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Identifying Pediatric Cancer Clusters in Florida Using
Log-Linear Models and Generalized Lasso Penalties

Hao WANG and Abel RODRIGUEZ

We discuss the identification of pediatric cancer clusters in Florida between 2000 and 2010 using a penalized generalized linear model.
More specifically, we introduce a Poisson model for the observed number of cases on each of Florida’s ZIP Code Tabulation Areas (ZCTA)
and regularize the associated disease rate estimates using a generalized Lasso penalty. Our analysis suggests the presence of a number of
pediatric cancer clusters during the period over study, with the largest ones being located around the cities of Jacksonville, Miami, Cape

Coral/Fort Meyers, and Palm Beach.

KEY WORDS: Bregman Algorithm; Fused Lasso; Disease clustering; Generalized Lasso; Log-linear models; Pediatric cancer; Poisson

regression.

1. INTRODUCTION

A recent analysis of pediatric cancer records collected in
Florida between 2000 and 2007 described by Amin et al. (2010)
identified two possible cancer clusters (one in south Florida and
one in northeastern Florida) using the SaTScan' " software. This
article analyzes an updated version of this dataset covering the
years between 2000 and 2010 using a penalized generalized
linear model (pGLM), reaching similar conclusions.

The National Cancer Institute defines a disease cluster as
“the occurrence of a greater than expected number of cases of a
particular disease within a group of people, a geographic area,
or a period of time.” This definition makes it clear that dis-
ease clusters are a purely statistical construct, but provides little
guidance about how to identify them. Accordingly, a number of
approaches with somewhat distinct goals have been proposed
in the literature. Some methods attempt to identify whether the
phenomenon of clustering is present in a dataset, but without
trying to determine where the clusters are located (see, e.g.,
Whittemore et al. 1987; Diggle and Chetwynd 1991). Alter-
natively, some methods are concerned with identifying spatial
(and/or temporal) clusters in a dataset in which their presence
is not known. Methods based on scan statistics (e.g., Weinstock
1981; Kulldorff 1997; Tango and Takahashi 2005) are exam-
ples of such de novo cluster identification. Finally, methods for
confirmatory cluster analysis (which Besag and Newell 1991
call focused tests) are concerned with determining whether the
rate of disease in a prespecified area (which might contain some
putative health hazard) is higher than expected (see, e.g., Stone
1988; Tango 1995; Morton-Jones, Diggle, and Elliott 1999).

Methods for disease clustering can also be classified accord-
ing to whether they are designed to work with point-referenced
or spatially aggregated (aerial) data. In the case of point-
referenced data, it is common to distinguish between distance-
based methods (Whittemore et al. 1987; Besag and Newell 1991;
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Tango 1995, among others), which derive tests based on the dis-
tribution of the time/distance between locations on which events
occurred, and quadrat-based methods (e.g., Openshaw et al.
1987; Kulldorff and Nagarwalla 1995), which study the vari-
ability of case counts in certain subsets of the region of interest
(called quadrats). In the case of aerial data, frequency tests sim-
ilar to those used in quadrat-based methods are frequently used
(see, e.g., Potthoff and Whittinghill 1966a, 1966b). Bayesian
methods for disease clustering in spatially aggregated data have
been proposed by Knorr-Held and RaBer (2000), Green and
Richardson (2002), Wakefield and Kim (2013), and Anderson,
Lee, and Dean (2013). Other recent contributions to the field
include the work of Moraga and Montes (2011), who used lo-
cal indicators of spatial association (LISA) functions, Charras-
Garrido et al. (2012), who used a latent discrete Markov random
field estimated using an expectation-maximization algorithm,
and Heinzl and Tutz (2014), who proposed a clustering ap-
proach that uses fused-lasso penalties to estimate the number
of clusters. Kulldorff, Tango, and Park (2003), Waller, Hill, and
Rudd (2006), and Goujon-Bellec et al. (2011) presented detailed
comparisons of various methods for disease clustering.

It is worth noting that the main goals of disease clustering
methods are similar but distinct from those of diseases map-
ping. Typically, disease mapping applications deal with the es-
timation of smooth covariate-adjusted risk measures, but do not
aim at identifying discontinuities in the risk function. On the
other hand, the whole point of methods for de novo identifi-
cation of cancer cluster is to pinpoint such discontinuities. Of
course, these two objectives are not necessarily opposed (see,
e.g., Knorr-Held and Raf3er 2000; Green and Richardson 2002;
Anderson, Lee, and Dean 2013), but they are certainly different.

The data we analyze in this article consist of 6558 cases
of pediatric cancer occurring in Florida between January 2000
and December 2010. Covariates available for each of the pa-
tients include age, race, and sex. We treat age as a categorical
variable with four levels (encompassing patients in the ranges
of 04, 5-9, 10-14, and 15-19 years of age, respectively). On
the other hand, race included in principle seven levels: White
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(4768 patients), Black (1104 patients), Oriental (73 patients),
Polynesian (8 patients), Native American (7 patients), More
than One Race (20 patients), and Unknown (578 patients). How-
ever, since total population estimates are available only for the
categories White, Black, and Other, our analysis combines the
cases that fall into the Oriental, Polynesian, Native American,
More than One Race, and Unknown categories into a single one
(Other). Spatio-temporal information for the cases includes the
ZIP Code Tabulation Areas (ZCTAs) of residence of the patient
as well as the year of diagnosis. However, although the data are
(at least in principle) spatio-temporal in nature, we aggregate the
data on each ZCTA over time and ignore the temporal compo-
nent. We take this approach because annual counts on individual
ZCTAs tend to be very small and because environmental factors
affecting cancer incidence rates are likely to operate over long
time scales, making inter-annual fluctuations less important than
spatial trends.

Because cases are geolocated according to the ZCTA of res-
idence of the patient, the focus of this article is on techniques
that allow us to identify disease clusters on data that has been
aggregated over space and time. Hence, the model we pro-
pose assumes that the observed number of cases on each of
Florida’s ZCTAs follows a Poisson log-linear model in which
over-dispersion is captured through ZCTA-specific random ef-
fects, which are regularized (or, alternatively, given a prior dis-
tribution) through a fused Lasso penalty (Tibshirani et al. 2005;
Friedman et al. 2007; Rinaldo et al. 2009; Chen et al. 2012).
We focus on a fused lasso prior rather than a more traditional
Gaussian conditional autoregressive prior widely used in spatial
statistics and disease mapping because the fussed lasso induces
sparsity in the point estimates generated by the model. This
allows us to carry out de novo identification of cancer clus-
ters while at the same time providing smoothed risk estimates
for each of the spatial units, effectively allowing us to treat
the hypothesis testing problem as an estimation problem. One-
dimensional versions of this model have been used in change-
point and hot-spot estimation in genomics (see, e.g., Tibshirani
and Wang 2008) but, to the best of our knowledge, the approach
we propose here has never been used in the context of disease
clustering or disease mapping applications.

The remaining of the article is organized as follows: Section
2 describes our model for cancer cluster detection and discusses
some of its properties. Section 3 describes our computational
approach to fitting the model, which relies on nontrivial op-
timization algorithms. Section 4 presents our results for the
Florida dataset. Finally, Section 5 discusses some shortcomings
of the models, as well as some implications of the results for
cancer surveillance in Florida.

2. IDENTIFICATION OF CANCER CLUSTERS IN
FLORIDA USING A PENALIZED GENERALIZED
LINEAR MODEL

In this section, we describe the statistical models we use to
identify cancer clusters in Florida. We start by considering a
model in which we ignore the effect of covariates and discuss
modeling the (internally standardized) relative risks for each of
the ZCTAs with nonzero pediatric population over the whole pe-
riod over study. We then explain how these models are extended
to account for covariates.
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We start by discussing some notation. Let y; and n; be, respec-
tively, the total observed number of pediatric cancer cases and
the total pediatric population on ZCTA i, wherei =1, ...,979
(Florida has a total of 983 ZCTAs, but four of them had no
pediatric population (and, of course, no cases) during the pe-
riod we study. Hence, our analysis involves data from only 979

ZCTAs). The overall disease rate @ is then simply § = =iz n:

We model the total observed number of cases y; as a Pois-
son random variable with intensity n;, y; | n; ~ Poi (3;), where
logn; = logn; +logf + ¢; and ¢; is a random effect (or, alter-
natively, a frailty term) that captures overdispersion in the data.
The value of 6; = exp{¢;} represents the excess risk in ZCTA
i, so that 6; > 1 (or, equivalently, ¢; > 0) suggest areas of in-
creased risk. The log-likelihood associated with this model can
be written as

979
U:y) =Y (viflogn; +1logd + ¢} — m@explpi}). (1)

i=l1

where ¢ = (¢1,...,¢979)" and y = (yi, ...
maximization of (1) leads to the trivial estimate éiMLE =
yi/(n;0). Instead, we propose to maximize a penalized log-
likelihood

s y979)T . Direct

Cen(@:y) = @:Y) + iy (D),

where the term J; ,, (@) is the so-called fused lasso penalty (Tib-
shirani et al. 2005; Friedman et al. 2007; Rinaldo et al. 2009)

979

Toy@) = =2y DIl =2 Y I — il )
i=1 i'~i

and ) ., denotes the sum over all pairs of Florida’s ZCTAs that
share acommon boundary with each other. Note that this penalty
is the combination of two terms, —Ay Z?lg] |¢;| (which shrinks
individual log risks toward zero) and —A ) ., [¢; — ¢y| (Which
shrinks the log risk of a given region toward that of its neigh-
bors, and therefore encourages smoothness in the risk surface).
Hence, the parameters A and y control the level of similarity
in the estimates for neighboring regions. In particular, A =0
implies that the frailty terms are independent a priori and the
overdispersion in the counts does not follow any spatial pattern,
while A — oo leads to a model in which the level of overdis-
persion is the same in all ZCTAs. Similarly, y = 0 implies that
no shrinkage is applied, while y — oo implies that the excess
risk is zero for all ZCTAs.

From a Bayesian perspective, the fused lasso penalty can be
motivated as corresponding to a prior of the form,

979

1
p(¢|x,y)=c(k’y)exp —Ay§|¢i|—xg|¢i—¢f| ,

where C(r, y) = [{=Ay 000 16l = 2 2, |6 — dvl}dep <
oo is the normalizing constant. It is not difficult to show that
C(A,y) < oo as long as ¥y > O (see, e.g., Kyung et al. 2010).
Hence, the fused lasso corresponds to a proper prior as long as
y > 0, but improper if y = 0.

Itis constructive to consider the similarities between the fused
lasso penalty and conditionally autoregressive (CAR) models
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widely used to model spatial patterns in aerial data. In partic-
ular, intrinsic CAR priors are often defined in terms of the full
conditional prior distributions,

979

W," 'L'2
bl ~N| > g |
jarg Wi Wi

where W; ; are known weights, W; = 237:91,#[ Wi, and
o_; =(d1,...,bi—1,dix15 .-, Po79). A common choice is to
let W; ; = 1if i ~ j and W; ; = 0 otherwise, in which case the
joint prior on (¢, ..., ¢979)" can be written as

1
p(¢ | %) ocexp {—2—12 > @i ¢,-/>2} . 3)

i~

(For a proof, see, e.g., Rue and Held 2005.) Note that the log-
arithm of the right-hand side of (3) resembles the form of the
fused lasso with y = 0 and 1/A = 272, except that the absolute
value of the differences between neighbors has been replaced
by the squared value of such differences. Hence, we can think
of the fused lasso with y > 0 as a proper, heavy tailed alterna-
tive to the traditional CAR prior which, in addition to spatial
smoothing, induces shrinkage in the disease rates. Furthermore,
because double exponential kernels can be represented as scale
mixtures of Gaussian kernels (Andrews and Mallows 1974), it
can be easily shown that the fused lasso penalty corresponds to
the marginal prior distribution induced by a hierarchical Gaus-
sian CAR model.

Although there are substantial similarities between CAR and
fused lasso priors, an important difference is that the penalty
function J, , (¢) is nondifferentiable at points for which ¢; = 0
for any i or ¢; = ¢ for any pair i ~ i’. Hence, the posterior
mode associated with this model

PG, y) = (10w, ), -, Gor9(h, ¥)) = afgglax le(dy) D

is such that the value for groups of adjacent coefficients can be
identical to each other and/or be exactly zero, leading to both
a segmentation of the state into groups of neighboring ZCTAs,
and to a classification of those groups as having or not having
a relative risk significantly different from one (and for those
groups of ZTCA that have a relative risk significantly different
from one, a shrunk estimate of the corresponding relative risk).
We exploit this property to define the kth cancer cluster in the
sample as a group of adjacent ZCTAs, with positive log-relative
risk, that is, as a group of indexes iy, ..., i, such that for
every j = 1,...,my we have ¢;,(1, y) > 0 and for some j' =
1,...,my we have i; ~ i;. Hence, maximizing the penalized
log-likelihood allows us to treat the problem of simultaneously
testing multiple hypotheses as an estimation problem that can
be efficiently solved (see Section 3).

The performance of the model depends critically on the value
of the penalty parameters A and y, which need to be estimated
from the data. In this article, we select these two parameters by
minimizing Akaike’s information criterion (AIC; Akaike 1974),

AIC(h, y) = =281, );Y) + 20 (X, ¥)), )

where ¥ ((ﬁ (A, y)) represents the equivalent number of parame-
ters associated with A and y (in this case, the number of nonzero
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blocks of coefficients that are obtained when the values of A and
y are used to compute the penalized estimates in (4), see Zou
et al. 2007, Tibshirani et al. 2012).

A similar formulation can be used to account for the ef-
fect of the available covariates (age, race, and sex). In par-
ticular, let y; j x; and n; ;4 correspond to the number of pe-
diatric cancer cases and the total pediatric population in ZCTA
i=1,...,979,agegroupj =1,...,4,racek =1,...,3,and
sex [ = 1,2 and define the average incidence rate for each of

S0 ik
Si5—L=. We model the counts

i=1 "M, j.k,
Vi,jk,; by assuming the excess rizsllgliﬂ/%CTA i is the same for
all subpopulations, that is, we let y; ;i | 7.k, ~ Poi(n; jx.1),
where logn; jx; = logn,; j; + log G_J;M + ¢;. Under this for-
mulation, covariate-adjusted estimates of the excess risk can be
obtained by solving

these subpopulations as 0, ; ; =

979 4 3 2
(B10:,7), -+, Poro(h, y)) = argmax{ )

(Prnpor0) U 24 =1 k=1 I=I

x (Vijki {logni jus + 1080 k1 + ¢i} — nij 01 expiei})
979

N AN —¢,~|}. (6)
i=1

i'~i

3. COMPUTATIONAL IMPLEMENTATION

We solve the maximization problems in (4) and (6) using a
variation of the “split-Bregman” algorithm discussed in Gold-
stein and Osher (2009). The algorithm is iterative and relies on
a second-order Taylor approximation to the Poisson likelihood
and on the introduction of two auxiliary vectors u and d that
allow us to break the optimization problem into coupled sub-
problems that are, individually, easy to solve. In the case of (4),
the algorithm takes the following form.

1. Initialize (i(o) and pick a tuning parameter £ that controls
the rate of convergence of the algorithm.
2. Starting with &k = 0 and until convergence, repeat:
a. Update the parameters of the quadratic approximation
to the likelihood function by setting

H® = — diag {nlé exp {J,Ek)} . ..., Nopof exp {&;’%”
and the vector
y1 —ni0exp { Ni")}
h® — :
Yo79 — No790 EXP {tﬁg%}
b. Tnitialize 70 = %, u®+1.0 and gk+1.0)

c. Starting with [ = 0 and until convergence, repeat:
i. Update the matrix

(k,1) (k,I)
Al,l T A1.979
A(k’l) = .
(k.I) (k,1)
A979,1 e A979,979
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Figure 1. Raw (left) and estimated (right) overall log relative risks for pediatric cancers in Florida.

by setting
A*D = £X2LTL — HY,

(k1) (k,l)
a )T

and the vectora®) = ( N P

by setting
akh — EXLT (u(k+1,l) _ d(k+1,1)) + h® _ H(k)&(k)'

In the previous expressions, Lis anm x 979 matrix
(with m representing the number of pairs of ZCTA
that are considered neighbors) such that the kth row
of L has only two nonzero entries (that correspond
to the kth pair of neighbors), which take the values
+1and —1.
Initialize J)UCH’I'O) = (i)(k+l'l).

Starting with s = 0 and until convergence, iterate
the following step:

Z(k+1,1,5+1)
&

(k. (D) 7 (k+1,1,5+1) (k1) 7(k+1,1,5)
=S a; = Zj<i Ai,j ¢j - Zj>i Ai.j ¢j
= A%D ’

ii

YA
*.D)
A

),i:l,Z ,,,,, 979,

where S(x, §) = sgn(x) max{0, |x| — &} is the soft
thresholding operator.

When the previous subiterations have converged,
Z(k+1,0+1) 5 (k+1,1,00)

set ¢ ¢

v. Set LD = S@tD 4 Lg Y L,
where the thresholding operator is applied
componentwise.

vi. Set Al D = gt 4 gcH D

uk+LI+D

. . . ~ (k+1
d. Once this subiteration has converged, set (I)< D

~ (k+1,00)

¢

3. Once these iterations have converged, report (i(oo) as your
point estimate for ¢.

We present details of the derivation of this algorithm in Ap-
pendix A, and note that modifying it to maximize (6) is straight-
forward (the only difference being the structure of H and h.) We
implemented the iterative thresholding in Step (iii) above us-
ing the function crossProdLasso from the R package scout
(Witten and Tibshirani 2011). All subiterations were considered
to have converged when the relative L? error in the estimate of
the vector ¢ was less than 1074,

To select the hyperparameters A and y, we evaluate AIC(X, y)
over a grid of values of (y, A). In particular, we take y €
{0.5, 1, 2}, indicating the ratio of the strength of the pure lasso
penalty over that of the fusion penalty is in the range of 50%
and 200%. For A, we first run the path algorithm of Tibshirani
et al. (2012) for solving the least-square generalized lasso ap-
proximation (A.2) at ¢ = 0 and then use the output values of

Table 1. Raw incidence rates of pediatric cancer in different covariate-driven subgroups for the four largest clusters identified by our model
when there is no adjustment for covariates

Incidence (per 100,000 children per year)

Fitted Raw Age group Sex Race

overall overall 04 5-9 10-14 15-19 Female Male Black White Other
North Florida 15.5 189 29.0 14.1 15.0 18.1 17.5 20.2 19.1 19.5 11.2
Miami 16.5 18.1 28.6 14.1 15.0 15.6 18.3 17.9 16.7 14.3 51.3
Palm Beach 15.3 18.2 28.7 14.6 15.8 14.2 15.8 20.3 20.2 17.7 17.6
Cape Coral 15.0 189 314 14.5 15.9 14.4 16.6 21.1 20.8 20.6 5.8
Florida - 13.6 21.8 11.1 11.5 10.7 12.8 14.4 13.3 134 16.2
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Figure 2. Covariate-adjusted log relative risks.

A, at which the solution path changes slope, as the grid for the
Poisson generalized lasso.

4. RESULTS
4.1 Relative Risks Without Adjusting for Covariates

Figure 1 shows the raw and estimated overall log relative risks
for each of Florida’s ZCTAs before adjusting for race, gender,
or ethnicity. These point estimates were generated using the
optimal values of 7 = 1 and A = 0.718 obtained using AIC. By
comparing these two maps, we note that our algorithm has the
expected effect of smoothing out the raw observations, leading
to estimates that involve a large number of ZCTAs with q@i =0,
that is, no increased or reduced relative risks. Our approach also
identified 26 possible clusters with elevated overall relative risk
involving 274 ZCTAs; some of these clusters had raw risks that
were up to four times higher than Florida’s average. Many of
these clusters (19 out of the 26) correspond to either isolated
ZCTAs or small clusters with only two or three ZTCAs in them.
However, the largest clusters (with 91, 73, 32, and 24 ZCTAs
and an average at-risk pediatric population of 341,755, 579,902,
120,241 and 162,272 individuals each year) are located in north
Florida (the Jacksonville metro area and counties to the West),
the Miami metro area, the Cape Coral-Fort Myers metro area
and counties to the East, and the county of Palm Beach. The

Statistics and Public Policy, 2014

clusters we identify mostly fall within the boundaries of the
clusters identified in Figure 1 of Amin et al. (2010); in particular,
we seem to find the same small cluster in central Florida that
the aforementioned authors identified in their original dataset.
However, our clusters tend to be much smaller, suggesting that
our methodology allows for more precise identification.

Table 1 presents the raw incidence rates of pediatric cancer in
different covariate-driven subgroups for these four large clus-
ters, and compares them against the average incidence rate in
Florida for the same groups. Note that raw incidence rates in
these clusters are between 33% and 39% higher than for Florida
as a whole, which is substantial. Also, although the specific
patterns vary in the different clusters, disease rates are elevated
in almost every subgroup. The main (and somewhat surprising)
exception is the racial group “Other” in the Cape Coral-Fort
Myers region, which has a very low incidence rate compared to
the Florida average for this same group.

4.2 Relative Covariate-Adjusted Risks

Figure 2 presents estimates of the relative risks computed un-
der the covariate-adjusted model in (6). In this case, the optimal
values for the hyperparameters are 7 = 1 and 2 = 0.717, essen-
tially identical to those in Section 4.1. Furthermore, note that
this map is very similar to the one presented in the right panel of
Figure 1. We now detect 24 possible clusters involving a total of
276 ZCTAs. Table 2 and Appendix A.1 present a more detailed
comparison of the four major clusters under each of the models.
Again, there is substantial agreement between both models, with
the cluster under one model being almost completely a subset
of the respective cluster under the other.

Similarly to Table 1, Table 3 shows the raw incidence rates
of pediatric cancer in different covariate-driven subgroups for
the four largest clusters identified by our second model, and
compares them against the average incidence rate in Florida for
the same groups. As would be expected the results are very
similar to those in Section 4.1, with the Miami cluster still
exhibiting a particularly large incidence rate among members of
the “Other” racial group, and Cape Coral showing a particularly
small incidence rate for the same group.

4.3 Validation

4.3.1 Robustness of the Computational Algorithm. To ex-
plore the effect of initial values, we initialize the Poisson gen-
eralized lasso algorithm at two different and meaningful values.

The first is (75(0) = 0, corresponding to zero log relative risks
for all regions, and the second is (75(0) = {log(y;/n;) — log(8)},

Table 2. Characteristics of the four major clusters under our two models

Not adjusted for covariates

After adjusting for covariates

Number of Total pediatric Number of Total pediatric Number of ZCTAs
ZCTAs population ZCTAs population in common
North Florida 91 341,755 98 351,093 90
Miami 73 579,902 70 558,939 70
Cape Coral 32 120,241 26 101,065 26
Palm Beach 24 162,272 25 166,257 24
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Table 3. Raw incidence rates of pediatric cancer in different covariate-driven subgroups for the four largest clusters identified by our model
after adjusting for covariates

Incidence (per 100,000 children per year)

Fitted Raw Age group Sex Race

overall overall 04 5-9 10-14 15-19 Female Male Black White Other
North Florida 15.6 189 28.9 14.1 15.1 17.7 17.4 20.2 18.5 19.55 11.5
Miami 16.5 18.0 284 13.9 14.9 15.6 18.3 17.7 16.8 14.2 51.2
Palm Beach 15.0 18.0 28.2 14.5 16.2 13.8 15.8 20.1 20.1 17.4 18.0
Cape Coral 15.7 19.1 31.3 14.5 16.2 13.8 16.7 21.3 23.2 20.0 6.2
Florida - 13.6 21.8 11.1 11.5 10.7 12.8 14.4 13.3 134 16.2

corresponding to the observed log relative risks. Because some
regions have zero incidents, implying a value of —oo for the
observed log relative risk, we set the initial log relative risk in
these regions equal to the smallest finite value in the sample.
The algorithm seems to be robust to the choice of initial values,
as the results agree for up to the four decimal place. For the
tuning parameter &, we explored values between 4 and 40 and
found that the performance of the algorithm was quite robust to
this choice for both models.

4.3.2 Model Assessment and Goodness of Fit. We assess
model fit by inspecting the deviance residuals. The deviance
residual for the ith observation is defined as

D; = sign(yi — 9:)12yi log(yi /) .0y — 2(vi — 9012,
i=1,...,979,

where y; and y; are the observed and fitted counts in the region
i, and I, is the indicator function. Similarly to linear models,
these deviance residuals can be plotted against the logarithm of
the fitted values and/or against the quantiles of a half-normal
distribution to assess goodness of fit (Neter et al. 1996). Fur-
thermore, we assess the independence in the deviance residuals
(and therefore, whether the fused lasso priors capture the spatial
structure in the data) by applying Moran’s [ test (see, e.g., Baner-
jee, Gelfand, and Carlin 2004) to the deviance residuals using

(a) D; versus log(y;)

Deviance ressdual

Log fitted counts

Figure 3. Diagnostic residual plots. (a) Deviance residuals against log fitted counts. (b) Half-normal plots

deviance residuals

the moran. test function from the R package spdep (Bivand,
Altman, and Anselin 2014).

As an illustration, panel (a) in Figure 3 plots the deviance
residuals against the log predicted values log(¥;) for the analysis
in Section 4.1. This plot suggests no major problems as most
residuals are within 2 in absolute value and there is no obvious
relation between the residuals and the predicted values. In the
same spirit, panel (b) in Figure 3 shows the half-normal QQ
plot of the absolute values the residuals D;. It shows a couple of
points with large residuals, but overall the fit of the model seems
appropriate. Finally, the deviance residuals from the pGLM have
a Moran [ statistic of 0.75 with a p-value of 0.23. In contrast, the
D;’s from the fixed effect intercept-only model have a Moran’s
I statistic of 6.36 with a p-value of about 107!, This suggests
that our pGLM accurately captures the spatial pattern in the data
that is missed in the fixed effect model.

4.3.3 Small-Sample Properties. Since the small-sample
properties of the fused lasso as a model selection mechanism
are not well understood, we validate our results by undertaking
four small simulation studies to assess the probability of a Type
I error (i.e., detecting at least one cancer cluster when none is
present), Type II error (i.e., not detecting any cluster when at
least one is present), as well as the specificity, sensitivity, and
Matthews correlation coefficient (or MCC, see Matthews 1975)

(b) | D;| versus half-normal quantile

Sorled absolules walue of deviance

T T T
00 05 10 15 20 25 30

Half-normal guantiles

of the absolute values of the
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Table 4. Performance of three different algorithms under our first
simulation scenario. Standard errors are in parentheses

Proportion of Average proportion

simulations of regions
in which clusters identified as part of

Method were identified a cluster
pGLM 0.79 0.045 (0.056)
BN (K =20) 0.97 0.005 (0.003)
BN (K =200) 0.98 0.020 (0.016)
KN (R =0.02) 1.00 0.039 (0.014)
KN (R=0.2) 1.00 0.04 (0.033)

under different data-generation mechanisms. To provide some
context for these results, we also used these simulated scenarios
to compare the performance of our model against the two test-
based procedures. One is the distance-based method proposed
in Besag and Newell (1991) (called BN in the sequel) computed
for two different values of its tuning parameter K, which is the
number of observed cases for which the number of neighboring
regions needed to reach is calculated. We choose K = 20 and
K = 200. The other is the quadrat-based likelihood ratio test
proposed in Kulldorff and Nagarwalla (1995) (called KN in the
sequel) computed for two different values of its tuning param-
eter R, which is the maximum fraction of the total population
used when creating the ball of the cluster. We consider R = 0.02
and R = 0.2. Both BN and KN tests are performed using the
opgam function in the R package DCluster (Gdémez-Rubio,
Ferrandiz-Ferragud, and Lopez-Quilez 2005).

Our first simulation study is carried out under a model in
which there are no cancer clusters in Florida. More specifically,
we generate 100 datasets y7, ..., ¥y so that the number of
cases in ZCTA i =1,...,979 for dataset m =1, ..., 100 is

given by 7. ; ~ Poi(n;f), where § = gg % = 0.000136 is the
average overall pediatric cancer risk ogéerved in Florida be-
tween 2000 and 2010. For each of these samples, we computed
the number of clusters identified by the model as well as the
proportion of regions identified as being part of a cluster by

each of the three procedures discussed above (see Table 4 and

Figure 4).
Our second simulation study involves 100 datasets
¥is .-+, ¥io> Where y,’;’i ~ Poi(niééi*), where 07, . .., 95‘79 cor-

respond to the overall relative risks for the different ZCTAs re-
ported in Section 4.1. Table 5 presents values for the probability
of not identifying any cluster in the data, as well as the sensitiv-
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Figure 4. Histogram of the number of high relative risk ZCTA
(¢; > 0) by our penalized generalized linear model on each of the
100 datasets generated under our first simulation scenario.

ity, specificity, and Matthews correlation coefficient associated
with each of the three methods for this second scenario.

As suggested by one of the referees, our third and fourth
scenarios deviate from the pGLM model assumption, which
assumes that some neighboring regions have exactly the same
relative risks. The alternative data generating model is the CAR
model. More specifically, let W be a symmetric matrix such that
W;; =1ifi ~ jand W; ; = O otherwise fori, j =1, ...,979,
and let W; , = 237:91,1';61' W,‘,j, Dy = diag(W; 4, ..., Woyg +)
and E = (Dw — pW)/72. We simulate the log relative risks
b, ..., Py from a multivariate normal distribution with zero
mean and precision matrix E, where the spatial correlation is
set to p = 0.99. For our third scenario, we use a relatively
small value of T = 0.02, which implies that 95% of the stan-
dard deviations of the log relative risks q}f el (;3;79, as can
be computed from the diagonal elements of E~!, are within
[0.010, 0.025]. Thus, the simulated log relative risks are largely
concentrated around zero and this scenario is close to the null
hypothesis where no region has higher than average incidence
rates. For our fourth simulation study, we use a moderate value
of T = 0.2, implying that 95% of the standard deviations of the
¢~>i*s are within [0.10, 0.25]. The implication is that the simu-
lated log relative risks can be substantially positive and so some

Table 5. Performance of three different algorithms under our second simulation scenario. Standard errors are in parentheses

Proportion of Average

simulations in which no Average specificity Matthews
Method clusters were identified sensitivity coefficient correlation
pGLM 0 0.62 (0.10) 0.85 (0.06) 0.44 (0.06)
BN (K =20) 0 0.01 (0.01) 0.99 (0.01) 0.05 (0.04)
BN (K = 200) 0 0.34 (0.08) 0.89 (0.02) 0.24 (0.07)
KN (R =0.02) 0 0.33 (0.06) 0.91 (0.01) 0.26 (0.05)
KN (R=0.2) 0 0.69 (0.05) 0.65 (0.05) 0.26 (0.05)
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Table 6. Performance of three different algorithms under our third simulation scenario. Standard errors are in parentheses. MCC is unavailable
for pGLM and BN (k = 20) because they detect no clusters at all in some simulated datasets, as this scenario is close to the null scenario of the
constant risk

Proportion of Average

simulations in which no Average specificity Matthews
Method clusters were identified sensitivity coefficient correlation
pGLM 0.22 0.02 (0.03) 0.98 (0.02) -
BN (k = 20) 0.02 0.006 (0.005) 1.00 (0.004) -
BN (k = 200) 0 0.03 (0.02) 0.97 (0.02) 0.03 (0.05)
KN (R =0.02) 0 0.05 (0.02) 0.97 (0.01) 0.04 (0.05)
KN (R=0.2) 0 0.05 (0.04) 0.96 (0.03) 0.04 (0.05)

neighboring ZCTAs can have high, albeit unequal, log relative
risks.

The results presented above suggest that the pGLM has the
best overall performance. From Table 4, we see that it has the
lowest probability of detecting a false cluster (although that
probability is moderately high, suggesting that the model has
a moderately large chance of detecting a spurious cluster). On
the other hand, Tables 5-7 show that the fussed lasso prior has
the highest MCC coefficient. Furthermore, note that in our third
scenario the pGLM detects no clusters (regions with positive
log relative risks) about 22% of the time but BN and KN almost
always detect some clusters. This is probably because the real
signal is weak in this case and pGLM aggressively shrinks these
weak log relative risks toward zero, but BN and KN impose no
shrinkage. On the other hand, in our fourth scenario all models
perform poorly, as they tend to identify many small clusters.

5. DISCUSSION

Our analysis of the Florida data suggests the presence of a
number of pediatric cancer clusters, with the largest ones be-
ing roughly located around the cities of Jacksonville, Miami,
Cape Coral/Fort Meyers, and Palm Beach and covering about
a quarter of the total pediatric population in the state. We esti-
mate that the risk of pediatric cancers in these regions is at least
30% higher than the state-wide average risk. Importantly, these
results seemed to be robust to the inclusion of demographic
information. However, our validation using a simulation study
suggests that these results must be taken with a grain of salt.
Indeed, although our approach has higher sensitivity and speci-
ficity and lower Type I error rate than the algorithms we com-
pared it against, it still tends to incorrectly identify at least one
cluster in datasets that have been generated under a Poisson

model with a constant rate in at least 79% of the cases. In spite
of this somewhat negative result, we believe that at least some
of the biggest clusters are indeed real because of the high MCC
index in our method and the fact that the number of ZCTAs with
elevated relative risks in the Florida data is much larger than
the numbers we observed when applying our method to data
simulated under the null model.

One potential shortcoming of our approach is that overdis-
persion is captured only by spatial random effects. Although
this type of assumption is common in the literature on disease
mapping, it can potentially lead to the detection of clusters
even if the overdispersion does not follow a well-defined spa-
tial pattern (e.g., if the data arise as independent and identically
distributed from a negative binomial distribution). Although the
literature on cancer cluster identification is ambivalent about
whether all sorts of overdispersion should suggest the pres-
ence of clusters or not, we believe that some sort of spatial
coherence in the structure of the clusters is desirable. That is
the reason why in our discussion of the results we have fo-
cused on the four largest clusters identified by our algorithm.
A more conservative approach that would deal with this is-
sue would include independent random effects to account for
nonspatial structure in the overdispersion in addition to the spa-
tial random effects (see, e.g., Banerjee, Gelfand, and Carlin
2004).

It is worth emphasizing that we did not carry out a full
Bayesian analysis of the data and instead focused on provid-
ing point estimators based on the posterior mode. We took this
approach for two reasons. First, it is important to note that the
estimates of the differences in rates are exactly zero only in
the posterior mode, neither the posterior mean nor the posterior
median are exactly zero under this prior. Since these exact zeros
is what allows us to identify disease clusters, and identifying

Table 7. Performance of three different algorithms under our fourth simulation scenarios. Standard errors are in parentheses

Proportion of Average

simulations in which no Average specificity Matthews
Method clusters were identified sensitivity coefficient correlation
pGLM 0 0.33 (0.04) 0.90 (0.03) 0.27 (0.06)
BN (k = 20) 0 0.02 (0.01) 1.00 (0.003) 0.06 (0.04)
BN (k = 200) 0 0.15 (0.07) 0.97 (0.02) 0.21 (0.07)
KN (R =0.02) 0 0.19 (0.06) 0.97 (0.01) 0.24 (0.06)
KN (R=0.2) 0 0.33(0.12) 0.87 (0.06) 0.26 (0.08)
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clusters is the main goal of our analysis (rather than creating
smooth estimates of the incidence map), fully Bayesian infer-
ence is not needed (except as a way to obtain credible intervals
for the ZCTA-specific risks, but that is just a secondary goal
of our analysis). Second, a fully Bayesian implementation of
this model is not quite straightforward. A Gibbs sampler can be
constructed using a combination of slice sampling (to deal with
the fact that we have a Poisson likelihood, see, e.g., Damien,
Wakefield, and Walker 1999) and a data augmentation approach
that writes the double exponential prior as a scale mixture of
Gaussians (see, e.g., Kyung et al. 2010). However, a sampler of
this type mixes poorly. There are ways to improve mixing (e.g.,
by working directly with the double exponential prior without
the data augmentation), but developing the associated theory
seemed beyond the scope of an applied article that was meant to
be part of a collection focusing on different approaches to an-
alyze a particular dataset. This line of research will be pursued
elsewhere.

APPENDIX A: DERIVATION OF THE
COMPUTATIONAL ALGORITHM

We derive our algorithm for solving (4) for a slightly more general
model where the log relative risk in region i = 1, ..., I, is modeled
as a linear function of a set of predictors X; € R” and we assume
a generalized lasso penalty. In this case, the log-likelihood function
takes the form

1 1
€B;y) =) yilogn; +logf +x/B)— 0y niexp{x/ B}, (A.D

i=1 i=1

and the fused lasso penalty (2) can also be written in a general way as

Jiy(B) = =Ay 1Bl — AlILAIL,

where |[u||; = > |u;| denotes the L' norm of the vector u, and L
is a pre-specified m x p penalty matrix. The random effect model in
(1)—~(2) corresponds to the special case of x; = e;, where e; has all
entries 0 except that the ith entry equals 1, 8 = (¢, ..., ¢o70)", and L
is a (very sparse) pairwise difference matrix whose rows correspond to
pairs of ZCTAs that share a common boundary. Similarly, (6) can be
written in a similar form by extending the sum over ZCTAs in (A.1) to
also include sums over all demographic groups.

Recall that the (unpenalized) log-likelihood (A.1) can be optimized
using iteratively reweighted least squares (IRLS), that is, by iteratively
computing
A (k+1)

BT = argmax, 0 (818").

where O(B | B%¥) is obtained by a second-order expansion of (A.1)

. . ~ (k)
around the previous iterate § ,

0@ 18" =(8-8") n(8")
#5(6-87) m(3) (s-5").

with

I

h (ﬁ(k)> = % logﬂ(ﬂ;}’)‘ﬂzﬁm = ;xi (y[ — On; exp {x?ﬁ(k)}) ,
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and

2

1
H (ﬁ(k)) = 887}32 logf(ﬁ;}’)‘ﬁzﬁ(k) =— gxixire_ni exp {xiTB(k)} )

Similarly, we propose to optimize (4) by iteratively solving (see,
e.g., Krishnapuram et al. 2005; Friedman, Hastie, and Tibshirani 2010)

A (k+1)

B = argming | -0 (B18") + 2Bl +AILAIL| . (A2)

where each optimization problem in the sequence is accomplished us-
ing a variation of the “split-Bregman” algorithm (Goldstein and Osher
2009) described in the next section.

Solving the Fused Lasso Problem Using the “Split-Bregman”
Algorithm

To derive the “split-Bregman” algorithm, introduce a new variable
u = ALS, so that the solution to (A.2) is equivalent to the solution of
the following constrained minimization problem,

(B0, u") = argming, [0 (818" + yI1BIIs + llull, ]
subjectto u = ALS.

This problem can be solved using an iterative procedure called the
Bregman iteration (Bregman 1967; Osher et al. 2005),

. ()
(B WD) = argmin, [_Q (ﬁ | B ) + y MBI+ [l
+%||u —ALB — d<k+1'])||§} ;
(A3)
qEHLIED gL + Ang(k+l,1+1) _ u(k+|,1+1)7 (A4)
where the added L* norm, || - ||, of the vector u — ALB — d**) is

used to enforce the constraint u = ALB and £ is a tuning parameter
that controls how fast the constraint is enforced. The final algorithm is
obtained by splitting (A.3) into two separate optimization steps,

. A0 §
B = argming {—Q (B1BY)+yriiBily+ 5 fut

—ALB — d<’<+”>||§} . (A5

k+1,1+1 : ‘S;: k+1,1+1 k+1,0)112
u®t “zargmmu{nuH]+5||u—fo3<+ gt )||2},

(A.6)

Al — qé+LD )LLﬂ(kJrl.Hl) _ pLi+n. (A7)

Note that the solution to (A.6) can be obtained directly using the
soft thresholding operator S(x, §) = sgn(x) max{0, |x| — §}, while the
solution to (A.5) can be obtained by applying a coordinate descent
algorithm, which reduces to iteratively applying the soft thresholding
operator for each component of 8 until convergence.

APPENDIX B: LIST OF ZCTAS IN CANCER CLUSTERS

We list only the ZCTAs in the four main clusters discussed in Sec-
tions 4.1 and 4.2. To facilitate comparisons, we separately list the
ZCTAs that appear as part of each cluster under both models, and then
separately list those that appear under only one of them.
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ZCTAs that appear under both models

Appear only without
covariate adjustment

Appear only with
covariate adjustment

33063 33067 33071 33403 33404 33498
33407 33408 33410 33411 33412
33413 33426 33428 33434 33435
33436 33437 33444 33445 33462
33463 33467 33484 33496
B.3. Cape Coral

Appear only without Appear only with
ZCTAs that appear under both models covariate adjustment covariate adjustment
33901 33903 33904 33905 33907 33440
33908 33909 33912 33914 33916 33471
33917 33919 33920 33922 33924 33930
33935 33936 33950 33955 33956 33931
33957 33971 33972 33990 33991 34134
33993 34142

B.4. Miami

Appear only without Appear only with
ZCTAs that appear under both models covariate adjustment covariate adjustment
33004 33012 33013 33014 33015 33160
33016 33018 33020 33021 33023 33180
33025 33026 33027 33028 33029 33030
33055 33056 33109 33125 33126
33128 33129 33130 33131 33132
33134 33135 33136 33137 33139
33143 33144 33145 33146 33149
33155 33156 33157 33158 33165
33166 33170 33172 33173 33174
33175 33176 33177 33178 33182
33183 33184 33185 33186 33187
33189 33190 33193 33194 33196
33322 33323 33325 33326 33327
33328 33330 33331 33332 33351

B.5. North Florida

Appear only without Appear only with
ZCTAs that appear under both models covariate adjustment covariate adjustment
32008 32009 32011 32024 32025 32621 32607
32026 32034 32038 32040 32043 32131
32044 32046 32054 32055 32058 32112
32060 32061 32062 32063 32064 32193
32066 32068 32071 32072 32073 32187
32083 32091 32092 32094 32097 32681
32134 32139 32140 32147 32148 32664
32177 32202 32204 32205 32207 32631
32210 32211 32212 32216 32217
32218 32219 32220 32221 32223
32225 32226 32234 32254 32256
32257 32258 32259 32359 32606
32608 32609 32615 32616 32618
32619 32622 32625 32626 32628
32640 32643 32653 32656 32658
32666 32669 32680 32693 32694
32697 34470 34471 34474 34475
34476 34479 34481 34482 34488
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