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ABSTRACT 

Background: Shotgun metagenomics provides powerful insights into microbial community 

biodiversity and function. Yet, inferences from metagenomic studies are often limited by dataset 

size and complexity and are restricted by the availability and completeness of existing databases. 

De novo comparative metagenomics enables the comparison of metagenomes based on their total 

genetic content. 

Results: We developed a tool called Libra that performs an all-vs-all comparison of metagenomes 

for precise clustering based on their k-mer content. Libra uses a scalable Hadoop framework for 

massive metagenome comparisons, Cosine Similarity for calculating the distance using sequence 

composition and abundance while normalizing for sequencing depth, and a web-based 

implementation in iMicrobe (http://imicrobe.us) that uses the CyVerse advanced 

cyberinfrastructure to promote broad use of the tool by the scientific community.  

Conclusions: A comparison of Libra to equivalent tools using both simulated and real metagenomic 

datasets, ranging from 80 million to 4.2 billion reads, reveals that methods commonly implemented 

to reduce compute time for large datasets—such as data reduction, read count normalization, and 

presence/absence distance metrics—greatly diminish the resolution of large-scale comparative 

analyses. In contrast, Libra uses all of the reads to calculate k-mer abundance in a Hadoop 

architecture that can scale to any size dataset to enable global-scale analyses and link microbial 

signatures to biological processes. 

Keywords: metagenomics, Hadoop, k-mer, distance metrics, clustering  
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INTRODUCTION 

Over the last decade, scientists have generated petabytes of genomic data to uncover the role of 

microbes in dynamic living systems. Yet to understand the underlying biological principles that 

guide the distribution of microbial communities, massive ‘omics datasets need to be compared with 

environmental factors to find linkages across space and time. One of the greatest challenges in these 

endeavors has been in documenting and analyzing unexplored genetic diversity in wild microbial 

communities. For example, fewer than 60% of 40 million non-redundant genes from the Global 

Ocean Survey (GOS) and the Tara Oceans Expeditions match known proteins in bacteria [1,2]. Other 

microorganisms such as viruses or pico- eukaryotes that are important to ocean ecosystems are 

even less well defined (e.g. < 7% of reads from viromes match known proteins [3]). This is largely 

due to the fact that these organisms are unculturable and reference genomes do not exist in public 

data repositories. Thus, genome-sequences from metagenomic data await better taxonomic and 

functional definition. Consequently, even advanced tools such as k-mer based classifiers that 

rapidly assign metagenomic reads to known microbes miss “microbial dark matter” that comprises 

a significant proportion of metagenomes [4–6]. 

De novo comparative metagenomics offers a path forward. In order to examine the complete 

genomic content, metagenomic samples can be compared using their sequence signature (or 

frequency of k-mers) (list of tools available in Supplemental Table 1A). This approach relies on 

three core tenets of k-mer-based analytics: (i) closely related organisms share k-mer profiles and 

cluster together, making taxonomic assignment unnecessary [7,8], (ii) k-mer frequency is 

correlated with the abundance of an organism [9], and (iii) k-mers of sufficient length can be used 

to distinguish specific organisms [10]. In 2012, Compareads [11] method was proposed, followed 

by Commet [12]. Both of these tools compute the number of shared reads between metagenomes 
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using a k-mer-based read similarity measure. The number of shared reads between datasets is then 

used to compute a Jaccard distance between samples.  

Given the computational intensity of all-vs-all sequence analysis, several other methods have been 

employed to reduce the dimensionality of metagenomes and speed up analyses by creating unique 

k-mer sets and computing the genetic distance between pairs of metagenomes, such as MetaFast 

[13] and Mash [14]. The fastest of these methods, Mash [15], indexes samples by unique k-mers to 

create size-reduced sketches, and compares these sketches using the MinHash algorithm [16] for 

computing a genetic distance using Jaccard similarity. Yet, the tradeoff for speed is that samples are 

reduced to a subset of unique k-mers (1k by default) that may lead an unrepresentative k-mer 

profile of the samples. Further, given that Mash uses Jaccard similarity only the genetic distance 

between samples is accounted for (or genetic content in microbial communities) without 

considering abundance (dominant vs rare organisms in the sample) which is central to microbial 

ecology and ecosystem processes [17]. Sourmash [18], a toolkit for manipulating MinHash sketches, 

uses the same underlying algorithm and distance metric as Mash and therefore has the same 

limitations. 

Recently, Simka[15] was developed to compute a distance matrix between metagenomes by 

dividing the input datasets into abundance vectors from subsets of k-mers, then rejoining the 

resulting abundances in a cumulative distance matrix. The methodology can be parallelized to 

execute the analyses on a high-performance computing cluster (HPC). Simka also provides various 

ecological distance metrics to let the user choose the metric most relevant to their analysis. 

However, the computational time varies based on the distance metric, where some distances scale 

linearly and other distances metrics, like Jensen-Shannon, scale quadratically as additional samples 

are added [15].  Moreover, Simka normalizes datasets in an all-vs-all comparison by reducing the 

depth of sequencing for all samples to the least common denominator, therefore decreasing the 

resolution of the datasets. Lastly, computing k-mer analytics using HPC is subject to reduced fault 
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tolerance for massive datasets. A framework to compare one metagenome to a set of metagenomes 

on a high-performance computing system called DSM [19] has also been proposed, however, this 

tool is limited to retrieval tasks and does not provide an all-vs-all sequence analysis.   

Scaling sequence analysis using big data analytics via Hadoop. Hadoop is an attractive platform for 

performing large-scale sequence analysis because it provides a distributed file system and distributed 

computation for analyzing massive amounts of data. Hadoop clusters are comprised of commodity 

servers so that the processing power increases as more computing resources are added. Hadoop 

also offers a high-level programming abstraction, called MapReduce [20] that greatly simplifies the 

implementation of new analytical tools and a high-performance distributed file system (HDFS) for 

storing data sets. Programmers do not need specialized training in distributed systems and 

networking to implement distributed programs using MapReduce. Hadoop also provides fault-

tolerance by default. When a Hadoop node fails, Hadoop reassigns the failed node’s tasks to another 

node containing a redundant copy of the data those tasks were processing. This differs from HPC 

where schedulers track failed nodes and either restart the failed computation from the most recent 

checkpoint, or from the beginning if checkpointing wasn’t used. Thus, using a Hadoop 

infrastructure ensures that computations and data are protected even in the event of hardware 

failures. These benefits have led to new analytic tools based on Hadoop, making Hadoop a de facto 

standard in large-scale data analysis. In metagenomics, the development of efficient and 

inexpensive high-throughput sequencing technologies has lead to a rapid increase in the amount of 

sequence data for studying microbes in diverse environments. However, to date only Hadoop-

enabled genomic or k-mer counting tools exist, and no comparative metagenomics tools are 

available (Supplemental Table 1B).  

Existing big data algorithms compare reads to limited genomic reference data. Recent progress has 

been made in translating bioinformatics algorithms to big data architectures to overcome 

scalability issues. Thus far, these algorithms compare large-scale NGS datasets to reference genomic 
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datasets and replace computationally intensive algorithms such as sequence alignment [21], genetic 

variant detection [22,23], ortholog detection[24], differential gene expression[25,26], or short read 

mapping [27–30] (Supplemental Table 1B). For example, BlastReduce and CloudBurst are parallel 

sequence mapping tools based on Hadoop MapReduce [28,29]. These tools, however, implement a 

query-to-a-reference approach that is inefficient for all-vs-all analyses of reads from metagenomes. 

Other algorithms such as BioPig [31] and Bloomfish [32] generate an index of sequence data for 

later partial sequence search and k-mer counting using Hadoop [33] (Supplemental Table 1B). Also, 

some of these tools adopt traditional sequence indexing techniques such as a suffix array that is 

inefficient in reading and indexing data in HDFS, thus reducing performance. Moreover, neither tool 

offers an end-to-end solution for comparing metagenomes consisting of data distribution on a 

Hadoop cluster, k-mer indexing and counting, distance matrix computation, and visualization. 

Finally, none of these tools are enabled in an advanced cyberinfrastructure where users can 

compute analyses in a simple web-based platform (Supplemental Table 1B).  

Libra: a tool for scalable all-vs-all sequence analysis in an advanced cyberinfrastructure 

Here, we describe a scalable algorithm called Libra that is capable of performing all-vs-all sequence 

analysis using Hadoop MapReduce (SciCrunch.org tool reference ID SCR_016608). We demonstrate 

for the first time that Hadoop MapReduce can be applied to all-vs-all sequence comparisons of 

large-scale metagenomic datasets comprised of mixed microbial communities. We demonstrate 

that Cosine Similarity, which is widely used in document clustering and information retrieval, is a 

good distance metric for comparing datasets to consider genetic distance and microbial abundance 

simultaneously, along with widely accepted distance metrics in biology such as Bray-Curtis [34] 

and Jensen-Shannon [35]. We validate this distance metric using simulated metagenomes (from 

both short and long read technologies) to show that Libra has exceptional sensitivity in 

distinguishing complex mixed microbiomes. Next, we show Libra’s ability to distinguish 

metagenomes by both community composition and abundance using 48 samples (16S rRNA and 
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WGS) from the human microbiome project (HMP) and the simulated Critical Assessment of 

Metagenome Interpretation (CAMI) “toy” PacBio dataset across diverse body sites and compare the 

results to Mash and Simka. Finally, we show that Libra can scale to massive global-scale datasets by 

examining viral diversity in 43 Tara Ocean Viromes (TOV) from the 2009-2011 Expedition [36] that 

represent 26 sites containing about 4.2 billion reads. We show for the first time that viral 

communities in the ocean are similar across temperature gradients, irrespective of their location in 

the ocean. The resulting data demonstrate that Libra provides accurate, efficient, and scalable 

computation for comparative metagenomics that can be used to discern global patterns in microbial 

ecology.  

To promote the broad use of the Libra algorithm we developed a web-based tool in iMicrobe [37], 

where users can run Libra using data in their free CyVerse [38,39] account or use datasets that are 

integrated into the iMicrobe Data Commons. These analyses are fundamental for determining 

relationships among diverse metagenomes to inform follow-up analyses on microbial-driven 

biological processes.  

DATA DESCRIPTION 

Staggered mock community. We performed metagenomic shotgun sequencing on a staggered mock 

community obtained from the Human Microbiome Consortium (HM-277D). The staggered mock 

community is comprised of genomic DNA from genera commonly found on or within the human 

body, consisting of 1,000 to 1,000,000,000 16S rRNA gene copies per organism per aliquot. The 

resulting DNA was subjected to whole genome sequencing as follows. Mixtures were diluted to a 

final concentration of 1 nanogram/microliter and used to generate whole genome sequencing 

libraries with the Ion Xpress Plug Fragment Library Kit and manual #MAN0009847, revC (Thermo 

Fisher Scientific, Waltham, MA, USA). Briefly, 10 nanograms of bacterial DNA was sheared using the 

Ion Shear enzymatic reaction for 12 min and Ion Xpress barcode adapters ligated following end 
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repair. Following barcode ligation, libraries were amplified using the manufacturer’s supplied 

Library Amplification primers and recommended conditions. Amplified libraries were size selected 

to ~ 200 base pairs using the Invitrogen E-gel Size Select Agarose cassettes as outlined in the Ion 

Xpress manual and quantitated with the Ion Universal Library quantitation kit. Equimolar amounts 

of the library were added to an Ion PI Template OT2 200 kit V3. The resulting templated beads 

were enriched with the Ion OneTouch ES system and quantitated with the Qubit Ion Sphere Quality 

Control kit (Life Technologies) on a Qubit 3.0 fluorometer (Qubit, NY, NY, USA). Enriched templated 

beads were loaded onto an Ion PI V2 chip and sequenced according to the manufacturer’s protocol 

using the Ion PI Sequencing 200 kit V3 on an Ion Torrent Proton sequencer. The sequence data 

comprised of ~80 million reads have been deposited to the NCBI Sequence Read Archive under 

accession SRP115095 under project accession PRJNA397434.  

Simulated data derived from the staggered mock community. The resulting sequence data from the 

staggered mock community (~80 million reads) were used to develop simulated metagenomes to 

test the effects of varying read depth, and composition and abundance of organisms in mixed 

metagenomes [40]. To examine read depth (in terms of raw read counts and file size), we used the 

known staggered mock community abundance profile to generate a simulated metagenome using 

GemSim [41] of 2 million reads (454 sequencing) and duplicated the dataset 2x, 5x and 10x. We 

also simulated the effects of sequencing a metagenome more deeply using GemSim [41] to generate 

simulated metagenomes with 0.5, 1, 5, and 10 million reads based on the relative abundance of 

organisms in the staggered mock community. Next, we developed four simulated metagenomes to 

test the effect of changing the dominant organism abundance and genetic composition including: 10 

million reads from the staggered mock community (mock 1), the mock community with alterations 

in a few abundant species (mock 2), the mock community with many alterations in abundant 

species (mock 3), and mock 3 with additional sequences from archaea to further alter the genetic 

composition (mock 4) as described in Supplemental Table 2. The same community profiles were 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy165/5266304 by guest on 31 D

ecem
ber 2018

https://paperpile.com/c/8kIEbl/8Rgg
https://paperpile.com/c/8kIEbl/ftnTG
https://paperpile.com/c/8kIEbl/ftnTG


 
 

 

used to generate paired-end Illumina dataset (100 million reads), using GemSim (Illumina v4 error 

model). Finally, using SimLord [42], the community profiles were used to generate simulated third-

generation sequencing datasets (Pacific Bioscience SMRT sequencing - 1 million reads). SimLord 

default parameters were used to generate those simulated datasets. All simulated datasets are 

available in iMicrobe [37] under project 265 and under DOI[40].  

Human microbiome 16S rRNA gene amplicons and WGS reads. Human microbiome datasets were 

downloaded from the NIH Human Microbiome Project [43] including 48 samples from 5 body sites 

including: urogenital (posterior fornix), gastrointestinal (stool), oral (buccal mucosa, supragingival 

plaque, tongue dorsum), airways (anterior nares), and skin (retroauricular crease left and right) 

([See Supplemental Table 3]). Matched datasets consisting of 16S rRNA reads WGS reads, and WGS 

assembled contigs were downloaded from the 16S trimmed dataset and the HMIWGS/HMASM 

dataset respectively. For the WGS reads dataset, the analysis was run on the paired 1 read file. 

Tara ocean viromes. Tara oceans viromes were downloaded from European Nucleotide Archive 

(ENA) at EMBL and consisted of 43 viromes from 43 samples at 26 locations across the world's 

oceans collected during the Tara Oceans (2009-2012) scientific expedition (Supplemental Table 4) 

[36]. Metadata for the samples were downloaded from PANGAEA [44]. These samples were derived 

from multiple depths including 16 surface samples (5-6 meters), 18 deep chlorophyll maximum 

samples (DCM; 17-148 meters), and one mesopelagic sample (791 meters). Quality control 

procedures were applied according to the methods described by Brum and colleagues [36]. 

CAMI Human microbiome project toy dataset 

The human microbiome project toy dataset from the Critical Assessment of Metagenome 

Interpretation (CAMI) 2nd Challenge was downloaded from their website [45]. This dataset is 

composed of 49 simulated PacBio reads from five different body sites of the human host, namely 

gastrointestinal tract, oral cavity, airways, skin and urogenital tract. 
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RESULTS AND DISCUSSION  

Libra computational strategy. Libra uses Hadoop MapReduce to perform massive all-vs-all sequence 

comparisons between next-generation sequence (NGS) datasets. Libra uses a scalable algorithm 

and efficient resource usage to make all-vs-all comparisons feasible on large datasets. Hadoop 

allows parallel computation over distributed computing resources via its simple programming 

interface called MapReduce, while hiding much of the complexity of distributed computing (e.g. 

node failures) for robust fault-tolerant computation. Taking advantage of Hadoop, Libra can scale to 

larger input datasets and more computing resources. Furthermore, many cloud providers such as 

Amazon and Google offer Hadoop clusters on a pay-as-you-go basis, allowing scientists to scale 

their Libra computations to match their datasets and budgets. 

Libra is implemented using three different MapReduce jobs — 1) k-mer histogram construction, 2) 

inverted index construction, and 3) distance matrix computation. Fig 1 shows a workflow of the 

Libra algorithm.  

Libra distance computation. Jaccard and Bray-Curtis distance have been extensively used to 

compare metagenomes based on their sequence signature [13–15]. While Mash only computes the 

Jaccard distance between samples, Simka and Libra implement several classical ecology distances, 

allowing the user to choose the best-suited distance for the considered dataset [15]. Libra provides 

three distance metrics — Cosine Similarity, Bray-Curtis, and Jensen-Shannon. In this paper, we 

demonstrate Cosine Similarity as the default distance metric. This distance uses a vector space 

model to compute the distance between two NGS samples based on their k-mer composition and 

abundance, while simultaneously normalizing for sequencing depth. Cosine Similarity is widely 

used in document clustering and information retrieval. This distance metric was previously used to 

evaluate the accuracy of methods to reconstruct genomes from “virtual metagenomes” derived 

from 16S rRNA data based on shared KEGG orthologous gene counts [46] but has not been applied 
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in analyzing sequence signatures between metagenomes. Libra users can also weight k-mers based 

on their abundance (using boolean weighting, natural weighting, and logarithmic weighting) to 

account for differences in microbial community composition and sequencing effort as detailed 

below.  

Cosine Similarity allows for an accurate and normalized comparison of metagenomes.  

We explored the effects of varying: (1) the size of the datasets, (2) depth of sequencing, (3) the 

abundance of dominant microbes in the community, and (4) genetic composition of the community 

by adding in an entirely new organism (in our case we added archaea). We constructed simulated 

metagenomes and compared Libra’s distance based on the Cosine Similarity against those from 

Mash and Simka. Simulated datasets were derived from genomic DNA from a staggered mock 

community of bacteria obtained from the human microbiome consortium and sequenced deeply 

using the Ion Torrent sequencing platform (80 million reads, see methods).  

First, we examined the effect of the size of the dataset by using GemSim [41] to obtain a simulated 

metagenome composed of 1 million reads (454 sequencing) from the mock community and 

duplicating that dataset 2x and 10x. Overall, we found that altering the size of the metagenome (by 

duplicating the data) had no effect on the distance between metagenomes for Mash, Simka, or Libra. 

In each case, the distance of the duplicated datasets to the 1x mock community was less than 

0.0001 (data not shown).  

Because metagenomes don’t scale exactly with size and instead have an increasing representation 

of low-abundance organisms, we created a second simulated dataset from the mock community 

using GemSim [41] 0.5, 1, 5, and 10 million reads (454 sequencing) to mimic the effect of reducing 

the sequencing. Given the abundance of organisms in the mock community, the 0.5 M read dataset 

is mainly comprised of dominant species. Because Simka normalizes all samples to the lowest read 

count, no changes between samples were measurable when using Jaccard and Bray-Curtis distances 
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(Fig 2A). In contrast, Mash and Libra (natural weighting) take into account all of the reads in the 

metagenomes, therefore they measure a larger difference when you compare the smallest (0.5M 

read sample) and largest (10 million read sample). These results suggest that Libra (natural 

weighting) and Mash are appropriate for comparing datasets at different sequencing depths, 

whereas using Simka could lead to undesired effects.   

In addition to natural variation in population-level abundances, artifacts from sequencing can result 

in high-abundance k-mers. Libra allows users to select the optimal methodology for weighting high 

abundance k-mers in their datasets including boolean, natural, and logarithmic. These options for 

weighting k-mers are important for different biological scenarios as described below and shown in 

simulated datasets. To examine the effect of weighting, we compared and contrasted the natural 

and logarithmic weight in Libra, with other distances obtained from Mash and Simka (Jaccard and 

Bray-Curtis). We also examined the effect of adding an entirely new species by spiking a simulated 

dataset with sequences derived from archaea (that were not present in the mock community). The 

simulated datasets (454 technology) were comprised of the staggered mock community (mock 1), 

the mock community with alterations in a few abundant species (mock 2), the mock community 

with many alterations in abundant species (mock 3), and mock 3 with additional sequences from 

archaea to alter the genetic composition of the community (mock 4) (see Supplemental Table 2). 

The resulting data showed that Libra (logarithmic weighting) shows a stepwise increase in distance 

among the mock communities (Fig 2B). This suggests that logarithmic weighting in Libra allows for 

a comparison of distantly related microbial communities. Mash also shows a stepwise distance 

between communities but is compressed relative to Libra, making differences less distinct. Simka 

(Bray-Curtis and Jaccard) and Libra (cosine distance, natural weighting) reach the maximum 

difference between mock communities 3 and 4 (Fig 2B). This indicates that these distances are 

more appropriate when comparing metagenomes with small fluctuations in the community (e.g., 

data from a time-series analysis), whereas Libra (cosine distance, logarithmic weighting) can be 
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used to distinguish metagenomes that vary in both genetic composition and abundance over a wide 

range of species diversity by dampening the effect of high-abundance k-mers. Because of this 

important difference, we used the cosine distance with the logarithmic weighting in all subsequent 

analyses. Further, we also found that cosine distance provides the fastest computation among all 

distance metrics (see Methods). We confirmed these findings using Illumina simulated datasets 

(Supplemental Figure 1A), to show that these results are consistent across short-read technologies. 

Given the availability of long read (~10K) sequencing technologies like Oxford Nanopore and 

PacBio sequencing, we repeated the analyses above on simulated long read data (Supplemental 

Figure 1B). We show that simulated PacBio long read data for the mock community derived from 

SimLoRD [42] shows a similar stepwise distance pattern between each of the mock communities 

(Supplemental Figure 1B), but has a higher overall distance between mock 1 and each of the mock 

communities (mock 2 - 4) likely due to the high simulated random error rate compared to 

simulated short read data.    

Libra accurately profiles differences in bacterial diversity and abundance in amplicon and WGS 

datasets from the human microbiome. 

Microbial diversity is traditionally assessed using two methods: the 16S rRNA gene to classify 

bacterial and archaeal groups at the genus to species level, or whole genome shotgun sequencing 

(WGS) for finer taxonomic classification at the species or subspecies level. Further, WGS datasets 

provide additional information on functional differences between metagenomes. Here we compare 

and contrast the effect of different algorithmic approaches (Mash vs Libra vs Simka), distance 

metric (Libra vs Simka), data type (16S rRNA vs WGS), and sequence type (WGS reads vs 

assembled contigs) in analyzing data from 48 samples across 8 body sites from the Human 

Microbiome Project. Specifically, we examine matched datasets (16S rRNA reads, WGS reads, and 

WGS assembled contigs) classified as urogenital (posterior fornix), gastrointestinal (stool), oral 
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(buccal mucosa, supragingival plaque, tongue dorsum), airways (anterior nares), and skin 

(retroauricular crease left and right) ([See Supplemental Table 2]).  

Because the HMP datasets represent microbial communities, abundant bacteria will have more total 

read counts than rare bacteria in the samples. Thus, each sample can vary by both taxonomic 

composition (the genetic content of taxa in a sample) and abundance (the relative proportion of those 

taxa in the samples). Importantly, the 16S rRNA amplicon dataset is useful in showing how well each 

algorithm performs in detecting and quantifying small-scale variation for single a gene at the genus-

level, whereas the WGS dataset demonstrates the effect of including the complete genetic content and 

abundance of organisms at the species-level in a community [47]. Also, we examine differences in each 

algorithm when read abundance is excluded using assembled contigs that only represent the genetic 

composition of the community.   

Using the 16S rRNA reads, both Mash and Libra clustered samples by broad categories but not 

individual body-sites (Fig 3A and B). Similar to what is described in previous work [15], samples from 

the airways and skin co-cluster, whereas other categories including urogenital, gastrointestinal, and 

oral are distinct [15]. These results indicate that limited variation in the 16S rRNA gene may only allow 

for clustering for broad categories. Further, the Mash algorithm shows lower overall resolution (Fig 

3A) as compared to Libra (Fig 3B). Indeed, amplicon sequencing analysis is not an original intended 

use of Mash, given that it reduces the dimensionality of the data by looking at presence/absence of 

unique k-mers, whereas Libra examines the complete dataset accounting for both the genetic 

composition of organisms and their abundance. In contrast, Simka (Jaccard-ab and Bray-Curtis) fails to 

cluster samples by broad categories: some skin samples are found associated with stool and fornix 

samples (Fig 3C and D). Moreover, Simka Jaccard-ab fails to cluster the mouth samples together (Fig 

3C). This result suggests that applying Simka and these well-used distance metrics are not appropriate 

for these datasets. 
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When using WGS reads, both Mash and Libra show enhanced clustering by body-site (Fig 4A and B), 

however, Mash shows decreased resolution (Fig 4A) as compared to Libra (Fig 4B). Again, these 

differences reflect the effect of using all of the read data (Libra) rather than a subset (Mash). The effect 

of using all of the read data compared to a subset (when sketching in Mash) has been previously 

described in Benoit et al. [15]. Importantly, the Libra algorithm depends on read abundance that 

provides increased resolution for interpersonal variation as seen in skin samples (Fig 4B). Similar to 

the 16S rRNA datasets, Simka (Jaccard-ab and Bray-Curtis) failed to cluster the samples by body site, 

where some skin and stool samples cluster with fornix samples (Fig 4C and D). Similarly, Simka 

Jaccard-ab also fails to cluster the mouth samples together (Fig 4C). Overall Simka shows an enhanced 

clustering by body-site using WGS data compared to the 16S rRNA data using these distance metrics, 

however, the clustering is still not accurate. In order to confirm the independence of these result 

toward the sequencing technology, we performed the same experiment on the CAMI HMP “toy dataset” 

(simulated PacBio long reads) [Supplemental Figure 2]. This analysis shows that each of the tools is 

able to cluster the samples broadly by body site. However, there are small misclassifications shared 

across all tools, suggesting that the increased error rate for this technology could have a limited impact 

on k-mer based analytics. 

When abundance is taken out of the equation by using assembled contigs ([See Supplemental Figure 

3]) Mash performs well in clustering distinct body sites whereas Libra shows discrepancies and less 

overall resolution. Thus, as designed Libra requires reads rather than contigs to perform accurately 

and obtain high-resolution clustering (Fig 4). Simka (Jaccard-ab and Bray-Curtis) was not able to 

distinguish any assembled datasets and scored all sample-to-sample distances to the maximum, even 

considering presence-absence distance metric proposed by Simka (data not shown). This 

phenomenon may be explained by the normalization method used by Simka, which does not provide 

enough data to compare the samples when normalized by the smallest number of contigs (in our 

dataset 69 contigs). 
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Libra allows for ecosystem-scale analysis: clustering the Tara ocean viromes to unravel global 

patterns. 

To demonstrate the scale and performance of the Libra algorithm, we analyzed 43 Tara Ocean 

Viromes (TOV) from the 2009-2011 Expedition [36] representing 26 sites, 43 samples, and 4.2 

billion reads from the global ocean (see Methods). Phages (viruses that infect bacteria) are 

abundant in the ocean [48] and can significantly impact environmental processes through host 

mortality, horizontal gene transfer, and host-gene expression. Yet, how phages change over space 

and time in the global ocean and with environmental fluxes is just beginning to be explored. The 

primary challenge is the majority of reads in viromes (often > 90%) do not match known proteins 

or viral genomes [3] and no conserved genes like the bacterial 16S rRNA gene exist to differentiate 

populations. To examine known and unknown viruses simultaneously, viromes are best compared 

using sequence signatures to identify common viral populations. 

Two approaches exist to cluster viromes based on sequence composition. The first approach uses 

protein clustering to examine functional diversity in viromes between sites [3,36,49]. Protein 

clustering, however, depends on accurate assembly and gene finding that can be problematic in 

fragmented and genetically diverse viromes [50]. Further, assemblies from viromes often include 

only a fraction of the total reads (e.g., only ⅓ in TOV [36]). To examine global viral diversity in the 

ocean using all of the reads we examined TOV using Libra. The complete pairwise analysis of ~4.2 

billion reads in the TOV dataset [36] finished in 18 hours using a 10-node Hadoop cluster (see 

Methods and Supplemental Table 4). Importantly, Libra exhibits remarkable performance in 

computing the distance matrix, wherein k-mer matches for all TOV completed within 1.5 hours (see 

Table 1). This step usually represents the largest computational bottleneck for bioinformatics tools 

that compute pairwise distances between sequence pairs for applications such as hierarchical 

sequence clustering [51–54].  A direct comparison of the runtime of the Simka, Mash, and Libra are 

not possible given that each tool is tuned to a different computational architecture with a different 
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number of servers and total CPU/memory (Mash runs on a single server; Simka runs on an HPC, 

and Libra on Hadoop). 

 

Overall, we found that viral populations in the ocean are largely structured by temperature in four 

gradients (Fig 5) similar to their bacterial hosts [2]. Interestingly, samples from different Longhurst 

Provinces but the same temperature gradient cluster together. Also, water samples from the 

surface (SUR) and deep chlorophyll maximum (DCM) at the same station, cluster more closely 

together than samples from the same depth at nearby sites (Fig 5). Also noteworthy, samples that 

were derived from extremely cold environments (noted as C0 in Fig 5) lacked similarity to all other 

samples (at a 30% similarity score), indicating distinctly different viral populations. These samples 

include a mesotrophic sample that has previously been shown to have distinctly different viral 

populations than surface ocean samples [55]. Taken together, these data indicate that viral 

populations are structured globally by temperature, and at finer resolution by the station (for 

surface and DCM samples) indicating that micronutrients and local conditions play an important 

role in defining viral populations.   

 

INNOVATIONS 

Scientific collaboration is increasingly data-driven given large-scale next-generation sequencing 

datasets. It is now possible to generate, aggregate, archive, and share datasets that are terabytes 

and even petabytes in size. Scalability of a system is becoming a vital feature that decides the 

feasibility of massive  ‘omic’s analyses. In particular, this is important for metagenomics where 

patterns in global ecology can only be discerned by comparing the sequence signatures of microbial 

communities from massive ‘omics datasets, given that most microbial genomes have not been 
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defined. Current algorithms to perform these tasks run on local workstations or high-performance 

computing architectures.  

Hadoop is a well-used framework allowing for scalability. The Hadoop framework was previously 

used for k-mer spectra calculation in prior work (Supplemental Table 1B) [31][32]. However, these 

tools do not provide any distance computation between the generated k-mer spectra. To our 

knowledge, Libra is, therefore, the first k-mer based de-novo comparative metagenomic tool that 

uses a Hadoop framework for scalability and fault tolerance. 

De-novo comparative metagenomic tools rely on the calculation of a distance metric in order to 

perform a clustering task on the metagenomes. Libra provides several distance metrics on the k-

mer spectra: two well-used metrics in metagenomics (Bray-Curtis and Jensen distance), as well as a 

cosine similarity metric. Cosine similarity, although extensively used in computer science, has been 

rarely implemented in genomic and metagenomic studies [46].  To our knowledge, this work is the 

first to describe the use of the cosine similarity metric to cluster metagenomes based on their k-mer 

content.  

Finally, the analysis of large-scale metagenomic analysis requires access to large computing 

resources. In order to use Libra, the user requires access to a Hadoop framework. In order allow for 

a better access to the tool and to computing resources, we provide a web-based implementation 

tool embedded in the CyVerse advanced cyberinfrastructure through iMicrobe [37]. The work 

described here is the first step in implementing a free cloud-based computing resource for de-novo 

comparative metagenomics that can be broadly used by scientists to analyze large-scale shared 

data resources. Moreover, the code can be ported to any Hadoop cluster (e.g., Wrangler at TACC, 

Amazon EMR, or private Hadoop clusters). This computing paradigm is consistent with recent 

efforts to increase the accessibility of big data sets in the cloud, such as the Pan-Cancer Analyses of 

Whole Genomes Project [56]. 
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METHODS 

Libra Algorithm Detailed Description: 

k-mer size. Libra calculates the distances between samples based on their k-mer composition. The 

canonical representation of the k-mer is used to reduce the number of stored k-mers. Several 

considerations should be taken into account for choosing the k-mer size k. Larger values of k result 

in fewer matches due to sequencing errors and fragmentary metagenomic data. However, smaller 

values of k give less information about the sequence similarities. In Libra, k is a configurable 

parameter chosen by the user and is set by default to k equal to 21. This value was reported to be at 

the inflection point where the k-mer matches move from random to a representative of the read 

content and is generally resilient to sequencing error and variation [57,58].  

Distance Matrix Computation. Libra provides three distance metrics — Cosine Similarity, Bray-

Curtis, and Jensen-Shannon. Cosine Similarity is the default. 

Cosine Similarity Metric. Libra constructs a vector    for each sample s from the weight of each k-

mer k in the sample (  . ). Each dimension in the vector corresponds to the weight of the 

corresponding k-mer: 

   (   , ,    , ,    , , . . . ,    , ) 

The weight of a k-mer in a sample (   ) can be derived from the frequency of the k-mer (   ) in 

several ways. The simplest uses the raw frequency of the k-mer (       ), called Natural 

Weighting. Another uses Logarithmic Weighting (         (   )) to not give too much weight to 

highly abundant k-mers. In this weighting     grows logarithmically with the frequency    , 

reducing the effect on the distance of highly abundant k-mers caused by sequencing artifacts. 

Once their vectors have been constructed, the distance between two samples (   and   ) is derived 

using distance metrics. For example, the distance between the two samples using Cosine Similarity 

is determined as follows: 
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In other words,    ,   is the dot product of the vectors    and    , and    is the magnitude (length) 

of the vector   . The distance between two NGS samples is the cosine of the angle between their 

vectors   ; the magnitude of the vector    is not taken into account in the metric thereby 

normalizing samples with different numbers of total base pairs. 

Inverted Index Construction. A naïve implementation would require the storage of one vector with 

4k  dimensions per sample, where k is the k-mer length. For a k of 21, each vector would have more 

than one million dimensions. To reduce the overhead, Libra stores and computes the distance on a 

single inverted index with the k-mer frequencies from multiple samples and performs the distance 

computation on the index directly. The inverted index is indexed by k-mer, and each entry is an 

index record containing a list of pairs, each of which contains a sample identifier and the frequency 

of the k-mer in the sample. 

                      *          ,           ,          ,           . . . +  

The records in the index are stored in an alphabetical order by k-mer, allowing the record for a 

particular k-mer to be found via binary search. The k-mer record contains the k-mer frequency in 

each sample, not the weight, to allow for different weighting functions to be applied during distance 

matrix computation. 

Sweep line algorithm. To compute the distance between two samples    and   , Libra must compute 

the three values    ,  ,    , and    . The values are calculated by scanning through the vectors 
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   and     and computing the values. The time for the distance matrix computation is proportional 

to the number of dimensions (the number of k-mers) in the two vectors. In general, computing all-

vs-all comparisons on n samples would require   (   ) 2 vector scans, which becomes 

prohibitively expensive as n gets large. Libra uses a sweep line algorithm [38] to greatly reduce the 

computational time. The sweep line algorithm only requires a single scan of all vectors to compute 

the distance of all pairs of samples ([See Supplemental Figure 4]). Briefly, Libra sweeps a line 

through all the vectors simultaneously starting with the first component. Libra outputs a record of 

the non-zero values of the following format: 

                *          ,        ,          ,        , . . . + 

Libra then moves the sweep line to the next component and performs the same operation. From the 

output records, contributions to    for each sample in the record are computed and accumulated. 

Contributions to   are also computed from the record by extracting sample pairs. For example, the 

record {   ,   ,   ,   ,   ,   } has three sample pairs (    ), (    )     (    ). Libra then 

computes contribution to   for each pair, e.g.     is added to    ,  ,     is added to    ,  , and 

    is added to    ,  . Using this method, Libra computes the distances of every sample pairs in an 

input dataset in linear time. Other distance metrics, such as Bray-Curtis and Jensen-Shannon, can 

also be computed in the same fashion. 

The sweep algorithm is particularly easy to implement on an inverted index; it consists of simply 

stepping through the (sorted) k-mers. Furthermore, the sweep algorithm is easily parallelized. The 

k-mer space is partitioned and a separate sweep is performed on each partition computing the 

contributions of its k-mer frequencies to the   and   values. At the end of the computation, the 

intermediate   and   values are combined together to produce the final   and   values and 

thereby the distance matrix. Each sweep uses binary search to find the first k-mer in the partition. 
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Terabyte Sort. Libra groups the samples automatically based on the number and size (by default 

4GB per group). Similar to Terabyte Sort [59] the index records are partitioned by k-mer ranges 

and the records in each partition is stored in a separate chunk file.  All k-mers in partition   appear 

before the k-mers in partition    in lexicographic order. This facilitates breaking computation 

and I/O down into smaller tasks, so that work of creating an index can be distributed across several 

machines. 

k-mer space partitioning. Both the inverted index construction and the distance matrix computation 

require partitioning the k-mer space so that different partitions can be processed independently. 

For the partitioning to be effective, the workload should be balanced across the partitions. Simply 

partitioning into fixed-size partitions based on the k-mer space will not ensure balanced workloads, 

as the k-mers do not appear with uniform frequency. Some partitions may have more k-mer 

records than others, and thereby incur higher processing costs. Instead, the partitions should be 

created based on the k-mer distribution, so that each partition has roughly the same number of 

records ([See Supplemental Figure 5]). 

Computing the exact k-mer distribution across all the samples is too expensive in both space and 

time, therefore Libra approximates the distribution instead. A histogram is constructed using the 

first 6 letters of the k-mers in each sample, which requires much less space and time to compute. In 

practice, partitioning based on this histogram adequately partitions the k-mer space so that the 

workloads are sufficiently balanced across the partitions. 

Scalability benchmarking for Libra. We used synthetic datasets for a scalability benchmark. Each 

dataset contains 10 billion bytes (approximately 9.3 GB). We used four datasets consisting of 10 

(93GB), 20 (186GB), 30 (279GB) and 40 (372GB) samples in the benchmark. Each experiment was 

run three times, and an average of the three runs reported ([See Supplemental Table 4 for details]). 

The runtime of Libra increased linearly with increased input volume (Figure 6). This shows that 
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Libra efficiently handles the increased volume of input and efficiently computes distances between 

all sample pairs while the number of sample pairs increases quadratically. 

 

Benchmarking runtimes of different distance metrics in Libra. We used the same synthetic dataset 

with 40 samples (372GB in total) in the scalability benchmarking (Figure 7). We measured the 

runtimes of Libra for the different distance metrics. Once the index is constructed all distance 

metrics are calculated using that index; thus, runtimes of the inverted index construction for the 

different metrics are the same. Each experiment was run three times and the average reported 

([See Supplemental Table 4 for details]). Differences in runtimes are mainly due to the different 

computational workload of distance metrics (Figure 7). For example, Jensen-Shannon requires 

more multiplications and divisions in nested loops than Cosine Similarity, incurring more 

computational workload. Yet, distance matrix computation with Jensen-Shannon took only 12.64% 

of total runtime. 

Advanced cyberinfrastructure for Libra in iMicrobe. To improve access to Libra we made it available 

on the iMicrobe website [37]. A researcher with a CyVerse account can run Libra on iMicrobe by 

filling out a simple web form specifying the input files and parameters. Input files are selected from 

the CyVerse Data Store where they have either been uploaded by the user to their home directory 

or are part of the iMicrobe Data Commons. When a job is submitted, the user is presented with the 

status of the job, and on completion the output files and visualization of results. To deploy Libra on 

iMicrobe, we developed a job dispatch service to automate the execution of Libra on a University of 

Arizona Hadoop cluster.  The service is written in NodeJS and accepts a JSON description of the job 

inputs and parameters, stages the input files onto the UA Hadoop cluster, executes Libra with the 

given parameters, and transfers the resulting output files to the user's home directory in the 
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CyVerse Data Store. The service provides a RESTful interface that mimics the Agave API Jobs service 

and is secured using an Agave OAuth2 token.  The source code is available on Github [60]. 

Experimental Environment Description: 

Mash and Simka configurations. Mash v1.1 was run on the metagenomic datasets with the following 

parameters: -r –s 10000 –m 2 [19]. The analysis of assemblies was run without the parameter “-r”, 

used for short sequences. 

Simka v1.3.2 was run on the metagenomic datasets with the following parameters: -abundance-min 

2 -max-reads [MINCOUNT] -simple-dist -complex-dist, where [MINCOUNT] is the smallest sequence 

count across the analyzed samples. 

Hadoop cluster configuration. The Libra experiments described in the paper were performed on a 

Hadoop cluster consisting of 10 physical nodes (9 MapReduce worker nodes). Each node contains 

12 CPUs and 128 GB of RAM and is configured to run a maximum of 7 YARN containers 

simultaneously with 10 GB of RAM per container. The remaining system resources are reserved for 

the operating system and other Hadoop services such as Hive or HBase. 

The rationale for not porting Libra to Spark. Spark [61] is increasingly popular for scientific data 

analysis [62] because of its outstanding performance provided by fast in-memory processing. 

Although Libra is currently implemented on Hadoop MapReduce, Libra can be easily ported to 

Spark because both Hadoop MapReduce and Spark have similar interfaces for data processing and 

partitioning. For example, Resilient Distributed Datasets (RDD) can be partitioned and distributed 

over a Spark cluster using Libra’s k-mer range partitioning. RDDs are memory-resident, allowing 

Spark to significantly improve the performance of Libra’s k-mer counting and distance matrix 

computation by avoiding slow disk I/O for intermediate data. We implemented Libra using Hadoop 

MapReduce because Spark requires much more RAM than Hadoop MapReduce, significantly 

increasing the cost of the cluster. 
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AVAILABILITY AND IMPLEMENTATION  
 
Project home page: Program binary, source code and documentation for Libra are available in 

Github [63]; Libra web-based App is in iMicrobe [37] under Apps; code to implement the Libra 

web-based App is in Github [60]; Operating system(s): MapReduce 2.0 (Apache Hadoop 2.3.0 or 

above); Programming language: Java 7 (or above); Other requirements: none; License: Apache 

License Version 2.0; Any restrictions to use by non-academics: no license needed. Libra has been 

registered with the SciCrunch database under reference ID: SCR_016608. 

AVAILABILITY OF SUPPORTING DATA 
 
Snapshots of the code and other supporting data are available in the GigaScience repository, GigaDB 

[64]. 

ABBREVIATIONS 
 
HDFS - high-performance distributed file system; HPC- high-performance computer cluster; GB - 

gigabytes; TOV - Tara Ocean Viromes; HMP - Human Microbiome Project; GOS - Global Ocean 

Survey; ENA - European Nucleotide Archive; CAMI - Critical Assessment of Metagenome 

Interpretation 
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Figure 1. The Libra Workflow. 

Libra consists of three MapReduce jobs (yellow boxes) — 1) Libra constructs a k-mer histogram of 

the input samples for load-balancing. The k-mer histogram of the input samples is computed in 

parallel by running multiple Map tasks and a Reduce task that combines their results; 2) Libra 

constructs the inverted index in parallel. In the Map phase, a separate Map task is spawned for 

every data block in the input sample files. Each Map task generates k-mers from the sequences 

stored in a data block then passes them to the Reduce tasks. Each Reduce task then counts k-mers it 

receives and produces an index chunk; 3) In the distance matrix computation, the work is split by 

partitioning the k-mer space at the beginning of a MapReduce job. The k-mer histogram files for 

input samples are loaded and the k-mer space is partitioned according to the k-mer distributions. A 

separate Map task is spawned for each partition to perform the computation in parallel and merged 

to produce the complete distance matrix.  
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Figure 2. Analysis of simulated metagenomes using Mash, Simka, and Libra. 

A. Distance to staggered mock community simulated metagenome composed of 10 million 

reads (mock1 10M), for simulated metagenomes of same community sequenced at various 

depth. Simulated metagenomes (454 sequencing) were obtained using GemSim and the 

known abundance profile of the staggered mock community (see Supplemental Table 2). In 

order to mimic various sequencing depths, the simulated metagenomes were generated at 

0.5, 1, 5 or 10 million reads (noted mock1 0.5M; mock1 1M; mock1 5M; mock1V2 10M). The 

distances between the 4 simulated metagenomes and a 10 million read simulated 

metagenome (mock1 10M) were computed using Mash, Simka (Jaccard and Bray-Curtis 

distance) and Libra (natural weighting). 

B. Distance to staggered mock community simulated metagenome (mock 1), for simulated 

metagenomes from increasingly distant communities. The mock 1 relies on the known 

abundance profile from the staggered mock community. The mock 2 community profile was 

obtained by randomly inverting 3 species abundance from mock 1 profile. The mock 3 

profile was obtained by randomly inverting 2 species abundances from mock 2 profile. 

Finally, a mock 4 profile was obtained by adding high abundance archeal genomes not 

present in any the other mock communities. Simulated metagenomes (454 sequencing) 

were generated using GemSim at 10 million reads. The distance between the mock 1 

community to mock 2, mock 3, mock 4 and a replicate community (mock1 V2) was 

computed using Mash, Simka (Jaccard and Bray-Curtis distance) and Libra (cosine distance, 

natural and logarithmic weighting).  
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Figure 3. Clustering of HMP 16S rRNA datasets using Mash, Libra, and Simka. 

48 Human metagenomic samples from the HMP projects clustered by Mash (A), Libra (B) or Simka 

using Jaccard-ab (C) and Bray-Curtis distances (D) from 16S rRNA sequencing runs. The samples 

were clustered using Ward’s method on their distance scores. Mash, Simka, and Libra report 

distance in the same range (0-1). Heat maps showing the pairwise dissimilarity between samples 

were therefore scaled between 0 (green) and 1 (red). A key below the heatmap colors the samples 

by body sites.  
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Figure 4. Clustering of  WGS samples using Mash, and Libra and Simka. 

48 Human metagenomic samples from the HMP projects clustered by Mash (A), Libra (B) or Simka 

using Jaccard-ab (C) and Bray-Curtis distances (D) from whole genome shotgun sequencing runs. 

The samples were clustered using Ward’s method on their distance scores. Heat maps illustrate the 

pairwise dissimilarity between samples, scaled between 0 (green) and 1 (red). A key below the 

heatmap colors the samples by body sites.  
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Figure 5. Visualizing the genetic distance among marine viral communities using Libra. 

Similarities between samples from 43 TOV from the 2009-2012 Tara Oceans Expedition. Lines 

(edges) between samples represent the similarity and are colored and thickened accordingly. Lines 

with insignificant similarity (less than 30%) are removed. Each of the sample names is color-coded 

by Longhurst Province. Inner circles show temperature ranges. Sample names show the 

temperature range, station, and depth as indicated on the legend. The analysis is performed using 

Libra (k=20, Logarithmic weighting, and Cosine Similarity).  
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Figure 6 Scalability testing for Libra. Runtimes of Libra on four datasets consisting of 10, 20, 30 and 

40 samples (total sizes of  93GB, 186GB, 279GB, and 372GB, respectively). Libra was performed 

with default parameters (k=20, Logarithmic weighting, and Cosine Similarity). Runtimes were 

averaged out over 3 runs. The total runtime of Libra increased linearly with increased input 

volume. Both index construction and distance matrix computation showed linearly increased 

runtimes for the increased input volume. This shows that Libra performs efficiently and scales to 

input although the number of distances between sample pairs to be computed increases 

quadratically.  
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Figure 7. Runtime for different distance metrics. Runtimes for three different distance metrics 

(Cosine Similarity, Bray-Curtis, and Jensen-Shannon) in Libra with 40 samples of input (372GB in 

total). Libra was performed with default parameters (k=20 and Logarithmic weighting). Runtimes 

were averaged over 3 runs. An inverted index was reused for all three distance metrics because the 

inverted index Libra constructs are independent of the distance metrics. Cosine Similarity took the 

shortest runtime among the three metrics while Jensen-Shannon took the longest. Jensen-Shannon 

took almost twice as long as Cosine Similarity because it requires more mathematical 

computations. Because of its fastest runtime, Cosine Similarity is used by default in Libra.  
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Table 1. Execution times for the Libra based on the Tara Ocean Virome (TOV) dataset. 

Stage Execution Time 

Preprocessing 

(k-mer histogram construction  

/ Inverted index construction) 

16:32:55 

Distance matrix computation 1:24:27 

Total 17:57:22 
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