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Abstract— Reservoir computing (RC) is a class of neuro-
morphic computing approaches that deals particularly well
with time-series prediction tasks. It significantly reduces the
training complexity of recurrent neural networks and is also
suitable for hardware implementation whereby device physics
are utilized in performing data processing. In this paper,
the RC concept is applied to detecting a transmitted symbol
in multiple-input multiple-output orthogonal frequency division
multiplexing (MIMO-OFDM) systems. Due to wireless propaga-
tion, the transmitted signal may undergo severe distortion before
reaching the receiver. The nonlinear distortion introduced by the
power amplifier at the transmitter may further complicate this
process. Therefore, an efficient symbol detection strategy becomes
critical. The conventional approach for symbol detection at the
receiver requires accurate channel estimation of the underlying
MIMO-OFDM system. However, in this paper, we introduce
a novel symbol detection scheme where the estimation of the
MIMO-OFDM channel becomes unnecessary. The introduced
scheme utilizes an echo state network (ESN), which is a special
class of RC. The ESN acts as a black box for system modeling
purposes and can predict nonlinear dynamic systems in an
efficient way. Simulation results for the uncoded bit error rate
of nonlinear MIMO-OFDM systems show that the introduced
scheme outperforms conventional symbol detection methods.

Index Terms— Echo state network (ESN), multiple input mul-
tiple output (MIMO), nonlinear channel, orthogonal frequency
division multiplexing (OFDM), power amplifier (PA), reservoir
computing (RC), symbol detector.

I. INTRODUCTION
RTHOGONAL frequency division multiplex-
Oing (OFDM) is a promising multicarrier access
techniques for wireless communication systems. OFDM
converts a frequency-selective fading channel into a collection
of parallel flat-fading subchannels. As a result, it provides
robustness against narrowband interference, and lends to high
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spectral efficiency, enhanced channel capacity, and simplified
transceiver structure [2]. Therefore, OFDM has been adopted
in many modern telecommunication standards, such as
DVB-T, 3GPP LTE/LTE-Advanced, and xDSL technologies.

On the other hand, OFDM also experiences some draw-
backs. Most notable issues are the high peak-to-average power
ratio (PAPR) and the sensitivity to both frequency offset
and phase noise. Due to the issue of PAPR, a linear power
amplifier (PA) is needed at the OFDM transmitter. The lin-
earity requirement forces the PA to operate well below its
saturation point leading to low energy efficiency. This is
clearly undesirable for mobile devices, which usually have
limited battery. Driving the PA closer to its saturation point
is appealing, since it would increase the energy efficiency and
prolong the battery life of a mobile device. However, driving
the PA above the linear region results in nonlinear distortion
effects. The nonlinear distortion makes it difficult to conduct
symbol detection at the receiver.

In wireless communication systems, the transmitted signal
undergoes degradation during propagation through the wireless
channel. The combination of the multiple-input multiple-
output (MIMO) and OFDM, referred to as the MIMO-OFDM,
has been studied extensively in the industry and academia, due
to its capability to provide high-rate transmission and robust-
ness against multipath fading and other channel impairments.
Accurate channel estimation is usually needed at the receiver
to successfully detect transmitted symbols. Therefore, a major
challenge of MIMO-OFDM systems lies in obtaining accurate
channel state information (CSI) [3].

In general, CSI can be obtained through two meth-
ods [4], [5]. One is through blind channel estimation, which
explores the statistical information of the channel and certain
properties of the transmitted signals [5]. The other is through
training-based channel estimation, which uses training signals
sent by the transmitter, known a priori at the receiver [3].
Although the former has the advantage of incurring no over-
head loss, it is only applicable to slowly time-varying channels
due to its need for a long data record. This is also the main rea-
son why the training-based method is widely adopted in most
modern telecommunication systems, including /IEEE 802.16m
and 3GPP LTE/LTE-Advanced. In this paper, we focus on the
training-based method and introduce a novel way to utilize
these training signals for symbol detection.

The least square (LS) approach offers a decent channel
estimation performance with relatively low complexity. How-
ever, this method is sensitive to the transmission noise and the
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interpolation method. Another well-known channel estimation
method is the linear minimum mean square error (LMMSE)
estimator [2]. LMMSE is the optimal linear estimator that
minimizes the expected value of mean squared error (MSE).
In general, the LMMSE estimator has superior performance
compared with the LS estimator. However, the LMMSE esti-
mator has additional computational complexity.

In recent years, artificial neural networks (ANNs) gain
momentum in providing effective solutions for various
dynamic systems. An ANN usually consists of two com-
ponents: the processing elements (called neurons) and the
connections between them (termed parallel synaptic weights).
Neural networks have a learning capacity like that of the
human brain. These structures can be trained by various algo-
rithms designed to adjust synaptic weights for each iteration in
order to obtain the desired output for a given input. ANNs can
be successfully applied for modeling nonlinear phenomenon
of channel estimation, as they address complex classification
problems by having the ability to form arbitrarily shaped
nonlinear decision boundary regions [6]. Furthermore, they are
known to perform complex mapping between their input and
output space. Hence, networks of different architectures have
been successfully applied to channel estimation. Two different
ANN structures, namely, recurrent neural network (RNN) and
multilayer perceptron (MLP), have been trained and tested for
estimating wireless channels.

RNNs represent a very powerful generic tool, integrating
both large dynamical memory and highly adaptable com-
putational capabilities. The architecture of RNN consists of
layers of processing units called neurons, interconnected by
synapses, each having a specific weighted value. Compared
with the more commonly used MLP which is mainly feed-
forward neural networks architecture, RNNs are distinctive
in two ways: 1) the RNN exhibits dynamic behavior, due to
the presence of feedback connections, and can maintain an
activation, sometimes without an external input and 2) upon
perturbation by an external input, the RNN produces and stores
nonlinear transformations of the input history in its internal
state, resulting in dynamic memory.

Both MLPs and RNNs have been used for channel esti-
mations. MLP-based receivers have been mainly introduced
in [7]-[11], while RNN-based receivers have been discussed
in [12]-[14]. In both methods, ANNs are used to conduct
channel estimation before applying for symbol detection.
Furthermore, the study shows that RNN has superior esti-
mation performance despite the large training complex-
ity [15], [16]. This is because RNNs are capable of exploiting
the underlying correlation within the data [17]. However,
training a fully connected RNN in many cases is very diffi-
cult or even impossible [18]. Training algorithms for RNN are
inherently difficult and follow a second-order gradient-descent
method called Hessian-free optimization, which penalizes big
changes in RNN activations and is likely to drive the learning
process away from passing through many bifurcations [18].
This entails dynamic updates of the synaptic weights between
all layers of neurons, rendering practical implementation
highly infeasible. Furthermore, bifurcations in the training data
can lead to nonconvergence [19]. Even when convergence
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occurs, the training process is computationally slow and inten-
sive leading to poor performance of the modeling task [20].
In other words, most popular training methods for RNNs, such
as backpropagation through time, real-time recurrent learning,
and extended Kalman filter, are gradient-descent methods that
are computationally expensive and often have extremely slow
convergence. Therefore, these methods are generally suitable
for small networks [21]. Therefore, an alternative way of
training RNNs needs to be devised that is computationally
simple while providing faster convergence.

Due to the difficulty of training RNNSs, reservoir comput-
ing (RC) has recently attracted much attention. It has been
shown in [21] and [22] that RC systems can outperform
traditional RNNs in many cases. RC is especially suited for
temporal data processing tasks in which the RNN is considered
as a reservoir that produces and stores nonlinear transforma-
tions of the external input stimuli, which are then read out
through linear connections at the output. RC gives important
insights into RNNs, procuring practical machine learning
tools as well as enabling computation with nonconventional
hardware [23]. Echo state network (ESN) [21], [24] is one of
the most popular RC systems. The basic concept of ESN is
that RNNs can be trained without adapting each set of synaptic
weights. Therefore, ESNs can outperform Hessian-free trained
RNNs. Furthermore, the computational complexity of ESNs
can be drastically reduced, since only one set of synaptic
weights needs to be determined by a linear regression method.
In essence, due to the computational complexity and the slow
convergence of the training algorithms for RNNs, an ESN can
provide a better performance [1], [25]-[27].

In this paper, we introduce an ESN-based symbol detector,
which can overcome the issues created by the nonlinear dis-
tortion from the PA. In conventional approaches, accurate CSI
estimates are required for the receiver to detect the transmitted
symbol. The introduced method utilizes the RC architecture
for symbol detection avoiding channel estimation and mitigat-
ing the nonlinear distortion from the PA. Simulation results
for the uncoded bit error rate (BER) of the single-input-
single-output (SISO) and MIMO-OFDM systems show the
effectiveness of our scheme and its subsequent performance
improvement.

The remainder of this paper is organized as follows.
In Section II, we describe the system model and introduce the
main assumptions required for the analysis conducted in this
paper. Section III presents the concept of RC and demonstrates
the design of the introduced ESN symbol detection scheme
for MIMO-OFDM systems. Numerical results are shown in
Section IV. An overview of the results, conclusion of this
paper, and future work are presented in Section V.

II. PROBLEM FORMULATION

In this paper, we consider a discrete-time baseband equiva-
lent OFDM system, as shown in Fig. 1, where the transmitter
consists of inverse discrete Fourier transform (IDFT), cyclic
prefix (CP), and PA blocks, and the receiver consists of low
noise amplifier, CP removal, and DFT blocks. Let N be
the number of subcarriers of the underlying MIMO-OFDM



4696
St1—
Si2 — = Sin! Ujn!
: = CP PA
SiN—
Wireless
X 1 Channel
Yig T g |
. =
. ) RCP +
s Xin! Vin'
in ,
XiN —
Fig. 1. Discrete-time equivalent baseband OFDM system.

system, §; , be the frequency-domain data symbol at the nth
subcarrier and the ith symbol period, where 1 < n < N
and 1 < i < I (I is the number of symbol periods), and
s@) = [5i1,---, Ei,N]T e CN*! be the vector containing the
N data symbols of the ith symbol period. The frequency-
domain data symbols 5s;, are assumed to be independently
and identically distributed, with a uniform distribution over
a quadrature amplitude modulation (QAM) or a phase shift
keying alphabet. It is assumed that the transmitter does not
have CSI. Thus, we consider that all the subcarriers have
the same transmission power. Furthermore, we assume perfect
symbol synchronization at the receive filter being matched to
the transmit pulse shape filter.

The ith time-domain OFDM symbol is obtained by taking
the IDFT of frequency-domain data symbols, that is

si,n’ =

1 N
—= Q2 explj2r(n— (' = D/Nlsin (1)
W

where 1 < n’ < N and j = +/—1. Note that (1) can be
rewritten in the matrix form as s(i) = Vs(i), where s(i) =
[Si1s---s s,-,N]T e CN*! is the ith time domain symbol vector
and V € CV*N s the IDFT matrix, with

1
[Vlpq = ﬁeq3{j27r (p—1D(g —1)/N],

After the IDFT block, a CP of length M., is inserted
in the symbols s;, in order to ensure that the subcarriers
are orthogonal, avoiding intersymbol interference (ISI) and
intercarrier interference (ICI). However, this is accomplished
only if the time dispersion from the channel is smaller than the
duration of the CP. In fact, the CP is a copy of the last symbols
s;,n at the beginning of the transmission block, inserted in the
following way:

s (i) = [Si,(N—Mep+1)s - - - » Si,N sT ()T e CWHMep)x1,

The time-domain symbols with the CP are amplified by a PA,
which can be represented using the Rapp model [28]. Note
that when the PA is linear, the CP can be used to eliminate
the ISI and ICI ensuring the orthogonality among subcarriers.
However, as shown in sequel, when the PA is nonlinear, ICI
will be introduced even when CP is used.

The nonlinear PA in the transmitter shown in Fig. 1 repre-
sents the nonlinear distortion imposed on the baseband signal.

1<p, g=<N.
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An accurate nonlinear PA model is the Rapp model [28]. Let
Uiy, 1 <n’ < N+ M be the time domain symbols after
the PA, we have (1 <n < N)

Uin+My, = Sin G(Isin). 2
The PA gain G(-) can be expressed as
A(lsinl) exp(jo (Isinl
Gyl = 22D XU i) 3

[,

where the term |s;,| denotes the amplitude of s;,. Real
amplifiers exhibit various magnitudes of nonlinearities. These
are usually described by the amplitude transfer characteristics
[also known as the amplitude modulation/amplitude modu-
lation (AM/AM) conversion] and the phase transfer char-
acteristics [also known as the amplitude modulation/phase
modulation (AM/PM) conversion] of the amplifier. Note that
since the PA model is memoryless, the PA output also has
a CP. In (3), function A(-) represents the AM/AM conver-
sion and function ¢(-) represents the AM/PM conversion.
In the Rapp model, the phase distortion is assumed to be
small enough so that it can usually be neglected. Therefore,
the Rapp model can be characterized by the following AM/AM
and AM/PM conversions [28]:

aA
[1+ (41>

where A = |s;,| is the amplitude of the PA input signal,
o is a small signal gain usually normalized to 1, f§ is the
limiting output amplitude, and r controls the smoothness of
the transition from linear operation to saturated operation. It is
clear that g(A) < aA and g(A) < . The amount of distortion
introduced by the amplifier depends on the ratio (82/Var[A]),
where Var[A] is the average amplifier input power, and is
characterized by the parameter ClipLevel[dB] defined by
: B>
ClipLevel [dB] = 10log;, Var[A]

Lower ClipLevel implies more severe nonlinear distortion.
In addition, the severity of the nonlinear distortion depends
on the modulation scheme. Higher order modulation schemes
result in higher PAPR and more severe nonlinear distortion.
We assume that PAs at all N, transmit antennas are operating
with the same r and f. According to the Bussgang theo-
rem [29], the output of a nonlinear device can be divided
into two parts: the useful degraded input replica and the
uncorrelated nonlinear distortion. To be specific, we have

g(A) = . ¢(r)=0 “)

(5)

(6)

where s, and ng are the useful part and distortion part of the
output, respectively, and J is a complex gain factor, which can
be expressed as

Ui =Sy +Nng =08y +ng

E{”zn/si,n/}

E{S;jn/si,n’} .

(N

Here, E{-} is the expected value and (-)* represents the com-
plex conjugate operation. The effect of the nonlinear amplifier
depends on the operating point, which is the average power
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of the input signals. Input back-off and output back-off [30]
are two common parameters for verifying nonlinear distortion.
They are defined as

A2 AZ
s 0
IBO = 10log (P—_) ., OBO= 1010g( ) (8)

n out

where Ay is the PA input power at the saturation point, i.e., the
input power corresponding to the maximum output power, Pi,
is the average PA input power, Ap is the maximum output
power, and P,y is the average output power. Note that due
to the presence of PAs, a high PAPR introduces nonlinear
ICI in the received signal if a high IBO is not used, which
can significantly deteriorate the recovery of the information
symbols. A high IBO results in a low energy efficiency of the
PA and a low signal-to-noise ratio (SNR) at the receiver.

The PA output is transmitted through a frequency-selective
wireless fading channel with impulse response denoted by
hw, m = 0,...,M, where M is the delay spread of the
underlying wireless channel. An additive white Gaussian
noise (AWGN) of variance o2 is assumed at the channel
output. At the receiver, the CP is removed from the time-
domain received signal x;,, 1 < n < N+ M¢p. Thus,
assuming that the length of the CP is greater than or equal to
the channel delay spread, i.e., M, > M, the wireless channel
can be represented by a circular convolution

M
Xin'+Mep = z hmui,Cir(n’fm,N) + Vin'+Mep ©)]
m=0

where 1 < n’ < N and Vin'+M,, 18 the AWGN component
and the function Cir(x, N) is defined as

I<x<N
Cir(x, N) 2 {* NS (10)
x+N 1—-—N<x<O0.
Equation (9) can also be expressed in the matrix form as

x(i) = Hu(i) + v(@) (11)

where x(i) = [XiMy+1,..-.Xim,+n]T € CNXL
u@) = [wig,..unl” e CVXLvG) =
[v,-,Mcp+1,...,vi,Mcp+N]T e CN*l and H € CNXN s

the circulant matrix constructed from the channel impulse
response h,, with

hy—; O<r—t<M
[H]r,t = hrftJrN r—t<M-N (12)
0 1<r, t<N.
The DFT of the received signals is calculated as
xX(i) = V*x(i) = V'HVa(i) + v(i) (13)

where X(i) € CV*! is the vector of frequency-domain received
signal at the ith symbol period, u(i) = V*u(i) is the
frequency-domain version of u(i), and v(i) = V*v(i) € CV*!
is the frequency-domain noise vector, which is also AWGN
with the same covariance matrix oIy as v(i).

4697

III. RESERVOIR COMPUTING AND ESN SYMBOL
DETECTION METHOD

Artificial RNNs analogous to the functioning of the human
brain are often used to model nonlinear dynamic systems. An
RNN is comprised of layers of abstract units called neurons,
held together by synaptic connections, where the connection
strength is indicated by a specified weight value. At least one
feedback connection is present from the output to one of the
layers. Training algorithms for RNNs are usually classified as
gradient-descent methods, which reduce the specified training
error parameter by iteratively converging to a local minimum.
However, there are several drawbacks to gradient-descent
based approaches [18]: 1) slow learning process; 2) difficulties
in training large RNNs; 3) requirement of large memory; and
4) tendency to converge to local minimum.

Due to these problems, RC, a new paradigm of RNN
training, becomes most popular recently. In RC approaches,
a randomly generated RNN performs a nonlinear mapping
upon perturbation by an external input. At the output of the
RC, a linear readout is performed to estimate a target signal
from the excited reservoir state. As a result, only the output
weights are trained by a simple linear regression method.
The reservoir exhibits short-term memory and the capability
to preserve temporal data across distinct signals over time.
Therefore, reservoir dynamics exhibit behavior similar to a
spatiotemporal kernel whereby the input signal is projected to
a high-dimensional space [31].

A variety of RC methods exist in the literature. Although
they share the same basic concept, these methods have their
own unique implementation: ESNs [21], [24], [32], [33],
liquid state machines [17], backpropagation—decorrelation
learning [34], temporal RNNs [35], and delay line feed-
back [36]-[38]. Among these methods, the ESN has
been widely used in a variety of applications due to
its implementation simplicity, scalability, and generalization
capabilities.

A. Echo State Networks

ESNs are defined as an efficient and powerful computational
model for approximating nonlinear dynamical systems and
have been successfully applied in time-series prediction tasks.
Indeed, to accurately predict the unseen values of the time
series, the network would require a huge amount of memory.
The ESN can utilize a massive short-term memory to develop
an accurate dynamic model. Thus, a more accurate prediction
of the time variation of the modeling task is obtained using
ESNs. In principle, the ESN is an RNN with a nontrainable
sparse recurrent part (reservoir) and a simple linear readout.
A large RNN (of the order of hundreds of neurons) is used
as a reservoir of dynamics, which can be excited by suitably
presented input and output feedbacks. Connection weights in
the ESN reservoir, as well as the input weights, are randomly
generated and are not affected by the training. In order to
compute the desired output dynamics, only the weights of
connections from the reservoir to the output neurons are
adjusted by the training.
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B. Echo State Network Architecture

An ESN has three basic layers: the input layer, the dynamic
reservoir, and the output layer. A generic architecture of the
ESN is depicted in Fig. 2. The input layer is linked to
the dynamic reservoir through the input weights W, The
dynamic reservoir has internal weights W, which define the
connections inside the reservoir. The dynamic reservoir is
linked to the output layer through the output weights W, The
output is fed back to the dynamic reservoir through feedback
weights W' Structurally, the main difference between an
ESN and an RNN is the connectivity of neurons within the
dynamic reservoir. The ESN is a sparsely connected RNN with
Wi, W, and W fixed a priori to randomly chosen values.
In contrast with RNNs where the input and output weights are
adjusted based on the minimization of the MSE, ESNs only
calculate the output weights W' leading from the dynamic
reservoir to the output layer.

The basic idea behind ESN is to stimulate a random, large,
and fixed RNN with an external input signal, which excites
every neuron in the reservoir to generate nonlinear response
signals, and to combine the desired output signals after training
through a linear combination of the response signals. The main
parameters of a typical ESN are defined in the following.

1) K input neurons and the discrete-time input sequence
u=[u(l),...,u(K)]" e CKx1,

2) Nneurons Neurons in the dynamic reservoir and the output
of the dynamic reservoir which is the state vector x =
[x(1),..., x(Nneurons)]T € CNneurons <1,

3) L output neurons and the discrete-time output sequence
y = [y(D),...,y(L)]" e CE*! which is corresponding
to the input sequence u.

4) Input weight matrix W g CNrewons <K

5) Hidden layer weight matrix W & C/Nneurons X Nneurons

6) output weight matrix W € CL* (K+Nncurons)

7) Feedback weight matrix W g CNewons XL

8) State activation function, f, for the reservoir which
is a sigmoid function applied componentwise and is
generally the tanh function.

For the ESN to be able to successfully perform the modeling
task using the supervised learning algorithms, it must satisfy
the echo state property. The key to understanding ESN training
is the concept of echo states. Having echo states (or not
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having them) is a property of the network prior to training,
that is, a property of the weight matrices W, W, and W',
Intuitively, the echo state property implies, “if the network
has been run for a very long time, the current network state
is uniquely determined by the history of the input and the
teacher forced output.” The echo state property is a type
of stability criteria, which states that the reservoir dynamics
must be asymptotically state converging upon stimulation by
an external input. In other words, the effect of the initial
conditions must fade away with time. The echo state property
is related to the algebraic properties of the weight matrix W.

Remark 1: The existence of the echo state property may be
verified in terms of separate necessary and sufficient conditions
on the reservoir’s weight matrix W. The necessary and the
sufficient conditions are that the spectral radius p(W) and the
largest singular value be less than one, respectively. In [21],
the necessary condition is stated as a sufficient condition
for the nonexistence of echo states when p(W) > 1. The
reason for this constraint is that if the underlying linear system
is unstable, then the nonlinear system (resulting from the
application of the input activation function) will also exhibit
instability. From this point of view, the sufficient condition for
the nonexistence of echo state property is p(W) > 1. The nec-
essary condition for the existence of echo state property results
from this. From a system point of view, this requires that the
nonlinear recurrent system can be locally asymptotically stable
at the origin. For global asymptotic stability, a more restrictive
sufficient condition is required. The proof of the sufficient
condition is given by Jaeger in [21].

For practical purposes, the following procedure for deter-
mining weights seems to guarantee the echo state property (the
target is to calculate the value of WOU).

1) Generating the elements of W™ and W from a uniform

distribution over [—1, 1].

2) Generating a sparsely random matrix Wy in the range
[—1, 1] and making sure that the mean value of all the
weights are in near zero regime.

3) Scaling Wy by its highest eigenvalue |Amax| and
the spectral radius p(W) with respect to W =
(p(W)/12max)Wo.

Even though the above procedure is used in many practical
applications to guarantee the echo state property, it is not a
sufficient condition [39]. To correctly define the echo state
property, the statistical information of the input signal must
also be taken into account [40]. It is worth noting that,
the spectral radius p(W) depends on the application and
must be hand-tuned. In this paper, we have conditioned the
spectral radius of the internal weight matrix to below unity,
i.e.,, p(W) € [0, 1], in order to ensure the echo state property.

C. ESN-Based Symbol Detection Scheme

Due to the nonlinear time-varying distortion of the wireless
signal, we introduce an ESN as a black-box-time-domain
symbol detector. To be specific, the wireless channel between
the transmitter and the receiver is a multipath propagation
environment that exhibits the properties of time variation and
frequency selectivity. Transmitted signals undergo attenuation,
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delay, and phase shift during propagation through the chan-
nel. Therefore, the wireless channel acts as a time-varying
finite impulse response filter. In the conventional approach,
successful detection of the transmitted signal often requires
accurate CSI estimation and channel equalization. Unlike the
traditional approach, we introduce a novel symbol detection
scheme that does not require the explicit estimation of the CSIL.
The introduced scheme utilizes an ESN that acts as a black
box for system modeling purposes. In this section, we describe
the details of the ESN-based symbol detection. Furthermore,
we will show that the behavior of the nonlinear time-variant
system can be efficiently predicted and the consequent distor-
tion can be reduced through our approach.

As mentioned earlier, a baseband OFDM system at the
ith symbol period has a length-N complex-valued time-
domain input sequence s(i) = [si.1,..., 5, ~]T and a length-
N complex-valued time-domain output sequence x(i) =
[Xi, Mept1s - s xi,MCerN]T, where N is the number of OFDM
subcarriers. In addition, the channel impulse response has
complex-valued coefficients, and it can be expressed as a
complex vector h = [hy, ... ,halT, where M is the delay
spread of the underlying wireless channel. Assuming M., >
M, the wireless channel can be represented by (9). Because the
channel is complex, it is easy to see that the real (imaginary)
part of output sequence depends not only on the real (imag-
inary) part of input sequence but also on its imaginary (real)
part. For instance, let assume M = 1, then the channel impulse
response has a single tap given by h = Re{ho} + jIm{ho}.
Ignoring the AWGN, every output sample x;,, Mcp +1 <
n' < M., + N, only depends on the corresponding input
Sin, 1 <n <N, and we have

Refxin} = Re{sin}Re{ho} — Im{s; , m{ho}

Im{x; v} = Re{s; , Im{ho} + Im{s; ,}Re{ho}  (14)

where 1 <i < [ and [ is the number of symbol periods.

It is clear that the input to the ESN is a complex-valued
time-domain channel output, while the output is an estimate
of a length-N complex-valued time-domain channel input
sequence. However, the ESN can only operate on real numbers
at its input and output nodes. Therefore, we introduce an ESN
scheme with 2N, input and 2N; output nodes, in which the
real and imaginary parts of the signals at both the input and
output are fed to separate nodes. Therefore, in the SISO case,
the number of ESN input and output nodes is equal to 2, while
for the MIMO case, in which each transmitter and receiver
equipped with two transmit and receive antennas, the number
of ESN input and output nodes is equal to 4.

The block diagram of the introduced ESN-based symbol
detector can be seen most clearly in Fig. 3. The inputs to the
ESN are the real and imaginary parts of the length N complex-
valued time-domain channel output sequence y;,, 1 < n <
N + Mcp, while the outputs are the real and imaginary
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parts of an estimate of s(i), denoted by §(i). The outputs
from the ESN symbol detector, i.e., Re{$(i)} and Im{8(i)}, are
combined to give §(i) = Re{s8(i)} + jIm{8(i)}. Accordingly,
the frequency domain detected transmitted symbol can be
expressed as §(i) = DFT{s(i)} = [§,-,1 ...§,-,N]T.

An important consideration of the ESN-based symbol detec-
tor is the delay. This is the time it takes for the desired value
to appear at the output of the ESN once the corresponding
input is fed to the ESN. Let d; be the delay for the output
node 1, and d, be the delay for the output node 2; both are
nonnegative integers. The inputs to the ESN at time ¢ are
X1,in = Re{x; v}, and x2;,» = Im{x;,/}. Denote the values
of the ESN output nodes by z;,;, and z,; ,. The ESN’s job is
to compute estimates of the channel input sequence denoted
by 8i, = Re{si,} + jIm{$;,}, n =1,..., N. Having delays
of d; and d simply implies that

Re{S$in} = z1,in+a,

Im{Si,n} = 21,i,n+d>- 5)

The delays d; and d, are incorporated to the training
as follows. During the training, for a particular delay pair
(d1, d»), the optimal output weights w; and wy, both length-
N, + 2 vectors to the output nodes 1 and 2, respectively,
are chosen, such that they minimize the total MSE as seen
in (16), at the top of the next page, where the time series
Sin, n = 1,..., N is the teacher output. In other words,
the training of the ESN is delay-specific. For each choice of
the delay pair (di, d2), we train the ESN and compute the
training MSE given earlier. The ESN training MSE strongly
depends on the delays for the particular realization of the
channel impulse response (CIR). Since the CIR is not known in
advance at the receiver, the optimal values of the delays (those
that minimize the total MSE) are not known. Accordingly,
during each training, the ESN is trained for different delay
pairs, and the delay pair that minimizes the training MSE is
chosen as the optimal delay

(d]", d;) = arg min MSE*(d,, d»). 17)
(d1,d2)
It is worth noting that the closest pair of delays can be
computed in O(n?) time by performing a brute-force search,
in which n is the number of delays in the lookup table.
Remark 2: In the block-fading wireless channel, the chan-
nel impulse response h is randomly generated from a wide-
sense stationary uncorrelated scattering model and stays invari-
ant for every K OFDM symbols [41]. Each element of
h is a zero-mean complex Gaussian random variable with
independent real and imaginary parts, and both parts have the
same variance. The variance of each complex coefficient is
set according to the power delay profile (PDP) of the channel
[002, R a/%,,], where ‘76’2 = E[h;hg]. We use a one-sided trun-
cated exponential function model for the PDP [41]. In particu-

N+d;—1

MSE*(di,do) = min = > (1in(W1) = RefSimayD?+ D0 (@2in(W2) = Im{5in-a,})

n=d

N+dr—1
(16)

n=dy
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Fig. 3. Block diagram of the ESN-based symbol detector.

lar, 002 has the highest value, and the value of 052 decays expo-
nentially from ¢ = 0 to £ = M. On average, h is the dominant
coefficient having the largest magnitude. In that case, the opti-
mal delay values are dj = d5 = 0. Due to the randomness of
the channel, it is possible that /; is the dominant CIR coeffi-
cient. In this case, the numerical results show that a delay value
of at least 1 should be used to reduce the MSE; delays of 0
give poor MSE and BER results. This is intuitive, since in this
case, the ESN estimates a sample before it has fully appeared
at the ESN input. More details are discussed in Section IV.
Additional parameters critical to the performance of the ESN
estimator will be discussed in more detail in Section III-F.

D. Training of the Echo State Network

Given the ESN and the input—output sequences, the weights
are trained to learn system characteristics. The available input—
output sequences are divided into three parts:

1) an initial part, which serves the purpose of getting rid
of initial transients in the network’s internal states;

2) a training part, which is used in the actual learning
procedure of adjusting the output weights;

3) a testing part, which is used to test the newly trained
network on additional data.

Due to the complex structure of the dynamic reservoir,
ESNs have a high capability for modeling complex dynamic
systems. However, in order to limit the required computational
effort during training, both online [42] and offline [33] training
algorithms have been introduced. When using an offline mode
of training, output weights are determined using teacher-forced
outputs and inputs to obtain a collection of internal states in the
state matrix. The calculated output weights can be used in the
modeling task without any further modifications. In the online
case, the output weights are updated in each time step, which
assists in tracking time variance of the dynamic system. Note
that in both the online and offline training algorithm of the
ESN, only the output weights are updated, which guarantees
the low computational requirement of the ESN approach. Both
training modes are summarized in the following.

1) Offline Training Algorithm of the ESN:

Step 1: Generate an ESN following certain rules to ensure
its echo state property. Note that once Wi", W, and
W™ are generated, they will not change during the
entire training process.

Feed the training data into the ESN to sample the
network dynamics. When the training data are fed
to the ESN, it activates the dynamic reservoir. First,

Step 2:

Step 3:

Step 4:
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the network’s internal state vector X is initialized
to zero, i.e., Xx(0) = 0. Then, the network is driven
by the training data for times n = 0, ..., nmax by
presenting the input u(n) and forcing the output
y(n — 1) to the dynamic reservoir. The new state
for the next time step is calculated as

x(n+ 1) = fF(W™u(n + 1) + Wx(n) + WPy(n))
(18)

where u = [x;1,... ,x,-,N+MCp]T and y =
[§,‘,1,...,§,‘,N]T, fori=1,...,1.

Wash out the initial memory in the dynamic reser-
voir. The information from initial time steps, n =
1,...,ngp, is not used for training, because the net-
work’s dynamics are partly determined by the initial
arbitrary starting state of x(0) = 0. By time no,
the effects of the arbitrary starting state die out, and
it is safe to assume that the network states are a pure
reflection of the teacher-forced input and output.
This is known as the initial washout time that is dif-
ferent according to different systems and the length
of input sequence. For each time larger or equal to
an initial washout time ng, collect the input u(n)
and the network state x(n) as a new row into a
state-collecting matrix S. In the end, the size of S
works out to be (nmax — 70 + 1) X (Npeurons + K).
Similarly, for each time larger than or equal to
an initial washout time ng, the sigmoid inverted
teacher output tanh~! y(n) is collected in the teacher
collecting matrix T of size (nmax —no + 1) x L.
Compute the output weights. Once the training
is over, multiply the pseudoinverse of S with T,
to obtain a (K + Npeurons) X L-sized matrix Wout

WYy =s'T (19)

where f denotes the pseudoinverse.

2) Online Training Algorithm of the ESN:

Step 1:

Step 2:

Generate an ESH. In contrast to the offline training,
there are four initial weight matrices that should
be generated. Beside Wi“, W, and Wﬂ’, the output
weight WO is also randomly generated. The rules
for generating the weight matrices are the same as
those described in the offline training.

Calculate the states in the dynamic reservoir. This
step is the same as that described in the offline
training and (18) is used to calculate the states in the
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dynamic reservoir. However, it is no longer required
to collect the state at time n as a new row of a state
matrix S.

Compute the estimated output of the ESN. The
output of the ESN is calculated as

F4+1) = oUW () [u(n+1); x(n 4 1); y(n)])
(20)

Step 3:

where f°" is generally an identity or sigmoid
function, [;] indicates vector concatenation, and
WO n) denotes the output weight matrix at time
n. Input and output of the ESN are given by u =
[xijl PRI axi,NJrMCp]T and Y= [§i51 yeens S‘\ijN]T, for
i=1,...,1.

Update the output weights. The estimated output
is compared with the actual output in order to
calculate the error vector ey. The output weights are
updated, such that the mean square training error is
minimized and can be updated as the following [42]:

Step 4:

W% + 1) = WOm)r + nx(n 4+ DT ey (n + 1)
+yx(m)ey(n) 2D

where 7 is the learning gain and y is the momentum
gain, and each one is in the range of [0, 1].

Note that the value of the learning gain decides how fast
the network learns. We could extract it, which would be the
same as setting it to 1. In that case, the weights would change
significantly whenever an error occurs. This tends to make
the system unstable. On the other hand, the network will take
longer time to learn under a small learning gain resulting in
a slow convergence rate. However, the network will be more
stable and resistant to noise (errors) and inaccuracies in the
data. In general, we set 0.1 < 7 < 0.4 depending upon how
much error we expect in the inputs. Another effective approach
increasing the convergence and stabilizing the training proce-
dure is to add some momentum coefficient to the network.
Adding a momentum term in the weight update helps avoid
local minima, and also makes the dynamics of optimization
more stable, since it is possible to use a smaller learning gain
creating more stable learning and improved convergence rate.
Typically, a value of & = 0.9 is used.

It is noteworthy that adding a momentum term to the weight
update is considered as a variation of the BP algorithm. The
BP algorithm is widely used in ANN training. A momentum
term is often added to the BP algorithm to accelerate and
stabilize the learning procedure [43], in which the present
weight updating increment is a combination of the present
gradient of the error function and the previous weight updating
increment. The choice of &« = 0 reduces this method to
the original BP without a momentum term. The convergence
of BP with a momentum term [see (21)] is considered by
Bhaya and Kaszkurewicz [43] and Torii and Hagan [44].
They require the gradient of the error function to be a linear
function of the weight. Especially, in [44], the learning rate
and the momentum coefficient are restricted to constants.
Consequently, the iteration procedure of BP with a momentum
can be expressed as a stationary iteration. The convergence
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property is then determined by the eigenvalues of its iterative
matrix. Due to the fact that the gradient of the error function
is not a linear function of the weight for general activation
functions, such as sigmoid functions, [45] generalized the
result in [44] to a more general case and established the
convergence of BP with a momentum term.

Remark 3: The goal of the training stage is to compute
WO such that an error measure, which is typically the MSE
between the teacher signal and the trained output of the ESN,
is minimized. A linear regression is usually performed on the
states of the reservoir and the teacher output signals, and any
suitable algorithm for linear regression can be implemented.
It is worth noting that among the various linear regression
algorithms, we used the matrix pseudoinverse for the compu-
tation of WU due to its stability and feasibility.

Remark 4: Offline training is used for our implementation
of the ESN-based symbol detector. It is optimal under MSE,
and however, it cannot track time-varying channels like its
online counterparts. The offline training can be a good fit
for block-fading wireless channels where the channel remains
invariant for a number of OFDM symbols. Furthermore,
the offline training algorithm can be easily implemented in
hardware.

E. Testing of the Echo State Network

The ESN (W™, W, W and W°U) is now ready for use
after the training. We can run the ESN on the test data, which
has as initial condition on the last training time step (the
neurons’ states at time 0 in the testing phase are the neurons’
states from time m in the training phase, where m is the size
of the training sequence). The equations for the test phase can
be expressed as

§() = FOU WO u(n): x(n); y(n — 1)])
X(n+ 1) = fF(W"u(n + 1) + Wx(n) + WP§(n))

(22)
(23)

where ¥ is the calculated output after the pseudoinverse
calculation. To evaluate the performance, we usually use
the normalized root mean squared error (NRMSE) which is
defined as

Iy —yl3

2
mxay

NRMSE = (24)

where ay2 is the variance of the desired output signal y, m is
the testing sequence length, and § is the output computed by
the ESN after training.

Remark 5: In our ESN-based symbol detector, the reservoir
activation function f in (18) is tanh and the output activation
function £°U in (20) is an identity function. The tanh function
is approximately linear in a small region around the origin and
saturates at +1/—1 beyond this range. To keep the reservoir
operation approximately linear, very small scaling of the input
and output feedback weights are used for the ESN. It should
be noted that although the sigmoid function shifts the training
data near the origin to provide an approximate linear region
of operation, the reservoir itself remains dynamic due to the
existence of recurrent loops in the architecture.
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F. Tuning the Echo State Network

As ESN is usually constructed by manually experimenting
with a number of control parameters, in the following section
we discuss in more detail on how to tune some of important
ESN parameters in our ESN-based symbol detector.

1) Number of Neurons: One of the most important ESN
parameters is the number of neurons in the reservoir. The
relationship between Npeyrons and the performance of the ESN-
based symbol detector, i.e., BER, is critical. In general, it is
desirable to have more neurons in the reservoir because this
implies higher dimensionality. However, in the MIMO-OFDM
system the training duration is usually fixed and is limited
by the number of training signals of the system. As the
number of neurons increases, the training per output weight
decreases. The number of training samples is 2N and then
the total number of output weights will be 2Npeyrons + 4-
Therefore, the number of training samples per output weight is
approximately N/Npeurons leading to a clear tradeoff between
the reservoir dimensionality and the training quality. On the
other hand, the channel is characterized by 2M real channel
coefficients (M complex-valued with independent real and
imaginary parts) that are generated independently. In concor-
dance with the previous argument this implies that at a given
SNR value the BER is a convex function of the number of
neurons.

2) Spectral Radius: The spectral radius is a critical tuning
parameter for the ESN. Usually the spectral radius is related
to the input signal. However, if longer memory is needed,
a higher spectral radius will be required. The downside of a
longer spectral radius is longer time for the settling down of
the network oscillations. Translating this into an experimental
outcome means having a smaller region of optimality when
searching for a good ESN with respect to some data sets.
The spectral radius is considered as one of the most important
tuning parameters of the ESN [33].

3) Weight Scaling: Input scaling is important for the ESN’s
ability to catch signal dynamics. If the input weights are too
small, the network will be driven more by inner dynamics and
thus lose the characteristics of the signal. If the input weights
are too large, there will be no short-term memory and the
inner states will be completely driven by the signal. Hence,
the weight-scaling should be adjusted based on the input data.

4) Connectivity: Connectivity is another important parame-
ter in the design of the ESN. It is defined as the number
of nonzero weights from the total number of weights in the
ESN. For example, for a 10 neuron network we will have 100
network weights; if we set the connectivity to 0.2 then the
number of 0-valued weights will be 0.8 x 100 = 80. For our
scenario, which considers a nonlinear case and uses a tanh
activation function, the simulation results show that there is
no effect on the connectivity value and the BER performance.
In other words, fully connected networks perform as good
as sparsely connected networks for this specific detection
problem.

IV. SIMULATION RESULTS

In this section, we present the simulation results for the
ESN-based symbol detector. A step-by-step description of the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 10, OCTOBER 2018

TABLE I
OFDM PARAMETERS

Number of OFDM Subcarriers | N = 512
Bandwidth 2 MHz
Doppler Frequency 100 Hz
Maximum Delay Spread Tus
CIR duration 8

introduced scheme is given as the following.

1)

2)

4)

5)

Both SISO-OFDM and MIMO-OFDM systems are sim-
ulated using a block-fading channel model whereby
training signals are placed at the beginning of each
frame. In this model, an independent channel realization
occurs every K OFDM symbols. This specific value, K,
is determined by physical parameters of the underlying
wireless channel such as the Doppler frequency, system
bandwidth, number of OFDM subcarriers, and chan-
nel impulse response duration. The system parameters
used for performance evaluation are listed in Table I
Based on these parameters, the block-fading channel
remains constant for K = 19 OFDM symbols. Separate
linear and nonlinear block-fading channel models are
developed for the current study. The linear block-fading
channel is a multipath AWGN channel. The nonlinear
PA model is incorporated into the channel model to form
the nonlinear block-fading model. We assume that the
parameters of the nonlinear PA are the same across all
transmit antennas in the MIMO-OFDM system.

A CP of length L — 1 is added in the time-domain.
The channel output is y as shown in Fig. 3.

The ESN is generated randomly every 19 OFDM sym-
bols. In the SISO-OFDM system, ESN has 2 input and
2 output nodes, while in an MIMO system with N;
transmit and N, receive antennas, the ESN has 2N, input
and 2N; output nodes so that in a pair of nodes one
takes the real and the other takes the imaginary part of
the signal. We consider an MIMO-OFDM system with
2 transmit and 2 receive antennas. The corresponding
ESN has 4 input and output nodes. The training stage
lasts for the duration of the first OFDM symbol and in
the remaining symbols the ESN is tested for symbol
detection. Each randomly generated ESN is trained
with the optimal output delay values as discussed in
Section III-C.

Withthe ESN-based symbol detector, we want to input
y, and discard all but the last N ESN output samples.
The additional input samples are for the ESN transient.
The CP samples of y, the first L — 1 samples, have
interference from the previous OFDM symbol. Our
implementation takes this interference into account. The
input to the ESN is the time-domain channel output y,
while the desired output from the ESN is an estimate of
s(i), i.e., §(i), where s(i) = DFT(8(i)) and (i) denotes
the complex data symbols drawn from a signal constel-
lation for transmission with an MIMO-ODFM system.
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We choose quadrature phase shift keying and 16-QAM mod-
ulation schemes and set the parameters for the nonlinear
PA, i.e., ClipLevel and Shape parameter, at 3 dB and 1,
respectively. Uncoded BER is used as a performance measure
to evaluate the effectiveness of our approach. The trained ESN
is then used for transmission and BER curves as a function of
the SNR are generated. For each SNR value, we simulate 4000
OFDM symbols whereby a new ESN is generated randomly
every 19 OFDM symbols, and each randomly generated ESN
is trained offline. To be specific, for each OFDM symbol we
check whether the current OFDM symbol is for training or for
data transmission. Two sets of simulations are performed. At
first, the BER was simulated for different numbers of neurons
in the reservoir to determine a suitable size of the reservoir.
Using this value, we proceed to simulate the BER for different
SNR values. The connectivity of the reservoir, which refers to
the number of nonzero entries in the internal weight matrix W,
and the spectral radius are set at 20% and 0.98, respectively.

A. BER Versus Number of Neurons

In Figs. 4 and 5, we investigate the impact of the reservoir
size on the BER of the SISO-OFDM and MIMO-OFDM
system by increasing the number of reservoir neurons for
3 different SNR values: 10 dB, 20 dB, and 30 dB. Both
the linear block-fading model and the nonlinear block-fading
model where the nonlinear PA model is incorporated are
simulated. The number of neurons in the reservoir is increased
by increments of 20, starting from 2 neurons. It can be seen
from the Fig. 4 that as the number of neurons increases,
the BER of the ESN-based symbol detector first decreases
and then increases. This is because as the the number of
neurons increases a higher dimensionality becomes possible
for resolving the inputs i% since more neurons are available
for the per input sample for the same dimensions of the
input). However, in the OFDM system the training signals are
usually fixed. As the number of neurons increases, the training
per output weight decreases. The number of training samples
is 2N (N real and N imaginary). The total number of
output weights iS 2 Npeurons + 4. Thus, the number of train-
ing samples per output weight is approximately N/Npeurons-
In short, Fig. 4 shows a clear tradeoff between the reser-
voir dimensionality and the training quality. As we increase
the dimensionality, we decrease the training quality. On the
other hand, the channel is characterized by 2L real channel
coefficients (L complex-valued with independent real and
imaginary parts). Therefore, we would expect the ESN-based
symbol detector to do poorly when the number of neurons is
less than 2L. However, when the number of neurons is large,
we also expect the ESN-based symbol detector to perform
poorly due to fact that we do not have sufficient training
signals. This implies that at a given SNR value the BER
is a convex function of the number of neurons as shown
in Fig. 4. In both cases (linear and nonlinear models), a convex
shaped curve is obtained, with a minimum BER occurring
at approximately the region from 50 to 100 neurons. With
increasing SNR value, the magnitude of the minimum BER
decreases as illustrated with both the linear and nonlinear
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Fig. 4. BER versus number of reservoir neurons in SISO-OFDM. (a) Linear
block-fading channel. (b) Nonlinear block-fading model.

block-fading models in Fig. 4. However, it is important to
note that the value of the minimum BER all falls in the range
from 50 to 100 neurons for the three SNR values.

For the MIMO-OFDM system, the BER shows a similar
convex curve as given in Fig. 5, with the minimum BER
occurring at approximately 50-100 neurons. The results are
intuitive since as we have simulated an OFDM system with
512 subcarriers and used a reservoir with 20% connectivity,
the number of nonsparse connections is around 500 when there
are approximately 50 neurons in the reservoir. If the number
of neurons in the reservoir is less than 50, there will be an
inadequate number of reservoir connections compared to the
number of subcarriers.

B. BER Versus SNR

From the analysis of the BER for different number of
neurons, it was observed that the minimum BER occurred in
the range from 50-100 neurons. Based on these observations,
we selected a reservoir size to be 64 to perform the BER simu-
lations for different SNR values. In this section, we simulated
both SISO-OFDM and MIMO-OFDM systems. The OFDM
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Fig. 5. BER versus number of reservoir neurons in MIMO-OFDM. (a) Linear
block-fading channel. (b) Nonlinear block-fading model.

system parameters are kept the same. For both SISO-OFDM
and MIMO-OFDM systems, we perform simulations of the
BER with increasing SNR for the ESN-based symbol detector
along with the LSs channel estimator and the LMMSE channel
estimator, for both the linear block-fading and the nonlinear
block-fading models. Note that for LS and LMMSE cases,
we first conduct channel estimation using LS and LMMSE
based on training signals. After estimating the channel, con-
ventional symbol detection is then conducted.

The BER for different SNR values is plotted in Fig. 6
for the SISO-OFDM system. For the linear block-fading
channel, it is observed that the proposed scheme beats the
LS channel estimator based symbol detection for all SNR
values. Furthermore, it performs very close to the LMMSE
channel estimator based symbol detection. It is important
to note that both the ESN-based symbol detection and LS
channel estimator based symbol detection does not require any
statistical channel information. On the other hand, the LMMSE
channel estimator based symbol detection requires channel
statistical information.

For the nonlinear block-fading model in Fig. 6(b), the ESN-
based approach outperforms both the LS estimator based
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Fig. 6. BER versus SNR in SISO-OFDM. (a) Linear block-fading channel.
(b) Nonlinear block-fading model.

approach, starting at approximately 5 dB and onward, and
the LMMSE estimator based approach, starting at approxi-
mately 12 dB and beyond. With the increase of the SNR,
the dominant source of signal distortion becomes the nonlin-
ear PA. The PA introduces a larger magnitude of nonlinear
distortion on the OFDM signal and this in turn gives rise
to the high PAPR value. As the ESN can utilize a mas-
sive short-term memory, it can remember previous states up
to order Npeurons, Which indicates the reservoir size. This
allows a more efficient resolution of the nonlinearity in the
received signal; with feedback connections in the ESN, dis-
tortion from adjacent OFDM symbols can be cumulatively
reduced.

For the case of the MIMO-OFDM system in Fig. 7,
we assumed that each transmit antenna has a nonlinear PA
with the same parameters as given before. For every individual
nonlinear PA present at each transmit antenna, the operation is
assumed to be independent of other transmit antennas. Since
the ESN now has 4 output nodes, we have 4 output delays.
Every time we generate a new random ESN and train it
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TABLE 11
ESN PERFORMANCE IN TERMS OF TRAINING TIME, NMSE, AND PREDICTION ACCURACY
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SNR  Training Testing Prediction NMSE NMSE
time runtime Accuracy  Training Testing
10dB 0.7538 0.0540  77.92% 0.4300 0.5705
14 dB 0.7588 0.0543  84.77% 0.2857 0.3774
18 dB  0.7592 0.0544  90.24% 0.1869 0.2485
22.dB  0.7690 0.0550  93.94% 0.1321 0.1749
26 dB  0.7707 0.0550  95.56% 0.1082 0.1423
30dB  0.7759 0.0552  96.91% 0.0872 0.1144
10° ;e—LS TABLE III
| - LMMSE COMPARISON BETWEEN ESN AND MLP
SNR = 10 dB SNR =22 dB
. ESN MLP ESN MLP
d? Training time (s) 0.7991 3.0180  0.7690 10.2084
é Testing run time (s) 0.0591 0.0153  0.0550 0.0124
& MSE 0.5801 58.4504 0.1749 6.6466
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Fig. 7. BER versus SNR in MIMO-OFDM. (a) Linear block-fading channel.
(b) Nonlinear block-fading model.

with different delay quadruples, one for each output node,
and choose the one that minimizes the NMSE. The ESN
BER curve, along with the LS BER curves and the LMMSE
channel estimator BER curves, for both linear and nonlinear
block-fading models are shown in Fig. 7. In the SISO-OFDM
case, the ESN-based approach outperforms the LS and MMSE
channel estimator based approach for all SNR values. The
reason why the results of the linear block-fading channel for
MIMO-OFDM systems are not consistent with that for SISO-
OFDM systems is because in an MIMO system by increasing

the SNR, due to various impairments like fading, noise,
scattering etc., signal corruption happens more frequently than
the SISO case during wireless transmission. This introduces a
larger magnitude of nonlinear distortion on the OFDM signal
and in turn gives rise to the high PAPR value. Since the ESN
can utilize a massive short-term memory, it can remember
previous states up to the order of the number of neurons
in the reservoir. This allows for a more efficient resolution
of the nonlinearity in the received signal and with feedback
connections in the ESN. In the nonlinear block-fading model,
the ESN-based approach trails the performance of the LMMSE
estimator based approach at around 10 dB. Beyond 10 dB,
the ESN estimator outperforms both the LS and LMMSE
estimators.

The training results of the ESN-based symbol detection
in terms of training time/convergence time and accuracy,
and ESN testing results in relation to prediction accuracy
and the runtime are summarized in Table II. The BER is
the percentage of bits that have errors relative to the total
number of bits received in a transmission and is used to
quantify a channel carrying data by counting the rate of
errors in a data string. Accuracy, which shows the percentage
of correctly detected symbols, which are detected correctly,
can be defined as (1 - BER). To evaluate the ESN, we also
calculate the NRMSE for the training and testing. The NRMSE
is a frequently used measure of the difference between values
predicted by a model and those actually observed in the
environment that is being modeled. It is a good measure of
how accurately the model predicts the response, and is the
most important criterion if the main purpose of the model is
prediction.

In the following, we compare the ESN performance with
one of the most commonly used machine learning methods,
namely MLP, for training and testing performance. Like ESN,
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TABLE IV
THROUGHPUT COMPARISON BETWEEN ESN AND MLP

SNR 10dB 14dB 18dB 22dB 26dB 30dB
ESN  0.2208 0.1523 0.0976 0.0606 0.0444 0.0309
MLP 0.5002 0.5001 0.5000 0.4999 0.4997 0.5000

training of the MLP is done every 19 OFDM symbols.
For each OFDM symbol, we check whether the current OFDM
symbol is for training or for data transmission. Training is
completed with a scaled conjugate gradient backpropagation
algorithm and uses early stopping (the performance goal is
set to 0.01). For each OFDM symbol, the input of the MLP
is an N x 2N, matrix. We used 200 validation examples.
The number of hidden layers is 2 and the number of neurons
in each layer is 64 and 128, respectively. We used sigmoid
activation functions and the mean squared error cost function,
because this combination avoids problems with upper/lower
boundaries and local minima. The comparison is done for
training time/convergence time, training and testing accuracy,
and BER. The results are shown in Tables III and IV. Table IV
demonstrates that even though the MLP does allow certain
autonomy compared with the other machine learning tech-
niques, its performance is usually strictly suboptimal when
dealing with correlated data. Furthermore, Fig. 8 shows that
even though MLP can be trained perfectly, the validation and
test perform are poor due to the fact that the input data are
highly correlated.

C. Complexity Analysis

In this section, we compare the computational complexity of
our scheme with conventional ones. The computational com-
plexity of the ESN-based symbol detector is associated with
the updates of the weight matrix. Specifically, the proposed
ESN-based symbol detector only needs to update the readout
weight matrix, since training must occur only for the weights
connecting the internal layer to the readout neuron. The com-
putation complexity can be calculated by the total number of
floating-point operations (FLOPs) [46]. Before explicating the
complexity of each step, we first briefly summarize the number
of FLOPs required for some basic operations: the product of
two matrices of size (m x n) and (n x p) requires m(n — 1)p
floating point addition and mnp floating point multiplication;
the inversion of an (n x n) positive definite matrix takes n3
floating point addition and n> floating point multiplication;
and the complexity of the inner product operation between
two (n x 1) vectors is (2n — 1). With these basic operations
at hand, we now examine the complexity of the ESN-based,
as well as the LS-based and MMSE-based methods.

The computational complexity of the ESN-based symbol
detector is related to the readout matrix, which is given
by (19). Hence, the implementation of WO requires (7max —
no+1 )2 X (Nneurons+K +1max —10) 4+ (Nneurons +K ) (max —no+
1) (nmax —10) + L (Nneurons + K ) (nmax — o) floating point addi-
tion and (nmax —no+ 1)2 X (Nneurons +2+Rmax —10) (Nneurons +
K)(nmax —no+ 1)2 + L(Nneurons + K) (nmax —no+1) floating
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Fig. 8. Training and validation for MLP algorithm.

point multiplication, where nmax and ng are the maximum time
of training the network and the initial washout time, respec-
tively. Therefore, the computational complexity of calculating
WO can be approximated by (max — 1o + 1)3, which means
that computational complexity for updating the weight matrix
in the proposed scheme is related only to the training time.
To compare the computation complexity of the ESN-based
symbol detector, we must consider the computation complexity
of the channel estimation algorithm along with the symbol
detector scheme. Considering the number of complex additions
and multiplications for each OFDM symbol as a complexity
metric, the complexity of LS would be (4NN, +2 N> +
N>N, — N?> — N,N,)N, while the complexity of LMMSE can
be represented as (6 Nr3 +4 Nr3N, +3 erN, —2 NNy)N,
where N, is the number of receive antennas, N is the number
of subcarriers, and N; is the number of transmit antennas.
Furthermore, at a receiver, a detector forms an estimate of the
transmitted symbol by minimizing the distance between the
received symbol and constellation points. The closest pair of
points can be computed in O(n?) time by performing a brute-
force search, in which n is the number of constellation points.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel ESN-based symbol detector is
introduced for MIMO-OFDM systems. BER performance of
the introduced symbol detector is compared with those of
conventional symbol detectors based on channel estimation
algorithms. Simulation results demonstrate the efficiency of
our scheme in modeling channel behavior and compensating
for nonlinear distortion.

As an extension of this paper, we will address other sources
of nonlinearity, such as phase noise and Doppler shift. ESN
with online training will also be an important future work.
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