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To accelerate the training efficiency of neural network-based 
machine learning, a memristor-based nonlinear computing module 
is designed and analyzed. Nonlinear computing operation is widely 
needed in neuromorphic computing and deep learning. The 
proposed nonlinear computing module can potentially realize a 
monotonic nonlinear function by successively placing memristors 
in a series combing with a simple amplifier. The proposed module 
is evaluated and optimized through the Long Short-term Memory 
with the digit number recognition application. The proposed 
nonlinear computing module can reduce the chip area from 
microscale to nanoscale, and potentially enhance the computing 
efficiency to  while guaranteeing accuracy. Furthermore, the 
impact of the resistance variation of memristor switching on the 
training accuracy is simulated and analyzed using Long Short-term 
Memory as a benchmark. 

 

 

1. INTRODUCTION 
Long Short-term Memory [1] (LSTM) is one of the most 

important Recurrent Neural Networks (RNNs) architecture which 
has various applications on neural languages processing [2], 
machine translation [3], and speech recognition [4]. In LSTM, the 
gradient vanishing problem is effectively avoided by replacing the 
simple hidden layer unit of RNNs with a complex pre-designed 
memory ce  are implemented 
mathematically with extra nonlinear functions and weight matrices. 
Through updating the weights of the matrixes during the training 
process, LSTM has the capability to control the data flow within 
the layers, consequently to avoid the vanishing issue.  

However, the complex memory cell structure and extra control 
gates inevitably increase the computing workloads when updating 
the weight matrix values, performing the nonlinear activation 
function operations, and calculating the matrix products in the 
training processes [1]. This increase of computing complexity 
would further escalate the computing hardware efficiency 
requirements in deep learning and neuromorphic computing.   

Several optimization methods have been proposed to enhance 
the training efficiency [5]. However, these algorithm-based 
optimization methods cannot fundamentally prevent the drastic 
increase of the computational complexity due to the inherent limits 
of data processing strategy of the computing hardware platform. 
Traditionally, the von Neumann based computing platform encodes 
the data in a binary scheme, which is tailored intentionally for 
Boolean and arithmetic calculations with a sequential data 
processing and transportation strategy for a nonlinear calculation. 
In general, the computational complexity of a nonlinear function 
would be  through numerical methods [6], where n is the 
input data size. In order to enhance the machine learning training 
efficiency, innovations of computing architectures and their 
hardware implementations are required.  
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In this paper, we address these limitations of the computation 
bottleneck by proposing and designing a novel memristor-based 
nonlinear activation function hardware. Through the physical 
implementation of the nonlinear computing, the nonlinear 
activation functions can be calculated potentially with  
computational complexity due to the elimination of numerical 
methods which require large operation cycles [6-8]. Compare to 
existing hardware nonlinear activation implementations [9, 10], the 
proposed design utilizes emerging device memristor that can 
reduce the chip area to nanoscale and lead to a lower power 
consumption [11]. Furthermore, by careful designing the set 
voltage, high resistance state (HRS), and low resistance state (LRS) 
of the memristors in the nonlinear module, the proposed memristor-
based nonlinear module potentially can implement a monotonic 
nonlinear function.  

The proposed nonlinear computing module is evaluated with an 
application of digit number recognition based on LSTM. The 
simulation results indicate that the proposed nonlinear computing 
module with no significant accuracy compromise can complete the 
training task. Furthermore, the resistance variation influence of 
memristors in the modules on training accuracy is investigated and 
analyzed.  

2. THE SWITCHING BEHAVIOR OF THE 
CASCADED MEMRISTORS SWITCHING  

The nonlinear activation function is realized through operations 
on cascaded memristors [12]. The memristor is generally fabricated 
in a metal-insulator-metal (MIM) configuration with the metals on 
top and bottom serving as terminals. If the applied stimulus signal 
on these terminals excesses a specific threshold (set voltage), the 
resistance of the memristor can be switched from high resistance 
state (HRS) to low resistance state (LRS). This switching behavior 
is due to the formation of the conductive filaments (CFs) in the 
insulator material between two terminals.  

Not like other conventional memristor configurations with only 
one memristor like 1T1R or 2T1R, the proposed nonlinear 
computing module needs to perform switching behavior in a 
cascaded memristor configuration. To experimentally verify the 
switching behavior in this cascaded configuration, we conducted an 
I-V characteristics test of a metal-insulator-metal (MIM) device 
structure arranged in a crossbar array. In this crossbar structure, 
Copper (Cu) is used as a top metal electrode, oxygen-deficient 
tantalum oxide (TaOx) as solid electrolyte and Rhodium (Rh) as an 
inert bottom electrode with a thin Chromium (Cr) layer as a glue 
layer between Rhodium and the subjacent oxidized silicon wafer. 
The device was fabricated by the Micro and Nanofabrication 
Laboratory of The Bradley Department of Electrical and Computer 
Engineering at Virginia Tech [13]. 

The device has been characterized by monitoring the forming 
voltage (Vform) when conductive filaments (CFs) are being formed 
initially, the reset voltage, Vreset, the set voltage, Vset, and the 
resistance of the filament Ron when CFs are formed. The applied 
set conditions are: Icc=50 A and the voltage ramp rate rr= 2.0V/s, 
reset conditions are: Icc=0.1 A, with voltage ramp rate rr= 0.2 V/s. 

During measurement of filament resistance, the test conditions are 
Icc=5 A with voltage ramp rate rr= 10 V/s and this test condition 
ensures that the filament is not ruptured/modified by the reading 
conditions[14]. 

 

Figure 1: The switching states of the cascaded memristor 
configuration (two memristors in series): (a) two cascaded 

memristors without any bias voltage at pristine state; (b) two 
cascaded memristors at LRS state (set process) (c) two 

cascaded memristors at HRS state (reset process) 

Two devices are connected in series through external flying 
probe as shown in Figure 1. The diagram of the experimental setup 
is illustrated in Figure 2. The device combination shows switching 
behavior with successful set and reset operations as depicted in 
Figure 3 and Figure 4, respectively. The measurement results and 
test data are summarized in Table 1. 

 

 

Figure 2: The experimental setup. Two probes are used to 
apply appropriate bias connecting to semiconductor 

parameter analyzer, while other two probes provide an 
external connection for cascaded configuration 

 

  
  

  
  

  
 



  

3 

 

Figure 3: I-V characteristics during set operation (two devices 
connected serially through external probes) 

 

Figure 4: I-V characteristics during a reset operation (two 
devices connected serially through external probes) 

When a positive bias is applied (as shown in figure 1b), the 
entire applied voltage is distributed across the devices. The 
capacitive division principle determines the partial voltage drops 
across the two individual devices. When the voltage is ramped up, 
more and more Cu atoms of the top device are oxidized into Cu+ 

ctrode under the 
influence of high applied electric field. Eventually, Cu+ ions are 
deposited on the surface of Rh electrode as Cu atoms. Over time 
Cu atoms stack on top of each other grows vertically and eventually 
connects the top and bottom electrode and form a conducting 
filament (CF). Now, the device changes from high resistance state 
(HRS) to low resistance state (LRS) and the device is in so-called 
on-state (LRS). As soon as one of the devices moves to LRS, the 
entire stimulus voltage is applied across the remaining devices 
which are still on HRS. This relatively high electric field causes the 
conducting filament formation relatively faster for the subsequent 
devices illustrated in Figure 1(b). During the experiments of our 
serially connected devices, this process happened so quickly that 
we could not distinguish them as separate instances. Now if we 
ramp up the reversed voltage as connected in Figure 1(c). At the 
critical voltage Vreset, the current through the devices reaches a 
critical current (Ireset), the filaments of one or all the devices are 

ruptured and the device switches from LRS to HRS due to Joules 
heating. Then the device is restored to an off-state (HRS). In our 
experiments, the CFs in two memristors were ruptured that has 
been confirmed through monitoring the resistance of two 
memristors individually. As more and more devices are connected 
serially, higher and higher voltage needs to be applied to them since 
they are distributed across all the devices connected in series.  

3. MEMRISTOR-BASED NONLINEAR 
FUNCTION MODULE DESIGN 

The various types of memristors can be formed with different 
geometries, material combinations, and set/reset voltages [15, 16]. 
The value of the set voltage highly depends upon the memristor  
thickness and material combinations [17, 18]. The low resistance 
state and large resistance state distribution of state-of-art fabricated 
memristors are summarized in Figure 5 [19]. The memristor index 
represents the fabricated memristors. The red left spot indicates the 
low resistance, meanwhile, the blue right spot represents the high 
resistance of the memristor.  Figure 5 indicates that the values of 
LRS and HRS of the memristor are the controllable design 
parameters. It is worthy to note that the resistance variations of the 
LRS and HRS are mainly dependent by the various materials and 
different memristor sizes. Integrating multiple materials in 
memristor fabrication has been demonstrated in several groups[20-
22].  

 

Figure 5: The memristor low resistance state and large 
resistance state distribution  

With the condition of the controllable set voltage and LRS/HRS, 
we proposed a memristor-based nonlinear module by placing the 
memristors with various set voltages in cascade as illustrated in 
Figure 6. In this nonlinear module, the total resistance can be 
modified corresponding to the applied current stimulus since each 
memristor in the series can be breaking down (soft breaking down) 
at different levels of the current stimulus.  
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Figure 6: The memristor-based nonlinear module 

In the initial state, the total resistance of the module  is a 
sum of the total resistance of the memristors at their high resistance 
state (HRS) given as the following equation: 

 
 

 
where  is the high resistance state value of the k-th 

memristor in the sequence;  is the low resistance state value of 
the k-th memristor in the sequence; n is the total number of the 
memristors; and the k is the memristor index, which is also 
corresponding to the set voltage. This means the set voltage of k-th 
memristor is always lower than the (k+1)-th memristor.  

With the increment of the applied current stimulus signal, the 
memristors would reach their set voltages sequentially. 
Correspondently, the memristors with lower set voltages 
sequentially switch from HRS to LRS. The equation representing 
the total resistance of the module during this breaking process is:  

    
 

 
By precise designing the resistance difference between HRS 

and LRS for each memristor ( ), we can 
manipulate the total resistance decreasing rate of the nonlinear  
module. Since the memristors configuration is in series, the current 
in each memristor is unique, which is used as the input stimulus 
signal. Thus, the total resistance of the memristor-based current 
nonlinear module is summarized using the equations: 

 

 

Where 
R is the total resistance of nonlinear module; 

 is the high resistance value of each memristor; 
 is the low resistance value of each memristor; 

n is the total number of memristors in the module; 
k is the step index whose value is from 0 to n; 

 is an interval of threshold current values between two 
consecutive memristor ( ), where  is the 
threshold value of kth memristor.  

Figure 7 shows the simulation resistance switching behavior of 
the proposed module with different decrease rate. The number of 
the memristors in series is ten. In Figure 7, the breaking step is 
defined as how many memristors are in their LRS. When all the 
memristors switch to their LRS, the total resistance would be stay 
constant in the sum of their low state resistances.  

 

Figure 7: Nonlinear resistance switching behavior with 
various decreasing rate (Ten memristors). 

In a digital computing system, a nonlinear function is generally 
calculated through a piecewise linear approximation method [23], 
in which the input domain of a nonlinear function is partitioned into 
several small segments. In each segment, the output is calculated 
through a linear approximation. The accuracy of the piecewise 
linear approximation highly depends upon the segmentation 
resolution. Inspired by this piecewise linear approximation, the 
slope of the linear relation of each segment of the input domain can 
be simulated with a resistance value. If we correlate the segments 
of the input domain with the breaking step values in Figure 7, we 
can enable the resistance of the memristor-based nonlinear module 
continually changing corresponding to the stimulus at each 
partitioned input domain.  

By adding this specified designed memristor-based nonlinear 
module in an amplifier, we designed a nonlinear function 
computing module as shown in Figure 8.  
 

 

Figure 8: Nonlinear activation function modules 

The memristor-based cascaded nonlinear module (Figure 6) is 
placed in two different locations; consequentially are implemented 
as two types of input-output nonlinear relationships as illustrated in 
Figure 9. Note: the amplifier in the design is ideal for the input-
output relationship of . 
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Figure 9: Nonlinear output-input relationships of the 
proposed nonlinear activation function module 

At the different input interval, the slopes of the approximation 
linear function change correspondingly. By calculating the value of 
slopes at each input segment interval, we can obtain the resistance 
requirements at that specific input interval. Thereby the low 
resistance and high resistance state memristor can be further 
determined. The inflection points are corresponding to the set 
voltages of each memristor. By carefully designing the HRS, LRS, 
and set voltages of the memristors in the sequence shown in Figure 
6, the proposed nonlinear activation function modules can 
potentially implement a monotonic nonlinear function.  

 

Figure 10: (a) A piecewise approximation to hyperbolic 
tangent function with various segments; (b)A piecewise 

approximation to sigmoid function with various piecewise 
approximation; 

In this paper, we implemented the hyperbolic tangent and 
sigmoid nonlinear functions using the proposed memristor-based 
nonlinear activation module by applying this design methodology. 
Figure 10 illustrates the piecewise approximation approaches of 
two popular nonlinear functions: Hyperbolic tangent and Sigmoid 
function.  

4. SIMULATIONS AND RESISTANCE 
VARIATION IMPACT ANALYSIS  

In this paper, we applied the proposed nonlinear computing 
module to Long-short term memory (LSTM) for the purpose of 
evaluation and optimization as a benchmark due to its high 
computational resource demand [1]. LSTM is a particular recurrent 
neural network (RNN) by replacing conventional hidden layers 
with a pre-defined memory cell with data flow controlling gates as 
shown in Figure 11.  

 

Figure 11: Replacing the hidden layers with memory blocks 
and mathematical gates  

These data flow control gates are implemented by mathematical 
nonlinear functions. The typical updating equations of LSTM are 
listed in equation set (5).  

 

where:  
 : input vector to the memory cell at time step t;  
,  , , , , , , , : weight matrix;  

,  , ,  are bias vectors; 
 : is the value of the memory cell at time step t; 
 and  are values of the input gate and the candidate state of 

the memory cell at time step t;  
 : cell state at time step t; 
  and   are values of the output gate and the value of the 

memory cell at time t;  
 : forget gate vector; 

In order to evaluate the proposed nonlinear activation function 
module, we replaced the embedded nonlinear activation functions 
in TensorFlow with the proposed nonlinear activation of sigmoid 
and hyperbolic tangent functions (Figure 10). The classic digit 
number recognition application was performed with MNIST 
(Modified National Institute of Standards and Technology) dataset. 
The back-forward propagation method was used as the training 
algorithm for LSTM.  

The training accuracies at different time steps are shown in 
Figure 12. As illustrated in Figure 12, the training accuracies with 
five and three piecewise segments enhance with the time steps in 
an approximatively same trend. These trend match behaviors are 
observed in both sigmoid and hyperbolic tangent activation 
function piecewise approximations. The simulation results indicate 
that the linear piecewise approximation method of computing 
nonlinear function would not influence the training efficiency and 
accuracy. As shown in Figure 12, the proposed memristor-based 
nonlinear computing module can potentially be used in training 
process with no accuracy and efficiency compromise.  
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Figure 12: (a) Training accuracy on digit number recognition 
using hyperbolic tangent activation function with different 
piecewise approximations; (b) Training accuracy on digit 

number recognition using sigmoid activation function with 
different piecewise approximations  

As shown in the simulation results, the slopes of the piecewise 
linear function at each interval are determined and constant. 
However, in real operation situation, the switching behavior of 
memristor is not able to be determined. The resistances of high 
resistance state and low resistance state in each memristor 
switching cycle shows some levels of variations statistically [11, 
24-26]. These variations would influence the slope of the piecewise 
approximation of the activation function at each nonlinear 
calculation cycle, and can eventually influence the training 
accuracy. 

In order to investigate the effect of this resistance switching 
variation on training accuracy, we compared the training accuracy 
trends when different standard deviation values are given to the 
LRS/HRS of the memristors at each nonlinear computing cycle. 
The simulation results are illustrated in Figure 13. The training 
accuracies with different standard deviations share the same 
increase trend within initial 1000 time steps. After that time period, 
the training accuracies begin to increase with different accuracy 
trends. Higher variations significantly reduce the training accuracy 
and the accuracy degrades increasingly with the time steps, and 
hence decrease the training efficiency.  

 

Figure 13: (a) Training accuracies of five piecewise sigmoid 
function approximation with different variations of memristor 

resistance; (b) Training accuracies of three piecewise 
hyperbolic tangent function approximation with different 

variations of memristor resistance  

 

Figure 14: Test accuracy for five piecewise sigmoid function 
approximation with different variations of switching 

memristor resistance switching 

 

Figure 15: Test accuracy for three piecewise sigmoid function 
approximation with different variations of switching 

memristor resistance 

 

Figure 16: Test accuracy for three piecewise hyperbolic 
tangent function approximation function approximation with 

different variations of switching memristor resistance 
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The low training efficiency also significantly jeopardizes the 
quality of the final trained neural network. Figure 14 to Figure 16 
show the test accuracies vs the different standard deviations of the 
memristor resistance. With the higher standard deviations of the 
memristor resistance, the test accuracies also decline accordingly.   

5. CONCLUSIONS 
In this paper, we proposed, designed and evaluated a nanoscale 

memristor-based nonlinear computing module. The nonlinear 
computational operation is intensively and widely performed in 
deep learning and neuromorphic computing. We demonstrated that 
comparing the algorithm-based optimization and piecewise 
approximation methodology, the conducting this computational 
expensive operation through hardware implementations rather than 
proves to be much more efficient. The proposed nonlinear 
computing module is evaluated with the digit number recognition 
application through LSTM. The simulation results indicate that the 
training accuracy would not be degraded by using the proposed 
computing module without considering the resistance variation of 
the memristor. However, the training accuracy would be impacted 
by the large resistance variation of memristor on switching 
operation. The simulation results indicate that the testing accuracies 
decrease almost linearly with the increase of resistance variation of 
the memristor. Therefore, limiting the resistance variation of 
memristor in an acceptable range would be a design task for using 
the proposed nonlinear activation function module.  
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