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Abstract. In this paper, we show that the popular K-means clustering problem can equivalently
be reformulated as a conic program of polynomial size. The arising convex optimization problem
is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter
than the current SDP relaxation schemes in the literature. In contrast to the existing schemes, our
proposed SDP formulation gives rise to solutions that can be leveraged to identify the clusters. We
devise a new approximation algorithm for K-means clustering that utilizes the improved formulation
and empirically illustrate its superiority over the state-of-the-art solution schemes.
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1. Introduction. Given an input set of data points, cluster analysis endeavors
to discover a fixed number of disjoint clusters so that the data points in the same
cluster are closer to each other than to those in other clusters. Cluster analysis is
fundamental to a wide array of applications in, among others, science, engineering,
economics, psychology, and marketing [13, 14]. One of the most popular approaches
for cluster analysis is K-means clustering [13, 18, 20]. The goal of K-means clustering
is to partition the data points into K clusters so that the sum of squared distances
to the respective cluster centroids is minimized. Formally, K-means clustering seeks
a solution to the mathematical optimization problem

(1)

min
K∑
i=1

∑
n∈Pi

‖xn − ci‖2

s.t. Pi ⊆ {1, . . . , N}, ci ∈ RD ∀i ∈ {1, . . . ,K},

ci =
1

|Pi|
∑
n∈Pi

xn,

P1 ∪ · · · ∪ PK = {1, . . . , N}, Pi ∩ Pj = ∅ ∀i, j ∈ {1, . . . ,K} : i 6= j.

Here, x1, . . . ,xN are the input data points, while P1, . . . ,PK ⊆ {1, . . . , N} are the
output clusters. The vectors c1, . . . , cK ∈ RD in (1) determine the cluster centroids,
while the constraints on the last row of (1) ensure that the subsets P1, . . . ,PK con-
stitute a partition of the set {1, . . . , N}.

Due to its combinatorial nature, the K-means clustering problem (1) is generically
NP-hard [2]. A popular solution scheme for this intractable problem is the heuristic
algorithm developed by Lloyd [18]. The algorithm initializes by randomly selecting K
cluster centroids. It then proceeds by alternating between the assignment step and
the update step. In the assignment step the algorithm designates each data point to
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the closest centroid, while in the update step the algorithm determines new cluster
centroids according to current assignment.

Another popular solution approach arises in the form of convex relaxation schemes
[23, 4, 25]. In this approach, tractable semidefinite programming (SDP) lower bounds
for (1) are derived. Solutions of these optimization problems are then transformed into
cluster assignments via well-constructed rounding procedures. Such convex relaxation
schemes have a number of theoretically appealing properties. If the data points are
supported on K disjoint balls then exact recovery is possible with high probability
whenever the distance between any two balls is sufficiently large [4, 12]. A stronger
model-free result is achievable if the cardinalities of the clusters are prescribed for the
problem [25].

A closely related problem is the nonnegative matrix factorization with orthogo-
nality constraints (ONMF). Given an input data matrix X, the ONMF problem seeks
nonnegative matrices F and U such that the product FU> is close to X in view of
the Frobenius norm and the orthogonality constraint U>U = I is satisfied. Although
ONMF is not precisely equivalent to K-means, solutions to this problem have the
clustering property [9, 17, 10, 15]. In [24], it is shown that the ONMF problem is in
fact equivalent to a weighted variant of the K-means clustering problem.

In this paper, we attempt to obtain equivalent convex reformulations for the
ONMF and K-means clustering problems. To derive these reformulations, we adapt
the results by Burer and Dong [7] who show that any (nonconvex) quadratically
constrained quadratic program (QCQP) can be reformulated as a linear program over
the convex cone of completely positive matrices. The resulting optimization problem
is called a generalized completely positive program. Such a transformation does not
immediately mitigate the intractability of the original problem, since solving a generic
completely positive program is NP-hard. However, the complexity of the problem
is now entirely absorbed in the cone of completely positive matrices, which admits
tractable semidefinite representable outer approximations [22, 8, 16]. Replacing the
cone with these outer approximations gives rise to SDP relaxations of the original
problem that in principle can be solved efficiently.

As byproducts of our derivations, we identify a new condition that makes the
ONMF and the K-means clustering problems equivalent and we obtain new SDP
relaxations for the K-means clustering problem that are tighter than the well-known
relaxation proposed by Peng and Wei [23]. The contributions of this paper can be
summarized as follows.

1. We disclose a new connection between ONMF and K-means clustering. We
show that K-means clustering is equivalent to ONMF if an additional re-
quirement on the binarity of solution to the latter problem is imposed. This
amends the previous incorrect result by Ding, He, and Simon [9, section 2] and
Li and Ding [17, Theorem 1] who claimed that both problems are equivalent.1

2. We derive exact conic programming reformulations for the ONMF and K-
means clustering problems that are principally amenable to numerical solu-
tions. To the best of our knowledge, we are the first to obtain equivalent
convex reformulations for these problems.

3. In view of the equivalent convex reformulation, we derive tighter SDP relax-
ations for the K-means clustering problem whose solutions can be used to
construct high quality estimates of the cluster assignment.

1To the best of our understanding, they have shown only one of the implications that establish
an equivalence.
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4. We devise a new approximation algorithm for the K-means clustering prob-
lem that leverages the improved relaxation and numerically highlights its
superiority over the state-of-the-art SDP approximation scheme by Mixon,
Villar, and Ward [21] and the Lloyd algorithm.

The remainder of the paper is structured as follows. In section 2, we present a
theorem for reformulating the QCQPs studied in the paper as generalized completely
positive programs. In section 3, we derive a conic programming reformulation for
the ONMF problem. We extend this result to the setting of K-means clustering in
section 4. In section 5, we develop SDP relaxations and design a new approximation
algorithm for K-means clustering. Finally, we empirically assess the performance of
our proposed algorithm in section 6.

Notation. For any K ∈ N, we define [K] as the index set {1, . . . ,K}. We denote
by I the identity matrix and by e the vector of all ones. We also define ei as the
ith canonical basis vector. Their dimensions will be clear from the context. The
trace of a square matrix M is denoted by tr(M). We define diag(v) as the diagonal
matrix whose diagonal components comprise the entries of v. For any nonnegative
vector v ∈ RK+ , we define the cardinality of all positive components of v by #v =
|{i ∈ [K] : vi > 0}|. For any matrix M ∈ RM×N , we denote by mi ∈ RM the
vector that corresponds to the ith column of M . The set of all symmetric matrices
in RK×K is denoted by SK , while the cone of positive semidefinite matrices in RK×K
is denoted by SK+ . The cone of completely positive matrices over a set K is denoted
by C(K) = clconv{xx> : x ∈ K}. For any Q,R ∈ SK and any closed convex
cone C, the relations Q � R and Q �C R denote that Q − R is an element of
SK+ and C, respectively. The (K + 1)-dimensional second-order cone is defined as
SOCK+1 = {(x, t) ∈ RK+1 : ‖x‖ ≤ t}, where ‖x‖ denotes the 2-norm of the vector x.
We denote by SOCK+1

+ = SOCK+1 ∩RK+1
+ the intersection of the K + 1-dimensional

second-order cone and the nonnegative orthant.

2. Completely positive programming reformulations of QCQPs. To de-
rive the equivalent completely positive programming reformulations in the subsequent
sections, we first generalize the results in [7, Theorem 1] and [6, Theorem 3]. Consider
the (nonconvex) quadratically constrained quadratic program (QCQP) given by

(2)

min p>C0p+ 2c>0 p
s.t. p ∈ K,

Ap = b,
p>Cjp+ 2c>j p = φj ∀j ∈ [J ].

Here, K ⊆ RD is a closed convex cone, while A ∈ RI×D, b ∈ RI , C0,Cj ∈ SD,
c0, cj ∈ RD, φj ∈ R, j ∈ [J ], are the respective input problem parameters. We define
the feasible set of problem (2) as

F =
{
p ∈ K : Ap = b, p>Cjp+ 2c>j p = φj ∀j ∈ [J ]

}
and the recession cone of the linear constraint system as F∞ := {d ∈ K : Ad = 0}.
We further define the following subsets of C(K × R+):

(3) Q =

{[
p
1

] [
p
1

]>
: p ∈ F

}
and Q∞ =

{[
d
0

] [
d
0

]>
: d ∈ F∞

}
.
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A standard result in convex optimization enables us to reformulate the QCQP (2) as
the linear convex program

(4)

min tr(C0Q) + 2c>0 p

s.t.

[
Q p
p> 1

]
∈ clconv (Q) .

Recently, Burer [6] showed that, in the absence of quadratic constraints in F , the
set clconv(Q) is equal to the intersection of a polynomial size linear constraint sys-
tem and a generalized completely positive cone. In [7], Burer and Dong showed that
such a reformulation is achievable albeit more cumbersome in the presence of generic
quadratic constraints in F . Under some additional assumptions about the structure
of the quadratic constraints, one can show that the set clconv(Q) is amenable to
a much simpler completely positive reformulation (see [7, Theorem 1] and [6, The-
orem 3]). Unfortunately, these assumptions are too restrictive to reformulate the
quadratic programming instances we study in this paper. To that end, the following
theorem provides the required extension that will enable us to derive the equivalent
completely positive programs.

Theorem 1. Suppose there exists an increasing sequence of index sets T0 = ∅ ⊆
T1 ⊆ T2 ⊆ · · · ⊆ TM = [J ] with the corresponding structured feasible sets

(5) Fm =
{
p ∈ K : Ap = b, p>Cjp+ 2c>j p = φj ∀j ∈ Tm

}
∀m ∈ [M ] ∪ {0}

such that for every m ∈ [M ] we have

(6) φj = min
p∈Fm−1

p>Cjp+2c>j p or φj = max
p∈Fm−1

p>Cjp+ 2c>j p ∀j ∈ Tm\Tm−1,

and there exists a vector p ∈ F such that

(7) d>Cjd+ 2d>(Cjp+ cj) = 0 ∀d ∈ F∞ ∀j ∈ [J ].

Then, clconv(Q) coincides with

(8) R =

{[
Q p
p> 1

]
∈ C(K × R+) :

Ap = b, diag(AQA>) = b ◦ b,
tr(CjQ) + 2c>j p = φj ∀j ∈ [J ]

}
.

Theorem 1 constitutes a generalization of the combined results of [7, Theorem 1]
and [6, Theorem 3], which we state in the following proposition.

Proposition 1. Let L = {p ∈ K : Ap = b}. Suppose φj = minp∈L p
>Cjp +

2c>j p, and both minp∈L p
>Cjp+ 2c>j p and maxp∈L p

>Cjp+ 2c>j p are finite for all

j ∈ [J ]. If there exists p ∈ F such that d>(Cjp+cj) = 0 for all d ∈ F∞ and j ∈ [J ],
then clconv(Q) coincides with R.

To see this, assume that all conditions in Proposition 1 are satisfied. Then, setting
M = 1 and T1 = [J ], we find that condition (6) in Theorem 1 is satisfied. Next, for
every j ∈ [J ], the finiteness of both minp∈L p

>Cjp+2c>j p and maxp∈L p
>Cjp+2c>j p

implies that d>Cjd = 0 for all d ∈ F∞. Combining this with the last condition in
Proposition 1, we find that there exists a vector p ∈ F such that d>Cjd+2d>(Cjp+
cj) = 0 for all d ∈ F∞ and j ∈ [J ]. Thus, all conditions in Theorem 1 are indeed
satisfied.
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In the remainder of the section, we define the sets

Qm =

{[
p
1

] [
p
1

]>
: p ∈ Fm

}
and

Rm =


[
Q p
p> 1

]
∈ C(K × R+) :

Ap = b,
diag(AQA>) = b ◦ b,
tr(CjQ) + 2c>j p = φj ∀j ∈ Tm


for m ∈ [M ] ∪ {0}. The proof of Theorem 1 relies on the following lemma, which is
established in the first part of the proof of [6, Theorem 3].

Lemma 1. Suppose there exists a vector p ∈ F such that

d>Cjd+ 2d>(Cjp+ cj) = 0

for all d ∈ F∞ and j ∈ [J ]. Then we have conv(Qm) + cone(Q∞) ⊆ clconv(Qm) for
all m ∈ [M ].

Using this lemma, we are now ready to prove Theorem 1.

Proof of Theorem 1. The proof follows if clconv(Qm) = Rm for all m ∈ [M ].
By construction, we have clconv(Qm) ⊆ Rm, m ∈ [M ]. It thus remains to prove the
converse inclusions. By Lemma 1, it suffices to show thatRm ⊆ conv(Qm)+cone(Q∞)
for all m ∈ [M ]. We proceed via induction. The base case for m = 0 follows from [6,
Theorem 1]. Assume now that Rm−1 ⊆ conv(Qm−1) + cone(Q∞) holds for a positive
index m− 1 < M . We will show that this implies Rm ⊆ conv(Qm) + cone(Q∞). To
this end, consider the following completely positive decomposition of an element of
Rm:

(9)

[
Q p
p> 1

]
=
∑
s∈S

[
ζs
ηs

] [
ζs
ηs

]>
=
∑
s∈S+

η2s

[
ζs/ηs

1

] [
ζs/ηs

1

]>
+
∑
s∈S0

[
ζs
0

] [
ζs
0

]>
.

Here, S+ = {s ∈ S : ηs > 0} and S0 = {s ∈ S : ηs = 0}, where S is a finite index set.
By our induction hypothesis, we have ζs/ηs ∈ Fm−1, s ∈ S+, and ζs ∈ F∞, s ∈ S0.
The proof thus follows if the constraints

tr(CjQ) + 2c>j p = φj ∀j ∈ Tm \ Tm−1

in Rm imply

(ζs/ηs)
>Cj(ζs/ηs) + 2c>j (ζs/ηs) = φj ∀j ∈ Tm \ Tm−1.

Indeed, for every j ∈ Tm \ Tm−1, the decomposition (9) yields

φj = tr(CjQ) + 2c>j p =
∑
s∈S+

η2s
[
(ζs/ηs)

>Cj(ζs/ηs) + 2c>j (ζs/ηs)
]

+
∑
s∈S0

ζ>s Cjζs

=
∑
s∈S+

η2s
[
(ζs/ηs)

>Cj(ζs/ηs) + 2c>j (ζs/ηs)
]
.

Here, the last equality follows from our assumption that there exists a vector p ∈ F
such that d>Cjd + 2d>(Cjp + cj) = 0 for all d ∈ F∞. Thus, d>Cjd = 0 for all
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d ∈ F∞. Next, since ζs/ηs ∈ Fm−1, the jth identity in (6) implies that

(ζs/ηs)
>Cj(ζs/ηs) + 2c>j (ζs/ηs) ≥ φj if φj = min

p∈Fm−1

p>Cjp+ 2c>j p

or
(ζs/ηs)

>Cj(ζs/ηs) + 2c>j (ζs/ηs) ≤ φj if φj = max
p∈Fm−1

p>Cjp+ 2c>j p.

The proof thus follows since η2s > 0 and
∑
s∈S+ η

2
s = 1.

3. Orthogonal nonnegative matrix factorization. In this section, we first
consider the ONMF problem given by

(10)
min ‖X −HU>‖2F
s.t. H ∈ RD×K+ , U ∈ RN×K+ ,

U>U = I.

Here, X ∈ RD×N is a matrix whose columns comprise N data points {xn}n∈[N ] in
RD. We remark that problem (10) is generically intractable since we are minimizing a
nonconvex quadratic objective function over the Stiefel manifold [1, 3]. By expanding
the Frobenius norm in the objective function and noting that U>U = I, we find that
problem (10) is equivalent to

(11)
min tr

(
X>X − 2XUH> +H>H

)
s.t. H ∈ RD×K+ , U ∈ RN×K+ ,

U>U = I.

We now derive a convex reformulation for problem (11). We remark that this problem
is still intractable due to nonconvexity of the objective function and the constraint
system. Thus, any resulting convex formulation will in general remain intractable. In
the following, to reduce the clutter in our notation, we define the convex set

W(B,K) =


(
(pi)i∈[K], (Qij)i,j∈[K]

)
:


Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C (BK × R+

)
 ,

where pi ∈ B and Qij ∈ R(N+1+D)×(N+1+D)
+ , i, j ∈ [K]. Here, B is a given convex

cone, K is a positive integer, and BK is the direct product of K copies of B.

Theorem 2. Problem (11) is equivalent to the following generalized completely
positive program:

(12)

min tr(X>X) +
∑
i∈[K]

tr(−2XWii +Gii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ × RD+ ,K
)
,

ui ∈ RN+ , Vij ∈ RN×N+ , hi ∈ RD+ ,

Gij ∈ RD×D+ , Wij ∈ RN×D+ ∀i, j ∈ [K],

pi =

ui1
hi

 , Qij =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij

 ∀i, j ∈ [K],

tr(Vii) = 1 ∀i ∈ [K],

tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j.
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Proof. By utilizing the notation for column vectors {ui}i∈[K] and {hi}i∈[K], we
can reformulate problem (11) equivalently as the problem

(13)

min tr(X>X)− 2
∑
i∈[K]

tr(Xuih
>
i ) +

∑
i∈[K]

tr(hih
>
i )

s.t. hi ∈ RD+ , ui ∈ RN+ ∀i ∈ [K],
u>i ui = 1 ∀i ∈ [K],
u>i uj = 0 ∀i, j ∈ [K] : i 6= j.

We now employ Theorem 1 to show the equivalence of problems (13) and (12). We
first introduce an auxiliary decision variable p = (p1, . . . ,pK) that satisfies

pi =

uiti
hi

 ∈ SOCN+1
+ × RD+ ∀i ∈ [K].

Let M = 1 in Theorem 1 and set K = (SOCN+1
+ × RD+)K . We then define the

structured feasible sets

F0 = {p ∈ K : ti = 1 ∀i ∈ [K]}

and

F1 = F =

{
p ∈ F0 :

u>i ui = 1 ∀i ∈ [K],
u>i uj = 0 ∀i, j ∈ [K] : i 6= j

}
.

Note that for every i ∈ [K], the constraints ‖ui‖2 ≤ ti and ti = 1 in F0 imply
that the variables ui and ti are bounded. Thus, the recession cone of F0 coincides
with the set F∞ = {p ∈ K : ui = 0, ti = 0 ∀i ∈ [K]}. Next, we set the vector
p = (p1, . . . ,pK) ∈ F in Theorem 1 to satisfy

pi =

ui1
0

 ∈ SOCN+1
+ × RD+ ∀i ∈ [K],

where the subvectors {ui}i∈[K] are chosen to be feasible in (13). In view of the
description of recession cone F∞ and the structure of quadratic constraints in F , one
can readily verify that such a vector p satisfies the condition (7) in Theorem 1. It
remains to show that condition (6) is also satisfied. Indeed, we have

max
p∈F0

{
u>i ui

}
= 1 ∀i ∈ [K],

since the constraints ‖ui‖2 ≤ 1, i ∈ [K], are implied by F0, while equalities are
attained whenever the 2-norm of each vector ui is 1. Similarly, we find that

min
p∈F0

{
u>i uj

}
= 0 ∀i, j ∈ [K] : i 6= j,

since the constraints ui ≥ 0, i ∈ [K], are implied by F0, while equalities are attained
whenever the solutions ui and uj satisfy the complementarity property:

uin > 0 =⇒ ujn = 0 and ujn > 0 =⇒ uin = 0 ∀n ∈ [N ].

Thus, all conditions in Theorem 1 are satisfied.
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3112 M. N. PRASAD AND G. A. HANASUSANTO

Next, we introduce new matrix variables that represent a linearization of the
quadratic variables as follows:

Vij = uiu
>
j ,Wij = uih

>
j , and Gij = hih

>
j ∀i, j ∈ [K].(14)

We also define an auxiliary decision variable Q = (Qij)i,j∈[K] satisfying

Qij = pip
>
j =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij

 ∀i, j ∈ [K].

Using these new terms, we construct the set R in Theorem 1 as follows:

R =



Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C(K × R+) :

pi =

ui1
hi

 , Qij =

 Vij ui Wij

u>j 1 h>j
W>

ji hi Gij

 ∀i, j ∈ [K],

tr(Vii) = 1 ∀i ∈ [K],

tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j


.

By Theorem 1, this set coincides with clconv(Q), where the set Q is defined as in (3).
Thus, by linearizing the objective function using the matrix variables in (14), we find
that the generalized completely positive program (12) is indeed equivalent to (11).
This completes the proof.

Let us now consider a special case of problem (10); if all components of X are
nonnegative, then we can reduce the problem into a simpler one involving only the
decision matrix U .

Lemma 2. If X is a nonnegative matrix, then problem (10) is equivalent to the
nonconvex program

(15)

min tr(X>X −X>XUU>)

s.t. U ∈ RN×K+ ,

U>U = I.

Proof. Solving the minimization over H ∈ RD×K+ analytically in (11), we find
that the solution H = XU is feasible and optimal. Substituting this solution into the
objective function of (11), we arrive at the equivalent problem (15). This completes
the proof.

By employing the same reformulation techniques as in the proof of Theorem 2,
we can show that problem (15) is amenable to an exact convex reformulation.
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Proposition 2. Problem (15) is equivalent to the following generalized com-
pletely positive program:

(16)

min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ ,K
)
,

ui ∈ RN+ , pi =

[
ui
1

]
, Qij =

[
Vij ui

u>j 1

]
∀i, j ∈ [K],

tr(Vii) = 1 ∀i ∈ [K],

tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j.

4. K-means clustering. Building upon the results from the previous sections,
we now derive an exact generalized completely positive programming reformulation
for the K-means clustering problem (1). To this end, we note that the problem can
equivalently be solved via the following mixed-integer nonlinear program [11]:

(17)

Z? = min
∑
i∈[K]

∑
n:πin=1

‖xn − ci‖2

s.t. πi ∈ {0, 1}N , ci ∈ RD ∀i ∈ [K],

ci =
1

e>πi

∑
n:πin=1

xn ∀i ∈ [K],

e>πi ≥ 1 ∀i ∈ [K],∑
i∈[K]

πi = e.

Here, ci is the centroid of the ith cluster, while πi is the assignment vector for the
ith cluster, i.e., πin = 1 if and only if the data point xn is assigned to the cluster
i. The last constraint in (17) ensures that each data point is assigned to a cluster,
while the constraint system in the penultimate row ensures that there are exactly K
clusters. We now show that we can solve the K-means clustering problem by solving
a modified problem (15) with an additional constraint

∑
i∈[K] uiu

>
i e = e. To further

simplify our notation we will employ the sets

U(N,K) =
{
U ∈ RN×K+ : u>i ui = 1, u>i uj = 0 ∀i, j ∈ [K] : i 6= j

}
and

V(N,K) =
{

(Vij)i,j∈[K] ∈ RN
2×K2

+ : tr(Vii) = 1, tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j
}

in all reformulations in the remainder of this section.

Theorem 3. The following nonconvex program solves the K-means clustering
problem:

(Z)

Z? = min tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i )

s.t. U ∈ U(N,K),∑
i∈[K]

uiu
>
i e = e.
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3114 M. N. PRASAD AND G. A. HANASUSANTO

Proof. We first observe that the centroids in (17) can be expressed as

ci =
1

e>πi

∑
n∈[N ]

πinxn ∀i ∈ [K].

Substituting these terms into the objective function and expanding the squared norm
yield∑

i∈[K]

∑
n:πin=1

‖xn − ci‖2 =
∑
i∈[K]

∑
n∈[N ]

πin‖xn − ci‖2

=

 ∑
n∈[N ]

‖xn‖2
−

∑
i∈[K]

1

e>πi

∑
p,q∈[N ]

πipπiqx
>
p xq



= tr(X>X)−
∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i ).

Thus, (17) can be rewritten as

(18)

min tr(X>X)−
∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i )

s.t. πi ∈ {0, 1}N ∀i ∈ [K],

e>πi ≥ 1 ∀i ∈ [K],∑
i∈[K]

πi = e.

For any feasible solution (πi)i∈[K] to (18) we define vectors (ui)i∈[K] that satisfy

ui =
πi√
e>πi

∀i ∈ [K].

We argue that the solution (ui)i∈[K] to the problem (Z) is feasible and yields the
same objective value. Indeed, we have

u>i ui =
π>i πi
e>πi

= 1 ∀i ∈ [K]

because πi ∈ {0, 1}N and e>πi ≥ 1 for all i ∈ [K]. We also have

∑
i∈[K]

uiu
>
i e =

∑
i∈[K]

πi√
e>πi

e>πi√
e>πi

= e,

and

u>i uj = 0 ∀i, j ∈ [K] : i 6= j

since the constraint
∑
i∈[K] πi = e in (18) ensures that each data point is assigned to

at most one cluster. Verifying the objective value of this solution, we obtain

tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i ) = tr(X>X)−

∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i ).

Thus, we conclude that problem (Z) constitutes a relaxation of (18).
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To show that (Z) is indeed an exact reformulation, consider any feasible solution
(ui)i∈[K] to this problem. For any fixed i, j ∈ [K], the complementary constraint

u>i uj = 0 in (Z) means that

uin > 0 =⇒ ujn = 0 and ujn > 0 =⇒ uin = 0 for all n ∈ [N ].

Thus, in view of the last constraint in (Z), we must have ui ∈ {0, 1/u>i e}N for
every i ∈ [K]. Using this observation, we define the binary vectors (πi)i∈[K] that
satisfy

πi = uiu
>
i e ∈ {0, 1}N ∀i ∈ [K].

For every i ∈ [K], we find that e>πi ≥ 1 since u>i ui = 1. Furthermore, we have∑
i∈[K]

πi =
∑
i∈[K]

uiu
>
i e = e.

Substituting the constructed solution (πi)i∈[K] into the objective function of (18), we
obtain

tr(X>X)−
∑
i∈[K]

1

e>πi
tr(X>Xπiπ

>
i )

= tr(X>X)−
∑
i∈[K]

(u>i e)2

e>uiu>i e
tr(X>Xuiu

>
i )

= tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i ).

Thus, any feasible solution to (Z) can be used to construct a feasible solution to (18)
that yields the same objective value. Our previous argument that (18) is a relaxation
of (Z) then implies that both problems are indeed equivalent. This completes the
proof.

Remark 1. The constraint
∑
i∈[K] uiu

>
i e = e in (Z) ensures that there are no

fractional values in the resulting cluster assignment vectors (πi)i∈[K]. While the
formulation (15) is only applicable for instances of ONMF problem with nonnegative
input data X, the reformulation (Z) remains valid for any instances of the K-means
clustering problem, even if the input data matrix X contains negative components.

Remark 2. In [9, section 2] and [17, Theorem 1], it was claimed that the ONMF
problem (15) is equivalent to the K-means clustering problem (1). Theorem 3 amends
this result by showing that both problems become equivalent if and only if the con-
straint

∑
i∈[K] uiu

>
i e = e is added to (15).

Remark 3. We can reformulate the objective function of (Z) as

1

2
tr

(
D
∑
i∈[K]

uiu
>
i

)
,

where D is the matrix with components Dpq = ‖xp−xq‖2, p, q ∈ [N ]. To obtain this
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3116 M. N. PRASAD AND G. A. HANASUSANTO

reformulation, define Y =
∑
i∈[K] uiu

>
i . Then we have

1

2
tr(DY ) =

1

2

∑
p,q∈[N ]

‖xp − xq‖2Ypq

=
1

2

∑
p,q∈[N ]

(
x>p xp + x>q xq − 2x>p xq

)
Ypq

=
1

2

2
∑
p∈[N ]

∑
q∈[N ]

x>p xpYpq

− ∑
p,q∈[N ]

x>p xqYpq

=

∑
p∈[N ]

x>p xp

−
 ∑
p,q∈[N ]

x>p xqYpq

 = tr(X>X)− tr(X>XY ).

Here, the fourth equality holds because of the last constraint in (Z) which ensures
that

∑
q∈[N ] Ypq = 1 for all p ∈ [N ].

We are now well positioned to derive an equivalent generalized completely positive
program for the K-means clustering problem.

Theorem 4. The following generalized completely positive program solves the K-
means clustering problem:

(Z)

Z? = min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t.
(
(pi)i∈[K], (Qij)i,j∈[K]

)
∈ W

(
SOCN+1

+ × RN+1
+ ,K

)
,

(Vij)i,j∈[K] ∈ V(N,K), ui, si,hij , rij ∈ RN+ ,
w ∈ RK+ , zij ∈ R+, Yij ,Gij ∈ RN×N+ ∀i, j ∈ [K],

pi =


ui
1
si
wi

 , Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij

h>ji wi r>ji zij

 ∀i, j ∈ [K],

∑
i∈[K]

Viie = e,

diag(Vii) = hii, ui + si = wie ∀i ∈ [K],

diag(Vii + Yii + 2Gii) + ziie− 2hii − 2rii = 0 ∀i ∈ [K].

Proof. We consider the following equivalent reformulation of (Z) with two addi-
tional strengthening constraint systems:

(19)

min tr(X>X)−
∑
i∈[K]

tr(X>Xuiu
>
i )

s.t. U ∈ U(N,K), S ∈ RN×K+ , w ∈ RK+ ,∑
i∈[K]

uiu
>
i e = e,

ui ◦ ui = wiui ∀i ∈ [K],
ui + si = wie ∀i ∈ [K].
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Since si ≥ 0, the last constraint system in (19) implies that ui ≤ wie, while the
penultimate constraint system ensures that ui is a binary vector, i.e., ui ∈ {0, wi}N
for some wi ∈ R+. Since any feasible solution to (Z) satisfies these conditions, we may
thus conclude that problems (Z) and (19) are indeed equivalent. As we will see below,
the exactness of the generalized completely positive programming reformulation is
reliant on these two redundant constraint systems.

We now repeat the same derivation steps as in the proof of Theorem 2. First, we
introduce an auxiliary decision variable p = (pi)i∈[K] that satisfies

pi =


ui
ti
si
wi

 ∈ SOCN+1
+ × RN+1

+ ∀i ∈ [K].

We then set K = (SOCN+1
+ × RN+1

+ )K and define the structured feasible sets

F0 =

{
p ∈ K :

ti = 1 ∀i ∈ [K],
ui + si = wie ∀i ∈ [K]

}
,(20)

F1 =

p ∈ F0 :
u>i ui = 1 ∀i ∈ [K],
u>i uj = 0 ∀i, j ∈ [K] : i 6= j,
ui ◦ ui = wiui ∀i ∈ [K]

 ,(21)

and

F2 = F =

p ∈ F1 :
∑
i∈[K]

uiu
>
i e = e

 .

Here, we find that the recession cone of F0 is given by

F∞ =

{
p ∈ K :

ui = 0, ti = 0 ∀i ∈ [K],
ui + si = wie ∀i ∈ [K]

}
.

Next, we set the vector p = (p1, . . . ,pK) ∈ F in Theorem 1 to satisfy

pi =


ui
1
si
wi

 ∈ SOCN+1
+ × RN+1

+ ∀i ∈ [K],

where the subvectors {ui}i∈[K], {si}i∈[K], and {wi}i∈[K] are chosen so that they are
feasible in (19). In view of the description of the recession cone F∞ and the structure
of the quadratic constraints in F , one can verify that such a vector p satisfies the
condition (7) in Theorem 1.

It remains to show that condition (6) is also satisfied. To this end, it is already
verified in the proof of Theorem 2 that

max
p∈F0

{
u>i ui

}
= 1 ∀i ∈ [K]

and

min
p∈F0

{
u>i uj

}
= 0 ∀i, j ∈ [K] : i 6= j.
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We now show that

(22) min
p∈F0

{
wiuin − u2in

}
= 0 ∀i ∈ [K] ∀n ∈ [N ].

We first demonstrate that the constraint ui + si = wie in (20) implies ui ◦ ui ≤
wiui. Indeed, since si ≥ 0, we have wie − ui ≥ 0. Applying a componentwise
multiplication with the components of ui ≥ 0 on the left-hand side, we arrive at
the desired inequality. Thus, we find that each equation in (22) indeed holds, where
equality is attained whenever uin = 0. Finally, we verify that

(23) min
p∈F1

∑
i∈[K]

uinu
>
i e

 = 1 ∀n ∈ [N ].

Note that the constraint ui ◦ ui = wiui in (21) implies that ui ∈ {0, wi}N , while the
constraint u>i ui = 1 further implies that #uiw

2
i = 1. Moreover, the complementary

constraint u>i uj = 0 ensures that

uin > 0⇒ ujn = 0 and ujn > 0⇒ uin = 0 ∀n ∈ [N ] ∀i, j ∈ [K] : i 6= j.

Thus, for any feasible vector p ∈ F1, we have

∑
i∈[K]

uinu
>
i e =

∑
i∈[K]

uinwi#ui

=
∑
i∈[K]

uin
wi

=
wk
wk

= 1

for some k ∈ [K] such that ukn = wk. Thus, the equalities (23) indeed hold. In
summary, we have shown that all conditions in Theorem 1 are satisfied.

We now introduce new variables, in addition to the ones described in (14), that
linearize the quadratic terms as follows:

zij = wiwj , hij = uiwj , rij = siwj , Yij = sis
>
j , Gij = uis

>
j ∀i, j ∈ [K].(24)

We further define an auxiliary decision variable Qij , i, j ∈ [K], that satisfies

Qij = pip
>
j =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij

h>ji wi r>ji zij

 .
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Using these new terms, we construct the set R in Theorem 1 as follows:

R =




Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 ∈ C(K × R+) :

pi =


ui
1
si
wi

 , Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij

h>ji wi r>ji zij

 ∀i, j ∈ [K],

tr(Vii) = 1 ∀i ∈ [K],

tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j,∑
i∈[K] Viie = e,

diag(Vii) = hii, ui + si = wie ∀i ∈ [K],

diag(Vii + Yii + 2Gii) + ziie− 2hii − 2rii = 0 ∀i ∈ [K]



.

Here, the last constraint system arises from squaring the left-hand sides of the equal-
ities

uin + sin − wi = 0 ∀i ∈ [K] ∀n ∈ [N ],

which correspond to the last constraint system in (19). Finally by linearizing the
objective function using variables in (14) and (24), we arrive at the generalized com-
pletely positive program (Z). This completes the proof.

5. Approximation algorithm for K-means clustering. In this section, we
develop a new approximation algorithm for K-means clustering. To this end, we
observe that in the reformulation (Z) the difficulty of the original problem is now
entirely absorbed in the completely positive cone C(·), which has been well stud-
ied in the literature [5, 6, 8]. Any such completely positive program admits the
hierarchy of increasingly accurate SDP relaxations that are obtained by replacing
the cone C(·) with progressively tighter semidefinite-representable outer approxima-
tions [8, 16, 22]. For the generalized completely positive program (Z), we employ the
simplest outer approximation that is obtained by replacing the completely positive
cone C((SOCN+1

+ ×RN+1
+ )K ×R+) in (Z) with its coarsest outer approximation [26],

given by the cone{
M ∈ S2K(N+1)+1 : M � 0, M ≥ 0, tr(JiM) ≥ 0 i ∈ [K]

}
,

where

J1 = diag
(
[−e>, 1,0>, 0, · · · ,0>, 0, 0]>

)
,

J2 = diag
(
[0>, 0,−e>, 1, · · · ,0>, 0, 0]>

)
,

...

JK = diag
(
[0>, 0,−0>, 0, · · · , e>, 1, 0]>

)
.
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If M has the structure of the large matrix in (Z), then the constraint tr(JiM) ≥ 0
reduces to tr(Vii) ≤ 1, which is redundant and can safely be omitted in view of the
stronger equality constraint tr(Vii) = 1 in (Z). In this case, the outer approximation
can be simplified to the cone of doubly nonnegative matrices given by{

M ∈ S2K(N+1)+1 : M � 0, M ≥ 0
}
.

To further improve computational tractability, we relax the large semidefinite con-
straint into a simpler system of K semidefinite constraints. We summarize our for-
mulation in the following proposition.

Proposition 3. The optimal value of the following SDP constitutes a lower
bound on Z?:

(R0)

R?0 = min tr(X>X)−
∑
i∈[K]

tr(X>XVi)

s.t. pi ∈ SOCN+1
+ × RN+1

+ , Qi ∈ R2(N+1)×2(N+1)
+ ,

ui, si,hi, ri ∈ RN+ , wi ∈ R+, zi ∈ R+,

Vi,Yi,Gi ∈ RN×N+ ∀i ∈ [K],

pi =


ui

1

si
wi

 , Qi =


Vi ui Gi hi

u>i 1 s>i wi

G>i si Yi ri

h>i wi r>i zi

 ∀i ∈ [K],

∑
i∈[K]

Vie = e,

tr(Vi) = 1, diag(Vi) = hi, ui + si = wie ∀i ∈ [K],

diag(Vi + Yi + 2Gi) + zie− 2hi − 2ri = 0 ∀i ∈ [K],

e>1 V1e = 1,[
Qi pi
p>i 1

]
� 0 ∀i ∈ [K].

Proof. Without loss of generality, we can assign the first data point x1 to the
first cluster. The argument in the proof of Theorem 3 indicates that the assignment
vector for the first cluster is given by

π1 = u1u
>
1 e = V11e.

Thus, the data point x1 is assigned to the first cluster if and only if the first element
of π1 is equal to 1, i.e., 1 = e>1 π1 = e>1 V11e. Henceforth, we shall add this constraint
to (Z). While the constraint is redundant for the completely positive program (Z),
it will cut off any symmetric solution in the resulting SDP relaxation.

We now replace the generalized completely positive cone in (Z) with the cor-
responding cone of doubly nonnegative matrices, which yields the following SDP
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relaxation:

(25)

min tr(X>X)−
∑
i∈[K]

tr(X>XVii)

s.t. pi ∈ SOCN+1
+ × RN+1

+ , Qij ∈ R2(N+1)×2(N+1)
+ ,

ui, si,hij , rij ∈ RN+ , w ∈ RK+ , zij ∈ R+,

Vij ,Yij ,Gij ∈ RN×N+ ∀i, j ∈ [K],

pi =


ui
1

si
wi

 , Qij =


Vij ui Gij hij

u>j 1 s>j wj

G>ji si Yij rij

h>ji wi r>ji zij

 ∀i, j ∈ [K],

tr(Vii) = 1 ∀i ∈ [K],

tr(Vij) = 0 ∀i, j ∈ [K] : i 6= j,

diag(Vii) = hii, ui + si = wie ∀i ∈ [K],

diag(Vii + Yii + 2Gii) + ziie− 2hii − 2rii = 0 ∀i ∈ [K],

e>1 V11e = 1,
Q11 · · · Q1K p1

...
. . .

...
...

QK1 · · · QKK pK
p>1 · · · p>K 1

 � 0.

Since all principal submatrices of the large matrix are also positive semidefinite, we
can further relax the constraint to a more tractable system[

Qii pi
p>i 1

]
� 0 ∀i ∈ [K].

Next, we eliminate the constraints tr(Vij) = 0, i, j ∈ [K] : i 6= j, from (25). As
the other constraints and the objective function in the resulting formulation do not
involve the decision variables Vij and Qij , for any i, j ∈ [K] such that i 6= j, we
can safely omit these decision variables. Finally, by renaming all double subscript
variables, e.g., Qii to Qi, we arrive at the desired semidefinite program (R0). This
completes the proof.

The symmetry breaking constraint e>1 V1e = 1 in (R0) ensures that the solution
V1 will be different from any of the solutions Vi, i ≥ 2. Specifically, the constraint

∑
i∈[K]

Vie = e

in (R0) along with the aforementioned symmetry breaking constraint implies that
e>1 Vie = 0 for all i ≥ 2. Thus, any rounding scheme that identifies the clusters using
the solution (Vi)i∈[K] will always assign the data point x1 to the first cluster. It can
be shown, however, that there exists a partially symmetric optimal solution to (R0)
with V2 = · · · = VK . This enables us to derive a further simplification to (R0).
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Corollary 1. Problem (R0) is equivalent to the semidefinite program given by

(R)

R?0 = min tr(X>X)− tr(X>XW1)− tr(X>XW2)

s.t. αi ∈ SOCN+1
+ × RN+1

+ , Γi ∈ R2(N+1)×2(N+1)
+ ,

ρi ∈ R+, βi ∈ R+, γi,ηi,ψi,θi ∈ RN+ ,
Wi,Σi,Θi ∈ RN×N+ ∀i = 1, 2,

αi =


γi
1

ηi
ρi

 , Γi =


Wi γi Θi ψi

γ>i 1 η>i ρi

Θ>i ηi Σi θi

ψ>i ρi θ>i βi

 ∀i = 1, 2,

tr(W1) = 1, tr(W2) = K − 1,

diag(Wi) = ψi, γi + ηi = ρie,

diag(Wi + Σi + 2Θi) + βie− 2ψi − 2θi = 0 ∀i = 1, 2,

W1e +W2e = e,

e>1W1e = 1,[
Γ1 α1

α>1 1

]
� 0,

[
Γ2 α2

α>2 K − 1

]
� 0.

Proof. Any feasible solution to (R0) can be used to construct a feasible solution
to (R) with the same objective value as follows:

α1 = p1, α2 =
K∑
i=2

pi, Γ1 = Q1, Γ2 =
K∑
i=2

Qi.

Conversely, any feasible solution to (R) can also be used to construct a feasible solution
to (R0) with the same objective value:

p1 = α1, pi =
1

K − 1
α2, Q1 = Γ1, Qi =

1

K − 1
Γ2 ∀i = 2, . . . ,K.

Thus, the claim follows.

By eliminating the constraints

diag(Wi) = ψi, γi+ηi = ρie, diag(Wi+Σi+2Θi)+βie−2ψi−2θi = 0, i = 1, 2,

from (R) we obtain an even simpler SDP relaxation.

Corollary 2. The optimal value of the following SDP constitutes a lower bound
on R?0:

(R1)

R?1 = min tr(X>X)− tr(X>XW1)− tr(X>XW2)

s.t. W1,W2 ∈ RN×N+ ,

tr(W1) = 1, tr(W2) = K − 1,

W1e +W2e = e,

W1 � 0, W2 � 0,

e>1W1e = 1.
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We remark that the formulation (R1) is reminiscent of the well-known SDP re-
laxation for K-means clustering [23]:

(R2)

R?2 = min tr(X>X)− tr(X>XY )

s.t. Y ∈ RN×N+ ,

tr(Y ) = K,

Y e = e,

Y � 0.

We now derive an ordering of the optimal values of problems (Z), (R0), (R1), and
(R2).

Theorem 5. We have

Z? ≥ R?0 ≥ R?1 ≥ R?2.

Proof. The first and the second inequalities hold by construction. To prove the
third inequality, consider any feasible solution (W1,W2) to (R1). Then, the solution
Y = W1+W2 to (R2) is feasible and yields the same objective value, which completes
the proof.

Obtaining any estimations of the best cluster assignment using optimal solutions
of problem (R2) is a nontrivial endeavor. If we have exact recovery, i.e., Z? = R?2,
then an optimal solution of (R2) assumes the form

(26) Y =
∑
i∈[K]

1

e>πi
πiπ

>
i ,

where πi is the assignment vector for the ith cluster. Such a solution Y allows for an
easy identification of the clusters. If there is no exact recovery, then a few additional
steps need to be carried out. In [23], an approximate cluster assignment is obtained
by solving exactly another K-means clustering problem on a lower-dimensional data
set whose computational complexity scales with O(N (K−1)2). If the solution of the
SDP relaxation (R2) is close to the exact recovery solution (26), then the columns
of the matrix Y X will comprise denoised data points that are near to the respective
optimal cluster centroids. In [21], this strengthened signal is leveraged to identify the
clusters of the original data points.

The promising result portrayed in Theorem 5 implies that any well-constructed
rounding scheme that utilizes the improved formulation (R0) (or (R1)) will never
generate inferior cluster assignments to the ones from schemes that employ the for-
mulation (R2). Our new SDP relaxation further inspires us to devise an improved
approximation algorithm for the K-means clustering problem. The central idea of
the algorithm is to construct high quality estimates of the cluster assignment vectors
(πi)i∈[K] using the solution (Vi)i∈[K] as follows:

πi = Vie ∀i ∈ [K].

To eliminate any symmetric solutions, the algorithm gradually introduces symmetry
breaking constraints e>ni

Vie = 1, i ≥ 2, to (R0), where the indices ni, i ≥ 2, are chosen
judiciously. The main component of the algorithm runs in K iterations and proceeds
as follows. It first solves the problem (R0) and records its optimal solution (V ?

i )i∈[K].
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In each of the subsequent iterations k = 2, . . . ,K, the algorithm identifies the best
unassigned data point xn for the kth cluster. Here, the best data point corresponds
to the index n that maximizes the quantity e>nV

?
k e. For this index n, the algorithm

then appends the constraint e>nV
?
k e = 1 to the problem (R0), which breaks any sym-

metry in the solution (Vi)i≥k. The algorithm then solves the augmented problem and
proceeds to the next iteration. At the end of the iterations, the algorithm assigns each
data point xn to the cluster k that maximizes the quantity e>nV

?
k e. The algorithm

concludes with a single step of Lloyd’s algorithm. A summary of the overall procedure
is given in Algorithm 1.

Algorithm 1 Approximation algorithm for K-means clustering.

Input: Data matrix X ∈ RD×N and number of clusters K.
Initialization: Let V ?

i = 0 and Pi = ∅ for all i = 1, . . . ,K, and nk = 0 for all
k = 2, . . . ,K.
Solve the semidefinite program (R0) with input X and K. Update (V ?

i )i∈[K] with
the current solution.
for k = 2, . . . ,K do

Update nk = arg max
n∈[N ]

e>nV
?
k e. Break ties arbitrarily.

Append the constraints e>ni
Vie = 1 ∀i = 2, . . . , k to the problem (R0).

Solve the resulting SDP with input X and K. Update (V ?
i )i∈[K].

end for
for n = 1, . . . , N do

Set k? = arg max
k∈[K]

e>nV
?
k e and update Pk? = Pk? ∪ {n}. Break ties arbitrarily.

end for
Compute the centroids ck = 1

|Pk|
∑
n∈Pk

xn for all k = 1, . . . ,K.

Reset Pk = ∅ for all k = 1, . . . ,K.
for n = 1, . . . , N do

Set k? = arg min
k∈[K]

‖xn − ck‖ and update Pk? = Pk? ∪ {n}. Break ties arbitrarily.

end for
Output: Clusters P1, . . . ,PK .

6. Numerical results. In this section, we assess the performance of the algo-
rithm described in section 5. All optimization problems are solved with MOSEK v8
using the YALMIP interface [19] on a 16-core 3.4 GHz computer with 32 GB RAM.

We compare the performance of Algorithm 1 with the classical Lloyd algorithm
and the approximation algorithm2 proposed in [21] on 50 randomly generated in-
stances of the K-means clustering problem. While our proposed algorithm employs
the improved formulation (R0) to identify the clusters, the algorithm in [21] utilizes
the existing SDP relaxation (R2).

We adopt the setting of [4] and consider N data points in RD supported on K
balls of the same radius r. We set K = 3, N = 75, and r = 2, and run the experiment
for D = 2, . . . , 6. All results are averaged over 50 trials generated as follows. In each
trial, we set the centers of the balls to 0, e/

√
D, and ce/

√
D, where the scalar c is

drawn uniformly at random from interval [10, 20]. This setting ensures that the first

2MATLAB implementation of the algorithm is available at https://github.com/solevillar/
kmeans sdp.
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two balls are always separated by unit distance irrespective of D, while the third ball
is placed further with a distance c from the origin. Next, we sample N/K points
uniformly at random from each ball. The resulting N data points are then input into
the three algorithms.

Table 1 reports the quality of cluster assignments generated from Algorithm 1
relative to the ones generated from the algorithm in [21] and the Lloyd algorithm.
The mean in the table represents average percentage improvement of the true objec-
tive value from Algorithm 1 relative to other algorithms. The pth percentile is the
value below which p% of these improvements may be found. We find that our pro-
posed algorithm significantly outperforms both the other algorithms in view of the
mean and the 95th percentile statistics. We further observe that the improvements
deteriorate as the problem dimension D increases. This should be expected as the
clusters become more apparent in a higher dimension, which makes them easier to be
identified by all the algorithms. The percentile statistics further indicate that while
the other algorithms can generate extremely poor cluster assignments, our algorithm
consistently produces high quality cluster assignments and rarely loses by more than
5%.

Table 1
Improvement of the true K-means objective value of the cluster assignment generated from

Algorithm 1 relative to the ones generated from the algorithm in [21] (left) and the Lloyd algorithm
(right).

Statistic
Mean 5th Percentile 95th Percentile

D

2 47.4% 26.6% −4.4% 17.6% 186.7% 36.5%
3 21.3% 18.3% −2.3% 10.9% 168.9% 25.5%
4 5.7% 14.5% −1.5% 9.5% 10.8% 20.8%
5 9.5% 11.1% −2.1% 7.3% 125.8% 14.5%
6 4.8% 10.9% −0.7% 7.5% 8.4% 13.8%
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