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ABSTRACT This paper investigates resource modeling and management for a base station (BS) providing

mobile edge computing (MEC) service. In the proposed modeling, BS is recognized as a queueing network

consisting of multiple multi-type servers. The uplink transmission users, downlink transmission users, and

MEC users with different priority levels are jointly considered. It is assumed that their service-requests arrive

dynamically and are also served dynamically. With such a general resource modeling, the interaction among

these users can be analyzed based on the queueing network theory. The average delay of each service-type

with different priority levels is derived. Based on the derived results, two resource management optimization

problems are formulated and solved from the perspective of a service provider. The revenue brought byMEC

services is first maximized by doing user admission control while provisioning the quality-of-service (QoS)

of all admitted users with the given amount of communication and computation resources. Then, the capital

expenditure of resource deployment is minimized by satisfying the QoS of all users. It is formulated as an

integer programming problem. An algorithm is developed to solve it, which can help service providers to

determine the optimal amount of communication and computation resources to be placed in a BS to guarantee

QoS for all users at aminimal total capital expenditure. Computer simulations are done to validate all analysis

and comparisons are made with BS serving multi-type users of single priority level. Through comparison,

an insight is gained that service providers can obtain more revenue or spare less capital expenditure by

differentiating the user priority levels.

INDEX TERMS Mobile edge computing (MEC), queueing network model, admission control, resource

management, quality-of-service (QoS), latency.

I. INTRODUCTION

Mobile networks provide worldwide coverage and mobil-

ity support. Now they are pursuing not only higher trans-

mission rate but also lower transmission latency [1], [2].

In the evolution from the second generation (2G) to the

fifth generation (5G), much effort has been focused on the

development of transmission technologies, such as, multiple-

input multiple-output (MIMO), millimeter wave (mmWave)

transmission, etc [2]–[5], to obtain higher transmission rate.

In some future communication scenarios, some data-sensitive

delay-sensitive applications such as virtual reality, real-time

control, etc, require that the communication latency should

be no longer than 1 millisecond (ms). It is impossible to

support those applications by using network communications

between user devices, i.e., the source of data, and remote

cloud computing severs due to the large communication delay

resulting from long transmission distances. To overcome this

issue, cloud-computing capabilities should be brought in

close proximity to end devices. This motivates the deploy-

ment of mobile edge computing (MEC) centers [6]–[8].

Unlike conventional cloud computing centers having

plenty of computation resource, a MEC center typically has
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limited communication and computation resource. To facili-

tate energy-efficient and low-latencyMEC for multiple users,

a plenty of work [9]–[21] has been done on the computation

offloading design, the joint communication and computa-

tion resource management as well as the admission control.

For instance, Chen et al. [9] proposed a game-theoretic

computation offloading method in multi-user MEC systems,

and this study was extended to multi-cell settings in [10].

In these works, the service request and network are assumed

to be deterministic. With both stochastic characteristics and

network dynamics considered, Lyapunov optimization based

computation offloading approaches were proposed for MEC

systems in [13]–[16]. Instead of controlling the offload-

ing workload, [22] investigated the joint computation and

transmission resource allocation to reduce the sum energy

consumption of all mobile users. Different frommost of work

focusing on energy-delay trade off, [21] investigated the opti-

mal resource allocation to maximize the revenue of service

providers under the constraints of quality of service (QoS)

for all mobile users. These works have gained a lot of insights

on the offloading decision making and the resource manage-

ment, and have been well summarized in a comprehensive

survey paper [8]. However, all these works overlooked the

interact amongMEC service, traditional cellular uplink trans-

mission (UT) service (e.g., file or message uploading), and

traditional cellular downlink transmission (DT) service (e.g.,

file downloading or media streaming). It is almost certain

that UT users, DT users and MEC user will interact on each

other since they compete for the scarce and precious wireless

transmission resources.

To analyze the interact, this paper investigates a queue-

ing network model [23] for a base station (BS) providing

MEC services, where the BS is treated as multi-type servers

including UT servers, DT servers, and computation servers.

It is assumed that each service request is represented by

a packet which is stochastically generated by a user and

has to wait in a queue if the corresponding server is busy.

To differentiate QoS requirements, each waiting queue is

assumed to be a multi-class non-preemptive priority queue

such that users with higher QoS (lower latency) requirements

are assigned with higher non-preemptive priorities. In other

words, the delay-sensitive service-request-packets are always

put in the head of the line (HOL) for service. To characterize

the dynamic characteristics in the serving process, the service

time of each server is also modeled to be stochastic. As MEC

users consume both UT and DT transmission resources to

offload the computation tasks to the nearest BS and receive

the final computation results from the same BS, the admis-

sion control of MEC users becomes critically important.

In addition, BS operators or service providers prefer not to

deploy overmuch computation resources (i.e., edge servers)

in order to avoid possible underutilization and high capital

expenditure. Thus, deciding the amount of transmission and

computation resource to be deployed at a BS to support all

the dynamic multi-priority-level multi-type service is also a

key issue for service providers to implement MEC.

The contributions of this paper in addressing the aforemen-

tioned issues can be summarized as follows.
• A queueing network model for a BS that offers MEC

service, pure UT and DT service is investigated and

the average delay of each class of each service type is

analyzed, where users in a same user class are with the

same priority level.

• Given the limited transmission and computation

resources, the admission control of multi-class MEC

service is formulated. Considering each class of MEC

service has its own price, the problem aims to maximize

the total revenue of service providers subject to the

constraints of the average delay requirements of all

admitted users. And the solution is also discussed.

• Given the service request distribution, the optimization

of the resource deployment at a BS is also consid-

ered and an optimal resource deployment algorithm is

developed. The algorithm can help service providers to

determine the optimal amount of communication and

computation resources to be placed at a BS to minimize

the total capital expenditure subject to the required QoS

from each type of service.
The rest of this paper is organized as follows. Section II

introduces the proposed queueing network model. Based on

the proposed model, the average delay of each class of each

service type is analyzed in Section III. The optimization

problems of admission control and resource deployment are

investigated in Section IV and V, respectively. Section VI

discusses the simulation results. At last, Section VII con-

cludes the paper and points out the challenges and directions

of future research.

II. QUEUEING NETWORK MODEL

A queueing network model in a BS simultaneously offering

pure UT, pure DT and MEC service is illustrated in Fig. 1.

Three individual user groups request for pure UT, pure DT

and MEC service, respectively. The BS serving these user

groups can be treated as multi-type servers including UT

servers, DT servers and MEC computation servers. Inside the

BS, the number of available UT servers, DT servers and com-

putation servers are denoted by nu, nd and nc, respectively.

A. MULTI-CLASS MULTI-TYPE SERVICES

Without loss of generality, we assume that there are multi-

class users among each service type. As aforementioned,

users in a same user class are with the same priority level. The

numbers of user classes for pure UT, pure DT and MEC ser-

vice are denoted as Ju, Jd and Jc, respectively. For any service

type x ∈ {u, d, c}, class-ix has higher priority over class-jx if

1 ≤ ix < jx ≤ Jx . Each class has its individual average

delay QoS requirements. For class-jx of service type x,

the maximum tolerable average delay threshold is set to be

T
(jx )
x−th. Usually, T

(jx )
x−th increases as the priority goes lower,

i.e., T
(1)
x−th ≤ T

(2)
x−th ≤ · · · ≤ T

(Jx )
x−th. For different service

types (e.g., pure UT service and MEC service), the priorities

of users can be assigned manually. For any class jx users of
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FIGURE 1. Base station model.

service type x, jy≻jx , x, y ∈ {u, d, c}, x 6= y represents the

number of user classes of service type y that are assigned

with higher priorities than class jx users of service type x. For

example, ju≻jc = 5 represents there are 5 pure UT user classes

with higher priorities than class-jc MEC users. Based on the

definition, one can easily obtain that the value jy≻jx ranges

from 0 to Jy and that it is a constant for class-jx users once the

priorities among all classes of all service types are settled. The

priority system has three different disciplines: preemptive-

resume, preemptive-repeat, and non-preemptive (or HOL).

Under a preemptive discipline, the arrival of high-priority

user interrupts the serving of low-priority user. Though high-

priority users are not affected by low-priority users under

preemptive discipline, this discipline will not be applied in

real transmission orMEC systems because it not only reduces

the system efficiency but also damages the QoS of low-

priority users greatly. Therefore, a non-preemptive discipline

is applied, making the arrival of high-priority users only affect

the waiting queue. The service-request-packets generated

from class-jx user group arrive according to a Poisson process

with rate λ
(jx )
x . The sum access rates of pure UT, pure DT

and MEC service-request-packets are defined as λu, λd and

λc, respectively, and have the following relationship with the

arrival rate of each class as

λu =

Ju
∑

ju=1

λ(ju)u , (1)

λd =

Jd
∑

jc=1

λ
(jd )
d , (2)

and

λc =

Jc
∑

jd=1

λ(j)c . (3)

Different types of users are served by different types of

servers. As shown in Fig. 1, pureUT orDT users only requires

service at one queue consisting of nu UT servers or nd DT

servers, while MEC users requires service at three queues,

the front queue consisting of nu UT servers, the middle

queue consisting of nc computation servers and the last

queue consisting of nd DT servers. Without loss of gen-

erality, the following assumptions are made. Each request

for transmission or computation service is only served by

one transmission or computation server at a time. Each type

of servers is homogeneous, consumes the same amount of

transmission or computation resources and only serves a user

at a time. The length of buffer is assumed to be infinite and

the waiting time for users can be infinite.

The service time at a UT or DT server is related to the

power of transmitter, the spectrum bandwidth, the channel

condition, the size of the packet to be transmitted, the signal

processing speed, etc. The distributions of the service time of

all UT and DT servers with the same amount of resource are

assumed to be identical and independent. Thus M/G/n/∞

queue model would be suitable to model the UT and DT ser-

vice queues. However, it is challenging to determine the exact

distribution of the service time. For simplicity, the service

time of UT and DT servers are assumed to follow exponential

distributions with rate µu and rate µd , respectively. Note

that the mean service rates for UT and DT are different

because the parameters affecting the corresponding service

time distribution are different. For example, the transmit

power for UT provided by power-limited mobile devices is

much smaller than that for DT offered by the powerful BS.

The service time at a computation server is typically related

to the amount of computation resource per server and the

computation task specified in each packet. Similarly for sim-

plicity, the service time at a computation server is assumed to

follow an exponential distribution with rate µc.
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FIGURE 2. Queuing network model for a base station providing MEC service.

B. QUEUEING NETWORK MODELING AND STABILITY

CONDITION

Based on the above assumptions, the BS providing MEC

service is modeled as a queueing network as shown in Fig. 2.

• The UT service is modeled as an M/M/nu/∞ non-

preemptive priority queue with (Ju + Jc) priority classes

shown as Queue 1 in Fig. 2. The utilization factor is

defined as

φu =

∑Ju
ju=1 λ

(ju)
u +

∑Jc
jc=1 λ

(jc)
c

nuµu
. (4)

• The DT service is modeled as an M/M/nd/∞ non-

preemptive priority queue with (Jd + Jc) priority classes

shown as Queue 3 in Fig. 2. The utilization factor is

defined as

φd =

∑Jd
jd=1 λ

(jd )
d +

∑Jc
jc=1 βjcλ

(jc)
c

ndµd
. (5)

where βjc represents the output-input ratio of class-jc
MEC service, and it depends on the service type.

• The MEC service is modeled as a sequence of queues.

The front queue is the UT service queue. The middle

queue is the computation queue, which can be modeled

as an M/M/nc/∞ non-preemptive priority one with

Jc priority classes shown as Queue 2 in Fig. 2. The

utilization factor of the middle queue defined as

φc =

∑Jc
jc=1 λ

(jc)
c

ncµc
(6)

And the last queue is the DT service queue.

Proposition 1: Based on the queueing theory, the stabil-

ity or ergodic conditions for the queueing network consisting

of three queues are

φu < 1, (7)

φd < 1, (8)

and

φc < 1. (9)

The proof of the proposition can be found in [24].

III. AVERAGE DELAY ANALYSIS

The average delay performance of each user class of each

service type needs to be taken into account in the admission

control of MEC users and resource deployment. This section

will derive the average delay of each user class of each service

type. To that end, we make the following definitions based on

Eqs. (4)-(6).

8u(u, c) ,

∑u
ju=1 λ

(ju)
u +

∑c
jc=1 λ

(jc)
c

nuµu
,

0 ≤ u ≤ Ju, 0 ≤ c ≤ Jc. (10)

8d (d , c) ,

∑d
jd=1 λ

(jd )
d +

∑c
jc=1 βjcλ

(jc)
c

ndµd
,

0 ≤ u ≤ Ju, 0 ≤ c ≤ Jc. (11)

8c(c) ,

∑c
jc=1 λ

(jc)
c

ncµc
, 0 ≤ c ≤ Jc. (12)

Thus, φu,φd and φc in Eqs. (4)-(6) can be rewritten as

φu = 8u(Ju, Jc), φd = 8d (Jd , Jc) and φc = 8c(Jc). Let

us define F(k, n, φ), G(n, φ, µ) and R(n, φ, µ) as

F(k, n, φ) ,
(nφ)k

k!
, (13)

G(n, φ, µ) , nµ

[

(1 − φ)

k=n−1
∑

k=0

F(k, n, φ) + F(n, n, φ)

]

,

(14)

R(n, φ, µ) ,
F(n, n, φ)

G(n, φ, µ)
. (15)

R(n, φ, µ) is also referred as the mean residential service

time function [25]. Based on these definitions, one can obtain

the average delay of each user class of each service type as

follows.

Proposition 2: For pure UT service, the average delay

including the waiting time and the service time of class-ju
(1 ≤ ju ≤ Ju) pure UT users is

T (ju)
u =

1

µu
+

R(nu, φu, µu)
[

1 − 8u(ju − 1, jc≻ju )
] [

1 − 8u(ju, jc≻ju )
] .

(16)

Similarly, for pure DT service, the average delay including

thewaiting time and the service time of class-jd (1 ≤ jd ≤ Jd )
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pure DT users is

T
(jd )
d =

1

µd
+

R(nd , φd , µd )
[

1 − 8d (jd − 1, jc≻jd )
] [

1 − 8d (jd , jc≻jd )
]

(17)

The proof of Proposition 2 is given in appendix.

Proposition 3: ForMEC service, the average delay includ-

ing waiting time and the service time of class-jc (1 ≤ jc ≤ Jc)

MEC users contains three parts and can be expressed

T (jc)
c = T (jc)

cu + T
(jc)
cd + T (jc)

cc . (18)

T
(jc)
cu represents the average delay at the front queue consisting

of nu UT servers and can be given by

T (jc)
cu ==

1

µu
+

R(nu, φu, µu)
[

1 − 8u(ju≻jc , jc − 1)
] [

1 − 8u(ju≻jc , jc)
] .

(19)

T
(jc)
cd represents the average delay at the last queue consisting

of nd DT servers and can be given by

T
(jc)
cd ==

1

µd
+

R(nd , φd , µd )
[

1 − 8d (jd≻jc , jc − 1)
] [

1 − 8d (jd≻jc , jc)
] .

(20)

T
(jc)
cc represents the average delay at the middle queue con-

sisting of nc computation servers and can be given by

T (jc)
cc =

1

µc
+

R(nc, φc, µc)

[1 − 8c(jc − 1)] [1 − 8c(jc)]
. (21)

Proposition 3 can be proved similarly as Proposition 2. As the

MEC service is a tandem queueing network and the waiting

room between queues is assumed to be infinite, the delay in

the three queues can be treated as that in three individual and

independent queues [26]. Therefore, by separately proving

the correctness of the expressions in (19), (20) and (21) by

using the method presented in appendix VII, Proposition 3 is

proved.

IV. ADMISSION CONTROL

This section will discuss the admission control of multi-class

MEC users given the limited transmission and computation

resources (i.e., given the number of UT, DT and computation

servers). An optimization problem will be formulated and

analyzed.

A. PROBLEM FORMULATION

The known parameters include the priority order of each user

class of each service type, the unit price of each class of MEC

service p
(jc)
c , 1 ≤ jc ≤ Jc, the arrival rates of multi-class pure

UT and DT users λ
(ju)
u , 1 ≤ ju ≤ Ju, λ

(jd )
d , 1 ≤ jd ≤ Jd ,

the service rates µu, µd , µc, the number of available servers

nu, nd , nc, and the delay QoS thresholds T
(ju)
u−th, 1 ≤ ju ≤ Ju,

T
(jd )
d−th, 1 ≤ jd ≤ Jd , T

(jc)
c−th, 1 ≤ jc ≤ Jc.

The decision variables are the access rate of each class of

MEC service λ
(jc)
c , 1 ≤ jc ≤ Jc. The objective is to maximize

the revenue of service providers for providing MEC service.

The mean interest per unit time is treated as the objective

function as

P(λ(1)c , λ(2)c , · · · , λ(Jc)c ) =

Jc
∑

jc=1

p(jc)c λ(jc)c . (22)

The constraints are the average delay requirement of each

user class of each service type specified by the maximum

tolerable delay, i.e.,

T (ju)
u ≤ T

(ju)
u−th, 1 ≤ ju ≤ Ju (23)

T
(jd )
d ≤ T

(jd )
d−th, 1 ≤ jd ≤ Jd (24)

T (jc)
c ≤ T

(jc)
c−th, 1 ≤ jc ≤ Jc (25)

and the stability conditions of the queueing network in (7),

(8), and (9). Based on the above discussion, the optimization

problem can be formulated as

Find : λ(jc)c , 1 ≤ jc ≤ Jc

Maximize : P(λ(1)c , λ(2)c , · · · , λ(Jc)c )

subject to : λ(jc)c ≥ 0, 1 ≤ jc ≤ Jc

(7), (8), (9)

(23), (24), (25) (26)

In this problem, the object function, the nonnegative con-

straints and the stationary conditions are all linear. But the

delay constraint of each user class of each service type is

no longer linear. Through the following analysis, the delay

constraints are found to be polynomials. Before introducing

the reformulation of constraints, we denote a multivariate

polynomial by

Q(
−→
λc ) ,

∑

−→α ∈Zn

q−→α

[

λ(1)c

]α1
[

λ(2)c

]α2
· · ·

[

λ(Jc)c

]αJc

=
∑

−→α ∈Zn

q−→α

[

−→
λc

]
−→α

, (27)

where q−→α represents the coefficient and the monomial

[

−→
λc

]
−→α

,

[

λ(1)c

]α1
[

λ(2)c

]α2
· · ·

[

λ(Jc)c

]αJc
. (28)

The degree of the monomial
[

−→
λc

]
−→α

is defined as

∣

∣

−→α
∣

∣ =

Jc
∑

jc=1

αjc , (29)

and the degree of the polynomial is the maximum degree of

a monomial
[

−→
λc

]
−→α

for which q−→α 6= 0.

B. REFORMULATION OF CONSTRAINTS

For any ju, 1 ≤ ju ≤ Ju, based on Proposition 2, the

constraint in (23) can be written as

R(nu, φu, µu)
[

1 − 8u(ju − 1, jc≻ju )
] [

1 − 8u(ju, jc≻ju )
] ≤ c(ju)u , (30)
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where c
(ju)
u , T

(ju)
u − 1

µu
is a constant. Substituting the

definition of function R(n, φ, µ) in (15) into (30), we have

F(nu, nu, φu)

G(nu, φu, µu)
[

1 − 8u(ju − 1, jc≻ju )
] [

1 − 8u(ju, jc≻ju )
]

≤ c(ju)u . (31)

It is certain that the denominator is positive if the queueing

network is stationary. Moving the denominator to the other

side in (31) and swapping the inequalities, we can get

c(ju)u G(nu, φu, µu)
[

1 − 8u(ju − 1, jc≻ju )
] [

1 − 8u(ju, jc≻ju )
]

−F(nu, nu, φu) ≥ 0 (32)

On the left side of the constraint reformulation in (32), all

parts are either constants or polynomials with respect to the

decision variables λ
(jc)
c , 1 ≤ jc ≤ Jc. Specially, c

(ju)
u is a

constant. G(nu, φu, µu) is a polynomial of φu with degree

nu according to (14) and φu is a linear combination of all

decision variables (c.f. (4)). Therefore, G(nu, φu, µu) is a

multivariate polynomial of decision variables with degree nu.

Based on the definition of 8u(u, c) given in (10), both

8u(ju − 1, jc≻ju ) and 8u(ju, jc≻ju ) are either constants if

jc≻ju = 0, or polynomials with degree 1 if 0 < jc≻ju ≤ Jc.

Based on the definition of F(k, n, φ) given in (13),

F(nµ, nµ, φµ) is a polynomial of φu with degree nu and as

mentioned φu is a linear combination of all decision variables.

Therefore, F(nµ, nµ, φµ) is also a multivariate polynomial

with degree nu.

With all the parts of the left side of (32), the delay

constraint shown in (23) for any jc, 1 ≤ jc ≤ Jc
can be reformulated to a multivariate polynomial either

with degree nu if jc≻ju = 0 or with degree (nu + 2) if

0 < jc≻ju ≤ Jc.

Similarly, for any jd , 0 ≤ jd ≤ Jd , the delay constraint

for class-jd pure DT users (24) can be reformulated to a

multivariate polynomial as

c
(jd )
d G(nd , φd , µd ) [1 − 8d (jd − 1, jc≻d )] [1 − 8d (jd , jc≻d )]

−F(nd , nd , φd ) ≥ 0. (33)

either with degree nd if jc≻jd = 0 or with degree (nd + 2) if

0 < jc≻jd ≤ Jc, where constant c
(jd )
d , T

(jd )
d − 1

µd
.

The reformulation of the constraint in (25) is a bit

more complicated as it consists of three parts according to

Proposition 3. For any jc, 1 ≤ jc ≤ Jc, the delay constraint

of class-jc MEC users can be expressed as

R(nu, φu, µu)
[

1 − 8u(ju≻jc , jc − 1)
] [

1 − 8u(ju≻jc , jc)
]

+
R(nd , φd , µd )

[

1 − 8d (jd≻jc , jc − 1)
] [

1 − 8d (jd≻jc , jc)
]

+
R(nc, φc, µc)

[1 − 8c(jc − 1)] [1 − 8c(jc)]
≤ c(jc)c . (34)

where constant c
(jc)
c , T

(jc)
c − 1

µu
− 1

µd
− 1

µc
. Substituting the

definition of function R(n, φ, µ) in (15) into (34), one can

obtain

F(nu, nu, φu)

G(nu, φu, µu)
[

1 − 8u(ju≻jc , jc − 1)
] [

1 − 8u(ju≻jc , jc)
]

+
F(nd , nd , φd )

G(nd , φd , µd )
[

1−8d (jd≻jc , jc − 1)
] [

1−8d (jd≻jc , jc)
]

+
F(nc, nc, φc)

G(nc, φc, µc) [1 − 8c(jc − 1)] [1 − 8c(jc)]
≤ c(jc)c .

(35)

To simplify the constraint in (35), the numerators are defined

as Hu, Hd and Hc functions as

Hu = G(nu, φu, µu)
[

1 − 8u(ju≻jc , jc − 1)
]

×
[

1 − 8u(ju≻jc , jc)
]

, (36)

Hd = G(nd , φd , µd )
[

1 − 8d (jd≻jc , jc − 1)
]

×
[

1 − 8d (jd≻jc , jc)
]

, (37)

and

Hc = G(nc, φc, µc) [1 − 8c(jc − 1)] [1 − 8c(jc)] . (38)

It is easy to verify that Hu, Hd and Hc are all positive if the

queueing network is stationary. Multiplying HuHdHc at the

both sides of (35) and (35) can be written as

c(jc)c HuHdHc − HdHcF(nu, nu, φu) − HuHcF(nd , nd , φd )

−HuHdF(nc, nc, φc) ≥ 0. (39)

On the left side of the constraint reformulation in (39), all

parts are also either constants or polynomials with respect to

the decision variables λ
(jc)
c , 1 ≤ jc ≤ Jc. In detail, c

(jc)
c is a

constant. For Hu, Hd and Hc, there are two cases. Specially,

for jc = 1, 8u(ju≻jc , jc − 1), 8d (jd≻jc , jc − 1) and 8c(jc − 1)

are all constants, therefore based on the similar analysis as

Section IV-B, Hu, Hd and Hc are polynomials with degrees

(nu+1), (nd +1) and (nc+1), respectively. Otherwise if 1 <

jc ≤ Jc, 8u(ju≻jc , jc − 1), 8d (jd≻jc , jc − 1) and 8c(jc − 1) are

all polynomials with degree 1, therefore based on the similar

analysis as Section IV-B,Hu,Hd andHc are polynomials with

degrees (nu + 2), (nd + 2) and (nc + 2), respectively.

With all the parts of the left side of (39), the delay constraint

shown in (25) for any jc, 1 ≤ jc ≤ Jc can be modified into a

multivariate polynomial either with degree (nu+nd +nc+3)

if jc = 1 or with degree (nu + nd + nc + 6) if 1 < jc ≤ Jc.

C. GENERAL SOLUTION AND COMPLEXITY ANALYSIS

As mentioned, all the object function, the nonnegative con-

straints and the stationary conditions are linear. Since the

linear equalities or inequalities can also be considered as

polynomials with degree 1 and the delay constraints in (23),

(24) and (25) are all polynomials according to the analysis in

Section IV-B, the optimization problem in (26) is a general

polynomial optimization problem. The problem is NP-hard,

i.e., intractable. By using the moment-based convex linear

matrix inequality (LMI) relaxations, the approximate solu-

tions can be found [27], [28]. This approach for solving global

optimization problems over polynomials has been embedded
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in the GloptiPoly solver [29]. Thus, the approximate solution

can be obtained by applying GloptiPoly solver. According

to [30], the complexity of the approach in terms of the number

of LMI decision variables ML and size of LMI NL can be

expressed as

ML =

(

nv + 2δ

δ

)

− 1, (40)

and

NL =

(

nv + δ

δ

)

+ mc

(

nv + δ − 1

δ − 1

)

. (41)

where nv is the number of polynomial variables, mc denotes

the number of constraints, δ = ⌊(d + 1)/2⌋ and d rep-

resents the overall polynomial degree. From (40) and (41),

it is observed that ML and NL grow polynomially in O(δn)

and in O(mcδ
n), respectively. For the optimization problem

in (26), nv = nc, mc = 3 + Ju + Jd + 2Jc and d =

nu + nd + nc + 6. Substituting these into (40) and (41),

the complexity of solving this optimization problem can be

derived.

V. OPTIMAL RESOURCE DEPLOYMENT

In this section, an optimal resource deployment strategy to

provision the QoS and meanwhile to minimize the capital

expenditure will be developed. Another optimization problem

will be formulated and solved.

The known parameters are the priority order of each class

of each service type, the cost of each server type Cx , x ∈

{u, c, d}, the access rates of multi-class pure UT, pure DT

and MEC users λ
(ju)
u , 1 ≤ ju ≤ Ju, λ

(jd )
d , 1 ≤ jd ≤ Jd ,

λ
(jc)
c , 1 ≤ jc ≤ Jc, the service rates µu, µd , µc, and the delay

QoS thresholds T
(ju)
u−th, 1 ≤ ju ≤ Ju, T

(jd )
d−th, 1 ≤ jd ≤ Jd ,

T
(jc)
c−th, 1 ≤ jc ≤ Jc.

The decision variables are the number of servers to be

deployed, i.e., nu, nd , and nc. The objective is to minimize

the capital expenditure of servers. The total capital expen-

diture of deployed servers is treated as the cost function

as

C(nu, nc, nd ) = nuCu + ndCd + ncCc. (42)

The problem of minimizing the cost function can be given

by

Find : nu, nc, nd

Minimize : C(nu, nc, nd )

subject to : nu, nc, nd ∈ Z+

(7), (8), (9)

(23), (24), (25) (43)

A. OPTIMAL SOLUTION

The optimization problem in (43) is an integer programing

problem. The queueing network stability conditions (7), (8)

and (9) can be reformulated as

nu >

∑Ju
ju=1 λ

(ju)
u +

∑Jc
jc=1 λ

(jc)
c

µu
, nmin

u , (44)

nd >

∑Jd
jd=1 λ

(jd )
d +

∑Jc
jc=1 βjcλ

(jc)
c

µd
, nmin

d , (45)

and

nc >

∑Jc
jc=1 λ

(jc)
c

µc
, nmin

c . (46)

The delay constraints in (23), (24) and (25) are polynomials

with respect to λ
jc
c , 1 ≤ jc ≤ Jc. However, in the resource

deployment problem, the decision variables are nu nd and nc.

As shown in Propositions 2 and 3, the average delay of each

class of each service type (the left sides of inequalities (23),

(24) and (25)) is comprised of very complicated functions

of decision variables nu nd and nc, however, the following

corollary can be obtained through analysis.

Corollary 1:

• The average delay of class-ju, 1 ≤ ju ≤ Ju pure

UT users is only related to decision variable nu and

decreases along with the increase of nu.

• The average delay of class-jd , 1 ≤ jd ≤ Jd pure

DT users is only related to decision variable nd and

decreases along with the increase of nd .

• The average delay of class-jc, 1 ≤ jc ≤ Jc MEC

users is related to all decision variable nu, nd and nc and

decreases along with any increase of nu, nd or nc.

Proof: Corollary 1 can be easily proved. From

Proposition 2 and 3, the parameters that affect the average

delay can be directly observed. And for the monotonicity,

by thinking of each station as being comprised of a serving

section and a waiting section, it is straightforward to conclude

that increasing the number of servers definitely increases the

service throughput and consequently decreases the waiting

time.

Based on Corollary 1, the optimal solution of the opti-

mization problem in (43) can be found by using the fol-

lowing steps. The first step is to find the minimum feasible

number of UT servers nmin feasible
u and that of DT servers

nmin feasible
d based on the delay constraints of pure UT and

DT users in (23) and (24), respectively. Note that the min-

imum feasible number of computation servers is related to

the available number of UT and DT servers nu, nc, so we let

nmin feasible
c (nu, nd ) represent the minimum feasible number

of computation servers given nu and nd .

Based on nmin feasible
u and nmin feasible

d , the second step is to

find the minimum feasible number of computation servers

denoted by Nc , nmin feasible
c

(

nmin feasible
u , nmin feasible

d

)

. Then

we can calculate the corresponding cost Cbenchmark based

on (42) as

Cbenchmark = nmin feasible
u Cu + nmin feasible

d Cd + NcCc (47)

Based on this point
(

nmin feasible
u , nmin feasible

d

)

we can search

the area of (nu, nd ) that is possible to have the sum cost less
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than Cbenchmark. The search area can be given by

A =























(nu, nd ) ∈ Z
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

nu ≥ nmin feasible
u

nd ≥ nmin feasible
d

nuCu + ndCd ≤

Cbenchmark − nmin feasible
c (nu, nd )Cc























.

(48)

Based on the reformulation of the stability condition

in (46), it can be derived that nmin feasible
c (nu, nd ) should be

greater than nmin
c and that the search area can be relaxed to a

triangle as

A
+ =























(nu, nd ) ∈ Z
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

nu ≥ nmin feasible
u

nd ≥ nmin feasible
d

nuCu + ndCd

< Cbenchmark − nmin
c Cc























. (49)

We illustrate the triangle in Fig. 3 with three vertices

being labeled as
(

nmin feasible
u , nmin feasible

d

)

,
(

nmin feasible
u ,Nd

)

and
(

Nu, n
min feasible
d

)

, where Nu and Nd are defined

as Nu ,
Cbenchmark−nmin

c Cc−n
min feasible
d Cd

Cu
and Nd ,

Cbenchmark−nmin
c Cc−n

min feasible
u Cu

Cd
.

FIGURE 3. The simplified search area for (nu, nd ).

The third step is to find the optimal solution in this triangle

by exhaustively searching for all integer points in this area.

For each point (nu, nc), n
min feasible
c (nu, nd ) can be found,

the cost can be calculated, and the optimal solution can be

obtained. To summarize the solution procedure, an optimal

resource deployment algorithm as illustrated in Algorithm 1

is developed.

B. COMPLEXITY ANALYSIS

Algorithm 1 has three steps. For step 1, it requires
(

nmin feasible
u − nmin

u

)

calculations of all the Ju constraints

Algorithm 1 Optimal Resource Deployment Algorithm

Require: The priority order of each user class of each service

type;

The cost of each server type Cx , x ∈ {u, c, d};

The access rates λ
(ju)
u , 1 ≤ ju ≤ Ju, λ

(jd )
d , 1 ≤ jd ≤ Jd ,

λ
(jc)
c , 1 ≤ jc ≤ Jc;

The service rates µu, µd , µc;

The delay QoS thresholds T
(ju)
u−th, 1 ≤ ju ≤ Ju, T

(jd )
d−th, 1 ≤

jd ≤ Jd , T
(jc)
c−th, 1 ≤ jc ≤ Jc.

Ensure: n
opt
u , n

opt
d , n

opt
c and Cmin

nmin
u =

∑Ju
ju=1 λ

(ju)
u +

∑Jc
jc=1 λ

(jc)
c

µu
;

nmin
d =

∑Jd
jd=1 λ

(jd )

d +
∑Jc

jc=1 βjcλ
(jc)
c

µd
;

nmin
c =

∑Jc
jc=1 λ

(jc)
c

µc
;

nu = nmin
u ; nd = nmin

d ; nc = nmin
c ;

Step 1: Find nmin feasible
u and nmin feasible

d

repeat

nu = nu + 1;

until all the constraints in (23) are satisfied.

nmin feasible
u = nu;

repeat

nd = nd + 1;

until all the constraints in (24) are satisfied.

nmin feasible
d = nd ;

Step 2: Find Nc , nmin feasible
c

(

nmin feasible
u , nmin feasible

d

)

repeat

nc = nc + 1;

until all the constraints in (25) are satisfied.

Nc = nc;

Cbenchmark = nmin feasible
u Cu + nmin feasible

d Cd + NcCc;

Nu =
Cbenchmark−nmin

c Cc−n
min feasible
d Cd

Cu
;

Nd =
Cbenchmark−nmin

c Cc−n
min feasible
u Cu

Cd
;

Step 3: Exhaustively search (nu, nd ) in A
+ to find the

optimal solution

for nu = nmin feasible
u : 1 : Nu do

for nd = nmin feasible
d : 1 : Nd do

nc = nmin
c ;

repeat

nc = nc + 1;

until all the constraints in (25) are satisfied.

nmin feasible
c (nu, nd ) = nc;

C = nuCu + ndCd + nmin feasible
c (nu, nd )Cc;

if C < Cbenchmark then

n
opt
u = nu;

n
opt
d = nd ;

n
opt
c = nc;

Copt = C ;

Cbenchmark = C ;

end if

end for

end for
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in (23) and
(

nmin feasible
d − nmin

d

)

calculations of all the Jd
constraints in (24). For step 2,

(

Nc − nmin
c

)

calculations of all

the Jc constraints in (25) are required. For step 3, the com-

plexity is determined by the number of points (nu, nd ) inside

the triangle and for each point the complexity lies in finding

nmin feasible
c (nu, nd ). The number of points can be approxi-

mated by the area of the triangle which can be written as

|A+| =
(Nu − nmin feasible

u )(Nd − nmin feasible
d )

2
. (50)

and the complexity of finding nmin feasible
c (nu, nd ) for each

point (nu, nd ) is
(

nmin feasible
c (nu, nd ) − nmin

c

)

calculations of

all the Jc constraints in (25). Since nmin feasible
c (nu, nd ) < Nc,

the complexity is less than
(

Nc − nmin
c

)

and the total complex-

ity of step 3 is less than

(

(Nu−n
min feasible
u )(Nd−n

min feasible
d )(Nc−n

min
c )

2

)

calculations of all the Jc constraints in (25). Adding the

complexities of three steps together, the total complexity of

the algorithm can be obtained.

VI. SIMULATIONS

This section is provided to validate the theoretical analysis

in Section III through a toy example as well as to show the

effectiveness of the admission control scheme investigated in

Section IV and the resource deployment strategy proposed in

Section V. For comparison, the scheme without considering

the priorities among user classes is also included as a bench-

mark. The simulation parameters with and without consid-

ering the priorities among users are given in table 1 and 2,

respectively.

TABLE 1. Simulation parameters with considering priorities.

TABLE 2. Simulation parameters without considering priorities.

A. THE IMPACT OF THE ADMISSION OF MEC USERS ON

PURE UT & DT SERVICE

Firstly, Monte Carlo simulations and numerical calculations

are done by using the system setup in table 1 except that the

arrival rate of the class-1 MEC users λ
(1)
c is set ranging from

1 to 5. Along with the variation of λ
(1)
c , it can be calculated

that the utilization factor of UT servers φu ranges from 0.4667

to 0.7333, and that of DT servers from 0.4583 to 0.6250. Both

UT and DT service queues are always stable. Figs. 4 and 5

demonstrate the average delay of pure UT service and DT

service, respectively. Both figures show that the delay of each

user class of UT & DT service increases with the increased

admission of MEC users. From Fig. 4, it is observed that the

average delay of class-1 and class-2 pure UT users increases

by 6.915% and 26.817%, respectively. From Fig. 5, it is

observed that the average delay of class-1 and class-2 pure

DT users increases by 2.9553% and 15.1491%, respectively.

All these results indicate that with higher priority, less UT/DT

service is affected. During the observation time, the simu-

lation results of the average delay matches very well with

FIGURE 4. The impact of the access of MEC users on pure UT service.
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FIGURE 5. The impact of the access of MEC users on pure DT service.

the numerical results. This validates the correctness of our

theoretical analysis on average delay shown in Proposition 2.

Above all, all these results demonstrate the significance of the

admission control of MEC users.

B. THE IMPACT OF THE RESOURCE DEPLOYMENT

Secondly, Monte Carlo simulations and the numerical calcu-

lations are done by using the system setup in Tab. 1 except

that the number of UT servers nu is set to increase from

4 to 9. Along with the increment of nu, it can be calculated

that the utilization factor of UT servers φu decreases from

0.75 to 0.3333. The UT queue is always stable along the

variation of nu. Figs 6 and 7 demonstrate the average delay

of pure UT service and MEC service, respectively. Both

figures show that the delay of each user class of UT andMEC

service decreases along with the increase of the number of

UT servers. Fig. 4 demonstrates that the average delay of

class-1 and class-2 pure UT users decreases by 12.1578%

and 27.5959%, respectively. Fig. 5 demonstrates that the

FIGURE 6. The impact of the number of UT servers on pure UT service.

FIGURE 7. The impact of the number of UT servers on MEC service.

average delay of class-1 and class-2 MEC users decreases by

5.9484% and 23.5497%, respectively. These results indicate

that with higher priority, less UT/MEC service is affected by

the increment of resource. The reason is that the available

resource is mainly provided to serve the higher-priority users.

Therefore, increasing the resource is more helpful to the

lower-priority service. Similarly, during the observation time

of 3000, the simulation results match very well with the

numerical results validating the analysis in Propositions 2

and 3. All these results imply the importance of the proposed

resource deployment optimization method.

C. ADMISSION CONTROL OPTIMIZATION

Thirdly, based on the admission control optimization problem

formulated in Section IV, Fig. 8 shows the feasible zone

using the shadow area and demonstrates the injection point

between the linear objective function and the feasible zone.

From the illustrated constraints, it is observed that most of

them are linear or approximately linear. This is because the

FIGURE 8. The feasible zone of the admission control optimization.
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partial constraints in (23), (24) and (25) are only related to

the linear combinations (e.g., φa, φd and φc) of all decision

variables, and the delay constraints are obviously mono-

tone decreasing functions of these linear combinations. Thus,

these polynomial constraints can be replaced by linear ones.

For those approximately linear constraints, they are not only

related to the linear combinations of all decision variables

but also affected by the partial combinations or single vari-

ables. Thus, they are not strictly linear, which is indicated

in the zoomed figure in Fig. 8. Using either the GloptiPoly

solver [29] or drawing method, the injection point between

the linear objective function and the feasible zone is found

to be (3.2, 3.7) and the corresponding maximum interest is

calculated to be 0.1306 per unit time.

For comparison, Fig. 9 demonstrates the average delay

variation along with the increase of access rate of MEC

users without considering the priorities among users. For

fair comparison, the simulation parameters set in Tab. 2 are

same with that considering priorities in Tab. 1 except that

the access rate of each service type is the sum of the access

rates of all priority classes using this service type. The delay

constraint of each service type is set as same as the high-

priority users using this service type and so is the price.

Under such simulation setup, it is seen from Fig. 9 that the

average delay increases with more access rate of MEC users.

It demonstrates that the access rate of MEC users should be

less than 5.8 to satisfy the quality requirement of all service.

Multiplying the maximum access rate with the highest price,

the maximum interest is calculated to be 0.116 per unit time,

12.59% lower than that considering the priorities among

users.

FIGURE 9. Average delay variation along with the increase of access rate
of MEC users without considering the priorities among users.

D. RESOURCE DEPLOYMENT OPTIMIZATION

At last, the optimal resource deployment of the given system

setup is analyzed by using the proposed optimal resource

deployment algorithm in Algorithm 1. The results are illus-

trated in Fig.10. Note that the cost of a computation server

FIGURE 10. Optimal resource deployment of given system setup with and
without considering priorities.

is set to be higher than that of a UT or DT server as shown

in Tables 1 and 2. The reason is that there already exist the

transmission resources at a BS and upgrading these transmis-

sion servers is supposed to be more cheaper than adding new

computation servers along with other accessory equipment.

Under this consideration, the results in Fig.10 show that for

systems considering the user priorities, 5 UT servers, 7 DT

servers and 5 computation servers are enough and the mini-

mum total cost is 360. For that without considering the user

priorities, the minimum numbers of all type of servers are

all 6 and the minimum total cost is 390, 8.33% higher than

systems considering the user priorities.

Through comparisons in Sections VI-B and VI-D, one

can gain an insight into the future scenario that it is best

for service providers to offer customers with differentiated

service priorities either from the interest perspective or from

the cost perspective.

VII. CONCLUSION AND FUTURE WORK

This paper investigated a queueing network model for a BS

providing pure UT, DT and MEC service simultaneously.

Based on the proposed model, the admission control opti-

mization and the resource deployment optimization from the

standpoint of service providers were investigated. An optimal

resource deployment algorithm was developed. Simulations

have been done to verify all the analysis. This work provided

a basic and novel queueing model for MEC different from

existing solutions. In the future, more realistic and compli-

cated scenarios will be investigated. Several future research

directions on this model and the challenges are listed as

follows.

• The service time distribution of UT & DT servers needs

to be modeled by a more generalized one. As mentioned

in Section II-A, the M/G/n/∞ queue model simpli-

fied the modeling of the UT & DT queue and thus

accurate modeling of the real the exact distribution of

service time of UT & DT servers is still a challenge.
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Additionally, even modeling it as with the M/G/n/∞

queue model, the queueing analysis considering multi-

ple priority classes is still a very complicated problem as

the mean residual service time is hard to be derived [25].

• A queueing network model and resource allocation can

be jointly investigated. In the current model, different

user classes are differentiated by the priorities and

they can also be differentiated by allocating different

resources. Combining them together could obtain the

better scheduling result. One way to combine them

is that assuming each class has its own service time

distribution, where the distribution is related to the

resource allocated to the user class. This approach is

more realistic, but it still very challenging to analyze

such a model [24].

• By considering the real characteristics such as re-

transmission, finite buffer length, finite waiting time,

more complicated and realistic models of the queueing

network can be developed.

• The discrete-time queueing network model [31] will

be more suitable than the current used continuous-time

model.

• The outage probability describes the percent of users

that are not served. It might be better to use it as the

optimization criteria or constraints.

APPENDIX

PROOF OF PROPOSITION 2

Proof: Proposition 2 can be proved by the following

lemma in book [25].

Lemma 1: For an M/M/m/∞ non-preemptive priority

queue with K priority classes and all having exponentially

distributed service times with common mean 1/µ, the aver-

age delay for all priority classes k = 1, 2, · · · ,K including

waiting time and service time is

T =











1

µ
+

R

(1 − φ1)
, k = 1,

1

µ
+

R

(1 − φ1 · · · − φk−1)(1 − φ1 · · · − φk )
, k > 1.

(51)

where λ1, λ2, · · · , λK are the access rates of all classes,

φk ,
λk

mµ
, φ ,

K
∑

k=1

φk , (52)

p0 ,

[

n−1
∑

n=0

(mφ)n

n!
+

(mφ)m

m!(1 − φ)

]−1

, (53)

PQ ,
p0(mφ)m

m!(1 − φ)
, (54)

and the mean residual service time

R ,
PQ

mµ
. (55)

The UT service queue is an M/M/nu/∞ with (Ju + Jc)

priority classes. And in front of class-ju users, there are

(ju − 1 + jc≻ju ) user classes. According to Lemma 1 and the

definitions made in (10)-(15), the expression of the average

delay of the class-ju pure UT users can be obtained as (16) in

Proposition 2.
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