariants parameterized by a geometric 187

function. 188

2.2.1 Homology Group 189

For a topological space X , we define a series of complexes Ci(X ), i = 190

0, 1, 2... describing different dimensional information of the topological 191

space. Each complex is an Abelian group. The complexes are linked by 192

the boundary maps, which include the homeomorphisms ∂i : Ci → Ci−1 193

satisfying the condition 194

∂i−1 ◦ ∂i = 0, i ∈ Z, i > 0. (9)

The algebraic construction by connecting the complexes by the maps is 195

called a chain complex, 196

· · ·
∂i+1−−−→ Ci

∂i−−−→ Ci−1
∂i−1−−−→ · · · ∂2−−−→ C1

∂1−−−→ C0
∂0−−−→ 0

(10)
The i-th homology is constructed based on two subsets of complex 197

Ci, the boundary Im(∂i+1), the image of map ∂i+1, and the cycle group 198

Ker(∂i), the kernel of map ∂i. The property in Eq. (9) implies that 199

Im(∂i+1) ⊆ Ker(∂i) (11)

More precisely, the homology group is defined as the quotient group 200

Hi(X ) =
Ker(∂i)

Im(∂i+1)
. (12)

When Ci are generated by i-dimensional cells of a tessellation ofX , homo- 201

logy provides topological information of X . Intuitively, Hi(X ) contains 202

independent i-dimensional (i-D) holes in X . 203

For instance, the quotient group H1 of a torus describes holes on it. 204

It is constructed from Im(∂2), the group of 1D curves that are boundaries 205

of certain 2D subspaces of X , and Ker(∂1), the group of all closed 1D 206

curves. There are 2 independent types of closed 1D curves that are not 207

a boundary curve of X , which are the generators of the homology. This, 208

in fact, shows the 1D topological features, a loop around the tunnel and 209

another around the handle of the torus. 210
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2.2.2 Persistent homology211

In order to provide relevant geometric information, a geometric parameter212

can be introduced to provide a dynamic homology analysis for a topology213

space through filtration, which is a series of subspace Xi of X ,214

∅ = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xm = X . (13)

For our evolving surface, the index is related to the time parameter. A215

homology class δ ∈ Hk(Xi) is referred to be born at time i if it is not an216

image from the inclusion map from Xi−1 to Xi, and to die at time j if it217

is no longer in the image of the inclusion map from Xi to Xj . The time218

interval j−i is called the persistence. See, e.g., (Edelsbrunner et al., 2000;219

Wang and Wei, 2016) for additional details. A major topological feature220

will have a long persistence. Thus, geometric PDEs can induce persistence221

to provide a robust description of protein pocket topological features.222

3 Algorithm223

The relatively simple pockets and their areas, volumes, depths and pocket-224

subpocket relations, can be characterized by the persistence of only225

homology group H0, which in fact describes the connected components226

for the topological space. Describing ring-like pockets can be performed227

by homology group H1, but detecting protein cavities requires a different228

set of the geometric PDEs and would be beyond the scope of the present229

work.230

As we use regular Cartesian grid, cubical complexes and persistent231

homology at the cubical setting are employed. The associated filtration232

can be created by a Morse function T (r) stored on the 3D grid, with233

subspaces234

Xi = {r | T (r) ≤ ti = ih}, (14)

where h is the time step size.235

For a deforming surface, we can define the Morse function through236

T (r) = inf{t | φ(t, r) = 0}, i.e., the time when the surface first sweeps237

through the location r.238

One option to evolve the surface is to start from the protein surface239

and move outward, but the PDEs involved are less stable than those for240

moving the convex hull inward. Moreover, the time T (r) for the inward241

motion with unit speed also provides a better depth estimate. We prevent242

the evolving surface from entering the protein surface since we are looking243

for pockets outside the protein. In this case, the total space X is the space244

between the protein and its convex hull. As the surface moves inward,245

X \Xi is shrinking, and it will be separated by protein surface, forming246

connected components (pieces of the hollow space between the protein247

surface and the deforming surface at time ti).248

We define these pieces with long persistence as potential protein249

pockets. This procedure can be equivalently, and more efficiently described250

by a Reeb graph, describing the splitting and merging of the conne-251

cted components of level sets of T (r). More precisely, the Reeb graph252

contains nodes, each of which represents a connected component of253

{r | T (r) = ti} for certain time ti, and edges connecting nodes at ti254

and ti+1 if they are connected through {r | ti ≤ T (r) ≤ ti+1}. For255

our purpuse, we only need to construct the Reeb graph to infer potential256

protein pockets and subpockets.257

For our Morse function T (r), the Reeb graph is simply a tree. Starting258

from a single root, the tree will bifurcate whenever there is a splitting of the259

connected components. Finally, all connected components will disappear260

when the surface has deformed to the protein surface.261

With persistent homology, we can actually capture all potential pockets262

regardless of their sizes, and the tree provides us with a hierarchy among263

the pocket candidates. Then, we can use arbitrary geometric or physical264

pocket dimensions to eliminate those with short persistence as “noise”. We265

Fig. 2: Left: Illustration of Reeb graph. The dashed line represents critical
times for the filtration when there will be components newly born or kil-
led. We have extracted 4 components labeled by different colors. Right:
Illustration of a trimmed Reeb graph. The component (i.e., the yellow
leaf) that lives for a short period is eliminated. Note that orange path is
divided into 2 components (orange and brown), due to pocket hierarchical
relation. Persistent objects are then marked by green, orange, brown and
blue regions extracted from nodes B, F, J and M respectively. Brown and
blue are sub-pockets of orange.

elaborate on capturing pockets with high probability by further examining 266

the geometry in the next section. 267

4 Implementation 268

Algorithm 1 Pocket Detection Algorithm

1: function PocketDetection(model, atoms)
2: BuildConvexHull()
3: BuildSignedDistanceFunction()
4: Initialize()
5: while NotAllSurfaceBlocked() do . Fig. 4
6: ReinitializeSDFIfNeeded() . Sec. 2.1
7: EvolveSurface()
8: ExtractConnectedComponents()

9: BuildReebGraph()
10: ExtractMajorPersistencePath()
11: ExtractPotentialPockets()

Proper implementation is mandatory for efficiency of Eulerian meth- 269

ods. To reduce memory space usage, we perform a two-pass algorithm 270

to avoid storing the Morse function explicitly in the 3D grid. In the first 271

pass, we record only the necessary information to build the Reeb graph 272

and extract the major component paths. We then collect the geometric 273

information for the long persistent pockets by evolving the surface with a 274

second pass. 275

4.1 Input and Output 276

Our algorithm is independent of the type of input surface, e.g.,van der 277

Waals surface, solvent accessible surface or solvent excluded surface 278

(SES). A triangulated SES can be computed by software provided by (Liu 279

et al., 2017). We also use a standard molecule description file, containing 280

the locations and radii of all the atoms for future atom query. 281

The output provides information on protein pocket candidates, inclu- 282

ding the depth, area, volume and adjacent atoms for downstream appli- 283

cations. The first three geometry properties are obtained by analyzing the 284
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(a) (b)

(c) (d)

Fig. 3: Illustration of the convex hull surface evolution on protein 3kgp.

The surface moves inward from the convex hull and finally reaches the

protein surface in (a), (b), and (c). (d) shows the detected pockets.

Fig. 4: Illustration of basic algorithmic concepts. All colored voxels are

active, and the rest inactive. Orange voxels are blocked surface voxels,

while Yellow voxels are free surface voxels of the deforming surface (indi-

cated by red curve). The black curve indicates the protein surface. The

brown voxels represent the currently untouched region of protein surface,

which is a pocket in this case.

space bounded by the deforming surface and the protein surface. We build285

a kd-tree for fast access of nearest atom.286

4.2 Initialization287

Open source software packages exist for convex hull surface generation288

and solving the eikonal equation. We resort to the Computational Geo-289

metry Algorithms Library (CGAL) (Fabri and Pion, 2009) for building290

the convex hull surface from a triangulated SES (Liu et al., 2017) and291

OpenVDB (Museth, 2013) for the data structures and subroutines of sur-292

face deformation. A surface mesh can be converted into a signed distance293

function by using an OpenVDB procedure. OpenVDB uses a hierarchical294

tree structure to achieve narrow band storage, which contributes to the295

overall efficiency of our implementation.296

4.3 Evolving Surface 297

With the narrow band representation of the signed distance function (SDF), 298

moving the surface only amounts to updateφ in each active voxel. We mark 299

each active deforming surface voxel as either blocked or free depending 300

on whether the deforming surface is touching the protein surface at that 301

voxel, which can be determined by comparing the signed distance functi- 302

ons for the deforming surface and for the protein surface. We update φ 303

for the moving surface only in free voxels and change the signed distance 304

function monotonically in time to prevent moving the surface backwards. 305

The monotonicity prevents the mean curvature flow from overpowering 306

the normal flow motion, while preventing sharp corners from developing 307

near contact regions of the two surfaces. As mentioned before, reinitiali- 308

zation for every few update steps is necessary, since otherwise the level 309

set function will deviate from an SDF. 310

4.4 Connected Component 311

As mentioned above, the connected components of X in the filtration is 312

memory-intensive to compute. Thus, we opt for the equivalent calculation 313

based on surface voxels, which are the active voxels containing a piece of 314

the current zero level set. We then compute the connected components of 315

surface voxels that are not blocked by the protein surface yet. 316

The idea is illustrated in Fig. 4 in 2-dimension, a snapshot of active 317

voxels during the surface deformation. The black curve represents the pro- 318

tein surface, and the red curve represents the deforming surface. Note that 319

for stable implementation, we start the deforming surface from a surface 320

slightly offset outward from the convex hull. Both the deforming surface 321

and the protein surface are stored as zero-level sets of the corresponding 322

signed distance functions. All colored voxels are active. Orange and yel- 323

low voxels are surface voxels of the deforming surface, and brown voxels 324

are surface voxels of the protein surface. Orange voxels are blocked by the 325

protein surface, but yellow voxels are still free to move. We further allow 326

the deforming surface to move within the protein surface by a short dista- 327

nce, again for robustness. The voxels between brown voxels and yellow 328

voxels belong to a potential pocket. The free moving piece of the defor- 329

ming surface will continue evolving inward until it becomes blocked the 330

protein surface. 331

4.5 Reeb Graph 332

We construct the Reeb graph, based on connected components. The per- 333

sistence of branches in the Reeb graph indicates how likely it corresponds 334

to a real protein pocket. As explained in Sec. 3, nodes of the Reeb graph 335

corresponds to connected components, and edges show their connection 336

through temporal evolution of the surface. As we use a nearly uniform 337

unit speed to evolve the surface along the normal directions, except for 338

small deviations introduced by the mean curvature flow, the persistence 339

well captures the depth information. 340

Each node is labeled with a persistence computed as the graph distance 341

from the deepest leaf node among its descents. Branches with a small per- 342

sistence can be trimmed. This does not prevent deep but narrow candidate 343

pockets from being detected. However, the estimated free moving surface 344

area associated with the component can be used as an additional criterion 345

to eliminate those candidates. So both the depth and width thresholds can 346

be easily specified and applied. Finally, we just need to run the second 347

pass to extract the desirable pocket information. 348

4.6 Geometric feature 349

Our surface deformation procedure can easily produce geometric featu- 350

res for detected pockets, as each pocket is represented by space bounded 351

by protein surface patches and deforming surface patches, rendering the 352

pocket volume and pocket surface area. We can also extract the opening 353
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area by the area of the deforming surface patch, which indicates the pocket354

width. Pocket depth is naturally defined by the persistence of a certain355

pocket. More precisely, the depth of a pocket is defined by the persiste-356

nce measuring the difference between birth and death times multiplied by357

the surface evolution speed, which is 0.5 times the grid spacing in our358

implementation.359

Such volume and area calculation for level sets is well established.360

Here we offer a highly efficient estimation. We simply count the number361

of voxels that are bounded by the two surfaces as an estimate for volume.362

The pocket area and horizontal span are estimated by the corresponding363

surface voxel counts on protein surface patches and deforming surface364

patches, respectively. We only provide a rough estimate of the surface365

area, but more accurate results can be calculated as efficiently by weighting366

different types of surface voxels as in (Mullikin and Verbeek, 1993). Since367

the voxel count times the volume of voxel provides the volume of a thin368

shell of about 2 grid spacing, we estimate the area by dividing this volume369

by this approximate thickness of the thin shell.370

All our thresholds, the minimum required depth, the minimum requi-371

red horizontal span, and the minimum required volume, are all intuitive372

parameters, that can be either user-specified or application-determined.373

The final detected pockets will thus not be too shallow, too narrow or too374

small.375

5 Results and Discussion376

We validate our method with pocket detection performed on the PDBbind377

database (Wang et al., 2004) which contains high quality crystal structures378

of diverse protein-ligand complexes. A residue or a ligand can be repre-379

sented as sets of atoms, R = {ai}i or L = {bj}j . A protein can then380

be represented as a set of residues P = {Ri}i. All protein atoms are381

considered. Then we define a set of confirmed pocket residues within a382

distance d from the surface as383

POC(P,L, d) =

{
Ri ∈ P

∣∣∣∣ min
a∈Ri,b∈L

‖a− b‖ ≤ d

}
. (15)

LetPOCcomp(P ) be the set of residues inP that are identified as pockets384

by the program. We say the pocket detection succeeds for a protein if385

R(P, d) = |POCcomp(P ) ∩ POC(P,L, d)|/|POC(P,L, d)| ≥ r,

(16)

where r is a ratio (required recall rate). The success rate S(P , d, r) =386

|{P ∈ P : R(P, d) ≥ r}|/|P | is the percentage of proteins that our387

method succeeded to detect the pockets.388

One set of proteins and its two subsets are used for validation. The first389

one containing 4,414 entries is the union of all proteins from the PDBbind390

refined sets v2007, v2013, v2015, and v2016, and is denoted Pall. The391

second set containing 2,430 entries is the subset of Pall containing all392

single chain proteins denoted Psc. The third set containing 290 entries393

is the PDBbind 2016 core set denoted Pcr16. The atomic radii are first394

generated by PDB2PQR software (version 2.1.0) (Dolinsky et al., 2007)395

with CHARMM force field. The pockets are computed for the chain closest396

to the ligand if a protein contains multiple chains. The performance of the397

proposed method on the three sets is shown in Table 1.398

Our method successfully captures the majority of the real binding399

pockets in Table 1. We found that there are three cases where our method400

cannot detect the provided ligand binding references. 1) The ligand is401

bound at a rather shallow place. 2) The ligand is bound at pockets which402

are formed by more than a single chain. 3) The ligand is bound at closed403

cavities, which is beyond the cases that our current method handles. Note404

that the success rate may appear to drop with increasing d in some cases405

because the denominator |POC(P,L, d)| may increase.406

Fig. 5: Visualization of detected pockets of protein 3ao4 with the

corresponding Reeb graph.

(a) (b)

(c) (d)

Fig. 6: Visualization of ligand interaction suggestions for multi-ligand

binding on protein 1tok. (a) a large detected pocket (yellow). (b) two

subpockets (cyan and purple) that bifurcate from this large pocket. (c) the

corresponding branches in the Reeb graph. Yellow branch bifurcates into

two subbranches (cyan and purple). (d) our suggestion for multi-ligand

(red and green) binding with ligand interactions.

In addition to the known pockets, we are able to provide many other 407

pocket candidates with detailed geometric information. For example, in 408

Fig. 5, in addition to the binding site of protein 3ao4 confirmed by PDB- 409

bind database marked purple, our method also provides other potential 410

candidates. 411
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Pall (4414) Psc (2430) Pcr16 (290)

d r 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

3Å 0.91 0.86 0.78 0.94 0.89 0.83 0.95 0.89 0.81

4Å 0.91 0.86 0.76 0.94 0.89 0.80 0.95 0.89 0.77

5Å 0.91 0.86 0.68 0.94 0.89 0.71 0.94 0.90 0.71

Table 1. Performance measured by S(·, d, r) on the three sets with different

distance thresholds (d) and ratio cutoffs (r)

Pocket Volume(Å
3

) Area(Å
2

) Depth(Å)

1a4r top 964 475 4

1a4r mid 1227 558 5

1a4r bottom 935 463 4

3kgp 973 436 8

3ao4 blue 569 326 9

3ao4 green 521 293 5

3ao4 cyan 508 266 7

3ao4 purple 672 373 9

3ao4 red 828 409 7

3ao4 yellow 447 243 5

1tok yellow 1252 600 9

1tok cyan 533 272 7

1tok purple 173 90 6

Table 2. Geometric properties of all detected pockets in figures.

Fig. 5 shows a specific example of the detected pockets for protein 3ao4.412

The colored branches in the Reeb graph are among the major persistent413

candidates, whereas gray paths are eliminated as noise. The color of the414

major component path is consistent with that for pockets. The pockets415

are extracted at the stage marked by a star. It can be noticed that pockets416

detected are highly reliable and resistant to noise. Figure 6 shows that our417

hierarchical detection procedure finds two subpockets (cyan and purple)418

from a large ancestor pocket (yellow), from which multi-ligand binding419

with ligand interactions may be suggested (red and green).420

Table 2 provides details of geometric properties for all pockets in421

figures. We also provide statistics for all the test cases. Fig. 7(a) shows422

memory consumption distribution, which is roughly proportional to423

O(
√
n), where n is the number of atoms. Fig. 7(b) shows execution time424

distribution, which is within a reasonable amount of time, no more than425

120 seconds.426

6 Conclusion427

This work introduces the geometric partial differential equation (PDE)428

based convex hull surface evolution and associated topological persiste-429

nce for accurate, efficient and robust detection of protein pockets. The430

level set function is governed by the unit speed normal flow to measure431

the pocket surface area, volume, and depth. The mean curvature flow is432

incorporated to ensure a smooth surface representation of protein pockets.433

These equations are iteratively integrated in the Eulerian representation434

to allow potential topological changes. The transformation from Lagran-435

gian mesh to the Cartesian grid is accomplished via the eikonal equation.436

The convex hull surface evolution naturally induces a Morse function and437

topological persistence. The resulting Reeb graph is utilized to describe438

the hierarchical relation between protein pockets and subpockets, a cru-439

cial information for protein-multiligand interactions that is not available440

ever before. Topological persistence also enables the classification and441

visualization of significant and insignificant pockets and subpockets.442

(a)

(b)

Fig. 7: Statistics for all 4,414 test cases.

Three intuitive parameters describing geometric features are designed 443

for user interaction and control. Efficient algorithms are carefully imple- 444

mented to avoid potentially excessive memory consumption or execution 445

time pitfalls. On a regular CPU (Intel Xeon 3.77GHz), the user can obtain 446

results in about a minute without the need to worry about computational 447

resource limitation. Our method has a high locality, which means that 448

the efficiency can be further improved significantly by parallel computing 449

techniques either with GPU such as CUDA, or CPU such as TBB. The 450

resulting implementation of our method exhibits high accuracy in pocket 451

detection in our tests. One limitation of our method is that we do not 452

incrementally handle deforming flexible proteins, but we can treat them 453
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frame by frame and establish the correspondence by mapping the pockets454

to atoms.455
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Cover Letter594

Dear reviewers,595

596

We greatly appreciate your valuable comments and suggestions on our paper. We tried out best to modify the597

paper accordingly. We highlighted the changed text in red color, except for minor typos. In the following,598

we provide the details on how we addressed the suggestions.599

1. Review 1: The paper is well written and explained, although an additional effort should be made to600

convey the gist of the results to readers with a non-mathematical background.601

Thank you for the suggestion. We will not be able to make it accessible to reader without sufficient602

mathematical background without going over the page limit. However, our presenter at the conference603

will make every effort to illustrate our results to those without mathematical background among the604

audience.605

606

2. Review 1: Although the authors present cases of proteins, where subpockets are detected, it would be607

interesting to see an example of real drugs/ligands which bind in several subpockets of the same pocket.608

Our current paper focuses on the algorithmic aspect of detecting such hierarchies in protein pockets.609

Currently, we have not experimented with finding such real cases, but we will investigate the subpockets610

in a more realistic setting as future work.611

612

3. Review 2: In equation 15, the parameter "c" is not explicit or too late.613

We added a sentence at Line 383 to explain the parameter "c". To avoid confusion with another614

parameter denoting the deforming speed, we also replace it by "d".615

616

4. Review 2: In the results of Table 1, the authors would have to justify why the success rate decreases,617

when we estimate pockets by greater proximity (with a c increasing), which seems counterintuitive.618

We added a sentence at Line 404 to explain this behavior.619

620

5. Review 2: It would be necessary to detail more the choices of the settings and to discuss more some621

limits and perspective of the approach (flexibility of proteins).622

We added some explanations to the choices of the settings, and added a sentence at Line 452 to623

mention our limitation with flexibility of proteins, and also to offer one viable solution for such cases.624

625

6. Review 2: Page 2, lines 73-74: "grid based method ... typically suffer from accuracy and efficiency626

issues", while a Catesian grid is retained, lines 93-94. So, explain why the current method does not627

suffer from these drawbacks.628

We added a sentence at Line 74 to clarify why the previous grid based methods suffer from efficiency.629

630

7. Review 2: Page 3, lines 165-166: the parameter w has a crucial impact on the results. How to select631

its value? (should have been discussed in section 5).632

We added a sentence at Line 169 to address this issue. In short, w is a parameter for the data structure.633

It only changes memory usage and computational cost, without influencing the results.634

635

8. Review 2: Page 4, Algorithm 1: pls. define the functions NotAllSurfaceBlocked() and ReinitializeSD-636

FIfNeeded(), and/or explain to the readers what they do.637

We added comments to these two functions pointing to the figure and the subsection, where the details638

are provided.639

640

9. Review 2: Page 4, section 4.1, just curious: how do you compute the convex hull of a vdW surface, an641

SAS or an SES? Since this hull should contain portions of spheres, a discretization procedure should642

be defined. The user is left with this decision (see line 359): without help, he is assumed to master the643

math background presented in the manuscript. I am not sure that most biologists can do that.644

We clarified this issue by adding explanations at Lines 278 and 291. Basically, we triangulated SES645

first using a piece of software in the reference.646

647

10. Review 2: Page 5, section 4.6, lines 349-356: I can understand that counting voxels is a mean to estimate648

the volumes of the pockets. But what about surface area: how is it computed? Does the generation of649
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a sequence of embedded cubic grids with decreasing edge lengths would show a convergence of the 650

associated computed surface area to a suitable limit, meaningful for the biologist? How is the parameter 651

"depth" computed? 652

We added sentences at Line 356 to further explain how to compute depth. And we added sentences at 653

Line 365 to explain how we calculate area fast but roughly, and included a reference to a more accurate 654

calculation with convergence proof, which uses a weighted sum of relevant voxels. 655

656

11. Review 2: Page 6, Results and discussion: in this section, it is unclear whether or not all protein heavy 657

atoms are considered, or only th C-alphas representing the residues. 658

We added a sentence at Line 381 to explain that we use all protein atoms including hydrogen. 659

660

12. Review 2: Page 6, eq. (16), even after having fixed the parameter r, it is unclear what means a "success 661

rate" (something like a ratio predicted minus experimental to experimental), since the reader does not 662

know how are computed the reference values (experimental or else). 663

We added sentences at Line 386 to define exactly what is the "success rate" we use. It is the percentage 664

of proteins that our method succeeded to detect the pockets. 665

666

13. Review 2: Page 6, Table 1: the method is evaluated for several c and r values, but ω is not recalled. 667

According to [Sethian 1996] and in our tests, w has no influence on final results as long as it is large 668

enough (3 in our case). It only changes the memory consumption. So including that parameter would 669

only produce identical numbers. 670

671

Thank you again for all the great suggestions. 672

673

Sincerely, 674

The authors. 675
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