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ABSTRACT

To accelerate the training efficiency of neural network-based
machine learning, a memristor-based nonlinear computing module
is designed and analyzed. Nonlinear computing operation is widely
needed in neuromorphic computing and deep learning. The
proposed nonlinear computing module can potentially realize a
monotonic nonlinear function by successively placing memristors
in a series combing with a simple amplifier. The proposed module
is evaluated and optimized through the Long Short-term Memory
with the digit number recognition application. The proposed
nonlinear computing module can reduce the chip area from
microscale to nanoscale, and potentially enhance the computing
efficiency to O(1) while guaranteeing accuracy. Furthermore, the
impact of the resistance variation of memristor switching on the
training accuracy is simulated and analyzed using Long Short-term
Memory as a benchmark.
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1. INTRODUCTION

Long Short-term Memory [1] (LSTM) is one of the most
important Recurrent Neural Networks (RNNs) architecture which
has various applications on neural languages processing [2],
machine translation [3], and speech recognition [4]. In LSTM, the
gradient vanishing problem is effectively avoided by replacing the
simple hidden layer unit of RNNs with a complex pre-designed
memory cell with the “Gates”. These “Gates” are implemented
mathematically with extra nonlinear functions and weight matrices.
Through updating the weights of the matrixes during the training
process, LSTM has the capability to control the data flow within
the layers, consequently to avoid the vanishing issue.

However, the complex memory cell structure and extra control
gates inevitably increase the computing workloads when updating
the weight matrix values, performing the nonlinear activation
function operations, and calculating the matrix products in the
training processes [1]. This increase of computing complexity
would further escalate the computing hardware efficiency
requirements in deep learning and neuromorphic computing.

Several optimization methods have been proposed to enhance
the training efficiency [5]. However, these algorithm-based
optimization methods cannot fundamentally prevent the drastic
increase of the computational complexity due to the inherent limits
of data processing strategy of the computing hardware platform.
Traditionally, the von Neumann based computing platform encodes
the data in a binary scheme, which is tailored intentionally for
Boolean and arithmetic calculations with a sequential data
processing and transportation strategy for a nonlinear calculation.
In general, the computational complexity of a nonlinear function
would be 0(n?) through numerical methods [6], where n is the
input data size. In order to enhance the machine learning training
efficiency, innovations of computing architectures and their
hardware implementations are required.



In this paper, we address these limitations of the computation
bottleneck by proposing and designing a novel memristor-based
nonlinear activation function hardware. Through the physical
implementation of the nonlinear computing, the nonlinear
activation functions can be calculated potentially with O(1)
computational complexity due to the elimination of numerical
methods which require large operation cycles [6-8]. Compare to
existing hardware nonlinear activation implementations [9, 10], the
proposed design utilizes emerging device memristor that can
reduce the chip area to nanoscale and lead to a lower power
consumption [11]. Furthermore, by careful designing the set
voltage, high resistance state (HRS), and low resistance state (LRS)
of the memristors in the nonlinear module, the proposed memristor-
based nonlinear module potentially can implement a monotonic
nonlinear function.

The proposed nonlinear computing module is evaluated with an
application of digit number recognition based on LSTM. The
simulation results indicate that the proposed nonlinear computing
module with no significant accuracy compromise can complete the
training task. Furthermore, the resistance variation influence of
memristors in the modules on training accuracy is investigated and
analyzed.

2. THE SWITCHING BEHAVIOR OF THE
CASCADED MEMRISTORS SWITCHING

The nonlinear activation function is realized through operations
on cascaded memristors [12]. The memristor is generally fabricated
in a metal-insulator-metal (MIM) configuration with the metals on
top and bottom serving as terminals. If the applied stimulus signal
on these terminals excesses a specific threshold (set voltage), the
resistance of the memristor can be switched from high resistance
state (HRS) to low resistance state (LRS). This switching behavior
is due to the formation of the conductive filaments (CFs) in the
insulator material between two terminals.

Not like other conventional memristor configurations with only
one memristor like 1TIR or 2TIR, the proposed nonlinear
computing module needs to perform switching behavior in a
cascaded memristor configuration. To experimentally verify the
switching behavior in this cascaded configuration, we conducted an
I-V characteristics test of a metal-insulator-metal (MIM) device
structure arranged in a crossbar array. In this crossbar structure,
Copper (Cu) is used as a top metal electrode, oxygen-deficient
tantalum oxide (TaOx) as solid electrolyte and Rhodium (Rh) as an
inert bottom electrode with a thin Chromium (Cr) layer as a glue
layer between Rhodium and the subjacent oxidized silicon wafer.
The device was fabricated by the Micro and Nanofabrication
Laboratory of The Bradley Department of Electrical and Computer
Engineering at Virginia Tech [13].

The device has been characterized by monitoring the forming
voltage (Vform) when conductive filaments (CFs) are being formed
initially, the reset voltage, Vreset, the set voltage, Vset, and the
resistance of the filament Ron when CFs are formed. The applied
set conditions are: Icc=50 pA and the voltage ramp rate rr=2.0V/s,
reset conditions are: Icc=0.1 A, with voltage ramp rate rr= 0.2 V/s.
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During measurement of filament resistance, the test conditions are
Icc=5 pA with voltage ramp rate rr= 10 V/s and this test condition
ensures that the filament is not ruptured/modified by the reading
conditions[14].
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Figure 1: The switching states of the cascaded memristor
configuration (two memristors in series): (a) two cascaded
memristors without any bias voltage at pristine state; (b) two
cascaded memristors at LRS state (set process) (c) two
cascaded memristors at HRS state (reset process)

Two devices are connected in series through external flying
probe as shown in Figure 1. The diagram of the experimental setup
is illustrated in Figure 2. The device combination shows switching
behavior with successful set and reset operations as depicted in
Figure 3 and Figure 4, respectively. The measurement results and
test data are summarized in Table 1.

Two cables connected to analyzer

Keithley 4200-SCS i Analy

Figure 2: The experimental setup. Two probes are used to
apply appropriate bias connecting to semiconductor
parameter analyzer, while other two probes provide an
external connection for cascaded configuration

Table 1: Measurement results of two serially connected

devices
Vform 4V
Vset 285V
Ron(Top device) 1E+04 Q
Ron(Overall) 1E+04 Q
Vreset -3V
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Figure 3: I-V characteristics during set operation (two devices
connected serially through external probes)
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Figure 4: I-V characteristics during a reset operation (two
devices connected serially through external probes)

When a positive bias is applied (as shown in figure 1b), the
entire applied voltage is distributed across the devices. The
capacitive division principle determines the partial voltage drops
across the two individual devices. When the voltage is ramped up,
more and more Cu atoms of the top device are oxidized into Cu+
ions (Cu—Cu+t+e), drift towards inert bottom electrode under the
influence of high applied electric field. Eventually, Cu+ ions are
deposited on the surface of Rh electrode as Cu atoms. Over time
Cu atoms stack on top of each other grows vertically and eventually
connects the top and bottom electrode and form a conducting
filament (CF). Now, the device changes from high resistance state
(HRS) to low resistance state (LRS) and the device is in so-called
on-state (LRS). As soon as one of the devices moves to LRS, the
entire stimulus voltage is applied across the remaining devices
which are still on HRS. This relatively high electric field causes the
conducting filament formation relatively faster for the subsequent
devices illustrated in Figure 1(b). During the experiments of our
serially connected devices, this process happened so quickly that
we could not distinguish them as separate instances. Now if we
ramp up the reversed voltage as connected in Figure 1(c). At the
critical voltage Vreset, the current through the devices reaches a
critical current (Ireset), the filaments of one or all the devices are

ruptured and the device switches from LRS to HRS due to Joules
heating. Then the device is restored to an off-state (HRS). In our
experiments, the CFs in two memristors were ruptured that has
been confirmed through monitoring the resistance of two
memristors individually. As more and more devices are connected
serially, higher and higher voltage needs to be applied to them since
they are distributed across all the devices connected in series.

3. MEMRISTOR-BASED NONLINEAR
FUNCTION MODULE DESIGN

The various types of memristors can be formed with different
geometries, material combinations, and set/reset voltages [15, 16].
The value of the set voltage highly depends upon the memristor’s
thickness and material combinations [17, 18]. The low resistance
state and large resistance state distribution of state-of-art fabricated
memristors are summarized in Figure 5 [19]. The memristor index
represents the fabricated memristors. The red left spot indicates the
low resistance, meanwhile, the blue right spot represents the high
resistance of the memristor. Figure 5 indicates that the values of
LRS and HRS of the memristor are the controllable design
parameters. It is worthy to note that the resistance variations of the
LRS and HRS are mainly dependent by the various materials and
different memristor sizes. Integrating multiple materials in
memristor fabrication has been demonstrated in several groups[20-
22].
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Figure 5: The memristor low resistance state and large
resistance state distribution

With the condition of the controllable set voltage and LRS/HRS,
we proposed a memristor-based nonlinear module by placing the
memristors with various set voltages in cascade as illustrated in
Figure 6. In this nonlinear module, the total resistance can be
modified corresponding to the applied current stimulus since each
memristor in the series can be breaking down (soft breaking down)
at different levels of the current stimulus.
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Figure 6: The memristor-based nonlinear module

In the initial state, the total resistance of the module R;y;tq; is @
sum of the total resistance of the memristors at their high resistance
state (HRS) given as the following equation:

Rinitar = R + RD 4+ RP 4+ 4+ RY (1)

where RI(_,k) is the high resistance state value of the k-th

memristor in the sequence; R,Ek) is the low resistance state value of
the k-th memristor in the sequence; n is the total number of the
memristors; and the k is the memristor index, which is also
corresponding to the set voltage. This means the set voltage of k-th
memristor is always lower than the (k+1)-th memristor.

With the increment of the applied current stimulus signal, the
memristors would reach their set voltages sequentially.
Correspondently, the memristors with lower set voltages
sequentially switch from HRS to LRS. The equation representing
the total resistance of the module during this breaking process is:

R =R® + -4 RM 4 RED .4 gD @)

By precise designing the resistance difference between HRS

and LRS for each memristor (Rg{) —R,Ek) = AR®), we can
manipulate the total resistance decreasing rate of the nonlinear
module. Since the memristors configuration is in series, the current
in each memristor is unique, which is used as the input stimulus
signal. Thus, the total resistance of the memristor-based current
nonlinear module is summarized using the equations:

I =k XAl

R=(n—m)RH +mRL (4)

Where

R is the total resistance of nonlinear module;

Ry is the high resistance value of each memristor;

R, is the low resistance value of each memristor;

n is the total number of memristors in the module;

k is the step index whose value is from 0 to n;

Al is an interval of threshold current values between two
consecutive memristor (Igp, — Ien,_, = Al ), where Iy, is the
threshold value of Ath memristor.

Figure 7 shows the simulation resistance switching behavior of
the proposed module with different decrease rate. The number of
the memristors in series is ten. In Figure 7, the breaking step is
defined as how many memristors are in their LRS. When all the
memristors switch to their LRS, the total resistance would be stay

constant in the sum of their low state resistances.

Resistance[k(]

Breaking Step

Figure 7: Nonlinear resistance switching behavior with
various decreasing rate (Ten memristors).

In a digital computing system, a nonlinear function is generally
calculated through a piecewise linear approximation method [23],
in which the input domain of a nonlinear function is partitioned into
several small segments. In each segment, the output is calculated
through a linear approximation. The accuracy of the piecewise
linear approximation highly depends upon the segmentation
resolution. Inspired by this piecewise linear approximation, the
slope of the linear relation of each segment of the input domain can
be simulated with a resistance value. If we correlate the segments
of the input domain with the breaking step values in Figure 7, we
can enable the resistance of the memristor-based nonlinear module
continually changing corresponding to the stimulus at each
partitioned input domain.

By adding this specified designed memristor-based nonlinear
module in an amplifier, we designed a nonlinear function
computing module as shown in Figure 8.

Nonlinear Module

Ry

R Nonlinear

input Module

output input
output

(b)

(2)
Figure 8: Nonlinear activation function modules

The memristor-based cascaded nonlinear module (Figure 6) is
placed in two different locations; consequentially are implemented
as two types of input-output nonlinear relationships as illustrated in
Figure 9. Note: the amplifier in the design is ideal for the input-
output relationship of V, = —(Rf /R1)R;.
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Figure 9: Nonlinear output-input relationships of the
proposed nonlinear activation function module

At the different input interval, the slopes of the approximation
linear function change correspondingly. By calculating the value of
slopes at each input segment interval, we can obtain the resistance
requirements at that specific input interval. Thereby the low
resistance and high resistance state memristor can be further
determined. The inflection points are corresponding to the set
voltages of each memristor. By carefully designing the HRS, LRS,
and set voltages of the memristors in the sequence shown in Figure
6, the proposed nonlinear activation function modules can
potentially implement a monotonic nonlinear function.
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Figure 10: (a) A piecewise approximation to hyperbolic
tangent function with various segments; (b)A piecewise
approximation to sigmoid function with various piecewise
approximation;

In this paper, we implemented the hyperbolic tangent and
sigmoid nonlinear functions using the proposed memristor-based
nonlinear activation module by applying this design methodology.
Figure 10 illustrates the piecewise approximation approaches of
two popular nonlinear functions: Hyperbolic tangent and Sigmoid
function.

4. SIMULATIONS AND RESISTANCE
VARIATION IMPACT ANALYSIS

In this paper, we applied the proposed nonlinear computing
module to Long-short term memory (LSTM) for the purpose of
evaluation and optimization as a benchmark due to its high
computational resource demand [1]. LSTM is a particular recurrent
neural network (RNN) by replacing conventional hidden layers
with a pre-defined memory cell with data flow controlling gates as
shown in Figure 11.

Input gate

Forget gate

Input

Figure 11: Replacing the hidden layers with memory blocks
and mathematical gates

These data flow control gates are implemented by mathematical
nonlinear functions. The typical updating equations of LSTM are
listed in equation set (5).

ft =0 (W}xt + Ufht_]_ + bf)
iy = o(Wixe + Uihe—y + by)
0y = c(Wpx; + Uphy—y + b,)
Ce=feoCg+igo Gy
h; = oy o tanh(C;)
C, = tanh(Wox, + U he_q + b,)

)

where:

X; : input vector to the memory cell at time step t;

Wi, Wr , We, Wy, U, Up, U, Uy, V,: weight matrix;

b, bs , be, b, are bias vectors;

h; : is the value of the memory cell at time step t;

iy and €, are values of the input gate and the candidate state of
the memory cell at time step t;

C; : cell state at time step t;

o, and h, are values of the output gate and the value of the
memory cell at time t;

fz : forget gate vector;

In order to evaluate the proposed nonlinear activation function
module, we replaced the embedded nonlinear activation functions
in TensorFlow with the proposed nonlinear activation of sigmoid
and hyperbolic tangent functions (Figure 10). The classic digit
number recognition application was performed with MNIST
(Modified National Institute of Standards and Technology) dataset.
The back-forward propagation method was used as the training
algorithm for LSTM.

The training accuracies at different time steps are shown in
Figure 12. As illustrated in Figure 12, the training accuracies with
five and three piecewise segments enhance with the time steps in
an approximatively same trend. These trend match behaviors are
observed in both sigmoid and hyperbolic tangent activation
function piecewise approximations. The simulation results indicate
that the linear piecewise approximation method of computing
nonlinear function would not influence the training efficiency and
accuracy. As shown in Figure 12, the proposed memristor-based
nonlinear computing module can potentially be used in training
process with no accuracy and efficiency compromise.
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Figure 12: (a) Training accuracy on digit number recognition
using hyperbolic tangent activation function with different
piecewise approximations; (b) Training accuracy on digit
number recognition using sigmoid activation function with
different piecewise approximations

As shown in the simulation results, the slopes of the piecewise
linear function at each interval are determined and constant.
However, in real operation situation, the switching behavior of
memristor is not able to be determined. The resistances of high
resistance state and low resistance state in each memristor
switching cycle shows some levels of variations statistically [11,
24-26]. These variations would influence the slope of the piecewise
approximation of the activation function at each nonlinear
calculation cycle, and can eventually influence the training
accuracy.

In order to investigate the effect of this resistance switching
variation on training accuracy, we compared the training accuracy
trends when different standard deviation values are given to the
LRS/HRS of the memristors at each nonlinear computing cycle.
The simulation results are illustrated in Figure 13. The training
accuracies with different standard deviations share the same
increase trend within initial 1000 time steps. After that time period,
the training accuracies begin to increase with different accuracy
trends. Higher variations significantly reduce the training accuracy
and the accuracy degrades increasingly with the time steps, and
hence decrease the training efficiency.
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Figure 13: (a) Training accuracies of five piecewise sigmoid
function approximation with different variations of memristor
resistance; (b) Training accuracies of three piecewise
hyperbolic tangent function approximation with different
variations of memristor resistance
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Figure 14: Test accuracy for five piecewise sigmoid function
approximation with different variations of switching
memristor resistance switching

Three Piecewise Sigmoid Function Test Accuracy

4
©
@

o
©

o
Y
a

o
©

e
S
a

Accuracy
°
2

o

>

a
T
L

=3
>
T

0.55 -

005 01 015 02 025 03 035 04 045 05 055

> > »

(o4

Figure 15: Test accuracy for three piecewise sigmoid function
approximation with different variations of switching
memristor resistance
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The low training efficiency also significantly jeopardizes the
quality of the final trained neural network. Figure 14 to Figure 16
show the test accuracies vs the different standard deviations of the
memristor resistance. With the higher standard deviations of the
memristor resistance, the test accuracies also decline accordingly.

5. CONCLUSIONS

In this paper, we proposed, designed and evaluated a nanoscale
memristor-based nonlinear computing module. The nonlinear
computational operation is intensively and widely performed in
deep learning and neuromorphic computing. We demonstrated that
comparing the algorithm-based optimization and piecewise
approximation methodology, the conducting this computational
expensive operation through hardware implementations rather than
proves to be much more efficient. The proposed nonlinear
computing module is evaluated with the digit number recognition
application through LSTM. The simulation results indicate that the
training accuracy would not be degraded by using the proposed
computing module without considering the resistance variation of
the memristor. However, the training accuracy would be impacted
by the large resistance variation of memristor on switching
operation. The simulation results indicate that the testing accuracies
decrease almost linearly with the increase of resistance variation of
the memristor. Therefore, limiting the resistance variation of
memristor in an acceptable range would be a design task for using
the proposed nonlinear activation function module.
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