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Abstract—In this paper, the design of linear precoders for
simultaneously wireless information and power transfer (SWIPT)
over multi-input multi-output (MIMO) broadcast channels with
discrete input signals is investigated. The considered system model
consists of one base station (BS), one information receiver (IR)
and one energy receiver (ER). The design objective is to maximize
the input-output mutual information of the IR subject to the
harvested energy requirement for the ER. The structure of the
optimal precoder is derived by using the methods of manifold
optimization, and an algorithm is proposed to find the optimal
precoder. Simulation results show that the proposed algorithm
can achieve better performance than the time sharing scheme
and the optimal precoder designed for Gaussian inputs.
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I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) over multi-input multi-output (MIMO) channels has
been widely investigated recently [1], [2]. SWIPT provides
a promising solution to prolong the lifetime of energy con-
strained wireless networks. In SWIPT MIMO systems, the
information carrying signals are not only used for communi-
cation but also for energy extraction. To achieve a good rate-
energy tradeoff, the linear precoders at the transmitter should
be properly designed.

In [1], the linear precoders for SWIPT over MIMO broad-
cast channels with Gaussian inputs are investigated. However,
discrete constellations, such as quadrature phase-shift keying
(QPSK) and 16-quadrature amplitude modulation (16-QAM),
have to be used in practical systems. Thus, we investigate
in this paper the design of linear precoders for SWIPT over
MIMO broadcast channels with discrete input signals. The
considered system model consists of one base station (BS),
one information receiver (IR) and one energy receiver (ER).
More specifically, we consider maximizing the information rate
of the IR subject to the constraint that the energy harvested by
the ER is larger than a fixed value.

When the ER is absent, the problem becomes the same as
the design of optimal linear precoders for point-to-point MIMO
transmissions with discrete input signals, which has been well
addressed in the literature. In [3], the necessary conditions for
the optimal precoder were derived by applying the Karush–
Kuhn–Tucker (KKT) conditions. In [4], it was shown that the
left singular vectors of the optimal precoder maximizing the

mutual information I(x;y) under the power constraint are the
same as the right singular vectors of the channel matrix. In [5],
the structure of the optimum precoder was derived based on
the results from [3]. In [6], a globally optimal linear precoder
was proposed for discrete input signals over complex vector
Gaussian channels.

Optimization algorithms on manifold [7] have been widely
used in MIMO systems. The mostly addressed manifolds are
Stiefel manifolds and Grassmann manifolds. The manifold of
unitary matrices is a special kind of complex Stiefel manifold.
In this paper, we view the considered problem as a constrained
optimization problem over the product manifold of two unitary
manifolds and a vector space. The KKT conditions for the
constrained optimization problems on Riemannian manifolds
have been investigated in [8]. Using the results from [8],
we obtain the structure of the optimal linear precoder for
the considered optimization problem. Further, we propose an
algorithm to find the optimal precoder.

The rest of this article is organized as follows. The problem
formulation is presented in Section II. The structure of the lin-
ear optimal precoder is provided in Section III. The algorithm
for the precoder design is proposed in Section IV. Simulations
are contained in Section V. The conclusion is drawn in Section
VI.

II. PROBLEM FORMULATION

A. System Model

We consider a MIMO broadcasting system over frequency-
flat fading channels, which consists of one BS, one IR and one
ER. The transmitter at the BS is equipped with M antennas.
The IR is equipped with N antennas. The ER is equipped with
L antennas. The received signal of the IR is given by

y = HPx+ z (1)

where H is the N×M channel matrix between the transmitter
and the IR, P is the M ×M precoding matrix, x is the M ×1
transmitted vector for the IR, and z is a complex Gaussian
noise vector distributed as CN (0, σ2

zIN ). The energy harvested
by the ER is given by E = tr

(
PPHGHG

)
, where G is the

L×M channel matrix between the transmitter and the ER. We
assume that the transmitter knows H and G at each fading
state, whereas the receivers only know their corresponding
channels.
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B. Problem Formulation

We assume that x is equiprobably drawn from discrete
constellations, such as QPSK and 16-QAM. Let I(x;y) denote
the input-output mutual information of the channel H. When
HP is perfectly known at the receiver, I(x,y) is given by

I(x;y) = M logD − 1

DM

DM∑
j=1

Ez{log2
DM∑
i=1

exp(−dij)}(2)

where dij = σ−2
z (‖HP(xi − xj) + z‖2 − ‖z‖2) and D is the

cardinality of the discrete constellations.

Let P� denote the optimal linear precoder that maximize
the mutual information I(x;y) under the power constraint
tr(PPH) ≤ P . We define Emin = tr(P�P�HGHG). Let
Emax denote the maximal energy that can be harvested by the
ER. It is defined as

Emax = max
P

tr(PPHGHG)

s.t. tr(PPH) ≤ P. (3)

Let P = UPΣPV
H
P denote the singular value decomposition

(SVD) of P. We consider the problem of maximizing the
mutual information I(x;y) subject to meeting the harvested
energy requirement of the ER. Moreover, we view the mutual
information I(x;y) as a function over the product manifold
UM × R

M × UM , where UM denotes the group of unitary
matrices of size M ×M . Let M denote the product manifold
UM ×R

M ×UM . The considered optimization problem can be
formulated as

max
(UP ,ΣP ,VP )∈M

I(x;y)
s.t. tr(Σ2

P ) ≤ P

tr(UPΣ
2
PU

H
P GHG) ≥ E (4)

where Emin ≤ E ≤ Emax. The considered problem (4) is a
constrained optimization problem over the manifold M.

III. OPTIMAL LINEAR PRECODER STRUCTURE

In this section, we provide the structure of the optimal
precoder for the problem (4).

A. Gradients on the Manifold M
The gradient of the input-output mutual information

I(x;y) at (UP ,ΣP ,VP ) on the Euclidean space C
M×M ×

R
M × C

M×M is constituted as

∇(UP ,ΣP ,VP )I =

〈
∂I
∂U∗

P

,
∂I
∂ΣP

,
∂I
∂V∗

P

〉
(5)

where ∂I
∂U∗

P
, ∂I
∂ΣP

and ∂I
∂V∗

P
denote the Euclidean gradients of

the mutual information I(x;y) with respect to UP , ΣP and
VP , respectively. Let W denote PHHHHP. From Theorem
1 of [6], we obtain that

∂I
∂W∗ = Φ (6)

where Φ = E{(x− x̂)(x− x̂)H} is the minimum mean-square
error (MMSE) matrix and x̂ is the conditional mean E{x|y}.
Since the mutual information I(x;y) depends on UP , ΣP

and VP through W = VPΣPU
H
P HHHUPΣPV

H
P , we can

obtain the Euclidean gradients of UP , ΣP and VP from ∂I
∂W∗ .

Using a method similar to that in Lemma 4 of [6], we obtain
from (6) the gradients

∂I
∂U∗

P

= HHHUPΣPV
H
P ΦVPΣP (7)

∂I
∂ΣP

= diag(VH
P ΦVPΣPU

H
P HHHUP

+UH
P HHHUPΣPV

H
P ΦVP ) (8)

∂I
∂V∗

P

= ΦVPΣPU
H
P HHHUPΣP . (9)

The gradient of the mutual information I(x;y) on the man-
ifold M at (UP ,ΣP ,VP ) is the projection of ∇(UP ,ΣP ,VP )I
onto the tangent space T(UP ,ΣP ,VP )M of the product mani-
fold M at (UP ,ΣP ,VP ). The tangent space T(UP ,ΣP ,VP )M
can be decomposed as the product of tangent spaces, i.e., [9]

T(UP ,ΣP ,VP )M = TUP
UM × R

M × TVP
UM (10)

where

TUP
UM = {X ∈ C

M×M |XHUP +UH
P X = 0} (11)

and TVP
UM is similarly defined. Thus, the projection of

∇(UP ,ΣP ,VP )I onto T(UP ,ΣP ,VP )M is the product of the

projections of ∂I
∂U∗

P
, ∂I

∂ΣP
and ∂I

∂V∗
P

onto UM , RM and UM .

Let gradIVP
∈ TVP

UM and gradIUP
∈ TUP

UM denote the
gradients of the mutual information I(x;y) with respect to
VP and UP on UM , respectively. The gradient of the mutual
information I(x;y) at (UP ,ΣP ,VP ) on the product manifold
M consists of the gradients of the mutual information I(x;y)
on each submanifold, i.e.,

gradI(UP ,ΣP ,VP ) =

〈
gradIUP

,
∂I
∂ΣP

, gradIVP

〉
. (12)

The gradient gradIUP
is the projection of ∂I

∂U∗
P

onto the

tangent space TUP
UM at UP . It is computed as [7]

gradIUP
=

∂I
∂U∗

P

−UP (
∂I
∂U∗

P

)HUP . (13)

From (7) and (13), we obtain

gradIUP
= HHHUPΣPV

H
P ΦVPΣP

−UPΣPV
H
P ΦVPΣPU

H
P HHHUP . (14)

Similarly, the gradient gradIVP
is obtained as

gradIVP
= ΦVPΣPU

H
P HHHUPΣP

−VPΣPU
H
P HHHUPΣPV

H
P ΦVP . (15)

B. Optimal Linear Precoder Structure

In this subsection, we derive the structure of the optimal
precoder for the problem (4). First, we investigate the condi-
tions for VP at the critical points. Since the constraints are not
imposed on VP , we have gradIVP

= 0 at the critical points.
Using this condition, we obtain the following theorem.

Theorem 1. The matrices VH
P ΦVP and

ΣPU
H
P HHHUPΣP
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have the same eigenvectors at the critical points of the problem
(4).

Proof: The proof is provided in Appendix A.

When the second constraint of the problem (4) is removed,
the problem becomes to maximize the mutual information
I(x;y) under the power constraint tr(Σ2

P ) ≤ P . In such case,
we also have gradIUP

= 0 since there is also no constraint
related to UP . Let HHH = VHΣ2

HVH
H denote the eigen

value decomposition (EVD) of the Gram matrix HHH. Then,
we obtain the following theorem.

Theorem 2. The matrices VH
P ΦVP and UH

P VHΣ2
HVH

HUP

are both diagonal matrices at the critical points of the problem

max
(UP ,ΣP ,VP )∈M

I(x;y)
s.t. tr(Σ2

P ) ≤ P. (16)

Proof: The proof is provided in Appendix B.

Theorem 2 provides the structure of the optimal linear
precoder maximizing the mutual information I(x;y) under
the power constraint tr(Σ2

P ) ≤ P . Since VH
P ΦVP and

UH
P VHΣ2

HVH
HUP are both diagonal matrices, we obtain that

the right singular vectors of the optimal precoder P are the
same as the eigenvectors of the MMSE matrix Φ, and that the
left singular vectors of the optimal precoder P are the same
as the right singular vectors of the channel H. The results
obtained from Theorem 2 is the same as that of Theorem 1
in [5]. However, Theorem 2 is different from Theorem 1 of
[5] in that we view (UP ,ΣP ,VP ) as an element from the
product manifold M. Furthermore, we show that the optimal
structure comes from gradIVP

= 0 and gradIUP
= 0. Thus,

we can obtain the same result when the form of the constraint
is changed as long as the constraint is only imposed on ΣP .

The problem (4) is a constrained optimization problem
on the product manifold M. The KKT conditions for the
constrained optimization problems on Riemannian manifolds
have been investigated in [8]. We define the Lagrangian as

L(μ, λ,UP ,ΣP ,VP )= −I(x;y) + μ(tr(Σ2
P )− P )

− λ(tr(UPΣ
2
PU

H
P GHG)− E)(17)

where μ ≥ 0 and λ ≥ 0 are the Lagrange multipliers associated
with the problem constraints. From Theorem 4.1 of [8], we
obtain the KKT conditions as

gradLU�
P

= 0 (18)

gradLV�
P

= 0 (19)

∂L
∂Σ�

P

= 0 (20)

μ�(tr((Σ�
P )

2)− P ) = 0 (21)

tr((Σ�
P )

2)− P ≤ 0 (22)

λ�(tr(U�
PΣ

2
P (U

�
P )

HGHG)− E)= 0 (23)

tr(U�
P (Σ

�
P )

2(U�
P )

HGHG)− E ≥ 0 (24)

where gradLU�
P

and gradLV�
P

are the gradients of the La-
grangian with respect to U�

P and V�
P on UM , respectively.

As we can see from the equations (18) to (24), the KKT
conditions for the constrained optimization problems over

Riemannian manifolds are the extensions of the KKT con-
ditions for traditional constrained optimization problems over
Euclidean spaces. Specifically, the Euclidean gradients in the
KKT conditions for the traditional constrained optimization
problems are replaced by the gradients on the Riemannian
manifold. Using (18) to (24), we obtain the following theorem.

Theorem 3. The optimal precoding matrix P� for the problem
(4) has the following structure

P� = T
−1/2
G UFΣFV

H
F (25)

where TG = μ�I − λ�GHG, tr(Σ2
F ) ≤ μ�P − λ�E, the

columns of UF are the eigenvectors of T
−1/2
G HHHT

−1/2
G ,

and VH
F ΦVF is a diagonal matrix.

Proof: The proof is provided in Appendix C.

Let g1 be the maximal eigenvalue of GHG. Using a
method similar to that in Lemma A.1 of [1], we can obtain
μ� > λ�g1. Furthermore, it is easy to verify that Theorem
3 also holds when TG = I − (λ�/μ�)GHG and tr(Σ2

F ) ≤
P − (λ�/μ�)E.

IV. PROPOSED ALGORITHM FOR PRECODER DESIGN

In this section, we proposed an algorithm for the precoder
design based on the above obtained optimal structure.

A. Equivalent Equality Constrained Problem

Let β be a real number with 0 < β < g−1
1 , TG = I −

βGHG and UF be the eigenvectors of T
−1/2
G HHHT

−1/2
G .

We introduce the parametrization that P = T
−1/2
G UFΣFV

H
F ,

where ΣF ∈ R
M and VF ∈ UM . The optimization problem

(4) is equivalent to

max
β,ΣF ,VF

I(x;y)
s.t. tr(AΣ2

F ) ≤ P

tr(BΣ2
F ) ≥ E (26)

where A = UH
F (I− βGHG)−1UF and B = UH

F GHG(I−
βGHG)−1UF . Both the constraints of the problem (26) are
inequality constraints. In the following theorem, we show that
they can be replaced with equality constraints.

Theorem 4. The optimization problem (4) is equivalent to the
equality constrained optimization problem

max
β,ΣF ,VF

I(x;y)
s.t. tr(AΣ2

F ) = P

tr(BΣ2
F ) = E (27)

where Emin ≤ E ≤ Emax.

Proof: The proof is provided in Appendix D.

B. Two-Stage Algorithm for Precoder Design

The optimization problem (27) is very difficult to solve
directly. Instead, we propose a two-stage algorithm. First, we
maximize the mutual information I(x;y) under the constraint
with fixed β. Then, we choose a good β.
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When β is fixed, I(x;y) can be seen as the input-output
mutual information of the receive model

y = ΣHT
ΣFV

H
F x+ z (28)

where ΣHT
is a diagonal matrix including the singular values

of HT
−1/2
G . From Theorems 1 and 2 of [6], we obtain I(x;y)

is a concave function of VFΣ
2
HT

Σ2
FV

H
F and also a concave

function of Σ2
F . Furthermore, we develop an algorithm similar

to that in [6] to find the optimum of I(x;y).
Let M(Σ2

HT
Σ2

F ) denote the manifold of positive semidef-

inite matrices with fixed eigenvalues Σ2
HT

Σ2
F . Let NF ∈

M(Σ2
HT

Σ2
F ) and NF = VFΣ

2
HT

Σ2
FV

H
F . We use a block

coordinate decent method to optimize NF and Σ2
F .

The tangent space of M(Σ2
HT

Σ2
F ) at NF is given by [10]

TNF
M(Σ2

HT
Σ2

F ) = {NFΩ−ΩNF |ΩH = −Ω}. (29)

The gradient of I(x;y) on M(Σ2
HT

Σ2
F ) at NF is the projec-

tion of the Euclidean gradient Φ onto TNF
M(Σ2

HT
Σ2

F ). It is
given by [10]

gradINF
=NF (NFΦ−ΦNF )− (NFΦ−ΦNF )NF . (30)

The projected gradient of I(x;y) with respect to Σ2
F under

the linear constraints tr(AΣ2
F ) = P and tr(BΣ2

F ) = E is
given by

DF =
∂I
∂Σ2

F

− α1diag(A)− α2diag(B) (31)

where ∂I
∂Σ2

F
= diag(VH

F ΦVFΣ
2
HT

), and α1 and α2 are

obtained through the Gram-Schmidt process.

We now present an algorithm for the precoder design when
β is fixed. The details of the projections used are provided in
the following subsection.

Algorithm 1: Finding the optimal precoder when β is fixed:

Step 1: Compute TG = I − βGHG. Apply EVD to

decompose T
−1/2
G HHHT

−1/2
G = UHT

Σ2
HT

UH
HT

.
Step 2: Randomly generate an initial value of VF . Calcu-

late an initial feasible Σ2
F by the projection πΣ2

F
(·).

Step 3: Calculate the gradient gradINF
on M(Σ2

HT
Σ2

F )
at NF according to (30).

Step 4: Update NF by NF = πNF
(NF + μNF

gradINF
)

where μNF
is the step size determined by the back-

tracking line search, and πNF
(·) is the projection

onto M(Σ2
HT

Σ2
F ).

Step 5: Calculate the projected gradient DF for Σ2
F ac-

cording to (31).
Step 6: Update Σ2

F by πΣ2
F
(Σ2

F + μΣ2
F
DF ), where μΣ2

F

is the step size determined by the backtracking
line search, and πΣ2

F
(·) is the projection onto the

constraint set.

Repeat Step 3 through Step 6 until convergence or until a pre-
set target is reached. Then an optimal precoder is obtained as

T
−1/2
G UHT

ΣFV
H
F .

Let g(β) denote the maximal mutual information obtained
by Algorithm 1 when β is fixed. The problem now is equivalent
to find the optimal β that maximize g(β). In the simulations,

we find that g(β) are always quasiconcave functions. Thus, we
conjecture that g(β) is a quasiconcave function and propose to
use the golden section method [11] to find the optimal β�. The
details of the golden section method are omitted here due to
space limit. Furthermore, the optimal precoder of our algorithm
is that provided by Algorithm 1 when β = β�.

C. The Projections πNF
and πΣ2

F

In this subsection, we introduce the two projections used
in the previous subsection.

Let UΛ2UH denote the EVD of N+ μNgradIN, where
Λ2 and Σ2

HT
Σ2

F are similarly ordered. Using Theorem 3.9 of
[12], we obtain the projection πNF

(·) as

πNF
(NF + μNF

gradINF
) = UΣ2

HT
Σ2

FU
H . (32)

The projection πΣ2
F
(Σ2

X)(·) is defined as

πΣ2
F
(Σ2

X) = argmin
Σ2

F

‖Σ2
F −Σ2

X‖2

s.t. tr(AΣ2
F ) = P

tr(BΣ2
F ) = E

Σ2
F � 0. (33)

The alternating projection [13], which is an algorithm project-
ing a point onto the intersection of two convex sets, can be used
to realize πΣ2

F
(·). Let D denote the set {Σ2

F : tr(AΣ2
F ) =

P, tr(BΣ2
F ) = E} and C denote the set of positive real

diagonal matrices. The projection onto the set D is obtained
by [13]

PD(Σ2
X) = Σ2

X − ν1diag(A)− ν2diag(B) (34)

where ν1 and ν2 are the solutions of the equation

G[ν1 ν2] = [tr(Σ2
XA)− P tr(Σ2

XB)− E] (35)

and

G =

(
tr(diag(A)diag(A)) tr(diag(A)diag(B))
tr(diag(B)diag(A)) tr(diag(B)diag(B))

)
. (36)

The projection onto the set C is given by

PC(Σ
2
X) =

M∑
i=1

max([Σ2
X ]ii, 0)eie

H
i (37)

where [Σ2
X ]ii is the i-th diagonal element [Σ2

X ], and ei is the
column vector with 1 in the i-th row and 0 in all other rows.
Finally, the projection πΣ2

F
(·) is given by

πΣ2
F
(·) = PC(PD(· · ·PC(PD(·)) · · · )). (38)

V. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed algorithm for the precoder design.
The entries of the matrices H and G are randomly generated
as identically distributed (i.i.d.) complex Gaussian elements
with zero mean and variance 2. The average SNR is given by
SNR = 1

Mσ2
z
tr(HHH).

We first compare the performance of the proposed al-
gorithm with that of the time sharing scheme under three

IEEE ICC 2017 Communication Theory Symposium



H =

⎛
⎜⎝

−0.5901− 0.5385i 1.5378 + 0.6440i −0.4849 + 0.1216i 0.0784 + 0.4684i
−2.5604− 1.0424i 2.1721 + 0.4292i 0.5338 + 1.1214i −0.9200 + 0.7599i
0.4636− 1.3011i −1.0104− 1.3755i 1.0347− 0.6243i −0.7008− 0.8872i
0.5450 + 0.2953i −0.3199 + 1.0883i 0.4973 + 0.7091i −0.6183 + 0.2224i

⎞
⎟⎠ (39)

G =

⎛
⎜⎝

0.7582 + 0.4127i 1.3232 + 1.0504i 0.0790 + 1.1727i −1.8051− 2.5281i
1.8164 + 0.3343i −0.0998 + 1.0792i 0.6373− 0.4052i 0.3432− 0.3784i
−0.8237 + 0.6564i 0.8165 + 1.5711i −0.0449 + 0.4414i −0.6656− 0.0992i
1.6773− 0.5160i −0.4451− 0.5630i −0.1227 + 0.8114i 0.1749− 1.7912i

⎞
⎟⎠ (40)
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Fig. 1. Mutual information-energy tradeoff for three MIMO Broadcast
channels at SNR= 5dB with QPSK inputs.
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Fig. 2. Mutual information-energy tradeoff for a MIMO Broadcast channel
at SNR= 3.75dB with QPSK and Gaussian inputs.
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Fig. 3. Mutual information versus SNR for a MIMO Broadcast channel at
E = 55 with QPSK and Gaussian inputs.

different scenarios. In the time sharing scheme, the precoder
is obtained by time sharing between the precoder maximizing
the energy of the ER and the precoder maximizing the mutual
information of the IR. Fig. 1 presents the mutual information-
energy tradeoff of the two algorithms when N = M = L = 2,
N = M = L = 3 and N = M = L = 4. The details of H
and G are omitted here due to space limit. The modulation
used is QPSK. As shown in Fig. 1, the proposed algorithm
can achieve better mutual information-energy tradeoff than the
time sharing scheme except for the two boundary points.

We then compare the performance of the proposed precod-
ing algorithm with that of the optimal precoder designed for
Gaussian inputs from [1]. For brevity, we call the later precoder
the Gaussian optimal precoder. We consider an example where
H and G are given in (37) and (38) at the top of this page.
Figs. 2 and 3 plot the mutual information-energy tradeoff at
SNR= 3.75dB and the mutual information versus SNR at
E = 55 for the two precoders with QPSK inputs, respectively.
As benchmarks, we also plot the results for the Gaussian
optimal precoder with Gaussian inputs. From Figs.2 and 3, we
observe that the proposed algorithm significantly outperforms
the Gaussian optimal precoder when QPSK inputs are used.
Furthermore, the performance of the proposed algorithm is
very close to that of the Gaussian optimal precoder with
Gaussian inputs.

VI. CONCLUSION

In this paper, we investigated the design of linear precoders
for SWIPT over MIMO broadcast channels with discrete input
signals. The considered problem is viewed as a constrained
optimization problem over a product manifold. Using the
KKT conditions for the manifold optimization problems, we
obtained the structure of the linear optimal precoder. Further-
more, we proposed an algorithm to find the optimal precoder.
Simulation results showed that the proposed algorithm can
achieve better performance than the time sharing scheme and
the Gaussian optimal precoder when the Gaussian inputs are
replaced by discrete input signals.

APPENDIX A
PROOF OF THEOREM 1

We have gradfVP
= 0 if (UP ,ΣP ,VP ) is a critical point

of the problem (4). Thus, from (15) we obtain

(VH
P ΦVP )(ΣPU

H
P HHHUPΣP )

= (ΣPU
H
P HHHUPΣP )(V

H
P ΦVP ). (41)

The above equation indicates that VH
P ΦVP commutes with

ΣPU
H
P HHHUPΣP . Furthermore, from Theorem 9-33 of
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[14] we obtain VH
P ΦVP and ΣPU

H
P HHHUPΣP have the

same eigenvectors.

APPENDIX B
PROOF OF THEOREM 2

For the problem (16), we have both gradfVP
= 0

and gradfUP
= 0 if (UP ,ΣP ,VP ) is a critical point. If

gradfUP
= 0, we can obtain

(UH
P VHΣ2

HVH
HUP )(ΣPV

H
P ΦVPΣP )

= (ΣPV
H
P ΦVPΣP )(U

H
P VHΣ2

HVH
HUP ). (42)

From (41) and (42), we have that the matrix Σ2
P com-

mutes with the matrix ΣPU
H
P VHΣ2

HVH
HUPΣPV

H
P ΦVP

and thus they have the same eigenvectors. It follows that
UH

P VHΣ2
HVH

HUPΣPV
H
P ΦVP is a diagonal matrix. Then,

we have both VH
P ΦVP and ΣPU

H
P VHΣ2

HVH
HUPΣP are

diagonal matrices.

APPENDIX C
PROOF OF THEOREM 3

Using steps similar to that deriving gradIUP
, we can

obtain gradLUP
and gradLVP

. According to gradLUP
= 0

and gradLVP
= 0, we obtain that

(ΣPU
H
P HHHUPΣPV

H
P ΦVP +λΣPU

H
P GHGUPΣP )Σ

2
P

= Σ2
P (ΣPU

H
P HHHUPΣPV

H
P ΦVP

+ λΣPU
H
P GHGUPΣP ). (43)

Thus, we obtain

ΣPU
H
P HHHUPΣPV

H
P ΦVP + λΣPU

H
P GHGUPΣP

is a diagonal matrix since it commutes with Σ2
P . Furthermore,

from ∂L
∂ΣP

= 0, we obtain

VPΣPU
H
P HHHUPΣPV

H
P Φ

= VPΣPU
H
P (μI− λGHG)UPΣPV

H
P . (44)

Let TG = μI − λGHG and UFΣFV
H
F = T

1/2
G UPΣPV

H
P

we obtain

ΣFU
H
F T

−1/2
G HHHT

−1/2
G UFΣFV

H
F ΦVF = Σ2

F . (45)

Furthermore, it can be verified that VH
F ΦVF commutes

with ΣFU
H
F T

−1/2
G HHHT

−1/2
G UFΣF . Thus, they are both

diagonal matrices, and we obtain the columns of UF are the

eigenvectors of T
−1/2
G HHHT

−1/2
G .

APPENDIX D
PROOF OF THEOREM 4

We prove this theorem by proving that both the con-
straints of the optimization problem (4) are active. For
any matrices (UP ,ΣP ,VP ) satisfying tr(Σ2

P ) < P and
tr(UPΣ

2
PUPG

HG) ≥ E, we can always choose c0 >
1 that tr(c0Σ

2
P ) = P such that I(x;y) becomes larger

and tr(c0UPΣ
2
PUPG

HG) > E. Thus, the solution of the
optimization problem (4) remains the same when the first
constraint becomes an equality constraint. We then prove that
the second constraint of (4) is active for the optimal precoder
by using the method of proof by contradiction. We assume
that the optimal solution (U�

P ,Σ
�
P ,V

�
P ) is achieved when

the constraint tr(UPΣ
2
PU

H
P GHG) ≥ E is inactive. Thus,

(U�
P ,Σ

�
P ,V

�
P ) should be a local maximum of I(x;y) under

the constraint tr(Σ2
P ) = P . From Theorem 2, we know that

the left singular vectors of P∗ = U�
PΣ

�
P (V

�
P )

H are the same
as the right singular vectors of H. However, for such case,
we can always find a (U�

P ,ΣP ,VP ) in the neighborhood
of (U�

P ,Σ
�
P ,V

�
P ) to make the mutual information I(x;y)

larger using the method from [6], since P� is not the global
maximum of I(x;y) under the constraint tr(Σ2

P ) = P . Thus,
P� cannot be the optimal solution and we obtain the problem
(4) is equivalent to (27).
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