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Abstract

Motivation: Protein pocket information is invaluable for drug target identification, agonist design, virtual
screening, and receptor-ligand binding analysis. A recent study indicates that about half holoproteins
can simultaneously bind multiple interacting ligands in a large pocket containing structured subpockets.
Although this hierarchical pocket and subpocket structure has a significant impact to multiligand synergistic
interactions in the protein binding site, there is no method available for this analysis. This work introduces
a computational tool based on differential geometry, algebraic topology, and physics-based simulation to
address this pressing issue.

Results: We propose to detect protein pockets by evolving the convex hull surface inwards until it touches
the protein surface everywhere. The governing partial differential equations (PDEs) include the mean
curvature flow combined with the eikonal equation commonly used in the fast marching algorithm in the
Eulerian representation. The surface evolution induced Morse function and Reeb graph are utilized to
characterize the hierarchical pocket and subpocket structure in controllable detail. The proposed method
is validated on PDBbind refined sets of 4,414 protein-ligand complexes. Extensive numerical tests indicate
that the proposed method not only provides a unique description of pocket-subpocket relations, but also

offers efficient estimations of pocket surface area, pocket volume, and pocket depth.
Availability: We will release the executable code upon acceptance.

Contact: ytong@msu.edu, wei@math.msu.edu

1 Introduction

The detection of pockets on protein surfaces is a prerequisite to various
tasks in computational molecular biophysics and bioinformatics, such as
the determination of the binding site when one attempts to dock a ligand to
aprotein target and the study of protein functional surfaces. Automatic pro-
cedures for potential pocket predictions have been evolving along with the
advance in computational capability. Many methods have been designed
for protein pocket determination and they can be classified as geometry-
based, energy-based, sequence-based, or hybrid (Schmidtke ez al., 2011).
We review several common categories of these geometry-based methods,
namely, probe based methods, grid based methods, Voronoi diagram based
methods, and marching surface methods that are relevant to our approach.

Based on the idea of rolling a probe to construct solvent excluded
surfaces, many probe-based methods have been introduced to detect pro-
tein pockets. The pockets are captured by different behaviors with different
probe radii. One type of such methods samples protein surfaces using many
small probes, and then determines pockets according to surface depressi-
ons (Ruppert et al., 1997; Del Carpio et al., 1993; Brady and Stouten,
2000). Another type of such methods uses a large probe radius to create
an envelope surface surrounding a protein surface, and then detect the hol-
low regions between the envelope and the protein surface(Yu et al., 2009;
Masuya and Doi, 1995; Nayal and Honig, 2006). There are also methods
using combinations of both types of probes (Kawabata and Go, 2007).

The grid based methods, pioneered by Levitt and Banaszak (1992),
place a protein inside a regular grid and then scan the grid in a specific
order to mark grid points as inside pockets if certain criteria are satisfied
(Hendlich et al., 1997; Venkatachalam et al., 2003; Weisel et al., 2007,
Hendlich et al., 1997). For instance, grid points can be labeled as not
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belonging to pockets either by a cube eraser Venkatachalam et al. (2003)
or by a probe eraser Weisel ez al. (2007). Kufareva et al. (2011) developed a
grid potential to assist pocket extraction in grids. It is not only a geometry-
based method but also an energy-based one.

Voronoi based methods, introduced by Liang et al. (1998), have been
proposed to compare the differences between alpha shapes and the Delau-
nay triangulation (dual structure to Voronoi diagram) to find pockets, which
are represented by the tetrahedra in Delaunay tessellation but not in alpha
shapes. A new shape descriptor was later introduced to improve the overall
efficiency of this approach (Xie and Bourne, 2007). Voronoi diagram was
also used to detect depression regions Kim et al. (2008).

Marching surface methods, proposed by Kleywegt and Jones (1994),
detect pockets as isolated cavities formed by offsetting a protein surface
along outward normals at a uniform speed. Bock et al. (2007) proposed to
trace points on surface along outward normal direction to check whether
it has additional intersections with the protein surface, based on which
protein surface regions are labeled as pocket or non-pocket.

There are multifunctional tools such as Castp:3.0 (Dundas et al., 2006)
and FPocket (Le Guilloux et al., 2009) that additionally compute physico-
chemical properties and meta tools such as MetaPocket (Huang, 2009) that
combine multiple approaches on top of the geometry. Owing to the adva-
nces in protein structural determination, databases about protein pockets
and functional surfaces have been established, such as SitesBase database
(Gold and Jackson, 2006). Structural databases of protein-ligand comple-
xes (Wang et al., 2004) can also be used to validate pocket detecting tools.
Based on large annotated databases and efficient algorithms, web servers,
such as PocketQuery (Koes and Camacho, 2012) and MSDmotif (Golovin
and Henrick, 2008), have been developed for large scale pocket search.

However, many problems in protein pocket detection remain unsolved.
New analysis based on different sequence identity thresholds of a non-
redundant set of all holo structures in the PDB indicates that between 47 -
76% of holoproteins can simultaneously bind multiple, interacting ligands
in the same pocket that may be comprised of several small but significant
subpockets (Tonddast-Navaei ef al., 2017). The detailed understanding
of protein-multiligand binding remains of profound importance on many
fronts, not least of which includes drug discovery. The hierarchical stru-
cture between pockets and subpockets is a key to the understanding of
the binding of multiple interacting ligands Tonddast-Navaei et al. (2017).
Unfortunately, none of the aforementioned methods is designed to describe
the hierarchical structure of protein pockets. Additionally, the analysis of
protein-ligand binding and drug targets requires computational tools that
are able to not only detect protein pockets but also provide more geo-
metric details, including possible subpockets and pocket area, volume,
and depth. Although grid based methods can provide a rough estimate for
pocket volume, they typically suffer from aceuraey-and efficiency issues.
These algorithms usually use the entire grid for the calculation, incurring
extra memory consumption and computation time on grid cells far from
the protein surface. Further process based on the whole grid will also
introduce huge time complexity. Voronoi diagram based methods are effi-
cient in providing area and volume estimates, but lack depth information.
Finally, the performance of many current methods depends on many para-
meters that are not intuitive to tune for given specific pocket requirements.
The objective of the present work is to address these difficulties by using
geometric partial differential equation (PDE) and algebraic topology.

Inspired by a physical simulation used for surface coloring in 3D prin-
ting, in which air pockets are detected and treated (Zhang et al., 2017),
we start from a convex hull surface wrapping around a protein, and then
press the surface inward until it is tightly in contact with the protein. The
space between the convex hull surface and the protein surface is potential
locations of pockets, and we use the time that the deforming surface pas-
ses through the point as a Morse function to build an evolving topological
structure that helps define a pocket hierarchy with desired information.

Lagrangian (mesh) representations are often used in surface defor-
mation as in (Zhang et al., 2017). We opted for an Eulerian (grid)
representation, due to the complex surface geometry of the protein, large
distortion and potential topological change, which are difficult to handle
with a mesh. We encode the surface with an implicit function on a Car-
tesian grid. This type of methods was originally introduced in simulating
two-phase flow by Sussman et al. (1994). The interface can be defined by
the zero level set of an implicit function which has a good control flexibility
(Peng et al., 1999; Osher and Fedkiw, 2003). We simplify the procedure
significantly for efficiency, by combining a simple surface offsetting and
mean curvature flow to achieve our goal.

Fig. 1: Illustration of detected pockets of protein 1a4r showed by different
colors.

To detect protein pocket hierarchies associate with geometric PDEs,
we use persistent homology in the cubical setting. Persistent homology
has flourished recently for analyzing geometry and topology of certain
space. Early effort dealt with O-th order topological persistence (Frosini
and Landi, 1999), while high dimension topological persistence was for-
mulated by Edelsbrunner ef al. (2000). General mathematical theory of
persistent homology has been developed by Zomorodian and Carlsson
(2005). An efficient software for computing persistent homology on filte-
rations of simplicial complexes and cubical complexes has been developed
(Mischaikow and Nanda, 2013). While researchers keep enriching persi-
stent homology theory, its practical applications in biomolecular analysis
and landscape analysis have been developed (Xie and Bourne, 2007; Xia
et al., 2015). Differential geometry based persistent homology was propo-
sed to proactively predict fullerene isomer curvature stability (Wang and
Wei, 2016). Topological landscape tool was built to analyze real world
terrain model (Harvey and Wang, 2010). In our approach, as the convex
hull surface is deformed, we analyze the persistence of the O-th dimen-
sional topological invariant induced by the moving surface level set to
detect potential pocket (equivalent and dual to membranes around cavi-
ties formed between the deforming surface and the protein surface). This
approach enables us to analyze pocket area, volume, depth and hierarchical
pocket-subpocket relation.

The rest of the paper is organized as follows. Section 2 discusses the
preliminary mathematical background. Section 3 introduces the overall
procedures. The implementation of our algorithms is given in Section 4.
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Section 5 presents the results and applications of the proposed protein
pocket detection method. This paper concludes in Section 6.

2 Math Background
2.1 Signed Distance Function

‘We consider a real-valued function ¢ defined on a regular Cartesian grid.
An implicit surface is defined by the level set

I'={r|¢(r) =0, r e R?}, (1

which is our surface in the Eulerian form. Itis possible to take a Lagrangian
mesh as the input surface, since the conversion is a standard routine. During
surface deformation, we rely on the Eulerian representation to handle the
inevitable topological changes. Level set propagation is governed by a
general level set equation

o¢

5t v-V¢ =0, @)
where v is the velocity of the flow. As tangential velocity does not change
the shape, we can describe surface deformation by the normal component
without loss of generality. Thus, one can rewrite the velocity field v as vn,
where n = %, |v| is the propagation speed and the sign of v indicates
inward or outward motion. The level set equation can be rewritten as

9¢

— +v|V¢| =0. 3

o+l @)
For uniform offset, we can set v to a constant c. A typical surface smoothing

deformation is achieved by the mean curvature flow, which offsets each

surface point at the speed given by the mean curvature, i.e., v = —H =
—V-n. The mean curvature flow level-set equation is given by Osher and
Fedkiw (2003)

0P V¢ )

— — |V Vi——- ] =0. 4

5~ Vol (v 2% @

We can simplify the above two flows if |[V¢| = 1, which can be achieved
by choosing ¢ to be the signed distance function, i.e., |¢(r)| stores the
distance from r to the zero level set, with its sign being positive (negative)
for outside (inside) locations. As such, the constant-speed normal flow is
given by

¢
= =0, 5
Bt +c (©)
and the mean curvature flow becomes
¢
— — A¢p =0. 6
ot é ©)

The use of the mean curvature flow for biomolecular surface generation
was introduced by Bates et al. (2008). Our procedure will drive the surface
inward, so the constant c is negative.

Before propagating the zero level set, we first initialize the signed
distance function ¢ by the eikonal equation to transform the Lagrangian
mesh I" which is the boundary of a 3D domain €2 into an Eulerian grid
embedded signed distance function,

|Vé(r)| =1,re Q C R3 (N
with boundary condition

¢lr=o0 = 0. ®)

Fast marching method (FMM), which shares similar ideas from the
Dijkstra algorithm, is commonly used to solve the eikonal equation on a
regular grid (Sethian, 1996). Alternatively, fast sweeping method can be

used (Zhao, 2005). When the regular grid is large, solving this problem in
the whole grid is inefficient for both space and time. Typically, a narrow
band is used to reduce the memory size. We specify a distance threshold
w. Any voxel with a distance above the threshold w will not be used in
the calculation. We use the typical choice of w = 3, which guarantees the
accurate solution allowed by the resolution of the grid, since the gradient
will be correctly calculated for the O-th level set. Using any larger w will
only slow down the calculation without changing the results.

We evolve an initial surface inward without creating sharp corners, so
we iteratively update the sign distance function via Eqgs. (5) and (6). The
normal flow guarantees that the zero level set moves inward while the mean
curvature flow offers a smooth surface representation. The property of
|V¢| = 1is fundamental in simplifying our updating equations. However,
the mean curvature flow makes ¢ deviate from a signed distance function.
As typically done in level set methods, we reinitialize the signed distance
function by solving the eikonal equation with the zero level set as the
boundary every few iterations.

2.2 Persistent Homology

Another technique we employ in our algorithm is persistent homology,
a widely applied algebraic topology tool for data analysis, especially in
the field of computational biology and chemistry. It significantly reduces
geometric complexity by representing essential geometric properties in
terms of a sequence of topological invariants parameterized by a geometric
function.

2.2.1 Homology Group
For a topological space X, we define a series of complexes C;(X),i =
0, 1, 2... describing different dimensional information of the topological
space. Each complex is an Abelian group. The complexes are linked by
the boundary maps, which include the homeomorphisms 9; : C; — C;—1
satisfying the condition

0;j—100;=0,1€Z,i>0. )

The algebraic construction by connecting the complexes by the maps is
called a chain complex,

Oit1 9; ;-1 2] o 2]
s C; ‘s Ciq ‘ 2 C1 e Co 950

(10)
The i-th homology is constructed based on two subsets of complex

C;, the boundary Im(9; 1), the image of map 9; 1, and the cycle group
Ker(9;), the kernel of map 9;. The property in Eq. (9) implies that

Im(8i+1) g Ker(@i) (]1)
More precisely, the homology group is defined as the quotient group

) _ Ker(@i)
Hi(X) = YGRS 12)

When C; are generated by i-dimensional cells of a tessellation of X', homo-
logy provides topological information of X'. Intuitively, H;(X") contains
independent i-dimensional (i-D) holes in X'.

For instance, the quotient group H1 of a torus describes holes on it.
It is constructed from Im(92), the group of 1D curves that are boundaries
of certain 2D subspaces of X, and Ker(91 ), the group of all closed 1D
curves. There are 2 independent types of closed 1D curves that are not
a boundary curve of X', which are the generators of the homology. This,
in fact, shows the 1D topological features, a loop around the tunnel and
another around the handle of the torus.
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2.2.2 Persistent homology

In order to provide relevant geometric information, a geometric parameter
can be introduced to provide a dynamic homology analysis for a topology
space through filtration, which is a series of subspace X; of X',

=X CX CXC---CAp =4 (13)

For our evolving surface, the index is related to the time parameter. A
homology class § € Hy,(X;) is referred to be born at time ¢ if it is not an
image from the inclusion map from &;_ to &, and to die at time j if it
is no longer in the image of the inclusion map from A; to A;. The time
interval j — ¢ is called the persistence. See, e.g., (Edelsbrunner et al., 2000;
Wang and Wei, 2016) for additional details. A major topological feature
will have a long persistence. Thus, geometric PDEs can induce persistence
to provide a robust description of protein pocket topological features.

3 Algorithm

The relatively simple pockets and their areas, volumes, depths and pocket-
subpocket relations, can be characterized by the persistence of only
homology group Ho, which in fact describes the connected components
for the topological space. Describing ring-like pockets can be performed
by homology group H 1, but detecting protein cavities requires a different
set of the geometric PDEs and would be beyond the scope of the present
work.

As we use regular Cartesian grid, cubical complexes and persistent
homology at the cubical setting are employed. The associated filtration
can be created by a Morse function T'(r) stored on the 3D grid, with
subspaces

X ={r|T(r) <t; =ih}, (14)

where h is the time step size.

For a deforming surface, we can define the Morse function through
T(r) = inf{t | ¢(¢,r) = 0}, i.e., the time when the surface first sweeps
through the location r.

One option to evolve the surface is to start from the protein surface
and move outward, but the PDEs involved are less stable than those for
moving the convex hull inward. Moreover, the time 7'(r) for the inward
motion with unit speed also provides a better depth estimate. We prevent
the evolving surface from entering the protein surface since we are looking
for pockets outside the protein. In this case, the total space X is the space
between the protein and its convex hull. As the surface moves inward,
X\A; is shrinking, and it will be separated by protein surface, forming
connected components (pieces of the hollow space between the protein
surface and the deforming surface at time ¢;).

We define these pieces with long persistence as potential protein
pockets. This procedure can be equivalently, and more efficiently described
by a Reeb graph, describing the splitting and merging of the conne-
cted components of level sets of T'(r). More precisely, the Reeb graph
contains nodes, each of which represents a connected component of
{r | T(r) = t;} for certain time ¢;, and edges connecting nodes at ¢;
and t;1 if they are connected through {r | t; < T'(r) < t;+1}. For
our purpuse, we only need to construct the Reeb graph to infer potential
protein pockets and subpockets.

For our Morse function 7'(r), the Reeb graph is simply a tree. Starting
from a single root, the tree will bifurcate whenever there is a splitting of the
connected components. Finally, all connected components will disappear
when the surface has deformed to the protein surface.

With persistent homology, we can actually capture all potential pockets
regardless of their sizes, and the tree provides us with a hierarchy among
the pocket candidates. Then, we can use arbitrary geometric or physical
pocket dimensions to eliminate those with short persistence as “noise”. We

Right

Fig. 2: Left: Illustration of Reeb graph. The dashed line represents critical
times for the filtration when there will be components newly born or kil-
led. We have extracted 4 components labeled by different colors. Right:
Tlustration of a trimmed Reeb graph. The component (i.e., the yellow
leaf) that lives for a short period is eliminated. Note that orange path is
divided into 2 components (orange and brown), due to pocket hierarchical
relation. Persistent objects are then marked by green, orange, brown and
blue regions extracted from nodes B, F, J and M respectively. Brown and
blue are sub-pockets of orange.

elaborate on capturing pockets with high probability by further examining
the geometry in the next section.

4 Implementation

Algorithm 1 Pocket Detection Algorithm

1: function PocketDetection(model, atoms)
2:  BuildConvexHull()

BuildSignedDistanceFunction()

Initialize()

while NotAllSurfaceBlocked() do > Fig. 4
ReinitializeSDFIfNeeded() > Sec. 2.1

EvolveSurface()
ExtractConnectedComponents()
BuildReebGraph()
10:  ExtractMajorPersistencePath()
11:  ExtractPotentialPockets()

L X R RWw

Proper implementation is mandatory for efficiency of Eulerian meth-
ods. To reduce memory space usage, we perform a two-pass algorithm
to avoid storing the Morse function explicitly in the 3D grid. In the first
pass, we record only the necessary information to build the Reeb graph
and extract the major component paths. We then collect the geometric
information for the long persistent pockets by evolving the surface with a
second pass.

4.1 Input and Output

Our algorithm is independent of the type of input surface, e.g.,van-der
aals—surface—s aceessi surfac solvent excluded surface

(SES). A triangulated SES can be computed by software provided by (Liu

etal.,2017). We also use a standard molecule description file, containing
the locations and radii of all the atoms for future atom query.

The output provides information on protein pocket candidates, inclu-
ding the depth, area, volume and adjacent atoms for downstream appli-
cations. The first three geometry properties are obtained by analyzing the

266

267

268

269

270

272

273

274

275

276

271

278

279

280

281

283

284



285

286

287

288

289

290

291

292

293

294

295

296

“ProteinPocketDetection” — 2018/6/16 — 13:47 — page 5 — #5

Protein Pocket Detection

(a) (b)

(© (d)

Fig. 3: Illustration of the convex hull surface evolution on protein 3kgp.
The surface moves inward from the convex hull and finally reaches the
protein surface in (a), (b), and (c). (d) shows the detected pockets.

Fig. 4: Illustration of basic algorithmic concepts. All colored voxels are
active, and the rest inactive. Orange voxels are blocked surface voxels,
while Yellow voxels are free surface voxels of the deforming surface (indi-
cated by red curve). The black curve indicates the protein surface. The
brown voxels represent the currently untouched region of protein surface,
which is a pocket in this case.

space bounded by the deforming surface and the protein surface. We build
a kd-tree for fast access of nearest atom.

4.2 Initialization

Open source software packages exist for convex hull surface generation
and solving the eikonal equation. We resort to the Computational Geo-
metry Algorithms Library (CGAL) (Fabri and Pion, 2009) for building
the convex hull surface from a triangulated SES (Liu et al., 2017) and
OpenVDB (Museth, 2013) for the data structures and subroutines of sur-
face deformation. A surface mesh can be converted into a signed distance
function by using an OpenVDB procedure. OpenVDB uses a hierarchical
tree structure to achieve narrow band storage, which contributes to the
overall efficiency of our implementation.

4.3 Evolving Surface

With the narrow band representation of the signed distance function (SDF),
moving the surface only amounts to update ¢ in each active voxel. We mark
each active deforming surface voxel as either blocked or free depending
on whether the deforming surface is touching the protein surface at that
voxel, which can be determined by comparing the signed distance functi-
ons for the deforming surface and for the protein surface. We update ¢
for the moving surface only in free voxels and change the signed distance
function monotonically in time to prevent moving the surface backwards.
The monotonicity prevents the mean curvature flow from overpowering
the normal flow motion, while preventing sharp corners from developing
near contact regions of the two surfaces. As mentioned before, reinitiali-
zation for every few update steps is necessary, since otherwise the level
set function will deviate from an SDF.

4.4 Connected Component

As mentioned above, the connected components of X in the filtration is
memory-intensive to compute. Thus, we opt for the equivalent calculation
based on surface voxels, which are the active voxels containing a piece of
the current zero level set. We then compute the connected components of
surface voxels that are not blocked by the protein surface yet.

The idea is illustrated in Fig. 4 in 2-dimension, a snapshot of active
voxels during the surface deformation. The black curve represents the pro-
tein surface, and the red curve represents the deforming surface. Note that
for stable implementation, we start the deforming surface from a surface
slightly offset outward from the convex hull. Both the deforming surface
and the protein surface are stored as zero-level sets of the corresponding
signed distance functions. All colored voxels are active. Orange and yel-
low voxels are surface voxels of the deforming surface, and brown voxels
are surface voxels of the protein surface. Orange voxels are blocked by the
protein surface, but yellow voxels are still free to move. We further allow
the deforming surface to move within the protein surface by a short dista-
nce, again for robustness. The voxels between brown voxels and yellow
voxels belong to a potential pocket. The free moving piece of the defor-
ming surface will continue evolving inward until it becomes blocked the
protein surface.

4.5 Reeb Graph

‘We construct the Reeb graph, based on connected components. The per-
sistence of branches in the Reeb graph indicates how likely it corresponds
to a real protein pocket. As explained in Sec. 3, nodes of the Reeb graph
corresponds to connected components, and edges show their connection
through temporal evolution of the surface. As we use a nearly uniform
unit speed to evolve the surface along the normal directions, except for
small deviations introduced by the mean curvature flow, the persistence
well captures the depth information.

Each node is labeled with a persistence computed as the graph distance
from the deepest leaf node among its descents. Branches with a small per-
sistence can be trimmed. This does not prevent deep but narrow candidate
pockets from being detected. However, the estimated free moving surface
area associated with the component can be used as an additional criterion
to eliminate those candidates. So both the depth and width thresholds can
be easily specified and applied. Finally, we just need to run the second
pass to extract the desirable pocket information.

4.6 Geometric feature

Our surface deformation procedure can easily produce geometric featu-
res for detected pockets, as each pocket is represented by space bounded
by protein surface patches and deforming surface patches, rendering the
pocket volume and pocket surface area. We can also extract the opening
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area by the area of the deforming surface patch, which indicates the pocket
width. Pocket depth is naturally defined by the persistence of a certain
pocket. More precisely, the depth of a pocket is defined by the persiste-
nce measuring the difference between birth and death times multiplied by
the surface evolution speed, which is 0.5 times the grid spacing in our
implementation.

Such volume and area calculation for level sets is well established.
Here we offer a highly efficient estimation. We simply count the number
of voxels that are bounded by the two surfaces as an estimate for volume.
The pocket area and horizontal span are estimated by the corresponding
surface voxel counts on protein surface patches and deforming surface
patches, respectively. We only provide a rough estimate of the surface
area, but more accurate results can be calculated as efficiently by weighting
different types of surface voxels as in (Mullikin and Verbeek, 1993). Since
the voxel count times the volume of voxel provides the volume of a thin
shell of about 2 grid spacing, we estimate the area by dividing this volume
by this approximate thickness of the thin shell.

All our thresholds, the minimum required depth, the minimum requi-
red horizontal span, and the minimum required volume, are all intuitive
parameters, that can be either user-specified or application-determined.
The final detected pockets will thus not be too shallow, too narrow or too
small.

5 Results and Discussion

We validate our method with pocket detection performed on the PDBbind
database (Wang et al., 2004) which contains high quality crystal structures
of diverse protein-ligand complexes. A residue or a ligand can be repre-
sented as sets of atoms, R = {a;}; or L = {bj};. A protein can then
be represented as a set of residues P = {R;};. All protein atoms are
considered. Then we define a set of confirmed pocket residues within a
distance d from the surface as

POC(P, L,d) = {Ri ePr ‘ min _|la — b < d} .15

a€ER;,bEL

Let POCcomp (P) be the set of residues in P that are identified as pockets
by the program. We say the pocket detection succeeds for a protein if

R(P,d) = |POCcomp(P) NPOC(P, L,d)|/|POC(P, L,d)| >,
(16)
where r is a ratio (required recall rate). The success rate S(P,d,r) =
{P € P : R(P,d) > r}|/|P| is the percentage of proteins that our
method succeeded to detect the pockets.

One set of proteins and its two subsets are used for validation. The first
one containing 4,414 entries is the union of all proteins from the PDBbind
refined sets v2007, v2013, v2015, and v2016, and is denoted P,1;. The
second set containing 2,430 entries is the subset of P, containing all
single chain proteins denoted Psc. The third set containing 290 entries
is the PDBbind 2016 core set denoted Pcr16. The atomic radii are first
generated by PDB2PQR software (version 2.1.0) (Dolinsky et al., 2007)
with CHARMM force field. The pockets are computed for the chain closest
to the ligand if a protein contains multiple chains. The performance of the
proposed method on the three sets is shown in Table 1.

Our method successfully captures the majority of the real binding
pockets in Table 1. We found that there are three cases where our method
cannot detect the provided ligand binding references. 1) The ligand is
bound at a rather shallow place. 2) The ligand is bound at pockets which
are formed by more than a single chain. 3) The ligand is bound at closed
cavities, which is beyond the cases that our current method handles. Note
that the success rate may appear to drop with increasing d in some cases
because the denominator [POC(P, L, d)| may increase.
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Fig. 5: Visualization of detected pockets of protein 3ao4 with the
corresponding Reeb graph.
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Fig. 6: Visualization of ligand interaction suggestions for multi-ligand
binding on protein 1tok. (a) a large detected pocket (yellow). (b) two
subpockets (cyan and purple) that bifurcate from this large pocket. (c) the
corresponding branches in the Reeb graph. Yellow branch bifurcates into
two subbranches (cyan and purple). (d) our suggestion for multi-ligand
(red and green) binding with ligand interactions.

In addition to the known pockets, we are able to provide many other
pocket candidates with detailed geometric information. For example, in
Fig. 5, in addition to the binding site of protein 3ao4 confirmed by PDB-
bind database marked purple, our method also provides other potential
candidates.
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| | Pan (4414)

N 0.25

| Poc 2430) | Peris 290) |

0.5 0.75|0.25 0.5 0.75|0.25 0.5 0.75|

3A 091 0.86 0.78|0.94 0.89 0.830.95 0.89 0.81
4A 091 0.86 0.76]0.94 0.89 0.80|0.95 0.89 0.77
5A 091 0.86 0.68]0.94 0.89 0.71|0.94 0.90 0.71

Table 1. Performance measured by S(-, d, r) on the three sets with different
distance thresholds (d) and ratio cutoffs (r)

Pocket Volume(AB) Area(A2) Depth(fk)
ladr top 964 475 4
la4r mid 1227 558 5
ladr bottom 935 463 4
3kgp 973 436 8
3ao04 blue 569 326 9
3ao4 green 521 293 5
3a04 cyan 508 266 7
3a04 purple 672 373 9
3ao4 red 828 409 7
3ao4 yellow 447 243 5
1tok yellow 1252 600 9
1tok cyan 533 272 7
1tok purple 173 90 6

Table 2. Geometric properties of all detected pockets in figures.

Fig. 5 shows a specific example of the detected pockets for protein 3ao4.
The colored branches in the Reeb graph are among the major persistent
candidates, whereas gray paths are eliminated as noise. The color of the
major component path is consistent with that for pockets. The pockets
are extracted at the stage marked by a star. It can be noticed that pockets
detected are highly reliable and resistant to noise. Figure 6 shows that our
hierarchical detection procedure finds two subpockets (cyan and purple)
from a large ancestor pocket (yellow), from which multi-ligand binding
with ligand interactions may be suggested (red and green).

Table 2 provides details of geometric properties for all pockets in
figures. We also provide statistics for all the test cases. Fig. 7(a) shows
memory consumption distribution, which is roughly proportional to
O(y/n), where n is the number of atoms. Fig. 7(b) shows execution time
distribution, which is within a reasonable amount of time, no more than
120 seconds.

6 Conclusion

This work introduces the geometric partial differential equation (PDE)
based convex hull surface evolution and associated topological persiste-
nce for accurate, efficient and robust detection of protein pockets. The
level set function is governed by the unit speed normal flow to measure
the pocket surface area, volume, and depth. The mean curvature flow is
incorporated to ensure a smooth surface representation of protein pockets.
These equations are iteratively integrated in the Eulerian representation
to allow potential topological changes. The transformation from Lagran-
gian mesh to the Cartesian grid is accomplished via the eikonal equation.
The convex hull surface evolution naturally induces a Morse function and
topological persistence. The resulting Reeb graph is utilized to describe
the hierarchical relation between protein pockets and subpockets, a cru-
cial information for protein-multiligand interactions that is not available
ever before. Topological persistence also enables the classification and
visualization of significant and insignificant pockets and subpockets.
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Fig. 7: Statistics for all 4,414 test cases.

Three intuitive parameters describing geometric features are designed
for user interaction and control. Efficient algorithms are carefully imple-
mented to avoid potentially excessive memory consumption or execution
time pitfalls. On a regular CPU (Intel Xeon 3.77GHz), the user can obtain
results in about a minute without the need to worry about computational
resource limitation. Our method has a high locality, which means that
the efficiency can be further improved significantly by parallel computing
techniques either with GPU such as CUDA, or CPU such as TBB. The
resulting implementation of our method exhibits high accuracy in pocket
detection in our tests. One limitation of our method is that we do not
incrementally handle deforming flexible proteins, but we can treat them
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frame by frame and establish the correspondence by mapping the pockets
to atoms.
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Cover Letter
Dear reviewers,

We greatly appreciate your valuable comments and suggestions on our paper. We tried out best to modify the
paper accordingly. We highlighted the changed text in red color, except for minor typos. In the following,
we provide the details on how we addressed the suggestions.

1. Review 1: The paper is well written and explained, although an additional effort should be made to
convey the gist of the results to readers with a non-mathematical background.

Thank you for the suggestion. We will not be able to make it accessible to reader without sufficient
mathematical background without going over the page limit. However, our presenter at the conference
will make every effort to illustrate our results to those without mathematical background among the
audience.

2. Review 1: Although the authors present cases of proteins, where subpockets are detected, it would be
interesting to see an example of real drugs/ligands which bind in several subpockets of the same pocket.
Our current paper focuses on the algorithmic aspect of detecting such hierarchies in protein pockets.
Currently, we have not experimented with finding such real cases, but we will investigate the subpockets

in a more realistic setting as future work.

3. Review 2: In equation 15, the parameter "c" is not explicit or too late.
We added a sentence at Line 383 to explain the parameter "c". To avoid confusion with another
parameter denoting the deforming speed, we also replace it by "d".

4. Review 2: In the results of Table 1, the authors would have to justify why the success rate decreases,
when we estimate pockets by greater proximity (with a c increasing), which seems counterintuitive.
We added a sentence at Line 404 to explain this behavior.

5. Review 2: It would be necessary to detail more the choices of the settings and to discuss more some
limits and perspective of the approach (flexibility of proteins).

We added some explanations to the choices of the settings, and added a sentence at Line 452 to

mention our limitation with flexibility of proteins, and also to offer one viable solution for such cases.

6. Review 2: Page 2, lines 73-74: "grid based method ... typically suffer from accuracy and efficiency
issues", while a Catesian grid is retained, lines 93-94. So, explain why the current method does not
suffer from these drawbacks.

We added a sentence at Line 74 to clarify why the previous grid based methods suffer from efficiency.

7. Review 2: Page 3, lines 165-166: the parameter w has a crucial impact on the results. How to select
its value? (should have been discussed in section 5).
We added a sentence at Line 169 to address this issue. In short, w is a parameter for the data structure.
It only changes memory usage and computational cost, without influencing the results.

8. Review 2: Page 4, Algorithm 1: pls. define the functions NotAllSurfaceBlocked() and ReinitializeSD-
FlfNeeded(), and/or explain to the readers what they do.
We added comments to these two functions pointing to the figure and the subsection, where the details
are provided.

9. Review 2: Page 4, section 4.1, just curious: how do you compute the convex hull of a vdW surface, an
SAS or an SES? Since this hull should contain portions of spheres, a discretization procedure should
be defined. The user is left with this decision (see line 359): without help, he is assumed to master the
math background presented in the manuscript. I am not sure that most biologists can do that.

We clarified this issue by adding explanations at Lines 278 and 291. Basically, we triangulated SES
first using a piece of software in the reference.

10. Review 2: Page 5, section 4.6, lines 349-356: I can understand that counting voxels is a mean to estimate
the volumes of the pockets. But what about surface area: how is it computed? Does the generation of
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11.

12.

13.

a sequence of embedded cubic grids with decreasing edge lengths would show a convergence of the
associated computed surface area to a suitable limit, meaningful for the biologist? How is the parameter
"depth" computed?

We added sentences at Line 356 to further explain how to compute depth. And we added sentences at
Line 365 to explain how we calculate area fast but roughly, and included a reference to a more accurate
calculation with convergence proof, which uses a weighted sum of relevant voxels.

Review 2: Page 6, Results and discussion: in this section, it is unclear whether or not all protein heavy
atoms are considered, or only th C-alphas representing the residues.
We added a sentence at Line 381 to explain that we use all protein atoms including hydrogen.

Review 2: Page 6, eq. (16), even after having fixed the parameter 1, it is unclear what means a "success
rate" (something like a ratio predicted minus experimental to experimental), since the reader does not
know how are computed the reference values (experimental or else).

We added sentences at Line 386 to define exactly what is the "success rate" we use. It is the percentage
of proteins that our method succeeded to detect the pockets.

Review 2: Page 6, Table 1: the method is evaluated for several ¢ and r values, but w is not recalled.

According to [Sethian 1996] and in our tests, w has no influence on final results as long as it is large
enough (3 in our case). It only changes the memory consumption. So including that parameter would
only produce identical numbers.

Thank you again for all the great suggestions.

Sincerely,
The authors.
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