
This article was downloaded by: [128.62.209.112] On: 30 December 2018, At: 12:31
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Conic Programming Reformulations of Two-Stage
Distributionally Robust Linear Programs over Wasserstein
Balls
Grani A. Hanasusanto, Daniel Kuhn

To cite this article:
Grani A. Hanasusanto, Daniel Kuhn (2018) Conic Programming Reformulations of Two-Stage Distributionally Robust Linear
Programs over Wasserstein Balls. Operations Research 66(3):849-869. https://doi.org/10.1287/opre.2017.1698

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2018, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2017.1698
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 66, No. 3, May–June 2018, pp. 849–869

http://pubsonline.informs.org/journal/opre/ ISSN 0030-364X (print), ISSN 1526-5463 (online)

Conic Programming Reformulations of Two-Stage Distributionally
Robust Linear Programs over Wasserstein Balls
Grani A. Hanasusanto,a Daniel Kuhnb

aGraduate Program in Operations Research and Industrial Engineering, University of Texas at Austin, Austin, Texas 78712;
bÉcole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Contact: grani.hanasusanto@utexas.edu, http://orcid.org/0000-0003-4900-2958 (GAH); daniel.kuhn@epfl.ch,
http://orcid.org/0000-0003-2697-8886 (DK)

Received: September 26, 2016
Revised: May 10, 2017
Accepted: October 5, 2017
Published Online in Articles in Advance:
May 25, 2018

Subject Classifications: stochastic
programming; decision analysis: risk; probability
Area of Review: Optimization

https://doi.org/10.1287/opre.2017.1698

Copyright: © 2018 INFORMS

Abstract. Adaptive robust optimization problems are usually solved approximately by
restricting the adaptive decisions to simple parametric decision rules. However, the cor-
responding approximation error can be substantial. In this paper we show that two-stage
robust and distributionally robust linear programs can often be reformulated exactly as
conic programs that scale polynomially with the problem dimensions. Specifically, when
the ambiguity set constitutes a 2-Wasserstein ball centered at a discrete distribution, the
distributionally robust linear program is equivalent to a copositive program (if the prob-
lem has complete recourse) or can be approximated arbitrarily closely by a sequence of
copositive programs (if the problem has sufficiently expensive recourse). These results
directly extend to the classical robust setting andmotivate strong tractable approximations
of two-stage problems based on semidefinite approximations of the copositive cone. We
also demonstrate that the two-stage distributionally robust optimization problem is equiv-
alent to a tractable linear program when the ambiguity set constitutes a 1-Wasserstein ball
centered at a discrete distribution and there are no support constraints.
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1. Introduction
In two-stage optimization under uncertainty, an agent
selects a here-and-now decision before observing the
realization of some decision-relevant random vector.
Once the uncertainty has been revealed, a wait-and-see
decision is taken to correct any undesired effects of the
here-and-now decision in the realized scenario. Clas-
sical stochastic programming seeks a single here-and-
now decision and a family of (possibly infinitely many)
wait-and-see decisions—one for each possible uncer-
tainty realization—with the goal to minimize the sum
of a deterministic here-and-now cost and the expecta-
tion of an uncertain wait-and-see cost (Shapiro et al.
2014). Classical robust optimization, by contrast, seeks
decisions that minimize the worst case of the total
cost across all possible uncertainty realizations (Ben-
Tal et al. 2009). While stochastic programming assumes
full knowledge of the distribution governing the uncer-
tain problem parameters, which is needed to evaluate
the expectation of the total costs, robust optimization
denies (or ignores) any knowledge of this distribution
except for its support.
Distributionally robust optimization is an alterna-

tivemodeling paradigmpioneered inDupačová (1966),
Scarf (1958), Shapiro andKleywegt (2002). It has gained
new thrust over the last decade and challenges the

black-and-white view of stochastic and robust opti-
mization. Specifically, it assumes that the decision
maker has access to some limited probabilistic infor-
mation (e.g., in the form of the distribution’s moments,
its structural properties, or its distance to a reference
distribution) but not enough to precisely pin down the
true distribution. In this setting, a meaningful objective
is tominimize theworst-case expected total cost, where
the worst case is evaluated across an ambiguity set
that contains all distributions consistent with the avail-
able probabilistic information. Distributionally robust
models enjoy strong theoretical justification from deci-
sion theory (Gilboa and Schmeidler 1989), and there is
growing evidence that they provide high-quality deci-
sions at a moderate computational cost (Delage and Ye
2010, Goh and Sim 2010, Wiesemann et al. 2014).
Two-stage decision problems under uncertainty—

whether stochastic, robust, or distributionally robust—
typically involve a continuumofwait-and-see decisions
and thus constitute infinite-dimensional functional op-
timization problems. Therefore, they can only be solved
approximately, except in contrived circumstances. The
existing approximation methods can roughly be sub-
divided into discretization schemes (Hadjiyiannis et al.
2011, Kleywegt et al. 2002, Shapiro 2003) and decision
rule methods (Ben-Tal et al. 2004, Georghiou et al. 2015,
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Goh and Sim 2010). Discretization schemes approxi-
mate the support of the uncertain parameters with a
finite subset, which entails a relaxation of the orig-
inal problem and encourages optimistically biased
solutions. Decision rule methods, on the other hand,
approximate the infinite-dimensional space of all wait-
and-see decisions with a finite-dimensional subspace
of linearly parameterized decision rules, which entails
a restriction of the original problem and leads to pes-
simistically biased solutions. In this paper, we intro-
duce a new method for approximating two-stage dis-
tributionally robust linear programs, which can be
classified neither as a discretization scheme nor as a
decision rule method. We first reformulate the orig-
inal infinite-dimensional optimization problem as an
equivalent finite-dimensional conic program of poly-
nomial size, which absorbs all the complexity in its
cones, and then we replace the cones with tractable
inner approximations.
Our exposition focuses on distributionally robust lin-

ear programswhose ambiguity sets contain all discrete
and continuous distributions supported on a poly-
tope that have a Wasserstein distance of at most ε
from a discrete reference distribution (such as the
empirical distribution corresponding to finitely many
samples from the unknown true distribution). This
problem class encapsulates the two-stage stochastic
linear programs with discrete distributions (for ε � 0)
and the two-stage robust optimization problems with
bounded polyhedral uncertainty sets (for ε � ∞) as
special cases. Wasserstein ambiguity sets were first
used in the context of portfolio optimization (Pflug
andWozabal 2007). The corresponding distributionally
robust optimization models were initially perceived as
difficult and thus tackled with methods from global
optimization (Wozabal 2012); see also Pflug and Pichler
(2014, chap. 7). Recently, it has been discovered, how-
ever, that distributionally robust optimization prob-
lems with Wasserstein ambiguity sets can often be
reformulated as finite convex programs (Mohajerin
Esfahani and Kuhn 2017, Zhao and Guan 2018). Single-
stage problems with piecewise linear cost functions,
for instance, are tractable and admit convex reformu-
lations of polynomial sizes (Mohajerin Esfahani and
Kuhn 2017). Two-stage problems, on the other hand,
are generically NP-hard. Their convex reformulations
have exponential size but are amenable to Benders-
type decomposition algorithms (Zhao and Guan 2018).
Alternatively, two-stage problems can be converted to
single-stage problems via a decision rule approxima-
tion, in which case they admit again a convex refor-
mulation of polynomial size and thus regain tractabil-
ity (Gao and Kleywegt 2016).
This paper extends the state of the art in two-stage

distributionally robust linear programming along

several dimensions. We highlight the following main
contributions:
(i) We prove that any two-stage distributionally ro-

bust linear programwith complete recourse is equivalent
to a copositive program of polynomial size if the ambi-
guity set constitutes a 2-Wasserstein ball centered at a
discrete distribution.
(ii) We prove that any two-stage distributionally

robust linear programwith sufficiently expensive recourse
can be approximated arbitrarily closely by a sequence
of copositive programs of a fixed polynomial size if the
ambiguity set constitutes a 2-Wasserstein ball centered
at a discrete distribution.
(iii) By using nested hierarchies of tractable convex

cones to approximate the (intractable) copositive cones
from the inside (Bomze and de Klerk 2002, de Klerk
and Pasechnik 2002, Parrilo 2000), we obtain sequences
of tractable conservative approximations for the two-
stage distributionally robust linear programs described
in items i and ii. These approximations can be made
arbitrarily accurate. However, numerical tests suggest
that even the coarsest of these approximations dis-
tinctly outperform the state-of-the-art decision rule ap-
proximations in terms of accuracy.
(iv) We prove that any two-stage distributionally

robust linear program with fixed costs is equivalent to
a tractable linear program if the ambiguity set consti-
tutes a 1-Wasserstein ball centered at a discrete distri-
bution and if there are no support constraints. We also
show that this tractability result is sharp.
(v) We demonstrate that all of the above results

carry directly over to classical two-stage robust opti-
mization problems with bounded polyhedral uncer-
tainty sets. To our best knowledge, we provide the first
(polynomially sized) conic programming reformula-
tions for generic problem instances in this class.
Two-stage distributionally robust linear programs

with objective uncertainty are studied in Bertsimas
et al. (2010). Assuming that only the first- and second-
order moments of the uncertain cost coefficients
are known, these problems can be reformulated as
tractable semidefinite programs. In the presence of
constraint uncertainty, however, these problems be-
come intractable. Two-stage distributionally robust
binary programs with polyhedral moment informa-
tion are studied in Hanasusanto et al. (2016b). If only
the cost coefficients are uncertain, these problems can
be reformulated as explicit mixed-integer linear pro-
grams of polynomial sizes. While two-stage distribu-
tionally robust optimization endeavors to minimize
the worst-case (maximal) expected wait-and-see cost,
a parallel stream of research investigates the best-case
(minimal) expectations of the minima of mixed zero-
one linear programs with objective uncertainty. Under
first- and second-order moment information, any such
best-case expectation can be reformulated as the opti-
mal value of a completely positive program (Natarajan
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et al. 2011). In fact, this best-case expectation even
reduces to the optimal value of a tractable semidefinite
program whenever the convex hull of all rank-1 outer
products of feasible wait-and-see decisions with them-
selves is semidefinite-representable (Natarajan and Teo
2017). These deep theoretical results have recently
opened up new avenues for modeling and solving
stochastic appointment scheduling problems (Kong
et al. 2013) and also have ramifications for computing
best-worst choice probabilities in discrete choice mod-
els (Natarajan and Teo 2017). A comprehensive sur-
vey of recent results at the interface of distributionally
robust optimization and completely positive program-
ming is provided in Li et al. (2014).
In contrast to the existing literature, here we

develop copositive programming reformulations for
generic two-stage distributionally robust linear pro-
grams where both the objective function and the
constraints may be affected by the uncertainty. We
also present new linear programming reformulations
for two-stage distributionally robust linear programs
where the uncertainty affects only the constraints.
These exact reformulations are reminiscent of the con-
servative approximation models for two-stage robust
optimization models derived in Ardestani-Jaafari and
Delage (2016) by leveraging popular reformulation-
linearization techniques from bilinear programming.
Another main difference to the existing literature is our
focus on Wasserstein balls instead of moment ambigu-
ity sets to capture distributional uncertainty. This has
the advantage that the degree of ambiguity aversion
can be controlled by tuning the radius of the Wasser-
stein ball.
A key benefit of Wasserstein balls is that they pro-

vide natural confidence sets for the unknown distribu-
tion of the uncertain problem parameters. Specifically,
the Wasserstein ball around the empirical distribution
on I independent historical samples contains the
unknown true distribution with confidence 1− β if its
radius exceeds an explicit threshold εI(β) that is known
in closed form (Mohajerin Esfahani and Kuhn 2017,
Zhao and Guan 2018). Thus, the corresponding distri-
butionally robust optimization problem offers a 1 − β
upper confidence bound on the optimal value of the
true stochastic program. One can also show that this
data-driven distributionally robust optimization prob-
lem converges to the corresponding true stochastic pro-
gram as the sample size I tends to infinity (Mohajerin
Esfahani and Kuhn 2017, Zhao and Guan 2018). Other
data-driven distributionally robust optimization mod-
els that offer finite sample and asymptotic guaran-
tees are discussed in Bertsimas et al. (2017) based
on goodness-of-fit ambiguity sets, in Jiang and Guan
(2018) based on L1-norm ball ambiguity sets, and
in Love and Bayraksan (2016) based on Φ-divergence
ambiguity sets.

While this paper was under review, we became
aware of the paper by Xu and Burer (Xu and Burer
2018), which was submitted simultaneously. It turns
out that our Corollary 1 is equivalent to theorem 1 in
Xu and Burer (2018), and so we mention it here for
the readers’ reference. While Xu and Burer (2018) focus
on two-stage robust linear programs with right-hand-
side uncertainty, we develop copositive programming
reformulations for distributionally robust two-stage lin-
ear programs with objective and constraint uncertainty.
The rest of this paper is structured as follows. Sec-

tion 2provides a formalproblemstatement and reviews
some fundamental results from Mohajerin Esfahani
and Kuhn (2017) and Zhao and Guan (2018). In Sec-
tion 3 we derive copositive programming reformula-
tions for two-stage distributionally robust linear pro-
grams over 2-Wasserstein balls and discuss tractable
approximations. Exact tractable linear programming
reformulations for two-stagedistributionally robust lin-
ear programs over 1-Wasserstein balls are described in
Section 4. Section 5 reports on numerical results.

1.1. Notation
For any I ∈ �, we define [I] as the index set {1, . . . , I}.
We denote by � the identity matrix and by e the vec-
tor of all ones. Their dimensions will be clear from
the context. The trace of a square matrix M is denoted
as tr(M). We define diag(v) as the diagonal matrix
with the vector v on its main diagonal. The set of
nonnegative (positive) reals is denoted as �+ (�++).
The set of all symmetric matrices in �K×K is denoted
as �K , while the cone of positive semidefinite matri-
ces in �K×K is denoted as �K

+
. We define the cone of

copositive matrices as � � {M ∈ �K : ξ�Mξ � 0 ∀ξ � 0}
and the cone of completely positive matrices as �∗

�

{M ∈�K : M�BB� for some B ∈�
K×g(K)
+ }, where g(K)�

max
{(K+1

2

) − 4,K}
(Shaked-Monderer et al. 2015). For

anyQ,R ∈�K , the relationsQ�R,Q�� R, andQ ��∗ R
mean that Q − R is an element of �K

+
, �, and �∗,

respectively. We denote the jth row ( jth column) of a
matrix M as M j: (M: j). All random variables are des-

ignated by tildes (e.g., ξ̃), while their realizations are
denotedwithout tildes (e.g., ξ). The characteristic func-
tion of a set � is defined as χ� (ξ) � 0 if ξ ∈ � and as
�∞ otherwise.

2. Problem Formulation
We study two-stage distributionally robust linear pro-
grams of the form

minimize c�x+�(x)
subject to x ∈	 , (1)

where 	 ⊆ �N1 is the feasible set of the here-and-now
decisions, c�x is the here-and-now cost, and�(x) is the
worst-case expectedwait-and-see cost. Formally, we set

�(x)� sup

∈�̂

Ɛ
 [Z(x, ξ̃)], (2)
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where ξ̃ ∈ Ξ ⊆ �K is a random vector comprising the
uncertain problem parameters and �̂ is an ambiguity
set that contains the possible distributions of ξ̃. The
recourse function Z(x, ξ) in (2) constitutes the optimal
value of the recourse problem; that is,

Z(x, ξ)� inf (Qξ+q)�y
s.t. y ∈ �N2 ,

T(x)ξ+h(x) �Wy,
(3)

where T(x) ∈ �M×K and h(x) ∈ �M are matrix- and vec-
tor-valued affine functions, respectively. The dual of
the recourse problem is given by

Zd(x, ξ)� sup (T(x)ξ+h(x))�p
s.t. p ∈ �M

+
,

Qξ+q�W�p.
(4)

We introduce the following standard terminology
that will be used throughout the paper.

Definition 1 (Complete Recourse). We say that the two-
stage distributionally robust linear program (1) has
complete recourse if there exists y+ ∈�N2 withWy+ > 0.

Complete recourse implies that problem (3) is fea-
sible for every x ∈ �N1 and ξ ∈ �K . Indeed, it implies
that there is always a λ > 0 such that y � λy+ exceeds
T(x)ξ+h(x).
Definition 2 (Sufficiently Expensive Recourse). We say
that the two-stage distributionally robust linear pro-
gram (1) has sufficiently expensive recourse if for any
fixed ξ ∈ Ξ the dual problem (4) is feasible.

If problem (1) has complete recourse, then Z(x, ξ) <
+∞ for every x ∈ �N1 and ξ ∈ �K . On the other hand,
if problem (1) has sufficiently expensive recourse, then
Z(x, ξ) > −∞ for every x ∈ 	 and ξ ∈ Ξ. If both condi-
tions are satisfied, then Z(x, ξ) is finite. Each condition
by itself implies that strong duality holds between the
primal and dual linear programs (3) and (4), respec-
tively. Throughout this paper, we will always assume
that problem (1) has sufficiently expensive recourse.
This is a weak condition that is satisfied by many
problems even with induced constraints. The complete
recourse assumption, which rules out induced con-
straints, will only be imposed occasionally to obtain
stronger results.
Following Mohajerin Esfahani and Kuhn (2017) and

Zhao and Guan (2018), we assume henceforth that the
true distribution of ξ̃ is unknown but that we have
access to I samples ξ̂1 , . . . , ξ̂I from this distribution. In
this case, we can define the empirical distribution 
̂ I �

(1/I)∑i∈[I] δξ̂i
—that is, the uniform distribution on the

samples. The ambiguity set �̂ in (1) can then be defined
as the family of all distributions that are close to the
empirical distribution 
̂ I with respect to the Wasser-
stein metric.

Definition 3 (Wasserstein Metric). For any r � 1, let

r(Ξ) be the set of all probability distributions 
 sup-
ported on Ξ satisfying Ɛ
 [d(ξ̃,ξ0)r]� ∫Ξd(ξ,ξ0)r
 (dξ)
<∞, where ξ0 ∈Ξ is some reference point and d(ξ,ξ0)
is a continuous reference metric on Ξ. For any r � 1,
the r-Wasserstein distance between two distributions

 1 ,
 2∈
r(Ξ) is defined as

W r(
 1 ,
 2)�inf
{(∫

Ξ2
d(ξ1 ,ξ2)r �(dξ1 ,dξ2)

)1/r

:

� is a joint distribution of ξ1 and ξ2
with marginals 
 1 and 
 2, respectively

}
.

We denote the Wasserstein ball of radius ε centered
at the empirical distribution by

�r
ε(
̂ I)� {
 ∈
r(Ξ): W r(
 , 
̂ I) � ε}.

The following theorem, which is adapted from
Mohajerin Esfahani and Kuhn (2017) and Gao and
Kleywegt (2016) and relies on the Knothe–Rosenblatt
rearrangement (Villani 2008), establishes that the
worst-case expectation (2) over a Wasserstein ambigu-
ity set �̂ � �r

ε(
̂ I) can be reformulated in terms of a
generalized moment problem and the corresponding
dual robust optimization problem. To keep this paper
self-contained, we prove this theorem in the online
appendix.

Theorem 1. If �̂ ��r
ε(
̂ I), the worst-case expectation (2)

coincides with the optimal value of the generalized moment
problem:

�(x) � sup
1

I

∑
i∈[I]

∫
Ξ

Z(x, ξ)
 i(dξ)

s.t. 
 i ∈
r(Ξ) ∀ i ∈ [I],
1

I

∑
i∈[I]

∫
Ξ

d(ξ, ξ̂i)r
 i(dξ) � εr . (5)

Furthermore, for ε > 0, this problem admits the strong dual
robust optimization problem:

�(x)� inf
λ∈�+

{
εrλ+

1

I

∑
i∈[I]

sup
ξ∈Ξ

Z(x, ξ) − λd(ξ, ξ̂i)r

}
. (6)

All results of this paper directly extend to the class of
two-stage robust optimization problems, which model
the uncertainties only through their uncertainty set Ξ.

Remark 1 (Two-Stage Robust Optimization). If Ξ is com-
pact and the radius ε of the Wassersein ball is larger
than the diameter of Ξ, then the two-stage distribu-
tionally robust linear program (1) simplifies to the two-
stage robust optimization problem:

minimize
{
c�x+max

ξ∈Ξ
Z(x, ξ)

}
subject to x ∈	 . (7)
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Indeed, if we set ε �maxξ, ξ′∈Ξ d(ξ, ξ′), then the Wasser-
stein ball �r

ε(
̂ I) contains all Dirac distributions δξ,
ξ ∈ Ξ. This implies that the worst-case expected cost (2)
reduces to the worst-case cost maxξ∈Ξ Z(x, ξ), irrespec-
tive of the number and positions of the samples ξ̂i ,
i ∈ [I].

3. Copositive Programming Reformulation
Throughout this section we work with the 2-Wasser-
stein metric and the 2-norm reference distance d(ξ1 ,ξ2)
� ‖ξ1 − ξ2‖2. We further assume that the support set Ξ
is a nonempty polyhedron of the form

Ξ� {ξ ∈ �K
+
: Sξ � t} (8)

for some S ∈ �J×K and t ∈ �J . Note that we assume,
without loss of generality, that Ξ is a (possibly un-
bounded) subset of the nonnegative orthant. Finally,
we also assume that problem (1) has sufficiently expen-
sive recourse. We will show that under these assump-
tions, the two-stage distributionally robust linear pro-
gram (1) admits an equivalent reformulation as a
copositive program.

3.1. A Copositive Upper Bound on �(x)
To derive a copositive programming-based upper
bound on �(x), we will need the following technical
lemma.

Lemma 1. For any symmetric matrix M ∈ �K , we have
M �� 0 if and only if

[z�1]M[z�1]� � 0 ∀z ∈ �K−1
+
. (9)

Proof. To prove sufficiency, we recall that M �� 0 if
and only if ξ�Mξ � 0 for all ξ ∈�K

+
. Thus, (9) follows by

focusing on those ξ ∈ �K with ξK � 1.
To prove the converse implication, assume that (9)

holds. Hence, we have

[z�1]M[z�1]� � 0 ∀z ∈ �K−1
+

�⇒ [tz�t]M[tz�t]� � 0 ∀z ∈ �K−1
+
, ∀ t ∈ �++

�⇒ [y�t]M[y�t]� � 0 ∀y ∈ �K−1
+
, ∀ t ∈ �++;

that is, for any fixed y ∈ �K−1
+

, the univariate quadratic
function [y�t]M[y�t]� is nonnegative for all t > 0. As
this function is continuous, it must, in fact, be nonneg-
ative for all t � 0. Thus, M �� 0. �

We are now ready to derive an upper bound on the
worst-case expectation �(x). This bound is expressed
as the optimal value of a copositive minimization
problem and can thus be used to conservatively ap-
proximate (1) with a finite-dimensional minimization
problem that is principally amenable to a numerical
solution.

Theorem 2 (Copositive Upper Bound). For any fixed first-
stage decision x ∈ 	 , the worst-case expectation �(x) in (2)
is bounded above by the optimal value of the copositive
program:

�̄(x)
� infε2λ+

1

I

∑
i∈[I]

[
si+�

�ψi−λ‖ξ̂i ‖22+
∑

j∈[N2+J]
φi j�

2
j

]
s.t. λ∈�+ , si∈�,ψi ,φi∈�N2+J ∀ i∈[I]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ�+��diag(φi)� −1
2
� (x)�−��diag(φi)��

−1
2
� (x)−�diag(φi)� �diag(φi)��(

−λξ̂i− 12Q�ψi

)�
1

2
(�ψi−�(x))�

−λξ̂i− 12�
�ψi

1

2
(�ψi−�(x))

si

⎤⎥⎥⎥⎥⎥⎥⎦
��0 ∀ i∈[I], (10)

where

��

[
Q
S

]
, ��

[
q
−t

]
, � (x)�

[
T(x)

0

]
,

�(x)�
[
h(x)

0

]
, and � �

[
W 0
0 −�

]
. (11)

Remark 2. Note that the extended recourse parameters
defined in (11) combine the input data of the recourse
problem (3) with the parameters characterizing the
support set (8).

Proof of Theorem 2. By strong linear programming
duality, which holds because problem (1) has suffi-
ciently expensive recourse, we have Z(x, ξ) � Zd(x, ξ)
for every x ∈ 	 and ξ ∈ Ξ. Recalling that r � 2 and
d(ξ1 , ξ2) � ‖ξ1 − ξ2‖2, the explicit formula (4) for the
optimal value Zd(x, ξ) of the dual recourse problem
and the polyhedral representation (8) for Ξ allow us to
reformulate (6) as

�(x)� inf
λ�0

{
ε2λ+

1

I

∑
i∈[I]

sup
ξ�0
Sξ�t

sup
p�0

Qξ+q�W�p

(T(x)ξ+h(x))�p

− λ‖ξ− ξ̂i ‖22
}

� inf
λ�0

{
ε2λ+

1

I

∑
i∈[I]

sup
ξ,π�0

�ξ+����π

(� (x)ξ+�(x))�π

− λ‖ξ− ξ̂i ‖22
}
, (12)

where the second equality uses the definitions in (11).
Note that the first M components of the new decision
variable π ∈ �M+J correspond to the dual variable p,
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while the remaining J components represent slack vari-
ables for the support constraints Sξ � t. Next, we add
the following nonconvex constraints to each of the I
inner maximization problems in (12):

�2j � (��
: jπ−��

j:ξ)2 � (��
j:ξ)2 − 2��

j:ξπ
�� : j + (��

: jπ)2
∀ j ∈ [N2 + J].

Note that these constraints are redundant, as they fol-
low from �ξ + � � ��π. As will be revealed in Sec-
tion 3.2, however, these constraints ensure that the opti-
mal value of the completely positive program dual to
(10) coincides with�(x). Thanks to a recent result from
the theory of quadratic programming (Burer 2009),
each of the emerging (nonconvex) quadratically con-
strained quadratic subproblems in (12) can be reformu-
lated as a completely positive maximization problem.
Thus, we could apply standard dualization techniques
to reformulate (12) as a finite copositive minimiza-
tion problem. Here, we instead pursue a more direct
approach, which leverages Lemma 1. By expressing all
linear and quadratic constraints of the subproblems in
Lagrangian form, we can reformulate (12) as

�(x)� inf
λ∈�+

{
ε2λ+

1

I

∑
i∈[I]

sup
ξ,π�0

inf
ψi ,φi

[
(� (x)ξ+�(x))�π

−λ‖ξ−ξ̂i ‖22+ψ�
i (�ξ+�−��π)

+
∑

j∈[N2+J]
φi j(�2j −(��

j:ξ)2+2��
j:ξπ

�� : j−(��
: jπ)2)

]}
� inf
λ�0,ψi ,φi

{
ε2λ+

1

I

∑
i∈[I]

sup
ξ,π�0

[
(� (x)ξ+�(x))�π

−λ‖ξ−ξ̂i ‖22+ψ�
i (�ξ+�−��π)

+
∑

j∈[N2+J]
φi j(�2j −(��

j:ξ)2+2��
j:ξπ

�� : j−(��
: jπ)2)

]}
,

(13)

where φi j denotes the jth entry ofφi . Here, the inequal-
ity follows from interchanging the order of the supre-
mum and the infimum operators. We observe now that
the terms in square brackets constitute quadratic forms
in ξ and π. Thus, by introducing auxiliary epigraphi-
cal variables si , i ∈ [I], to eliminate the suprema over ξ
and π, we can reformulate (13) as the quadratically
parameterized semi-infinite linear program:

inf

{
ε2λ+

1

I

∑
i∈[I]

[
si +��ψi −λ‖ξ̂i ‖22+

∑
j∈[N2+J]

φi j�
2
j

]}
s.t. λ∈�+ , si ∈�,ψi ,φi ∈�N2+J ∀ i∈[I],⎡⎢⎢⎢⎢⎣

ξ
π
1

⎤⎥⎥⎥⎥⎦
� [
λ�+��diag(φi)� − 1

2
� (x)�−��diag(φi)��

− 1
2
� (x)−�diag(φi)� �diag(φi)��

(−λξ̂i − 1
2
Q�ψi)� 1

2
(�ψi −�(x))�

−λξ̂i − 1
2
��ψi

1
2
(�ψi −�(x))

si

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ξ
π
1

⎤⎥⎥⎥⎥⎦ �0 ∀ i∈[I] ∀(ξ,π)∈�K+M+J
+ ,

which is equivalent to the copositive program (10) by
virtue of Lemma 1. �

3.2. A Completely Positive Reformulation of �(x)
We now derive the dual of the copositive program (10).
As we will see later, even though (10) provides an up-
per bound on (2), the optimal value of its dual problem
coincides with the worst-case expectation (2).

Proposition 1. The copositive program (10) is dual to the
following completely positive program:

¯
�(x) � sup

{
1

I

∑
i∈[I]

[tr(� (x)Yi)+�(x)�γi]
}

s.t. γi ∈ �M+J
+ ,μi ∈ �K

+
,Γi ∈�M+J

+ ,

Ωi ∈�K
+
,Yi ∈ �K×(M+J) ∀ i ∈ [I],

�μi +����γi ∀ i ∈ [I],
��

j:Ωi� j: − 2��
j:Yi� : j +��

: jΓi� : j � �2j
∀ i ∈ [I] ∀ j ∈ [N2 + J],

1

I

∑
i∈[I]

[tr(Ωi) − 2ξ̂�i μi + ξ̂
�
i ξ̂i] � ε2 ,

⎡⎢⎢⎢⎢⎣
Ωi Yi μi
Y�

i Γi γi
μ�i γ

�
i 1

⎤⎥⎥⎥⎥⎦ ��∗ 0 ∀ i ∈ [I]. (14)

Proof. The claim follows from standard conic duality
theory. Details are omitted for brevity. �

In the following, we show that the worst-case expec-
tation �(x) is in fact equal to the optimal value

¯
�(x) of

the completely positive program (14).

Theorem 3 (Completely Positive Reformulation). For any
fixed x ∈	 , we have �(x)�

¯
�(x).

Proof. Recall from Theorem 1 that�(x) coincides with
the optimal value of the moment problem (5). We first
prove that �(x) �

¯
�(x). To this end, we show that any

feasible solution {
 i}i∈[I] of (5) gives rise to a feasible
solution to (14) with the same objective function value.
Let p(ξ) be a measurable selector of the dual feasi-
ble set mapping ξ⇒ {p ∈ �M

+
: Qξ + q � W�p}, ξ ∈ Ξ,

which exists because of Rockafellar and Wets (2009,
corollary 14.6) and because problem (1) has sufficiently
expensive recourse. Next, define π(ξ) � (p(ξ), t − Sξ).
By construction, we have�ξ+����π(ξ) for all ξ ∈Ξ.
Next, define the following candidate solution for (14):

μi �

∫
Ξ

ξ
 i(dξ), Ωi �

∫
Ξ

ξξ�
 i(dξ),

γi �

∫
Ξ

π(ξ)
 i(dξ), Γi �

∫
Ξ

π(ξ)π(ξ)�
 i(dξ),

Yi �

∫
Ξ

ξπ(ξ)�
 i(dξ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ i ∈ [I]. (15)
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Since ξ̃ and π(ξ̃) are nonnegative random vectors, the
matrix of their moments of degree � 2 is completely
positive. Thus, the candidate solution (15) satisfies the
last constraint in (14). We further have

�ξ+����π(ξ) ∀ξ ∈ Ξ �⇒ �μi +����γi

and

(��
j:ξ+� j)2 � (��

: jπ(ξ))2 ∀ξ ∈ Ξ
�⇒ ��

j:Ωi� j: − 2��
j:Yi� : j +��

: jΓi� : j � �2j

for all j ∈ [N2 + J]. Here, the implications follow from
taking expectations with respect to 
 i on both sides
of the semi-infinite constraints. Thus, the candidate
solution (15) also satisfies the first and the second
constraint systems in (14). Next, the feasibility of
{
 i}i∈[I] in the generalizedmoment problem (5) implies

that (1/I)∑i∈[I] ∫Ξ ‖ξ − ξ̂i ‖22 
 i(dξ) � ε2. Expanding the
squared norm term, we obtain

ε2 �
1

I

∑
i∈[I]

∫
Ξ

[ξ�ξ− 2ξ̂�i ξ+ ξ̂�i ξ̂i]
 i(dξ)

�
1

I

∑
i∈[I]

[tr(Ωi) − 2ξ̂�i μi + ξ̂
�
i ξ̂i],

and thus the candidate solution (15) also satisfies the
penultimate constraint in (14). Finally, the objective
function of (5) can be reformulated as

1

I

∑
i∈[I]

∫
Ξ

Z(x, ξ)
 i(dξ)

�
1

I

∑
i∈[I]

∫
Ξ

(� (x)ξ+�(x))�π(ξ)
 i(dξ)

�
1

I

∑
i∈[I]

[tr(� (x)Yi)+�(x)�γi],

where the first equality follows from the observa-
tion that (� (x)ξ+�(x))�π(ξ)�(T(x)ξ+h(x))�p(ξ) for all
ξ∈Ξ.Note that the rightmost term in the above equation
corresponds to theobjectivevalueof the candidate solu-
tion (15) in (14). We have thus shown that from any fea-
sible solution {
 i}i∈[I] to themomentproblem (5)we can
construct a feasible solution {(μi ,γi ,Ωi ,Γi ,Yi)}i∈[I] to the
completely positive program (14) that attains the same
objective value. This demonstrates that�(x)�

¯
�(x).

To prove the converse inequality, consider any feasi-
ble solution {(μi ,γi ,Ωi ,Γi ,Yi)}i∈[I] to (14), which gives
rise to a moment matrix with the following completely
positive decomposition:⎡⎢⎢⎢⎢⎣

Ωi Yi μi
Y�

i Γi γi
μ�i γ�i 1

⎤⎥⎥⎥⎥⎦ �
∑
l∈� i

⎡⎢⎢⎢⎢⎣
χil
ηil
αil

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
χil
ηil
αil

⎤⎥⎥⎥⎥⎦
�

, (16)

where� i is a finite index set, while χil ∈�K
+
, ηil ∈ �M+J

+ ,
and αil ∈ �+ for every l ∈ � i . Partitioning � i into

�+

i � {l ∈�: αil > 0} and �0
i � {l ∈ �: αil � 0}, the de-

composition (16) reduces to⎡⎢⎢⎢⎢⎣
Ωi Yi μi
Y�

i Γi γi
μ�i γ�i 1

⎤⎥⎥⎥⎥⎦ �
∑
l∈�+

i

⎡⎢⎢⎢⎢⎣
χilχ

�
il χilη

�
il αilχil

ηilχ
�
il ηilη

�
il αilηil

αilχ
�
il αilη

�
il α2il

⎤⎥⎥⎥⎥⎦
+

∑
l∈�0

i

⎡⎢⎢⎢⎢⎣
χilχ

�
il χilη

�
il 0

ηilχ
�
il ηilη

�
il 0

0� 0� 0

⎤⎥⎥⎥⎥⎦ . (17)

Next, we construct a sequence of discrete distribu-
tions 
 κi , i ∈ [I], parametrized by κ ∈ [0, 1], that satisfy


 κi

(
ξ̃ �
χil

αil

)
� (1− κ2)α2il ∀ l ∈�+

i


 κi

(
ξ̃ � ξ̂i +

1

κ

√
|�0

i |χil

)
�
κ2

|�0
i |

∀ l ∈�0
i

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀ i ∈ [I].

Observe that each 
 κi is indeed a probability distri-
bution since

∑
l∈L+

i
α2il � 1 because of (17). Lemma 2

implies that χil/αil ∈ Ξ for every l ∈�+

i and ξ̂i + (1/κ) ·√|�0
i |χil ∈ Ξ for every l ∈ �0

i . Thus, 

κ
i is supported

on Ξ. We further have

1

I

∑
i∈[I]

Ɛ
κi
[‖ξ̃− ξ̂i ‖22]

�
1

I

∑
i∈[I]

[∑
l∈�+

i

(1− κ2)α2il ‖χil/αil − ξ̂i ‖22

+
∑
l∈�0

i

κ2

|�0
i |

����ξ̂i +
1

κ

√
|�0

i |χil − ξ̂i

����2
2

]

�
1

I

∑
i∈[I]

[ ∑
l∈�+

i

(χ�ilχil − 2ξ̂�i (αilχil))+ ξ̂�i ξ̂i +
∑
l∈�0

i

χ�ilχil

]
�
1

I

∑
i∈[I]

[tr(Ωi) − 2ξ̂�i μi + ξ̂
�
i ξ̂i] � ε2 ,

where the first inequality holds since 1−κ2 � 1, the sec-
ond equality follows from the decomposition (17), and
the last inequality follows from the penultimate con-
straint in (14). Thus, the distributions 
 κi , i ∈ [I], are fea-
sible in the generalized moment problem (5). We next
construct feasible solutions for the dual recourse prob-
lem (4). For any i ∈ [I] and l ∈ � i , we define ρil as the
vector of the first M elements of ηil ∈ �M+J

+ . Lemma 2
implies that Qχil/αil + q � W�ρil/αil for every l ∈ �+

i .
Thus, pil � ρil/αil is feasible in the dual recourse prob-
lem (4) at ξ�χil/αil for l ∈�+

i . Next, for any i ∈ [I], let p̂i
be a feasible solution to the dual recourse problem (4)
at ξ � ξ̂i , which exists because problem (1) has suffi-
ciently expensive recourse. Hence, we have Qξ̂i + q �

W�p̂i . Lemma 2 further implies that Qχil � W�ρil for
every l ∈�0

i . Combining the last two equalities yields

Q
(
ξ̂i +

1

κ

√
|�0

i |χil

)
+q�W�

(
p̂i +

1

κ

√
|�0

i |ρil

)
∀ l∈�0

i .
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Thus, pil � p̂i + (1/κ)√|�0
i |ρil constitutes a feasible

solution in the dual recourse problem (4) at ξ � ξ̂i +

(1/κ)√|�0
i |χil for l ∈�0

i . In summary, we have

Z
(
x,
χil

αil

)
� Zd

(
x,
χil

αil

)
�

(
T(x)χil

αil
+h(x)

)�
pil ∀ l ∈�+

i

and

Z
(
x, ξ̂i +

1

κ

√
|�0

i |χil

)
� Zd

(
x, ξ̂i +

1

κ

√
|�0

i |χil

)
�

(
T(x)

(
ξ̂i +

1

κ

√
|�0

i |χil

)
+h(x)

)�
pil ∀ l ∈�0

i .

Using these estimates, we can now bound the objective
value of the discrete distributions 
 κi , i ∈ [I], in (5).
Specifically, we obtain

1

I

∑
i∈[I]

Ɛ
κi
[Z(x, ξ̃)]

�
1

I

∑
i∈[I]

[∑
l∈�+

i

(1− κ2)α2ilZ
(
x,
χil

αil

)

+
∑
l∈�0

i

κ2

|�0
i |

Z
(
x, ξ̂i +

√|�0
i |
κ
χil

)]

�
1

I

∑
i∈[I]

[∑
l∈�+

i

(1− κ2)α2il
(
T(x)χil

αil
+h(x)

)�
pil

+
∑
l∈�0

i

κ2

|�0
i |

(
T(x)

(
ξ̂i +

√|�0
i |
κ
χil

)
+h(x)

)�
pil

]

�
1

I

∑
i∈[I]

[ ∑
l∈�+

i

(1− κ2)α2il
(
� (x)χil

αil
+�(x)

)� ηil

αil

+
∑
l∈�0

i

κ2

|�0
i |

(
� (x)

(
ξ̂i +

√|�0
i |
κ
χil

)
+�(x)

)�

·
(
[p̂�

i 0]� +
√|�0

i |
κ
ηil

)]

�
1

I

∑
i∈[I]

[ ∑
l∈�+

i

(1− κ2)[tr(� (x)χilη
�
il )+�(x)�(αilηil)]

+
∑
l∈�0

i

tr(� (x)χilη
�
il )

]

+
1

I

∑
i∈[I]

[∑
l∈�0

i

κ2

|�0
i |

((
T(x)

(
ξ̂i +

√|�0
i |
κ
χil

)
+h(x)

)�
p̂i

+ (� (x)ξ̂i +�(x))�
√|�0

i |
κ
ηil

)]
.

Together with the decomposition (17), the above esti-
mate implies that

lim
κ↓0

1

I

∑
i∈[I]

Ɛ
κi
[Z(x, ξ̃)] � 1

I

∑
i∈[I]

tr(� (x)Yi)+�(x)�γi .

We have therefore shown that any feasible solution
to (14) can be used to construct a sequence of feasi-
ble solutions to the generalized moment problem (5)
that asymptotically attain a (weakly) larger objective
value. This demonstrates that �(x) �

¯
�(x). Thus the

claim follows. �

The proof of Theorem 3 relies on the following
lemma, which is inspired by lemma 2.2 in Burer (2009)
and proposition 3.1 in Natarajan et al. (2011).

Lemma 2. If {(μi ,γi ,Ωi ,Γi ,Yi)}i∈[I] is feasible in (14) and

if (χil ,ηil , αil) ∈ �K
+
×�M+J

+ ×�+, l ∈ � i , satisfies (16) for
some i ∈ [I], then

χil/αil ∈ Ξ and

Q(χil/αil)+q�W�(ρil/αil) ∀ l ∈�+

i ,

while

χil ∈ recc(Ξ) and Qχil �W�ρil ∀ l ∈�0
i ,

where recc(Ξ)� {ξ ∈ �K
+
: Sξ � 0} is the recession cone of Ξ

and ρil is the vector of the first M elements of ηil .

Proof. We substitute the decomposition (16) into the
constraints of problem (14) to obtain∑

l∈� i

αil(��
: jηil −��

j:χil)� � j (18)

and ∑
l∈� i

(��
: jηil −��

j:χil)2 � �2j (19)

for every j ∈ [N2 + J]. Squaring (18) and eliminating �2j
by using (19) yields(∑

l∈� i

αil

(
��

: jηil −��
j:χil

))2
�

∑
l∈� i

(
��

: jηil −��
j:χil

)2
�

(∑
l∈� i

α2il

) ∑
l∈� i

(
��

: jηil −��
j:χil

)2
.

Here, the second equality follows from the fact that∑
l∈� α2il � 1. The tightness condition of the Cauchy–

Schwarz inequality therefore implies that there exists
τ ∈ �with

��
: jηil −��

j:χil � ταil ∀ l ∈� i . (20)
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Thus, we have

��
: jηil −��

j:χil � 0 ∀ l ∈�0
i ,

which confirms the second claim. Next, we observe
from (18) and (20) that

� j �
∑
l∈� i

αil(��
: jηil −��

j:χil)�
∑
l∈� i

τα2il � τ. (21)

Replacing τ with � j in (20) and using the fact that

αil > 0 for l ∈�+

i yields

��
: j (ηil/αil) −��

j:(χil/αil)� � j ∀ l ∈�+

i ,

which establishes the first claim. �

3.3. A Copositive Reformulation of Problem (1)
So far, we have seen that �(x) �

¯
�(x) � �̄(x). Unfortu-

nately, as we exemplify below, the duality gap between

¯
�(x) and �̄(x) can be strictly positive.
Example 1 (Infinite Duality Gap). Consider the follow-
ing pair of primal and dual recourse problems:

Z(x , ξ)� inf
y∈�

{(ξ − 1)y: ξ − 1 � 0y} and

Zd(x , ξ)� sup
p∈�+

{(ξ − 1)p: ξ − 1� 0p},

respectively, and setΞ� {ξ ∈ �+: ξ � 1, −ξ � −1} � {1}.
Assume that there is only one sample ξ̂1 � 1 and that
the Wasserstein radius is set to ε � 1. Note that both
linear programs are feasible with the same optimal
value 0 for ξ � 1. Theorem 3 therefore implies that

¯
�(x)��(x)� 0.
Under the current setting, the extended recourse

parameters defined in (11) are given by

��

⎡⎢⎢⎢⎢⎣
1
1
−1

⎤⎥⎥⎥⎥⎦ , ��

⎡⎢⎢⎢⎢⎣
−1
−1
1

⎤⎥⎥⎥⎥⎦ , � (x)�
⎡⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎦ ,
� �

⎡⎢⎢⎢⎢⎣
0 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎦ , and �(x)�
⎡⎢⎢⎢⎢⎣
−1
0
0

⎤⎥⎥⎥⎥⎦ .
Hence, the copositive program (10) simplifies to

�̄(x) � inf{s−ψ1−ψ2+ψ3+φ1+φ2+φ3}
s.t. λ∈�+ , s∈�,ψ,φ∈�3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ+φ1+φ2+φ3 − 1
2

φ2
− 1
2

0 0

φ2 0 φ2
−φ3 0 0

−λ− 1
2
(ψ1+ψ2−ψ3) 1

2
− 1
2
ψ2

−φ3 −λ− 1
2
(ψ1+ψ2−ψ3)

0 1
2

0 − 1
2
ψ2

φ3 − 1
2
ψ3

− 1
2
ψ3 s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�� 0. (22)

However, multiplying the copositive constraint from
both sides with the vector [θ 1 0 0 0]�, θ � 0, implies
that (λ + φ1 + φ2 + φ3)θ2 − θ � 0 for all θ � 0. As no
values of λ, φ1, φ2, or φ3 can satisfy this inequality,
problem (22) is infeasible (i.e., �̄(x) � +∞). Thus, there
is an infinite duality gap between

¯
�(x) and �̄(x).

Even though
¯
�(x) and �̄(x)may differ, one can prove

that
¯
�(x)��(x)� �̄(x) if the two-stage distributionally

robust linear program (1) has complete recourse. To
show this, we first prove two lemmas.

Lemma 3. If problem (1) has complete recourse, then
WW� 
� 0.

Proof. The complete recourse property is equivalent to
the unboundedness of the linear program

maximize z
subject to y ∈ �N2 , z ∈ �,

Wy � ze,

whose dual linear program is given by

minimize 0

subject to λ ∈ �M
+
,

e�λ� 1,W�λ� 0.

As the primal problem is unbounded, the dual prob-
lem is infeasible by weak duality, implying that
W�λ� 0 for all λ ∈ �M

+
such that e�λ � 1. By rescaling,

we thus have λ�WW�λ > 0 for all λ ∈ �M
+
such that

λ � 0. This implies that WW� lies in the interior of the
copositive cone �. �

Lemma 4 (Copositive Schur Complements). Consider the
symmetric matrix

M�

[
A B
B� C

]
,

with A 
 0. We then have M 
� 0 if C−B�A−1B 
� 0.

Proof. Multiplying the matrix M from both sides with
a nonnegative vector [ξ� ρ�]� ∈ �K+M

+
satisfying e�ξ +

e�ρ� 1, we obtain

[ξ� ρ�]M[ξ� ρ�]� � ξ�Aξ+ 2ξ�Bρ+ρ�Cρ
� (ξ+A−1Bρ)�A(ξ+A−1Bρ)

+ρ�(C−B�A−1B)ρ.
Since A 
 0, the term (ξ+A−1Bρ)�A(ξ+A−1Bρ) is non-
negative. If ρ � 0, then we have e�ξ � 1, which implies
that this term is positive. If ρ � 0, then the assumption
C−B�A−1B
� 0 implies that the term ρ�(C−B�A−1B)ρ
is positive. In both cases, by rescaling, we find that
[ξ� ρ�]M[ξ� ρ�]� > 0 for all ξ ∈ �K

+
and all ρ ∈ �M

+
such

that [ξ� ρ�]� � 0. Hence, M 
� 0. �
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Lemmas 3 and 4 enable us to prove the following
exactness result.

Theorem 4. If problem (1) has complete recourse, then
�(x)�

¯
�(x)� �̄(x) for any fixed x ∈	 .

Proof. We already know from Theorem 3 that �(x) �
¯
�(x). To show that �̄(x) �

¯
�(x), it suffices to prove

strong duality between problems (10) and (14). Specifi-
cally, wewill construct a Slater point (λs , (ssi ,φsi ,ψs

i )i∈[I])
for problem (10). To this end, we first set φsi � e and
ψs

i � 0 for all i ∈ [I]. Using this solution, the ith con-
straint matrix in (10) can be decomposed as⎡⎢⎢⎢⎢⎢⎢⎢⎣

λs� − 1
2
T(x)� −Q�W� S� 0

− 1
2
T(x) −WQ WW� 0 − 1

2
h(x)

S 0 � 0
0� − 1

2
h(x)� 0� λs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

��� 0 0 −λsξ̂i

0 0 0 0
0 0 0 0

−λsξ̂�i 0� 0� ssi − λs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

Next, we select ssi large enough to ensure that the right
matrix in (23) is positive semidefinite. In this case, a
Slater point can be obtained by ensuring that the left
matrix is strictly copositive. As problem (1) has com-
plete recourse, Lemma 3 is applicable and implies that[

WW� 0
0 �

]

� 0.

Moreover, Lemma 4 implies that the left matrix in (23)
is strictly copositive if[

WW� 0
0 �

]

�

1

λs

[− 1
2
T(x)� +Q�W� S�

− 1
2
h(x)� 0�

]�
·
[− 1

2
T(x)� +Q�W� S�

− 1
2
h(x)� 0�

]
,

which is true whenever λs is sufficiently large. We have
therefore constructed a strictly feasible solution to (10).
Thus, �̄(x)�

¯
�(x)� Z(x) by strong conic duality. �

Theorem 4 implies that if problem (1) has complete
recourse, then it is equivalent to the copositive min-
imization problem obtained by replacing �(x) in (1)
with �̄(x). Conversely, if problem (1) fails to have com-
plete recourse, it may only be possible to approximate
�(x) by the optimal value of a copositive minimization
problem. To show this, we construct a relaxation of
problem (10) parameterized by δ � 0:

�̄δ(x)�inf
{
ε2λ+

1

I

∑
i∈[I]

[
si+�

�ψi−λ‖ξ̂i ‖22+
∑

j∈[N2+J]
φi j�

2
j

]}
s.t. λ∈�+ , si∈�,ψi ,φi∈�N2+J ∀ i∈[I],

⎡⎢⎢⎢⎢⎢⎣
λ�+��diag(φi)� − 1

2
� (x)�−��diag(φi)��

− 1
2
� (x)−�diag(φi)� �diag(φi)��

+δ�(−λξ̂i− 1
2
Q�ψi

)� 1
2
(�ψi−�(x))�

−λξ̂i− 1
2
��ψi

1
2
(�ψi−�(x))

si

⎤⎥⎥⎥⎥⎥⎦
��0 ∀ i∈[I]. (24)

Note that δ only affects the middle block of the copos-
itive matrix. One can further show that the completely
positive program dual to (24) constitutes a restriction
of problem (14) with a perturbed objective function:

¯
�δ(x) � sup

1

I

∑
i∈[I]

[tr(� (x)Yi)+�(x)�γi−δtr(Γi)]

s.t. γi∈�M+J
+ ,μi∈�K

+
, Γi∈�M+J

+ ,

Ωi∈�K
+
,Yi∈�K×(M+J) ∀ i∈[I],

�μi+���
�γi ∀ i∈[I],

��
j:Ωi� j:−2��

j:Yi� : j+�
�
: jΓi� : j��

2
j

∀ i∈[I]∀ j∈[N2+ J],
1

I

∑
i∈[I]

tr(Ωi)−2ξ̂�i μi+ξ̂
�
i ξ̂i�ε

2 ,

⎡⎢⎢⎢⎢⎣
Ωi Yi μi
Y�

i Γi γi
μ�i γ�i 1

⎤⎥⎥⎥⎥⎦��∗ 0 ∀ i∈[I]. (25)

Observe that δ only affects the objective function of this
dual problem.

Proposition 2. For any fixed x ∈	 , �̄δ(x)�
¯
�δ(x) is finite

for all δ > 0, and limδ↓0 �̄δ(x)��(x).
Proof. We first show that �̄δ(x) � ¯

�δ(x) by proving
strong duality between problems (24) and (25). To this
end, we first construct a Slater point (λs , (ssi ,φsi ,ψs

i )i∈[I])
for problem (24). Specifically, we set ψs

i � 0 and
φsi � 0 for all i ∈ [I], and we select λs satisfying λs� 

(1/(4δ))� (x)� (x)�. This is possible because δ > 0.
A standard Schur complement argument then implies
that for all sufficiently large ssi > 0, i ∈ [I], we have[
λs� − 1

2
� (x)�

− 1
2
� (x) δ�

]

0

⇒
[
λs� − 1

2
� (x)�

− 1
2
� (x) δ�

]

 1

ssi

[
λsξ̂i
1
2
�(x)

] [
λsξ̂i
1
2
�(x)

]�
∀i∈[I].

A second Schur complement argument then ensures
that⎡⎢⎢⎢⎢⎢⎣

λs� − 1
2
� (x)� −λsξ̂i

− 1
2
� (x) δ� − 1

2
�(x)

−λsξ̂�i − 1
2
�(x)� ssi

⎤⎥⎥⎥⎥⎥⎦

 0 ∀ i ∈ [I]. (26)

Consequently, the matrix on the left-hand side of (26)
is in the interior of the copositive cone �. This proves
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that (λs , (ssi ,φsi ,ψs
i )i∈[I]) is indeed a Slater point for (24).

Hence, �̄δ(x) � ¯
�δ(x) by strong conic duality. As prob-

lem (24) is feasible, we have �̄δ(x) < +∞ for any fixed
δ > 0. Moreover, as problem (1) has sufficiently expen-
sive recourse, we have Z(x, ξ) > −∞ for any fixed x ∈	
and ξ ∈ Ξ. Since �̂ is nonempty, evaluating the worst-
case expectation in (2) yields

¯
�(x) ��(x) > −∞, where

the equality follows from Theorem 3. Thus, the com-
pletely positive program (14) and its restriction (25) are
both feasible, implying that �̄δ(x) � ¯

�δ(x) > −∞. This
proves finiteness of �̄δ(x).
To prove the second claim, we observe that

¯
�δ(x)

constitutes a pointwise supremum of a family of affine
functions in δ. Thus,

¯
�δ(x) is convex and lower semi-

continuous in δ for every fixed x ∈	 . Since
¯
�δ(x) is also

nonincreasing in δ by construction, it is indeed right
continuous. Thus, we have

lim
δ↓0

�̄δ(x)� lim
δ↓0 ¯

�δ(x)� ¯
�0(x)��(x). (27)

Here, the first equality holds because �̄δ(x)� ¯
�δ(x) for

δ > 0, while the second equality follows from the right
continuity of

¯
�δ(x). The last equality is due to Theo-

rem 3. This completes the proof.

The findings of this section culminate in the follow-
ing main theorem.

Theorem 5. Consider the following family of copositive
programs parametrized in δ:

minimize

c�x+ε2λ+ 1
I

∑
i∈[I]

[
si +��ψi −λ‖ξ̂i ‖22+

∑
j∈[N2+J]

φi j�
2
j

]
subject to

x∈	 , λ∈�+ , si ∈�, ψi ,φi ∈�N2+J ∀ i∈[I]⎡⎢⎢⎢⎢⎢⎣
λ�+��diag(φi)� − 1

2
� (x)�−��diag(φi)��

− 1
2
� (x)−�diag(φi)� �diag(φi)��

+δ�

(−λξ̂i − 1
2
Q�ψi)� 1

2
(�ψi −�(x))�

−λξ̂i − 1
2
��ψi

1
2
(�ψi −�(x))

si

⎤⎥⎥⎥⎥⎥⎦
�� 0 ∀ i∈[I]. (28)

Then, the following statements hold.
(i) If δ � 0 and (1) has complete recourse, then (28) is

equivalent to (1).
(ii) If δ � 0 and (1) fails to have complete recourse, then

(28) provides an upper bound on (1).
(iii) If δ > 0, then (28) provides a lower bound on (1).
(iv) If 	 is compact, then the optimal value of (28) con-

verges to that of (1) for δ↓0. Moreover, every cluster point x�
of a sequence {x�δ }δ↓0 of minimizers for (28) is a minimizer
for (1).

Proof. Replacing �(x) in (1) with �̄δ(x) yields (28).
Assertion (i) thus follows from Theorem 4, while

assertion (ii) follows from Theorem 2, which implies
that �(x)� �̄(x)��̄0(x) for every x∈	 . Assertion (iii)
holds because �̄δ(x)� ¯

�δ(x)� ¯
�(x)��(x), where the

first equality follows from Proposition 2, the inequal-
ity holds because problem (25) constitutes a relax-
ation of (10), and the second equality is due to The-
orem 3. As for assertion (iv), recall that

¯
�δ(x) is the

optimal value of problem (25) and thus constitutes a
pointwise supremum of affine functions in x. There-
fore, �̄δ(x)� ¯

�δ(x) is convex and lower semicontinu-
ous in x for every fixed δ > 0. As 	 is compact, we
may thus conclude that there exists a minimizer x�δ ∈
argminx∈	 {c�x+�̄δ(x)} for every δ>0. Next, note that
the sequence of functions {�̄δ(x)}δ↓0 is nondecreasing
and thus epi-converges to�(x) by Rockafellar andWets
(2009, proposition 7.4(d)). Moreover, the sequence of
minimizers {x�δ }δ↓0 admits at least one cluster point
x�∈	 . By Shapiro et al. (2014, proposition 7.30), x� con-
stitutes aminimizer for (1), andwe have

lim
δ↓0

min
x∈	

{c�x+ �̄δ(x)} �minx∈	
{c�x+�(x)}.

This completes the proof.

Theorem 5 immediately extends to two-stage robust
optimization problems of the form (7).

Corollary 1 (Two-Stage Robust Optimization). Assume
that Ξ is bounded and set I � 1. Moreover, choose ε � 0 and
ξ̂1 ∈ Ξ such that d(ξ, ξ̂1) � ε ∀ξ ∈ Ξ. Then, the following
statements hold.
(i) If δ � 0 and (7) has complete recourse, then (28) is

equivalent to (7).
(ii) If δ � 0 and (7) fails to have complete recourse, then

(28) provides an upper bound on (7).
(iii) If δ > 0, then (28) provides a lower bound on (7).
(iv) If 	 is compact, then the optimal value of (28) con-

verges to that of (7) for δ↓0. Moreover, every cluster point x�
of a sequence {x�δ }δ↓0 of minimizers for (28) is a minimizer
for (7).

Proof. By construction of ε and ξ̂1, the Wasserstein
ball �2

ε(
̂ I) contains all Dirac distributions δξ, ξ ∈ Ξ.
Therefore, the worst-case expected cost (2) reduces
to maxξ∈Ξ Z(x, ξ). The claim thus follows immediately
from Theorem 5. �

To our best knowledge, Corollary 1 provides the
first exact finite conic programming reformulation for
the generic two-stage robust optimization problem (7).
When the uncertainty appears only in the constraints
of the recourse problem (3), approximation schemes
based on the cutting planemethod are available (Thiele
et al. 2009, Zeng and Zhao 2013). These approxima-
tions construct increasingly tight lower bounds for
the wait-and-see cost maxξ∈Ξ Z(x, ξ). Each iteration is
costly, however, as it involves the solution of a bilinear
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maximization problem. Thus, additional assumptions
on the uncertainty set Ξ are needed to alleviate the
computational burden of generating the cuts. For
example, when Ξ is a finite or a budgeted uncer-
tainty set, then one can reformulate the corresponding
bilinear maximization problems as mixed-integer lin-
ear programs of moderate sizes. If problem (7) fails
to have relatively complete recourse, however, then
many expensive iterations may be required to obtain
a first feasible solution. The results portrayed in Theo-
rem 5 and Corollary 1 motivate an alternative conser-
vative approximation scheme to solve problem (7) that
can immediately produce a feasible solution. This is
achieved by employing a tractable inner approximation
for the copositive cone �. We discuss this approach in
the next section.

3.4. A Hierarchy of Semidefinite Programming
Approximations

To justify the use of an approximation scheme, we first
establish that two-stage distributionally robust linear
programs of the form (1) are intractable.

Proposition 3. The two-stage distributionally robust linear
program (1) is NP-hard even if Q� 0 and 	 is a polyhedron
specified by a list of linear inequalities.

Proof. Recall from Remark 1 that the distribution-
ally robust linear programs (1) encapsulate the class
of all two-stage robust optimization problems of the
form (7). The claim thus follows immediately from
Guslitser (2002, theorem 3.5), which asserts that two-
stage robust optimization problemswith fixed recourse
are NP-hard. �

The complexity result of Proposition 3 is also plau-
sible in view of Theorem 5 and the known fact that
linear programs over copositive cones are generically
intractable (Murty and Kabadi 1987). A tractable con-
servative approximation for (28) can be obtained by
replacing the copositive cone � with

�0
� {M ∈�K : M� P+N, P � 0, N � 0}.

By construction, we have �0 ⊆ �, but for dimensions
K � 4, one can prove that �0

�� (Diananda 1962). For
K > 4, �0 is a strict subset of �. In this case, there exists
a hierarchy of semidefinite representable cones {� l}l�1
that provide increasingly tight inner approximations
for � and converge in finitely many iterations to �
(Parrilo 2000, Bomze and de Klerk 2002, de Klerk and
Pasechnik 2002, Lasserre 2009). If these tractable cones
are used to replace � in (28), then the sizes of the
resulting approximate problems can, however, become
prohibitively large for l > 0. In practice, we find that
replacing the cone � with �0 is sufficient to generate
solutions that enjoy an acceptable accuracy.

Theorem 4 implies that if problem (1) has complete
recourse, then the copositive program (28) with δ � 0
is equivalent to the two-stage distributionally robust
linear program (1). In numerical tests, we observe that
strong duality between the conic programs (10) and
(14) holds also for many problem instances that vio-
late the complete recourse condition. In all these cases,
near-optimal solutions for (1) can be computed by
solving the semidefinite programming approximation
obtained by setting δ � 0 and replacing the cone �
in (28) with an inner approximation � l . On the other
hand, if strong duality fails to hold, then feasible candi-
date solutions for (1) can be computed in a similarman-
ner by solving the semidefinite programming approxi-
mation (28) for increasingly small values of δ > 0 until
a suitable termination criterion is met.

3.5. Accounting for Risk Aversion
Until now, we have studied two-stage distribution-
ally robust optimization problems with an ambiguity-
averse but risk-neutral decision maker in mind. The
worst-case expectation (2) is a natural objective crite-
rion for such agents. However, many decision makers
are both ambiguity averse and risk averse, and they
may thus prefer to minimize a worst-case optimized
certainty equivalent. In the remainder of this paper, we
will argue that themain results of this section naturally
extend to this setting. Specifically, we consider nonde-
creasing, convex, and piecewise affine disutility func-
tions of the form U(y) � maxt∈[T]{αt y + βt}, where
α ∈ �T

+
, α� 0 and β ∈�T , and we replace the worst-case

expectation (2) with the worst-case optimized certainty
equivalent,

�(x)� inf
θ∈�

{
θ+ sup


∈�̂
Ɛ
 [U(Z(x, ξ̃) − θ)]

}
, (29)

corresponding to U. The worst-case optimized cer-
tainty equivalent determines an optimized payment
schedule of the uncertain wait-and-see cost Z(x, ξ̃) into
a fraction θ that is paid here and now and a remainder
Z(x, ξ̃) − θ that is paid after the uncertainty has been
observed. Optimized certainty equivalents encapsulate
mean-variance and conditional value-at-risk measures
as special cases; see Ben-Tal and Teboulle (2007). Sim-
ilar objective criteria are used in Hanasusanto et al.
(2016b) and Natarajan et al. (2011) to model the deci-
sion maker’s risk aversion.

Corollary 2. Consider the following family of copositive
programs parametrized in δ:

inf

{
c�x+θ+ε2λ+ 1

I

∑
i∈[I]

si

}
s.t. x∈	 , θ∈�, λ∈�+ , si , κit ∈�, ψit ,φit ∈�N2+J

∀ i∈[I], ∀ t∈[T],
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⎡⎢⎢⎢⎢⎣
λ�+��diag(φit)� − 1

2
αt� (x)�−��diag(φit)��

− 1
2
αt� (x)−�diag(φit)� �diag(φit)��

+δ�

(−λξ̂i − 1
2
Q�ψit)� 1

2
(�ψit −αt�(x))�

−λξ̂i − 1
2
��ψit

1
2
(�ψit −αt�(x))

si +κit

⎤⎥⎥⎥⎥⎦ �� 0 ∀ i∈[I]∀ t∈[T],

κit �αtθ−βt −��ψit +λ‖ξ̂i ‖22−
∑

j∈[N2+J]
φit j�

2
j

∀ i∈[I]∀ t∈[T]. (30)
If �(x) denotes the worst-case expected disutility func-
tion (29), then the following statements hold.
(i) If δ � 0 and (1) has complete recourse, then (30) is

equivalent to (1).
(ii) If δ � 0 and (1) fails to have complete recourse, then

(30) provides an upper bound on (1).
(iii) If δ > 0, then (30) provides a lower bound on (1).
(iv) If 	 is compact, then the optimal value of (30) con-

verges to that of (1) for δ↓0. Moreover, every cluster point x�
of a sequence {x�δ }δ↓0 of minimizers for (30) is a minimizer
for (1).

Proof. This is an immediate generalization of Theo-
rem 5. Details are omitted for brevity. �

4. Linear Programming Reformulation
for Q� 0

We assume now that the uncertainty affects only
the constraints of the recourse problem (3); that is,
we assume that Q � 0. Unless stated otherwise, we
further assume throughout this section that Ξ � �K

and that the ambiguity set is constructed using the
1-Wasserstein metric with reference distance d(ξ1 , ξ2)�
‖ξ1 − ξ2‖, where the norm ‖ · ‖ is defined through

‖ξ‖ � e�max{w+ · ξ,−w− · ξ} (31)

for some positive scaling parameters w+ and w−. Note
that (31) reduces to the 1-norm if w+ � w− � 1.
Finally, we always assume that (1) has sufficiently

expensive recourse. Under these assumptions, the two-
stage distributionally robust linear program (1) ad-
mits an equivalent reformulation as a tractable linear
program.

4.1. Tractable Formulation
We first establish the main tractability result for the
two-stage distributionally robust linear program (1).

Theorem 6. The two-stage distributionally robust opti-
mization problem (1) is equivalent to the tractable linear
program:

minimize

{
ελ+

1

I

∑
i∈[I]

q�yi

}

subject to

x ∈	 , λ ∈ �+ , yi ∈ �N2 ∀ i ∈ [I],
φk , ψk ∈ �N2 ∀ k ∈ [K],
T(x)ξ̂i +h(x) �Wyi ∀ i ∈ [I],
q�φk � λ, q�ψk � λ

T(x)ek/w+ �Wφk , −T(x)ek/w− �Wψk

}
∀ k ∈ [K].

(32)

Proof. By strong linear programming duality, which
holds because problem (1) has sufficiently expensive
recourse, we have Z(x, ξ)� Zd(x, ξ) for every x ∈	 and
ξ ∈ �K . Theorem 1 thus implies that

�(x)� inf
λ�0
ελ+

1

N

∑
i∈[I]

sup
ξ

sup
p�0

W�p�q

(T(x)ξ+h(x))�p

− λ‖ξ− ξ̂i ‖.
Invoking the definition of the dual norm and inter-
changing the order of the supremum operators over ξ
and p, we further obtain

�(x)� inf
λ�0

{
ελ+

1

N

∑
i∈[I]

sup
p�0

W�p�q

[
sup
ξ

(
inf

‖γ‖∗�λ
(T(x)ξ+h(x))�

·p−γ�ξ+γ�ξ̂i

)]}
.

Next, we interchange the order of the innermost supre-
mum over ξ and the infimum over γ, which is allowed
by the classical minimax theorem (Bertsekas 2009,
proposition 5.5.4) since γ ranges over a compact set.
This yields

�(x)� inf
λ�0

{
ελ+

1

I

∑
i∈[I]

sup
p�0

W�p�q

inf
‖γ‖∗�λ

[
sup
ξ

((T(x)ξ+h(x))�

·p−γ�ξ+γ�ξ̂i)
]}
.

Evaluating the inner maximization over ξ analytically
further yields

�(x)� inf
λ�0

{
ελ+

1

I

∑
i∈[I]

sup
p�0

W�p�q

[
inf

‖γ‖∗�λ
(h(x)�p+γ�ξ̂i

+ χ{γ�T(x)�p}(γ,p))
]}

� inf
λ�0

{
ελ+

1

I

∑
i∈[I]

sup
p�0

W�p�q

[
h(x)�p+ (T(x)�p)�ξ̂i

+ χ{‖T(x)�p‖∗�λ}(p)
]}
.

The minimization over λ in the last problem can also
be evaluated analytically. In fact, the unique optimal
solution is λ�� sup{‖T(x)�p‖∗: p ∈�M

+
,W�p�q}. Note

that for any λ < λ�, the supremum over p would be
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unbounded, and any λ > λ� would incur an unneces-
sarily high cost as λ is penalized by ε in the objective
function. We thus obtain

�(x)�inf
{
ελ+

1

I

∑
i∈[I]

sup
p�0

W�p�q

(h(x)�p+(T(x)�p)�ξ̂i)
}

s.t. λ∈�+ ,

‖T(x)�p‖∗�λ ∀p∈�M
+
: W�p�q. (33)

Next, the norm dual to (31) is given by

‖z‖∗ �max
k∈[K]

[
max

{
zk

w+

,− zk

w−

}]
.

Thus, the last constraint in (33) can be decomposed into
a system of �(K) linear constraints as follows:
‖T(x)�p‖∗�λ, ∀p∈�M

+
: W�p�q

⇐⇒ sup
p�0

W�p�q

e�
k T(x)�p/w+�λ, sup

p�0
W�p�q

−e�
k T(x)�p/w−�λ

∀k∈[K],

⇐⇒ ∃φk ,ψk ∈�N2 :

q�φk�λ, q�ψk�λ

T(x)ek/w+�Wφk ,

−T(x)ek/w−�Wψk

⎫⎪⎪⎬⎪⎪⎭ ∀k∈[K].

Here, the second equivalence follows from dualizing
the linear programs over p, all of which are feasi-
ble because problem (1) has sufficiently expensive re-
course. The claim then follows from substituting the
last constraint system into (33). �

Example 2 (Regression). Consider the least absolute
deviations (LAD) regression problem:

minimize Ɛ
 [|x�ξ̃+ x0 − χ̃ |]
subject to (x, x0) ∈	 .

The objective of this problem is to find the slope x and
intercept x0 of an affine function of the explanatory
random variables ξ̃ that tightly approximates the inde-
pendent variable χ̃ in terms of the mean absolute devi-
ation. In statistics, however, the data-generating distri-
bution 
 of (ξ̃, χ̃) is never known. Only the empirical
distribution 
̂ I corresponding to a set of I training sam-
ples is given. In this case 
 is ambiguous, and it may
make sense to solve the distributionally robust LAD
problem:

minimize sup

∈�̂

Ɛ
 [|x�ξ̃+ x0 − χ̃ |]
subject to (x, x0) ∈	 ,

which can be identified as an instance of the two-stage
distributionally robust optimization problem (1) with
recourse function

Z((x, x0), (ξ, χ))�min{y: y ∈ �, y � x�ξ+ x0 − χ,
y � χ− x0 − x�ξ}.

From Equation (33) in the proof of Theorem 6, it is
evident that the distributionally robust LAD problem
is equivalent to

minimize

{
ε‖x‖∗ + 1

N

∑
i∈[I]

|x�ξ̂i + x0 − χ̂i |
}

subject to (x, x0) ∈	 .

Note that the above formulation holds for arbitrary
norms (not just the one defined in (32)). The second
term in the objective function represents the empirical
LAD loss, while the first term acts as a regularizer for
the regression coefficient x. If the reference distance is
set to the infinity norm, then we recover the celebrated
LASSO regularizer (Tibshirani 1996, Wang et al. 2006).
On the other hand, if the reference distance is set to
the 1-norm, then we obtain an infinity norm regular-
izer that has recently been employed in the context of
logistic regression (Shafieezadeh Abadeh et al. 2015).

Example 3 (Multitask Learning). We can extend Exam-
ple 2 to a distributionally robust multitask learning
problem (Caruana 1996, Baxter 2000) where several re-
gression problems are to be solved simultaneously:

minimize sup

∈�̂

Ɛ
 [‖Xξ̃+ x− χ̃‖1]
subject to (X, x) ∈	 .

This model has many applications in marketing (Lenk
et al. 1996), healthcare (Zhang et al. 2012), and natu-
ral language processing (Collobert and Weston 2008),
among others. The distributionally robust multitask
learning model still constitutes an instance of prob-
lem (1), where the recourse function is now given by

Z((X, x), (ξ,χ))�min{e�y: y ∈ �L , y � Xξ+ x−χ,
y � χ− x−Xξ}.

By Theorem 6, this problem is equivalent to the linear
program

minimize

{
ε

min{w+ ,w−} maxk∈[K]
‖X:k ‖1

+
1

N

∑
i∈[I]

‖Xξ̂i + x− χ̂i ‖1
}

subject to (X, x) ∈	 .

Here, the first term in the objective function acts again
as a regularizer for the regression coefficient X, while
the second term represents the empirical LAD loss.

4.2. Complexity Analysis
Unfortunately, tractability of the distributionally robust
linear program (1) is lost when the reference distance
is defined via a p-norm with p > 1 even if all other
conditions of Theorem 6 remain valid. This can be
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shown by using a reduction from the NP-hard Matrix
NormMaximization problem (Steinberg 2005).

Matrix NormMaximization
Instance. Given a positive semidefinite matrix
M ∈�K

+
.

Question. For a fixed q ∈ [1,∞), compute the
matrix norm ‖M‖∞, q �max‖z‖∞�1 ‖Mz‖q .

Theorem 7. Computing the optimal value of (1) is NP-hard
whenever the reference distance is set to d(ξ1 , ξ2) �

‖ξ1 − ξ2‖p for any p > 1, even if Q � 0, r � 1, and Ξ � �K

and there are no first-stage decisions.

Proof. Fix p ∈ (1,∞] and set q � p/(p − 1) ∈ [1,∞). For
any instanceM ∈�K

+
of theMatrix NormMaximization

problem, construct an instance of the distributionally
robust linear program (1) as follows. Set the parameters
of the recourse problem (3) to Q � 0, q � 0, T(x) � [M−
M]�, h(x) � 0, and W � [� �]�. Moreover, assume that
there is only one sample ξ̂1 � 0, and set ε � 1. Equa-
tion (33) in the proof of Theorem 6 implies that problem
(1) is equivalent to

minimize λ+e�y1
subject to λ∈�+ , y1∈�N2 ,

0�y1 ,
‖M(p

+
−p−)‖q�λ, ∀p

+
,p− ∈�K

+
: p

+
+p−�e.

Note that y1 � 0 at optimality irrespective of λ, and thus
the optimal value of this problem coincides with

max{‖M(p
+
−p−)‖q : p+

, p− ∈ �K
+
, p

+
+p− � e}

� max
‖z‖∞�1

‖Mz‖q .

We conclude that computing the optimal value of (1) is
at least as hard as solving the NP-hard Matrix Norm
Maximization problem. �

5. Numerical Results
Wenowassess the computational andstatistical proper-
ties of the two-stage distributionally robust linear pro-
grams over 2-Wasserstein balls studied in Section 3.
All optimization problems are solved with MOSEK v7
using the YALMIP interface (Löfberg 2004) on an 8-core
3.4 GHz computer with 16 GB RAM.

5.1. Approximation Quality
We first assess the error introduced by approximating
the copositive cone� in (28) with its semidefinite inner
approximation�0. To this end,we study recourse prob-
lems of the form

Z(x, ξ)� inf
y∈�N2

+

{e�y:Aξ−b � y}

�
∑

n∈[N2]
max{A�

n:ξ− bn , 0}

� max
l∈{0, 1}N2

(Aξ−b)�l, (34)

where A ∈ [0, 1]N2×K , b ∈ [0, 1]K , and the random vec-
tor ξ̃ ∈ �K is supported on Ξ � [0, 1]K . Note that the
wait-and-see cost is independent of x and representable
as a sum of N2 max functions, which can be expressed
as the pointwise maximum of 2N2 affine functions in ξ.
Recourse problems of this type are hard in the stochas-
tic as well as in the robust setting. Indeed, evaluating
the expectation of Z(x, ξ̃) is #P-hard even if N2 � 1 and
ξ̃ follows the uniform distribution on Ξ (Hanasusanto
et al. 2016a, corollary 1). Similarly, evaluating the worst
case of Z(x, ξ) over all ξ ∈ Ξ is strongly NP-hard (Hana-
susanto 2015, example 1.1.9). The followingproposition
shows that theworst-case expectation of Z(x, ξ̃) over all
distributions of ξ̃ ∈ Ξwithin a given 2-Wasserstein ball
can be expressed as the optimal value of a second-order
cone program (SOCP) with �(2N2) constraints.
Proposition 4. If �̂ ��2

ε(
̂ I), then the worst-case expecta-
tion (2) of the wait-and-see cost (34) amounts to

�(x) � inf

{
ε2λ+

1

I

∑
i∈[I]

si

}
s.t. λ∈�+ , si ∈�+ ,θil ,ηil∈�K

+

∀ i∈[I] ∀l∈{0,1}N2 ,

si +b+λ‖ξ̂i ‖22−e�ηil�0

∀ i∈[I] ∀l∈{0,1}N2 ,�����
[

A�l+2λξ̂i +θil−ηil

si +b�l+λ‖ξ̂i ‖22−e�ηil−λ

]�����
2

� si +b�l+λ‖ξ̂i ‖22−e�ηil+λ

∀ i∈[I] ∀l∈{0,1}N2 . (35)

Proof. By Theorem 1, the worst-case expectation (2) is
representable as

�(x)
� inf
λ∈�+

{
ε2λ+

1

I

∑
i∈[I]

max
ξ∈Ξ

max
l∈{0,1}N2

(l�Aξ−b�l−‖ξ− ξ̂i ‖22)
}
.

Thus, by introducing auxiliary epigraphical vari-
ables si , i ∈ [I], we can reformulate the above optimiza-
tion problem as the semi-infinite linear program

�(x) � inf

{
ε2λ+

1

I

∑
i∈[I]

si

}
s.t.q λ ∈ �+ , si ∈ �+ ∀ i ∈ [I],

max
ξ∈Ξ

l�Aξ−b�l− ‖ξ− ξ̂i ‖22 � si

∀ i ∈ [I] ∀ l ∈ {0, 1}N2 .

Strong quadratic programming duality implies that the
(i , l)th semi-infinite constraint is satisfied if and only if
there exist θil , ηil ∈ �K

+
that satisfy the hyperbolic con-

straint

1
4
‖A�l+2λξ̂i+θil−ηil‖22�λ(si+b�l+λ‖ξ̂i ‖22−e�ηil),
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which is equivalent to the standard SOCP constraints

λ � 0, si + b + λ‖ξ̂i ‖22 − e�ηil � 0,�����
[

A�l+ 2λξ̂i +θil −ηil

si +b�l+ λ‖ξ̂i ‖22 − e�ηil − λ

]�����
2

� si +b�l+ λ‖ξ̂i ‖22 − e�ηil + λ.

Thus, the worst-case expectation (2) indeed coincides
with the optimal value of (35). �

Because it is hard to evaluate �(x) exactly—as
reflected by the exponential size of the SOCP (35)—we
now investigate two efficient methods for evaluating
�(x) approximately: the�0 approximation of the equiv-
alent copositive program (10) and a state-of-the-art
quadratic decision rule approximation. The�0 approx-
imation is obtained by solving (10) with inputs S � �,
t � e,Q � 0, q � e, T(x) � [A� 0]�, h(x) � [−b� 0�]�, and
W � [� �]�, while approximating the copositive cone �
with�0.
Todevelopadecision rule approximation,wefirstuse

(Rockafellar andWets 2009, theorem 14.60) to reformu-
late (2) as

�(x)� inf
y∈�K,N2

{
sup

∈�̂

Ɛ
 [e�y(ξ̃)]:Aξ−b � y(ξ) ∀ξ ∈ Ξ,
y(ξ) � 0 ∀ξ ∈ Ξ

}
, (36)

where �K,N2
denotes the linear space of all measur-

able functions from�K to�N2 . A tractable upper bound
on �(x) is obtained by restricting �K,N2

to the sub-
space of all affine functions; see, for example, Gao and
Kleywegt (2016). A tighter tractable upper bound can
be obtained, however, by restricting �K,N2

to the sub-
space of all quadratic functions and by conservatively
approximating the emerging semi-infinite constraints
by semidefinite constraints using the approximate
� -lemma. Quadratic decision rule approximations of
this type are also studied in Hanasusanto et al. (2015).
We run numerical experiments for different values of

the uncertainty dimension K and the sample size I, and

Table 1. Optimality Gaps (in Percent) of the�0 Approximation (Left Column of Each Value of K) and the
Quadratic Decision Rule Approximation (Right Column of Each Value of K)

K

I 1 2 4 8 16 32 64

5 0.0 0.8 0.0 2.8 0.0 5.2 0.0 3.9 0.5 6.7 0.3 5.5 0.5 3.0
10 0.0 2.2 0.0 6.1 0.0 11.0 0.0 13.0 0.5 15.0 0.4 16.1 0.8 10.2
20 0.0 4.9 0.0 10.6 0.0 17.6 0.0 20.0 0.5 27.6 0.5 33.1 1.9 19.0
40 0.0 8.6 0.0 14.9 0.0 25.4 0.0 28.2 0.8 55.0 0.6 65.2 1.8 54.0
80 0.0 12.4 0.0 19.9 0.0 33.2 0.0 42.0 0.9 77.1 0.8 117.1 0.0 121.1
160 0.0 18.2 0.0 26.8 0.0 43.1 0.0 51.2 1.3 129.6 1.3 201.2 — 220.8
320 0.0 25.3 0.0 34.4 0.0 58.9 0.0 74.3 2.3 237.7 3.7 254.3 — 416.6
640 0.0 33.4 0.0 43.7 0.0 79.1 0.0 102.3 2.3 343.9 0.2 498.3 — 1,137.1

we set the Wasserstein radius to ε � 1/√I, thus enforc-
ing the scaling rule advocated in Blanchet and Kang
(2016) and Zhao and Guan (2018).1 All results are aver-
aged over 100 instances generated randomly as follows.
We sample the dimension N2 of the wait-and-see deci-
sion uniformly at random from {1, 2, . . . , �log(K + 1)�},
which guarantees that the SOCP (35) grows at most
polynomially with K and I. Next, we sample A uni-
formly from [0, 1]N2×K andbuniformly from [0, e�A1:]×
· · · × [0, e�AN2:

]. We then generate independent train-

ing samples {ξ̂i}i∈[I] from the uniform distribution
on [0, 1]K . Finally, we evaluate the worst-case expec-
tation (2) exactly by solving the SOCP (35), and also
approximately by computing the �0 and the quadratic
decision rule approximations.
Table 1 reports the optimality gaps of the two ap-

proximations relative to the exact worst-case expecta-
tion, averaged across all solvable instances. While the
optimality gaps of the �0 approximation remain con-
sistently below2.3%, the state-of-the-art quadratic deci-
sion rule approximation can incur alarmingly large
optimality gaps of more than 100%. On the other
hand, while MOSEK is able to solve all instances of
the quadratic decision rule approximation, it encoun-
ters numerical difficulties when solving some of the
larger instances of the �0 approximation. For K � 64,
for instance, the underlying semidefinite constraints
involveblocksof the size 139×139,whichpose adistinct
challenge for state-of-the-art interior point solvers. The
percentages of all instances of the �0 approximation
that could be solved to global optimality are reported in
Table 2. The average runtimes of both approximations
are presented in Table 3.

5.2. Out-of-Sample Performance
Next, we assess the out-of-sample performance of dif-
ferent data-drivenpolicies in the context of amulti-item
newsvendor problem, where an inventory planner has
to select a vector x ∈ �K

+
of order quantities for K dif-

ferent products at the beginning of a sales period. We
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Table 2. Percentage of Solvable Instances from Using the�0 Approximation

(I ,K)
(10, 64) (20, 64) (40, 64) (80, 64) (160, 32) (160, 64) (320, 32) (320, 64) (640, 32) (640, 64)
95 48 6 1 88 0 19 0 2 0

Note. We report only those (I ,K) pairs for which fewer than 100% of all instances were solved to optimality.

Table 3. Solution Times in Seconds of the�0 Approximation (Left) and the Quadratic Decision Rule Approximation (Right)

K

1 2 4 8 16 32 64

I
5 <0.1 <0.1 <0.1 <0.1 0.1 0.1 0.5 0.3 2.3 0.5 41.5 6.2 1,375.9 230.4
10 <0.1 <0.1 0.2 0.1 0.4 0.1 0.8 0.5 5.2 1.0 93.9 12.1 3,091.6 355.1
20 0.1 0.1 0.5 0.1 0.7 0.2 1.9 0.9 11.6 1.4 194.2 26.6 5,799.2 490.2
40 0.3 0.2 1.6 0.3 1.2 0.3 3.0 0.7 25.0 3.0 398.7 52.2 11,276.2 1,617.3
80 0.6 0.3 3.3 0.5 2.2 0.5 8.1 1.1 53.5 6.7 905.9 116.9 19,887.3 3,134.0
160 1.3 0.8 3.2 1.1 2.6 0.5 19.4 2.4 109.9 17.7 1,956.5 253.7 — 7,586.9
320 0.8 2.0 2.1 0.5 12.7 1.0 41.5 5.2 251.4 40.8 3,715.2 415.4 — 16,511.3
640 1.7 0.7 31.3 1.1 15.5 2.1 86.8 15.1 514.7 79.1 9,777.1 1,441.9 — 22,365.2

assume that the total order quantity e�xmaynot exceed
a given budget B. The demands of the products can be
described by a random vector ξ̃ ∈ �K

+
that follows an

unknownmultivariate distribution 
�. We also assume
that there are no ordering costs but that excess inven-
tory of the kth product incurs a per-unit holding cost
of bk , while unmet demand incurs a per-unit stockout
cost of sk . The total cost of an order x incurred in sce-
nario ξ thus amounts to

Z(x,ξ)� inf
y∈�K

{e�y: diag(b)(x−ξ)�y, diag(s)(ξ−x)�y},

where b � (b1 , . . . , bK)� and s � (s1 , . . . , sK)�. By con-
struction, this recourse problem has sufficiently expen-
sive recourse as well as complete recourse. We assume
that the inventory planner is both risk averse and ambi-
guity averse and thus solves the two-stage distribution-
ally robust linear program:

minimize sup

∈�̂


 -CVaRρ[Z(x, ξ̃)]
subject to x ∈ �K

+
,

e�x � B, (37)

which minimizes the worst-case conditional value at
risk (CVaR) of Z(x, ξ̃) at level ρ ∈ (0, 1], where the
worst case is taken over all distributions within some
ambiguity set �̂. For any fixed 
 ∈ �̂, the 
 -CVaR of
Z(x, ξ̃) at level ρ is defined through


 -CVaRρ[Z(x, ξ̃)]� inf
θ∈�

{
θ+

1

ρ
Ɛ
 [max{Z(x, ξ̃) − θ, 0}]

}
and can be viewed as the conditional expectation of
Z(x, ξ̃) above its (1− ρ)-percentile under 
 (Rockafellar

and Uryasev 2000). Note that the worst-case CVaR can
be viewed as an instance of the worst-case optimized
certainty equivalent (29) corresponding to the disutility
functionU(y)�max{y , 0}.
In the following, we review different approaches to

construct �̂ from I demand samples ξ̂1 , . . . , ξ̂I , and we
showthat in each caseproblem (37) canbe reformulated
as a conic program. The first possibility is to set �̂ to the
2-Wasserstein ball �2

ε(
̂ I) around the empirical distri-
bution on the demand samples as in Section 3.

Proposition 5. If �̂ ��2
ε(
̂ I), then (37) is equivalent to the

copositive program

minimize θ+
1

ρ

(
ε2λ+

1

I

∑
i∈[I]

si

)
subject to x∈�K

+
,λ,si∈�+ ,θ∈�,ψi ,φi∈�N2+J , ∀ i∈[I]

e�x�B⎡⎢⎢⎢⎢⎢⎣
λ� − 1

2
T(x)�

− 1
2
T(x) Wdiag(φi)W�

−λξ̂�i 1
2
(Wψi−h(x))�
−λξ̂i

1
2
(Wψi−h(x))

si+θ−e�(ψi+φi)+λ‖ξ̂i ‖22

⎤⎥⎥⎥⎥⎥⎦
��0 ∀ i∈[I],

(38)

where T(x) � [−diag(b) diag(s)]�, h(x) � [x� diag(b),
−x� diag(s)]�, and W� [� �]�.

Proof. The claim follows immediately fromCorollary 2
and the observation that (37) has sufficiently expensive
as well as complete recourse. �

As a second possibility, we can use the I demand
samples to estimate the sample mean μ̂� (1/I)∑i∈[I] ξ̂i
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and the sample covariance matrix Σ̂�(1/I)∑i∈[I](ξ̂i−μ̂)·
(ξ̂i−μ̂)� of ξ̃, which can, in turn, be used to construct a
Chebyshev ambiguity set of the form

�(μ̂, Σ̂, γ1 , γ2)

�

{

 ∈
2(�K

+
): (Ɛ
 [ξ̃] − μ̂)�Σ̂−1(Ɛ
 [ξ̃] − μ̂) � γ1
Ɛ
 [(ξ̃− μ̂)(ξ̃− μ̂)�] � (1+ γ2)Σ̂

}
,

(39)

where γ1, γ2 ∈�+ represent two confidence parameters.
This ambiguity set has been proposed in Delage and
Ye (2010).

Proposition 6. If �̂ � �(μ̂, Σ̂, γ1 , γ2), then (37) is equiva-
lent to the copositive program

minimize{
θ+(1/ρ)[s+tr((γ2Σ̂+μ̂μ̂�)M)+μ̂�m

+
√
γ1‖Σ̂1/2(m+2Mμ̂)‖2]

}
subject to

x∈�K
+
, θ,s∈�,m,ψ,φ∈�K ,M∈�K

+
,

e�x�B,⎡⎢⎢⎢⎢⎣
M − 1

2
T(x)� 1

2
m

− 1
2
T(x) Wdiag(φ)W� 1

2
(Wψ−h(x))

1
2
m� 1

2
(Wψ−h(x))� s+θ−e�(ψ+φ)

⎤⎥⎥⎥⎥⎦��0,

[
M 1

2
m

1
2
m� s

]
��0, (40)

where T(x) � [−diag(b) diag(s)]�, h(x) � [x� diag(b),
−x� diag(s)]�, and W� [� �]�.

Proof. As in the proof of Proposition 5, we may trans-
form (37) to a worst-case expected disutility minimiza-
tion problem by using Sion’s minimax theorem (Sion
1958). Theworst-case expectation in the resulting objec-
tive function can then be reexpressed as amaximization
problem over completely positive cones by leveraging
ideas from Natarajan et al. (2011, section 4.4). Finally,
problem (40) is obtained via strong conic duality, which
allows us to convert the completely positive maximiza-
tion problem into an equivalent copositive minimiza-
tion problem. �

Distributionally robustmulti-itemnewsvendorprob-
lems with Chebyshev ambiguity sets are known to be
NP-hard even if γ1 � γ2 � 0 and ξ̃ is supported on �K ,
but they admit tractable conservative approxima-
tions based on quadratic decision rules (Hanasusanto
et al. 2015).
A third possibility is to set �̂ � {
̂ I}. This single-

ton ambiguity set corresponds to a Wasserstein ball
around the empirical distribution with radius ε � 0.
Problem (37) then simply reduces to the corresponding
sample average approximation (SAA) problem, which
is equivalent to a tractable linear program.

To assess the performance of the Wasserstein,
Chebyshev, and SAApolicies obtained from the respec-
tive distributionally robust optimization models, we
conduct out-of-sample experiments for the K-item
newsvendor problem with K � 3 and training data sets
containing I � 10, 20, 40, 80, 160, 320, 640, and 1,028
independent samples. In all experiments, we replace
each copositive cone � appearing in (38) and (40) with
its first inner approximation �0. We fix the vectors of
holding and stockout costs to b � e and s � 10e, respec-
tively, andwe set the ordering budget to B � 30.We fur-
ther fix the risk level of the CVaR to ρ � 10%.
The results of all experiments are averaged over

100 random trials generated in the following manner.
The true demand distribution 
� of ξ̃ is assumed to be
lognormal; that is, ξ̃k �exp(χ̃k), k∈[K], where the χ̃k , k∈
[K], represent jointlynormallydistributed randomvari-
ables with first- and second-order moments given by
ν∈�K

+
andΣ∈�K

+
, respectively. In each trial,we sampleν

uniformly at random from [0,2]K while the matrix Σ
is generated randomly using the following procedure.
We set the vector of standard deviations to σ� (1/4)e,
sample a random correlation matrix C ∈�K

+
using the

MATLAB command “gallery(‘randcorr’,3),” and
set Σ�diag(σ)Cdiag(σ)+νν�. Next, we sample I inde-
pendent training samples {ξ̂i}i∈[I] from 
�. We then
compute the Wasserstein policy x�Wass by solving (38)
with�0 insteadof� andwhere theWasserstein radius ε
is chosen by fivefold cross-validation so as to min-
imize the out-of-sample risk (Efron and Tibshirani
1994, Hastie et al. 2001). Similarly, the Chebhyshev pol-
icy x�

Cheb
is obtained by solving (40)with�0 instead of�

and where the confidence parameters are again deter-
mined via fivefold cross-validation. Finally, we com-
pute the SAA policy x�SAA by solving (37) with �̂�{
̂ I}.
The out-of-sample risk 
�-CVaRρ[Z(x�, ξ̃)] of each of
the three data-driven strategies x�Wass, x�

Cheb
, and x�SAA is

then estimated at high accuracy using 20,000 test sam-
ples from 
�.
Figure 1 visualizes the out-of-sample risk of the

Wasserstein andChebyshev policies relative to the SAA
policy as a function of the training sample size I. Ob-
serve that the Wasserstein policy dominates the SAA
policywithhighconfidenceuniformlyacross all sample
sizes.Moreover, for trainingdata sets of size I � 20, both
theWasserstein andChebyshevpolicies outperform the
SAA policy with high confidence by more than 20%.
This suggests that the distributionally robust policies
are preferable whenever there is significant ambigu-
ity about the true distribution 
�. While the Wasser-
stein policy consistently outperforms the SAA policy,
the quality of the Chebyshev policy starts to deteriorate
for I � 30.
Figure 2 depicts the optimality gaps of the three poli-

cies with respect to the true optimal policy, which we
estimate by solving another SAA problem using 20,000
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Figure 1. (Color online) Improvement of the Wasserstein (Left) and Chebyshev (Right) Policy Relative to the SAA Policy in
Terms of Out-of-Sample CVaR
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Note. The solid blue lines represent the mean, and the error bars visualize the 20% and 80% quantiles of the relative improvement, respectively.

Figure 2. (Color online) Optimality Gaps of the Wasserstein (Left), Chebyshev (Middle), and SAA (Right) Policies
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Note. The solid blue lines represent the mean, and the error bars visualize the 20% and 80% quantiles of the optimality gaps, respectively.

samples from 
�. For I � 10, we find that the SAA pol-
icy is ∼70% suboptimal, while both the Chebyshev and
Wasserstein policies are only∼25% suboptimal on aver-
age. For I � 20, the SAA policy remains ∼40% subopti-
mal, while the Wassertein policy exhibits a marginally
better suboptimality of ∼20% on average. The Cheby-
shev policy, on the other hand, reaches a steady state
already for I � 10 with an average suboptimality of
about 25%. This suggests that the empirical estimates of
the first- and second-order moments are already accu-
rate enough for small training data sets. Unfortunately,
as the sample size grows, the Chebyshev policy can-
not improve, as the first two moments are insufficient
to describe the entire shape of the true distribution 
�.
The Wasserstein policy, on the other hand, strikes a
good balance between robustness and asymptotic con-
sistency. In particular, we find that it converges quickly
to the true optimal policy as the size of the training data
set grows.
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Endnote
1We also ran all experiments with ε � 1 and ε � 1/I but did not
observe any qualitative changes in the results.
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