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ABSTRACT

Big-data analytics platforms, such as Hadoop, are appeal-
ing for scientific computation because they are ubiquitous,
well-supported, and well-understood. Unfortunately, load-
balancing is a common challenge of implementing large-
scale scientific computing applications on these platforms.
In this paper we present the design and implementation of
Libra, a Hadoop-based tool for comparative metagenomics
(comparing samples of genetic material collected from the
environment). We describe the computation that Libra
performs and how that computation is implemented using
Hadoop tasks, including the techniques used by Libra to
ensure that the task workloads are balanced despite non-
uniform sample sizes and skewed distributions of genetic
material in the samples. On a 10-machine Hadoop cluster
Libra can analyze the entire Tara Ocean Viromes of ~4.2
billion reads in fewer than 20 hours.
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1 INTRODUCTION

Microbial communities are comprised of diverse organ-
isms at varied abundances, which change over time due to
microbe-microbe interactions and ecosystem processes.
Capturing the details of these interactions, however, re-
mains elusive given that the vast majority of microbes
cannot be cultured [21,26]. Metagenomics, a method of
sequencing microbial DNA/RNA directly from the envi-
ronment, offers a path forward to analyze the complete
genetic repertoire of the microbial community - including
both novel and known species. Over the last decade the
cost of sequencing has decreased more than a million-fold
leading to a rapid influx of metagenomic data from diverse
environments, promising insight into novel organisms and
ecosystem function. However, this flood of sequencing
data has proven difficult to analyze due to its sheer vol-
ume.

Hadoop [1] is an implementation of the MapReduce [6]
algorithm that has been widely adopted for big-data ana-
lytics. MapReduce is a high-level programming abstrac-
tion that greatly simplifies the development and deploy-
ment of new analytical tools. Programmers implement
these tools in terms of “map” and “reduce” functions. Ha-
doop takes these functions and deploys them across large-
scale clusters of machines, allowing the machines to work
in concert to process large amounts of data. As a result,
programmers do not need specialized training in distribut-
ed systems and networking to implement large-scale
computations. In addition, Hadoop provides fault-
tolerance by reassigning the tasks on a failed machine to
other machines. Thus, Hadoop ensures that computation
will complete and data are protected even in the event of
machine failures.

The success of Hadoop has made it ubiquitous, well-
supported, and well-understood. This makes it an appeal-
ing platform for scientific computations because research-
ers can make use of the existing Hadoop infrastructure



and support mechanisms in the cloud, such as Amazon
EMR [29]. However, Hadoop was designed for big-data
analytics, not for scientific computation, which makes it
challenging to use for comparative metagenomics. In par-
ticular, some of the techniques Hadoop uses for balancing
workloads across tasks require modification.

In this paper we describe the design and implementa-
tion of Libra, a tool for performing comparative meta-
genomics on Hadoop. Libra is capable of performing all-
vs-all sequence analysis on large-scale datasets using a
variety of similarity/dissimilarity measures that simulta-
neously consider genetic distance and microbial abun-
dance. Libra provides efficient and scalable computation
for comparative metagenomics that can be used to discern
global patterns in microbial ecology. Further, Libra’s parti-
tioning can be used for load-balancing in any sequence
comparison of samples from human health to the envi-
ronment. On a 10-machine Hadoop cluster Libra can ana-
lyze the entire Tara Ocean Viromes of ~4.2 billion reads in
fewer than 20 hours.

2 SEQUENCING BACKGROUND

Metagenomics consists of comparing DNA samples col-
lected from the environment. DNA is a double helix struc-
ture composed of two complementary strands of nucleo-
bases. Each strand is a sequence of four characters,
‘AT, G’ and ‘C’, representing the four nucleobases ade-
nine, thymine, guanine, and cytosine, respectively. ‘A’-“T’
and ‘G’-‘C’ are paired in the complementary strands. Each
strand has an orientation, i.e., ‘5’-end to 3’-end, and com-
plementary strands have opposite orientations called the
forward and reverse-complement.

The sequence of A, T, G, and C nucleobases in a strand
of DNA is read by a sequencing machine and is called a
read. There is a limit, however, to the number of sequen-
tial nucleobases that sequencing technologies can produce
at high accuracy, which is currently a few hundred nucle-
obases. When computing the complete DNA sequence for
a particular organism this limit is overcome by producing
many overlapping reads of the DNA, then stitching them
together to produce the entire DNA sequence. In contrast,
in metagenomics the reads are produced from all the DNA
in the environmental sample, regardless of the organism
to which they belong.

Finally, a common way of analyzing the DNA in a met-
agenomic sample is through the statistical analysis of k-
mers. A k-mer — also known as an n-gram — is a sub-
string of length k, typically produced from every offset in

a string. In a string in length L, there exists (L-k+1) k-mers.

Also, there can exist at most CX unique k-mers in a string
comprised of C unique characters. k-mers are used in
many fields, such as computational linguistics, to retrieve

similar documents by comparing their k-mer compositions.

In Libra we use them to compare metagenomic samples.

3 COMPARATIVE METAGENOMICS

Measuring the distance — or similarity/dissimilarity — be-
tween samples is an important analysis in metagenomics.
By looking at the distance between samples from different
times or environments, we find correlations and bring
new insights for further research.

Traditionally, the distance between metagenomic sam-
ples has been measured by comparing the composition of
known organisms in the samples. This method requires
mapping the sequence data to known organisms using
reference databases. However, this is less effective in
large-scale metagenomics studies because a high percent-
age of sequence data is derived from unknown organisms
[12].

As a result, a widely accepted method of comparing ge-
nomic signatures compares k-mer compositions. The
method relies on three core tenets: (i) closely related or-
ganisms share k-mer profiles and cluster together, making
taxonomic assignment unnecessary [8,22], (i) k-mer
abundance is correlated with the abundance of an organ-
ism [25], and (iii) k-mers of sufficient length can be used
to distinguish specific organisms [9]. This method offers
high performance and precise results compared to tradi-
tional methods of analyzing only the known organisms.

The k-mer composition analysis is performed in two
steps: k-mer counting, and a distance matrix computation.
First, the abundance of each k-mer is determined in each
sample, and indices are constructed to provide an efficient
means of subsequently determining the abundance of a
particular k-mer in a particular sample. Second, the indi-
ces are used to compute a distance between every pair of
samples, such that the distance is inversely proportional
to the similarity between the samples. The distance is typ-
ically measured based on the abundance of k-mers by us-
ing various statistical functions. Libra implements Bray-
Curtis, Jensen-Shannon, and Cosine Similarity [4,14,15] as
distance metrics.

There are two known difficulties with k-mer-based dis-
tance computation related to the large number of k-mers
produced and the pairwise comparisons. First, approxi-
mately 500 million k-mers are produced in a one GB sam-
ple. As a result, today’s metagenomic datasets contain
hundreds of billions of k-mers (see Table 1). Also, in prac-
tice, k must be at least 20 base pairs (bp) to provide suffi-
cient accuracy. For example, if k is 20bp, there are 4%° pos-
sible k-mers. Considering the scale of today’s meta-
genomic datasets, such as the Tara Ocean Viromes (TOV)
dataset [3] shown in Table 1, processing this enormous
number of k-mers is challenging and requires massive
computation and storage resources.

Second, the number of sample pairs is quadratic in the
number of samples. There are n(n-1)/2 pairs of samples in
a dataset containing n samples, e.g. there are 903 pairs of
samples in the TOV dataset. Independently computing the



distance between each pair of samples is too computation-
ally expensive to be practical.

Table 1: Statistics of the Tara Ocean Viromes (TOV) dataset

Number of samples 43
Size of dataset 551.6 GB
Number of reads 4,194,402,268
Number of base pairs 403,891,365,808
Number of 20-mers 324,197,722,716

4 EXISTING APPROACHES

There are several k-mer counting tools available, such as
KMC2 [7] and DSK [20]. These tools are optimized to
count k-mers in a sample efficiently without requiring ex-
cessive RAM. They strive to use disks efficiently so as to
overcome insufficient RAM, and they compress the k-mer
data to reduce the storage required. However, these tools
are not suitable for large-scale metagenomics because they
need an increasingly powerful machine to keep pace with
the ever-growing size of metagenomic datasets. Also,
these tools merely count k-mers, the distance matrix is
computed separately.

Jellyfish [16] is a k-mer counting tool that takes ad-
vantage of multi-core machines. The tool is optimized to
perform on a multi-core machine using a multi-threaded
lock-free algorithm. Jellyfish also compresses the k-mer
data to overcome insufficient RAM. However, as with
KMC2 and DSK, the tool also is not suitable for large-scale
metagenomics because it requires more RAM as the meta-
genomic datasets grow.

Mash [17] is a distance computation tool. It solves the
scalability issue using subsampling. Mash creates smaller
sketches of the k-mer composition of samples using the
MinHash algorithm [5], compares these sketches, and
computes genetic distance using Jaccard similarity. This
greatly improves performance at the expense of accuracy,
as the sketches contain only a subset of the k-mers and
contain no information about their abundance in the sam-
ples. Thus, Mash measures genetic distance between sam-
ples without considering abundance (dominant vs rare or-
ganisms in the sample), which is central to microbial ecol-
ogy and ecosystem processes.

There are several k-mer counting tools that run on dis-
tributed environments, such as Kmerind [18] and Bloom-
fish [10]. They solve the scalability issue using distributed
computing, allowing them to run faster than the most
widely accepted tool, Jellyfish. Kmerind achieves high per-
formance using MPI [23] which is a lightweight distribut-
ed computing framework. Algorithms based on MPI usual-
ly out-perform MapReduce-based algorithms for moderate
sizes of data [13]. However, the lack of fault-tolerance
makes Kmerid susceptible to failures. Bloomfish improves
performance by co-designing the I/O of its base platform,
Mimir [11] which is a new implementation of MapReduce

over MPL This makes it unable to use standard MapRe-
duce clusters.

A recently developed distance computation tool, Simka
[2] also uses distributed computing. However, Simka has
three important limitations. First, tasks for the k-mer
count are distributed by sample. This can cause workload
imbalance when the samples vary in size or there are few-
er samples than machines in the cluster. Second, the k-mer
abundances produced by different machines must be ag-
gregated, involving large amounts of disk I/O. Third, Sim-
ka requires specific schedulers, such as the Sun Grid En-
gine (SGE) [24]. In contrast, Libra makes use of the stand-
ard Hadoop infrastructure to distribute tasks across ma-
chines and to aggregate the results into the distance ma-
trix.

5 LIBRA OVERVIEW

Libra is implemented in three steps using three different
MapReduce jobs — 1) k-mer histogram construction, 2) in-
verted index construction (k-mer counting), and 3) dis-
tance matrix computation (scoring). Figure 1 shows the
Libra workflow.
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Figure 1: Libra workflow.

In the first step Libra constructs a k-mer histogram con-
taining the distribution of k-mers for each sample. In the
Map phase, a separate Map task is spawned for each data
block of the input sample files. The Map tasks calculate
the k-mer histograms for the blocks in parallel. In the Re-
duce phase, a Reduce task is spawned to aggregate the
partial k-mer histograms produced by the Map tasks to
produce the complete histogram.

Libra then constructs the inverted index in parallel. In
the Map phase, a separate Map task is spawned for every
data block in the input sample files. Each Map task gener-
ates the k-mers from the sequences in its data block, then
passes the k-mers to the Reduce tasks. In the Reduce
phase, the k-mer histograms are used to partition the k-



mer space. A separate Reduce task is spawned for each
partition and in the Shuffle step a custom Partitioner
routes the produced k-mers to the proper Reduce tasks
based on their partitions. Each Reduce task then counts
the k-mers it receives and produces an index chunk. As a
result, each index chunk is stored as a separate file in the
Hadoop MapFile [28] format. The MapFile is well-suited
for Libra as it stores key-value pairs in key order, allowing
for binary search of the keys.

Finally, the distance matrix is computed by distributing
the work based on the k-mer histograms. The k-mer his-
togram is used to split the k-mer space, and a separate
Map task is spawned for each split. As a result, each Map
task produces an output file containing partial contribu-
tions to the distance matrix. Libra merges the partial con-
tributions from the files to produce the complete distance
matrix.

6 LOAD BALANCING IN LIBRA

Non-uniform k-mer distributions is a major source of task
workload imbalance when performing comparative meta-
genomics on Hadoop. It must be addressed by Libra to en-
sure balanced workloads among the tasks and avoid bot-
tlenecks.

6.1 k-mer counting and partitioning

In the Map phase, each Map task generates k-mers from
the sequences in its input and for each k-mer produces a
record containing the k-mer, a FileID, and the k-mer abun-
dance. The k-mer is stored in a canonical form — either
the forward or the reverse-complement form of the k-mer,
whichever comes first lexicographically. This is a well-
known technique that avoids storing both the forward and
reverse-complement versions of the same k-mer. The
FileID uniquely identifies the sample file and avoids stor-
ing the entire filename.

Each Reduce task receives k-mer records from the Map
task, computes the total abundance of each k-mer, and
stores the k-mers and their abundances in an index file.
The Partitioner takes the k-mers from the Map tasks and
assigns them to the proper Reduce tasks. It is important to
partition the k-mer space so that the Reduce tasks have
balanced workloads. There are several methods of parti-
tioning the k-mers, but they may not lead to balanced
workloads.

Partitioning by dividing the k-mer space into equal
ranges is the simplest approach. However, this fixed-range
partitioning can cause imbalance in the Reduce tasks be-

cause the k-mer distributions are not uniform (Figure 2-A).

To make matters worse, after converting k-mers to their
canonical forms, the distribution becomes highly skewed
(Figure 2-B).

Another alternative is partitioning k-mers by their hash.

Hash-based partitioning is a widely-accepted approach for
dealing with non-uniform key distribution in Hadoop,

4

however, Libra does not do this because it results in dif-
ferent assignments of k-mers to partitions depending on
the number of partitions. This makes inverted indices that
have different numbers of partitions (e.g., constructed in
different runs of Libra) difficult to join during the distance
matrix computation, reducing the reusability of the indi-
ces. In addition, hashing makes k-mers unordered across
index chunks.

Libra’s approach to partitioning the k-mers is based on
variable-size k-mer ranges whose size is determined by an
approximated k-mer distribution under the assumption
that workload of a partition is proportional to the number
of k-mers in it. To construct the approximated k-mer dis-
tribution, called the k-mer histogram, a separate MapRe-
duce job is launched prior to the main Libra computation.
In the job, k-mers are extracted from samples and canoni-
calized. However, to reduce the overhead only the first x
characters of the k-mers are used in the histogram. Based
on the k-mer histogram the k-mer space is partitioned to
have approximately an equal total number of k-mers in
each partition.

A. Distribution of raw k-mers B. Distribution of canonical k-mers

ABUNDANCE (Millions)

ABUINDANCE (Millions)

BATACE

kamers k-mers:

Figure 2: Distribution of k-mers in a sample. (Sta-
tion18_SUR.fa of Tara Ocean Viromes dataset, k=20)

We performed an experiment to determine the sensitiv-
ity of the partitioning to the length of the prefix, x. Figure
3 shows changes of the standard deviation of k-mers in
partitions (3-A) and the size of histogram (3-B) for differ-
ent values of x (4-8) for k=20 using a real sample in the
Tara Ocean Viromes (TOV) dataset. Then, the k-mer space
was divided into 100 partitions based on the histograms,
and the k-mers in each partition were counted. The work-
load imbalance was measured by the standard deviation of
the number of k-mers in the partitions (3-A). The higher
the standard deviation, the more the workloads are imbal-
anced. The results show that x=6 is sufficient to reduce
the workload imbalance. Also, a k-mer histogram with x=6
requires only 32KB of space (4°<8 bytes) so that it easily
fits in memory. No meaningful runtime difference was ob-
served for different values of x. This is because both I/O
workloads for reading a large sequence file and computa-
tional workloads for producing k-mers do not change for
different values of x — only the number of counters re-
quired vary. Using x=6 for k=20 also showed good results
in another experiment using real samples in the Pacific



Ocean Viromes (POV) dataset [12]. As a result, we chose
x=6 in this work.
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Figure 3: Changes of the standard deviation of k-mers in
partitions and the size of k-mer histogram for different k-
mer prefix lengths. (Station18_SUR.fa of Tara Ocean Vi-
romes dataset, k=20)

6.2 Distance matrix computation (scoring)

To compute the distance matrix, Libra uses a vector space
model [20] that produces a vector for each sample. Each
dimension of a vector corresponds to a unique k-mer, and
its value is the weight given to the corresponding k-mer in
the scoring function. The weight is calculated from the k-
mer abundance in the inverted indices which uses func-
tions such as logarithmic weighting to dampen the effect
of high-frequency k-mers. The distance matrix is then
computed using various distance functions such as Bray-
Curtis, Jensen-Shannon, and Cosine Similarity.

For example, Cosine Similarity determines the similari-
ty between the two samples from the cosine of the angle
between their vectors. When the angle is zero (i.e., the
vectors are identical except for their magnitude) the co-
sine is one and less than one otherwise. Therefore, the dis-
tance between two samples is 1-similarity.

Cosine Similarity has two features that make it useful in
comparative metagenomics. First, it has high parallelism.
The distance can be efficiently computed in parallel by di-
viding the vectors into ranges of dimensions. The contri-
butions of each range are computed in parallel, and the
contributions are merged in a post-processing step into
the distance matrix. Second, the size of a sample does not
alter the distance. This means that samples with different
sequencing depths can be compared without requiring
normalization.

The distance between two samples requires multiplying
the weights at each dimension. Therefore, only shared k-
mers (i.e., those with non-zero abundance in both samples)
contribute to the final score, making efficient determina-
tion of shared k-mers important for high performance. In
Libra, a sort-merge join is used to detect shared k-mers.
Because the inverted indices have entries already in lexi-
cographic order by k-mer, the sort-merge join can be per-
formed efficiently.

The same histogram-based k-mer range partitioning is
used to split inverted indices so that they have approxi-

mately equal number of k-mers in each split (Figure 4),
under the assumption that the workload is proportional to
the number of k-mers in the split. In fact, the workload is
proportional to the number of unique k-mers in the split;
therefore, it would be more accurate to use the distribu-
tion of unique k-mers. However, the construction of a
unique k-mer histogram requires significant computation,
and the total k-mer histogram works well enough.

A split (p) is assigned for the same k-mer range over all
inverted indices. Also, a split can span multiple chunks in
an inverted index depending on the k-mer distribution of
the sample. Nevertheless, the input-splitting guarantees
that a k-mer shared between samples always occurs in the
same split because inverted indices have their k-mers in
lexicographic order.

k-mer distribution
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Figure 4: Histogram-based input-splitting in distance ma-
trix computation.

Libra computes the similarity between every pair of
samples in the inverted indices. The sort-merge join al-
lows shared k-mers to be found in linear time in the total
size of the samples. For those samples that share a particu-
lar k-mer, the contributions to the final score are comput-
ed between every pair of samples. This requires quadratic
time in the number of samples that share the k-mer. While
this is potentially a large overhead, in practice it has neg-
ligible impact on overall performance because relatively
few samples share a k-mer and the pairwise computation
consists of simple multiplication.

7 RESULTS

7.1 Experimental setup

We benchmarked Libra on a Hadoop cluster consisting of
10 physical machines (9 MapReduce worker machines).
Each machine contains 2 Intel Xeon X5670 2.93GHz CPUs
(each with 6 cores), 128 GB of RAM, and is configured to
run a maximum of 7 YARN containers simultaneously
each with 10 GB of RAM. The remaining system resources
are reserved for the operating system and other Hadoop
services.

To demonstrate the scale and performance of Libra, we
analyzed 43 Tara Ocean Viromes (TOV) from the 2009-



2011 Expedition [3], representing 26 sites, 43 samples, 4.2
billion reads, and 324 billion 20-mers (Table 1).

To demonstrate Libra’s load-balancing, we used a sub-
set of the Tara Ocean Viromes (TOV) that consists of 10
random samples (119.2 GB in total). The subset is used be-
cause the full dataset could not be processed with fixed-
range partitioning, which caused the intermediate output
of some partitions to exceed the disk capacity. We made a
change to MapReduce job configuration to facilitate accu-
rate measurements. During the inverted index construc-
tion we configured Hadoop to not run the Reduce tasks
until the Map tasks completed (i.e., Reduce tasks could not
overlap Map tasks). By default, Hadoop will start some
Reduce tasks before the Map tasks complete, causing the
Reduce tasks to wait for input and disturbing our meas-
urements.

In all experiments we configured Libra to have 256 par-
titions. We chose this number to balance the overhead of
creating Map and Reduce processes for each partition
against the overhead of sorting each partition in the Shuf-
fle step. Too many partitions cause excessive task creation
overhead, whereas too few cause excessive sorting over-
head. As a result, 256 Reduce tasks were created during
the inverted index construction, 256 index chunks were
produced, and 256 map tasks were created during the dis-
tance matrix computation. We performed the same
benchmark with the same samples three times and aver-
aged the results.

7.2 Workload distribution during the inverted
index construction

Figure 5 shows the durations of Reduce tasks during the
inverted index construction using different partitioning
schemes. With histogram-based partitioning 100% of the
Reduce tasks completed in less than 1100 seconds, and 84%
of the tasks completed in 700 to 900 seconds. In compari-
son, fixed-range partitioning had much higher variance,
with 70% of the tasks finishing in less than 900 seconds,
but with a long tail out to 4800 seconds. This variance
leads to the larger run times of the overall computation.

Figure 6 shows the sizes of the index chunks produced
by the Reduce tasks during inverted index construction.
With histogram-based partitioning most chunks are in the
range 1100-1300 MB, whereas with fixed-range partition-
ing the chunk sizes are more widely distributed. This leads
to the long tail of task durations seen with fixed-range
partitioning.

7.3 Workload distribution in the distance ma-
trix computation

Figure 7 shows the durations of Map tasks in the distance
matrix computation using different input splitting algo-
rithms. With histogram-based input-splitting most of the
Map tasks completed within +60 seconds of the average

while the fixed-range partitioning showed imbalanced du-
rations between Map tasks.
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Figure 5: Reduce task durations during inverted index
construction.
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Figure 7: Map task durations during the distance matrix
computation.

The above results show that Libra’s histogram-based
load-balancing is superior to fixed-range load balancing,
and importantly reduced the overall run time. Table 2



shows that the using k-mer histograms to load-balance
improved overall execution time by more than 10%, even
when accounting for the additional time required to con-
struct the histogram.

Table 2: Comparison of elapsed times for the differ-
ent load-balancing approaches (c=standard devia-

tion).
Step Histogram Fixed-
range
. . 0:08:20
k-mer histogram construction (6=0:00:08) N/A

Inverted index construction 2:38:52 3:03:34
(0=0:00:38)  (0=0:06:15)

Distance matrix computation 0:15:36 0:17:14
P (0=0:00:06)  (0=0:00:03)

3:02:48 3:20:47
Total (6=0:00:27)  (0=0:06:11)

7.4 Complete Tara Ocean Viromes analysis

The complete analysis of ~4.2 billion reads in the Tara
Ocean Viromes (TOV) dataset finished in just under 20
hours (Table 3). The inverted index construction (k-mer
counting) consumed the most time. This is because the
shuffle step involves transferring more than 4.7 TB be-
tween the Map and Reduce tasks (Table 4, Reduce Shuftle).
By comparison, once the inverted indices are constructed,
computing the distance matrix (43x43) for the full Tara
Ocean Viromes dataset required less than 2 hours.

Table 3: Elapsed times for Libra based on the full
Tara Ocean Viromes (TOV) dataset (c=standard devi-
ation)

Step Elapsed Time
k-mer histogram construction 0:40:52 (0=0:04:16)
Inverted index construction 17:29:18 (0=0:30:34)
Distance matrix computation 1:45:45 (0=0:44:51)
Total 19:55:55 (0=1:09:30)

8 DISCUSSION

Spark [27] is increasingly popular for large-scale data
analysis because of its outstanding performance caused by
keeping all data in memory. Partitioning strategies used in
Libra can be easily ported to Spark because both Hadoop
and Spark have similar partitioning interfaces. With our
partitioning strategies, Resilient Distributed Datasets
(RDDs) can be partitioned and distributed over a Spark
cluster evenly. This leads Spark operations (i.e., distance
matrix computation) to perform efficiently by balancing
workloads. Keeping all data in memory eliminates the disk
I/O for intermediate data (Table 4 Reduce Shuffle). Never-
theless, we think Hadoop is still an attractive platform be-

cause it doesn’t have the same memory requirements as
Spark, and therefore doesn’t require as many machines.
Performing the analysis using Spark wasn’t feasible on the
hardware we had available, and the problem will only get
worse as the datasets get larger.

Table 4: I/O during inverted index construction of the
full Tara Ocean Viromes (TOV) dataset

1/0 Type Size
HDFS Read 552.76 GB
HDFS Write 1323.85 GB
Reduce Shuffle 4761.20 GB

9 CONCLUSION

Scientific computing for biology is increasingly driven by
large-scale next generation sequencing datasets. It is now
possible to generate, aggregate, archive, and share da-
tasets that are terabytes and even petabytes in size. Libra
is a Hadoop-based tool for performing comparative meta-
genomics. Libra uses Hadoop because it is ubiquitous,
well-supported, and well-understood. However, load-
balancing is a common challenge when using Hadoop for
large-scale scientific computing, caused by task durations
that are not proportional to the input data size. To solve
this problem, Libra uses histogram-based load-balancing
that pre-computes a histogram of the k-mers present in
the input samples. This histogram is used to balance loads
in subsequent phases of the computation, and more than
offsets the cost of constructing the histogram. Using his-
togram-based load-balancing, Libra is able to improve the
overall execution time to perform comparative meta-
genomics on a subset of the Tara Ocean Viromes samples
by 10% versus a fixed-range load-balancing scheme.
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