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Abstract—In this paper, the design of linear precoders for
simultaneously wireless information and power transfer (SWIPT)
over multi-input multi-output (MIMO) broadcast channels with
discrete input signals is investigated. The considered system model
consists of one base station (BS), one information receiver (IR)
and one energy receiver (ER). The design objective is to maximize
the input-output mutual information of the IR subject to the
harvested energy requirement for the ER. The structure of the
optimal precoder is derived by using the methods of manifold
optimization, and an algorithm is proposed to find the optimal
precoder. Simulation results show that the proposed algorithm
can achieve better performance than the time sharing scheme
and the optimal precoder designed for Gaussian inputs.
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I. INTRODUCTION

Simultaneous wireless information and power transfer
(SWIPT) over multi-input multi-output (MIMO) channels has
been widely investigated recently [1], [2]. SWIPT provides
a promising solution to prolong the lifetime of energy con-
strained wireless networks. In SWIPT MIMO systems, the
information carrying signals are not only used for communi-
cation but also for energy extraction. To achieve a good rate-
energy tradeoff, the linear precoders at the transmitter should
be properly designed.

In [1], the linear precoders for SWIPT over MIMO broad-
cast channels with Gaussian inputs are investigated. However,
discrete constellations, such as quadrature phase-shift keying
(QPSK) and 16-quadrature amplitude modulation (16-QAM),
have to be used in practical systems. Thus, we investigate
in this paper the design of linear precoders for SWIPT over
MIMO broadcast channels with discrete input signals. The
considered system model consists of one base station (BS),
one information receiver (IR) and one energy receiver (ER).
More specifically, we consider maximizing the information rate
of the IR subject to the constraint that the energy harvested by
the ER is larger than a fixed value.

When the ER is absent, the problem becomes the same as
the design of optimal linear precoders for point-to-point MIMO
transmissions with discrete input signals, which has been well
addressed in the literature. In [3], the necessary conditions for
the optimal precoder were derived by applying the Karush—
Kuhn-Tucker (KKT) conditions. In [4], it was shown that the
left singular vectors of the optimal precoder maximizing the
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mutual information Z(x; y) under the power constraint are the
same as the right singular vectors of the channel matrix. In [5],
the structure of the optimum precoder was derived based on
the results from [3]. In [6], a globally optimal linear precoder
was proposed for discrete input signals over complex vector
Gaussian channels.

Optimization algorithms on manifold [7] have been widely
used in MIMO systems. The mostly addressed manifolds are
Stiefel manifolds and Grassmann manifolds. The manifold of
unitary matrices is a special kind of complex Stiefel manifold.
In this paper, we view the considered problem as a constrained
optimization problem over the product manifold of two unitary
manifolds and a vector space. The KKT conditions for the
constrained optimization problems on Riemannian manifolds
have been investigated in [8]. Using the results from [8],
we obtain the structure of the optimal linear precoder for
the considered optimization problem. Further, we propose an
algorithm to find the optimal precoder.

The rest of this article is organized as follows. The problem
formulation is presented in Section II. The structure of the lin-
ear optimal precoder is provided in Section III. The algorithm
for the precoder design is proposed in Section IV. Simulations
are contained in Section V. The conclusion is drawn in Section
VL

II. PROBLEM FORMULATION
A. System Model

We consider a MIMO broadcasting system over frequency-
flat fading channels, which consists of one BS, one IR and one
ER. The transmitter at the BS is equipped with M antennas.
The IR is equipped with N antennas. The ER is equipped with
L antennas. The received signal of the IR is given by

y=HPx+2z (1)

where H is the N x M channel matrix between the transmitter
and the IR, P is the M x M precoding matrix, x is the M x 1
transmitted vector for the IR, and z is a complex Gaussian
noise vector distributed as CN'(0, 021 y). The energy harvested
by the ER is given by E = tr (PP G?G), where G is the
L x M channel matrix between the transmitter and the ER. We
assume that the transmitter knows H and G at each fading
state, whereas the receivers only know their corresponding
channels.
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B. Problem Formulation

We assume that x is equiprobably drawn from discrete
constellations, such as QPSK and 16-QAM. Let Z(x; y) denote
the input-output mutual information of the channel H. When
HP is perfectly known at the receiver, Z(x,y) is given by

D]\4 D]\l

I(x;y) = Mlog D — DM ZE {logQZexp di;)H2)
j=1 i=1

where d;; = o %(|HP(x; — x;) + z|* — ||z[|?) and D is the

cardinality of the discrete constellations.

Let P* denote the optimal linear precoder that maximize
the mutual information Z(x;y) under the power constraint
tr(PPH) < P. We define Eny, = tr(P*P**GHYQG). Let
Enax denote the maximal energy that can be harvested by the
ER. It is defined as

Eoox = max tr(PPYGHG)

st.  tr(PPH) < P. (3)

Let P = UpXpVE denote the singular value decomposition
(SVD) of P. We consider the problem of maximizing the
mutual information Z(x;y) subject to meeting the harvested
energy requirement of the ER. Moreover, we view the mutual
information Z(x;y) as a function over the product manifold
Uy x RM x Uy, where Uy, denotes the group of unitary
matrices of size M x M. Let M denote the product manifold
Unr x RM x Uy,. The considered optimization problem can be
formulated as

max Z(x;y)

(UP,EP,VP)GM
st. tr(ZE) <P
tr(UpX2ULGHG) > E 4)

where Fin < E < FEax. The considered problem (4) is a
constrained optimization problem over the manifold M.
III. OPTIMAL LINEAR PRECODER STRUCTURE
In this section, we provide the structure of the optimal
precoder for the problem (4).
A. Gradients on the Manifold M

The gradient of the input-output mutual information
CMxM

Z(x;y) at (Up,Xp, Vp) on the Euclidean space X
RM x CM*M jg constituted as
0L 0I 0T
v 7= , , 5
(Ur.2r.Ve) <8U* 9%p OV > ©)
where B%I}, B%IP and av* denote the Euclidean gradients of

the mutual information Z(x;y) with respect to Up, X p and

V p, respectively. Let W denote P H” HP. From Theorem
1 of [6], we obtain that

oz

OW*

where & = E{(x—%)(x—%)} is the minimum mean-square

error (MMSE) matrix and X is the conditional mean E{x|y}.

Since the mutual information Z(x;y) depends on Up, 3p

- 6)

and Vp through W = VpEpUgHHHUPEPVg, we can
obtain the Euclidean gradients of Up, ¥ p and V p from 88%.
Using a method similar to that in Lemma 4 of [6], we obtain
from (6) the gradients

0T
=HIHUXpVE®VEEp (7)
U
0T
———=diag(VE®VpZpUIH"HUp
0% p
+ UEHPHUpE pVE® V) ®)
oL
= dVpXpUIHIHURXp. ©)
oV,

The gradient of the mutual information Z(x;y) on the man-
ifold M at (Up, X p, Vp) is the projection of V(UP,EBVP)I
onto the tangent space T(y,,5,,v,)/M of the product mani-
fold M at (Up,Xp, Vp). The tangent space Ty, 5, v M
can be decomposed as the product of tangent spaces, i.e., [9]

T(UP,EP,VP)M = TUPZ/[M X RJW X TVPUM (10)
where
To Uy = {X e CMMIXHAUR + UEX =0} (11)

and Tv .Uy is similarly defined. Thus, the projection of
Vp,spve)Z onto TUP SpV 1>M is the product of the
projections of O%I* , azp and v onto Uys, RM and Uy,.
Let gradZv/, € TVPUM and gradIUP € Ty Uy denote the
gradients of the mutual information Z(x;y) with respect to
Vp and Up on Uy, respectively. The gradient of the mutual
information Z(x;y) at (Up, X p, V p) on the product manifold
M consists of the gradients of the mutual information Z(x;y)
on each submanifold, i.e.,

oL
gradZu, s, vp) = <gra’dIUP7 az,gradlvp> - (12)

onto the

The gradient gradZy;, is the projection of BU*
tangent space Ty, Uy at Up. It is computed as [7]

oL oL
1 — Up(5r—
ou% ou%
From (7) and (13), we obtain
gradZy, = HAHUpZpVE®V,rZp
~UpSpVE®VZ, UIHPHUp. (14)

gradZy, = Y Up. (13)

Similarly, the gradient gradZ/,. is obtained as

gradZy, = ®VpEpULH HUpZp
~VpEpUEH"HUpS pVE®VE. (15)

B. Optimal Linear Precoder Structure

In this subsection, we derive the structure of the optimal
precoder for the problem (4). First, we investigate the condi-
tions for V p at the critical points. Since the constraints are not
imposed on V p, we have gradZy,, = 0 at the critical points.
Using this condition, we obtain the following theorem.

Theorem 1. The matrices VE®V p and

SpUEHAHURS p
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have the same eigenvectors at the critical points of the problem

.

Proof: The proof is provided in Appendix A. [ ]

When the second constraint of the problem (4) is removed,
the problem becomes to maximize the mutual information
Z(x;y) under the power constraint tr(X%) < P. In such case,
we also have gradZy, = O since there is also no constraint
related to Up. Let H'H = VX% VH denote the eigen
value decomposition (EVD) of the Gram matrix H H. Then,
we obtain the following theorem.

Theorem 2. The matrices VE®V p and ULV 32, VEUp
are both diagonal matrices at the critical points of the problem

I(x;
(UP,ZIE,a\ifp)GM (X Y)
st tr(Z%) < P. (16)
Proof: The proof is provided in Appendix B. [ |

Theorem 2 provides the structure of the optimal linear
precoder maximizing the mutual information Z(x;y) under
the power constraint tr(¥%) < P. Since VE®Vp and
UZV 32, VEUp are both diagonal matrices, we obtain that
the right singular vectors of the optimal precoder P are the
same as the eigenvectors of the MMSE matrix ®, and that the
left singular vectors of the optimal precoder P are the same
as the right singular vectors of the channel H. The results
obtained from Theorem 2 is the same as that of Theorem 1
in [5]. However, Theorem 2 is different from Theorem 1 of
[5] in that we view (Up,Xp, Vp) as an element from the
product manifold M. Furthermore, we show that the optimal
structure comes from gradZy/, = 0 and gradZy, = 0. Thus,
we can obtain the same result when the form of the constraint
is changed as long as the constraint is only imposed on ¥Xp.

The problem (4) is a constrained optimization problem
on the product manifold M. The KKT conditions for the
constrained optimization problems on Riemannian manifolds
have been investigated in [8]. We define the Lagrangian as

L\ Up,Sp, V)= ~I(x;y) + p(tr(Sh) — P)
—Mtr(UpZ2UEGHG) — E)(17)
where ;1 > 0 and A > 0 are the Lagrange multipliers associated

with the problem constraints. From Theorem 4.1 of [8], we
obtain the KKT conditions as

gradLys, =0 (18)
gradﬁv}g =0 (19)

oL
o5 =0 (20)
p(tr((2p)?) = P) =0 1)
tr((2h)?) — P <0 (22)
M(tr(UpEL(UL)AGHG) - E)=0 (23)
tr(Us(Z5)2(Us) I GHG) - E >0 (24)

where gradLy:, and gradLy: are the gradients of the La-
grangian with respect to U} and V3 on Uy, respectively.
As we can see from the equations (18) to (24), the KKT
conditions for the constrained optimization problems over

Riemannian manifolds are the extensions of the KKT con-
ditions for traditional constrained optimization problems over
Euclidean spaces. Specifically, the Euclidean gradients in the
KKT conditions for the traditional constrained optimization
problems are replaced by the gradients on the Riemannian
manifold. Using (18) to (24), we obtain the following theorem.

Theorem 3. The optimal precoding matrix P* for the problem
(4) has the following structure

P* =T, *UpspVE (25)

where Tg = p*I — M*GHG, tr(2%) < uw*P — \*E, the
columns of U are the eigenvectors of Tal/QHHHTalm,
and VE®V - is a diagonal matrix.

Proof: The proof is provided in Appendix C. |

Let g; be the maximal eigenvalue of GYG. Using a
method similar to that in Lemma A.1 of [1], we can obtain
w* > A*g1. Furthermore, it is easy to verify that Theorem
3 also holds when Tg = I — (\*/p*)GH G and tr(X%) <
P—(\/u)E.

IV. PROPOSED ALGORITHM FOR PRECODER DESIGN

In this section, we proposed an algorithm for the precoder
design based on the above obtained optimal structure.

A. Equivalent Equality Constrained Problem

Let 3 be a real number with 0 < 3 < g; !, Tg =1 —
BGHG and Up be the cigenvectors of Tg/?HFHT,'/?.

We introduce the parametrization that P = T(_;l/ ‘U P pVE,
where X5 € R™ and Vy € Uy,. The optimization problem
(4) is equivalent to

I .
5 ax (x:y)

st. tr(AXZ) < P
tr(BX%) > E (26)
where A = U (I - BGHG) 'Up and B = UZGHG(I -
BGHG)~'Up. Both the constraints of the problem (26) are

inequality constraints. In the following theorem, we show that
they can be replaced with equality constraints.

Theorem 4. The optimization problem (4) is equivalent to the
equality constrained optimization problem

ma I(x;
g max  I(xy)
st. tr(AX%) =P
tr(BX%) =E (27)
where Emin S i) S Emax~
Proof: The proof is provided in Appendix D. [ |

B. Two-Stage Algorithm for Precoder Design

The optimization problem (27) is very difficult to solve
directly. Instead, we propose a two-stage algorithm. First, we
maximize the mutual information Z(x;y) under the constraint
with fixed 8. Then, we choose a good f.
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When 3 is fixed, Z(x;y) can be seen as the input-output
mutual information of the receive model

y=3u,2rVix 42z (28)

where X7, is a diagonal matrix including the singular values

of HTg;l/Q. From Theorems 1 and 2 of [6], we obtain Z(x;y)
is a concave function of VpX3 SE V! and also a concave
function of X%.. Furthermore, we develop an algorithm similar
to that in [6] to find the optimum of Z(x;y).

Let M (X%, X% ) denote the manifold of positive semidef-
inite matrices with fixed eigenvalues X%, 2. Let Np €
M(2%,X%) and Np = VFE%{TZ%V;IT. We use a block
coordinate decent method to optimize Ny and X7..

The tangent space of M(E%{T 32) at N is given by [10]
TN M(Z5,27) = (Np2 — QN Q7 = —Q}. (29)

The gradient of Z(x;y) on M(X3, %) at N is the projec-
tion of the Euclidean gradient ® onto T, M (X% X%). It is
given by [10]

gradINF ZNF(NFQ — ‘I’NF) — (NF@ — @NF)NF (30)

The projected gradient of Z(x;y) with respect to 3% under
the linear constraints tr(AX%) = P and tr(BX%) = F is
given by

0T
Dr = o5 — andiag(A) — apdiag(B) 31)
037,
where a‘gg = diag(V?@VpE%{T), and a; and ay are

obtained tlfrough the Gram-Schmidt process.

We now present an algorithm for the precoder design when
£ is fixed. The details of the projections used are provided in
the following subsection.

Algorithm 1: Finding the optimal precoder when f is fixed:

Step I:  Compute T¢ = I — BGHG. Apply EVD to
—1/2¢rHyppp—1/2 2 17H
decompose T, "H"HT, '~ =Upg, Xy Uy .

Step 2:  Randomly generate an initial value of V . Calcu-
late an initial feasible 3%, by the projection T2 ().

Step 3:  Calculate the gradient gradZn, on M(X3 %)
at N according to (30).

Step 4:  Update Np by Np = N, (NF + punpgradZng,)
where jin . 1S the step size determined by the back-
tracking line search, and 7N, () is the projection
onto M(X} X7%).

Step 5:  Calculate the projected gradient Dy for X% ac-
cording to (31).

Step 6:  Update X% by mx2 (3% + pix2 Dp), where sz

is the step size determined by the backtracking
line search, and 72 (+) is the projection onto the
constraint set.

Repeat Step 3 through Step 6 until convergence or until a pre-
set target is reached. Then an optimal precoder is obtained as

T, *Uy, pVE.

Let g(f) denote the maximal mutual information obtained
by Algorithm 1 when S is fixed. The problem now is equivalent
to find the optimal 3 that maximize ¢g(3). In the simulations,

we find that g(/3) are always quasiconcave functions. Thus, we
conjecture that g(3) is a quasiconcave function and propose to
use the golden section method [11] to find the optimal 5*. The
details of the golden section method are omitted here due to
space limit. Furthermore, the optimal precoder of our algorithm
is that provided by Algorithm 1 when 5 = *.

C. The Projections ™~ and Tx2

In this subsection, we introduce the two projections used
in the previous subsection.

Let UA?U¥ denote the EVD of N + ungradZy, where
A? and X3, X7 are similarly ordered. Using Theorem 3.9 of
[12], we obtain the projection mn . (+) as

™y (Np + punpgradn,) = UX} S0 (32)

The projection 7x2 (2%)(+) is defined as
mmg (5%) = argmin 5% — T3P
F

st. tr(AX%)=P
tr(BX%) = E
2 0. (33)
The alternating projection [13], which is an algorithm project-

ing a point onto the intersection of two convex sets, can be used
to realize 72 (+). Let D denote the set {Z%2 : tr(AX2) =

P,tr(BX%) = E} and C denote the set of positive real
diagonal matrices. The projection onto the set D is obtained
by [13]

Pp(3%) = X% — nidiag(A) — vadiag(B) (34)
where v and 1, are the solutions of the equation
Gy o] = [tr(Z%A) — P tr(Z%B) — E] (35)
and
o < tr(diag(A)diag(A))  tr(diag(A)diag(B)) ) 6
tr(diag(B)diag(A)) tr(diag(B)diag(B))
The projection onto the set C' is given by
M
Po(2%) = > max([Z%i, 0)ese]’ (37
i=1

where [¥%];; is the i-th diagonal element [¥%], and e; is the
column vector with 1 in the ¢-th row and 0 in all other rows.
Finally, the projection ms;2 (-) is given by

ms2 (1) = Po(Pp(--- Po(Pp())--+)). (38)

V. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed algorithm for the precoder design.
The entries of the matrices H and G are randomly generated
as identically distributed (i.i.d.) complex Gaussian elements
with zero mean and variance 2. The average SNR is given by
SNR = ﬁtr(HHH).

We first compare the performance of the proposed al-
gorithm with that of the time sharing scheme under three
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different scenarios. In the time sharing scheme, the precoder
is obtained by time sharing between the precoder maximizing
the energy of the ER and the precoder maximizing the mutual
information of the IR. Fig. 1 presents the mutual information-
energy tradeoff of the two algorithms when N = M = L = 2,
N=M=L=3ad N =M = L = 4. The details of H
and G are omitted here due to space limit. The modulation
used is QPSK. As shown in Fig. 1, the proposed algorithm
can achieve better mutual information-energy tradeoff than the
time sharing scheme except for the two boundary points.

We then compare the performance of the proposed precod-
ing algorithm with that of the optimal precoder designed for
Gaussian inputs from [1]. For brevity, we call the later precoder
the Gaussian optimal precoder. We consider an example where
H and G are given in (37) and (38) at the top of this page.
Figs. 2 and 3 plot the mutual information-energy tradeoff at
SNR= 3.75dB and the mutual information versus SNR at
E = 55 for the two precoders with QPSK inputs, respectively.
As benchmarks, we also plot the results for the Gaussian
optimal precoder with Gaussian inputs. From Figs.2 and 3, we
observe that the proposed algorithm significantly outperforms
the Gaussian optimal precoder when QPSK inputs are used.
Furthermore, the performance of the proposed algorithm is
very close to that of the Gaussian optimal precoder with
Gaussian inputs.

VI. CONCLUSION

In this paper, we investigated the design of linear precoders
for SWIPT over MIMO broadcast channels with discrete input
signals. The considered problem is viewed as a constrained
optimization problem over a product manifold. Using the
KKT conditions for the manifold optimization problems, we
obtained the structure of the linear optimal precoder. Further-
more, we proposed an algorithm to find the optimal precoder.
Simulation results showed that the proposed algorithm can
achieve better performance than the time sharing scheme and
the Gaussian optimal precoder when the Gaussian inputs are
replaced by discrete input signals.

APPENDIX A
PROOF OF THEOREM 1

We have gradfy,, = 0 if (Up, X p, Vp) is a critical point
of the problem (4). Thus, from (15) we obtain
(VE®V)(ZpUEHTHURXp)

= (ZpUEHTHURZp)(VE® V). (41)

The above equation indicates that VE®V p commutes with
EpUgHH HUpX p. Furthermore, from Theorem 9-33 of
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[14] we obtain Vg‘IZ'Vp and EpUgHHHUpEp have the
same eigenvectors.

APPENDIX B
PROOF OF THEOREM 2

For the problem (16), we have both gradfy, = 0
and gradfy, = 0 if (Up,Xp, Vp) is a critical point. If
grad fy, = 0, we can obtain

(URVuE3ViUp)(ZpVER@VpEp)

= (ZpVERVEEp)(UpVaZyViUp).  (42)
From (41) and (42), we have that the matrix X% com-
mutes with the matrix EpUgVHE%,VgUPXPVg‘I)Vp
and thus they have the same eigenvectors. It follows that
UgVHE%,VgUPZPVg'I)Vp is a diagonal matrix. Then,
we have both VE®Vp and TpUEVLZ2, VEURSp are
diagonal matrices.

APPENDIX C
PROOF OF THEOREM 3

Using steps similar to that deriving gradZy;,, we can
obtain gradLy, and gradLv,. According to gradLy, = 0
and gradL~, = 0, we obtain that

(ZpUEHTHUpEpVESVp+ A S p UL G GURER) TS
=22 (ZpUEHAHUZ pVEP® V),
+ AZpUEGHEGUREp). (43)
Thus, we obtain
SpURHYHUpSpVE®VE + A\XpUEGTGUREp

is a diagonal matrix since it commutes with 3%, Furthermore,
oL _ :
from T 0, we obtain

VpEpUEHPHUpS p VED
=VpEpUZ(uI - A\GPG)UpEpVE.  44)

Let Tg = pul — AGHG and UpXpVE = T/?UpEpVE
we obtain

SpULT,PHPAT, P UrSr VESV e = 52, (45)

Furthermore, it can be verified that V}? &V commutes
with S UAT,*HYHT/?UpSp. Thus, they are both
diagonal matrices, and we obtain the columns of Uy are the
eigenvectors of Ty *HHAHT /.

APPENDIX D
PROOF OF THEOREM 4

We prove this theorem by proving that both the con-
straints of the optimization problem (4) are active. For
any matrices (Up,Xp, Vp) satisfying tr(¥%) < P and
tr(UPE%JUpGHG) > F, we can always choose ¢y >
1 that tr(coX%) = P such that Z(x;y) becomes larger
and tr(coUpE2LUpGHG) > E. Thus, the solution of the
optimization problem (4) remains the same when the first
constraint becomes an equality constraint. We then prove that
the second constraint of (4) is active for the optimal precoder
by using the method of proof by contradiction. We assume
that the optimal solution (U}, X%, V7)) is achieved when

the constraint tr(UpE%UgGHG) > F is inactive. Thus,
(Up, X%, V%) should be a local maximum of Z(x;y) under
the constraint tr(X%) = P. From Theorem 2, we know that
the left singular vectors of P* = U%LX% (V%) are the same
as the right singular vectors of H. However, for such case,
we can always find a (UL, Xp,Vp) in the neighborhood
of (Up, X%, V5) to make the mutual information Z(x;y)
larger using the method from [6], since P* is not the global
maximum of Z(x;y) under the constraint tr(X%) = P. Thus,
P* cannot be the optimal solution and we obtain the problem
(4) is equivalent to (27).
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