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Abstract— This paper considers optimal trajectory
planning for autonomous nonholonomic vehicles used
in investigating environmental phenomena. In particular,
we present an algorithm that generates locally optimal
trajectories to find the global maximum of the underlying
environmental field. Our algorithm uses Gaussian process
priors to estimate the unknown field and the notion of
expected improvement to develop an objective function
for optimal planning. Monte Carlo simulations focusing
on two-dimensional spatial fields show the advantage
of our algorithm at finding the global maximum over
existing methods.

I. INTRODUCTION

Autonomous vehicles are becoming the platform
of choice for large-scale monitoring of spatial
and spatio-temporal phenomena, replacing human-
piloted ones. This switch is happening in good
part due to their low cost and the increasing
accuracy and dependability of off-the-shelf sensors
and parts. In this context, automated trajectory
planning (i.e., the determination of the path and
velocity of the vehicle so that it can accomplish
its mission) is a critical but difficult task, particu-
larly in the case of uncertain environments (where
trajectories cannot be pre-planned in advance but
need to be determined online) and nonholonomic
vehicles (in which vehicle constraints can seriously
limit the number of trajectories available) [1].

Common applications of trajectory planning in-
volve either tracking a target [2], [3] or traveling
between two or more pre-specified locations [4].
In these applications, the goal is usually to achieve
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the task either in the minimal amount of time or us-
ing the least amount of fuel/energy [5]. In contrast,
this work focuses on trajectory planning for “op-
timal monitoring” of an unknown spatio-temporal
field (e.g., concentration of a gas plume released
by a natural process such as a volcano, or the
level of soil humidity), which is observed subject
to measurement error. The meaning of “optimal
monitoring” can vary according to the specific ap-
plication and might correspond to minimizing the
variance associated with the field reconstruction
[6], [7], identifying its maximum/minimum [8],
[9], or identifying and following a given contour
level of the field [10].

The focus of this paper is on identifying the
maximum of the field, which might be of interest
on its own or as a proxy for other measurements of
interest (e.g., in the case of a gas plume where the
source of the gas is unknown, the maximum of the
field can be used as a proxy for the source). Our
approach uses a statistical model based on Gaus-
sian process priors to learn the unknown spatial
field. Gaussian process priors are widely used in
the spatial statistics literature [11], [12] as well as
in the context of computer experiments to create a
surrogate for computationally expensive computer
code [13]. Gaussian process priors have also been
used for the optimal design of mobile sensor
networks [14], [15]. Our approach differs from this
work in that we are interested in trajectory plan-
ning rather than the locations of vehicles at discrete
and possibly distant times, and in that we focus
on identifying the maximum of the field rather
than on minimizing the uncertainty associated with
its reconstruction. We have recently discussed the
use of a similar model in the context of waypoint
selection [16]. However, unlike the techniques
described here, the approach in [16] requires a
small training sample to guide waypoint selection
and, more importantly, using such an approach as
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part of trajectory planning is usually not practical
for nonholonomic vehicles because it would often
require them to follow infeasible or inefficient
paths. Because of our focus on identifying the
maximum of the underlying field generating the
data, the optimality criterion used to construct the
objective function in our planning algorithm is the
expected improvement [17], [18], which has also
been widely applied in the context of computer
experiments [19], [20]. The expected improvement
is particularly appealing because it automatically
incorporates a trade-off between exploration and
exploitation of the unknown field. However, the
trajectory planning algorithm we describe can be
easily extended to address other operational goals
(such as the optimal reconstruction and optimal
boundary tracking problems mentioned above) by
using appropriate utility functions.

The remainder of the paper is organized as fol-
lows. Section II poses the problem and introduces
our solution based on the expected improvement
function. In Section III we detail our method to
reconstruct the field, whose estimates are used
in the expected improvement function. Section
IV provides an algorithm for optimal trajectory
planning. Section V presents the results of our
Monte Carlo simulations, which show that even in
multimodal phenomena, our algorithm is capable
of identifying the global maximum. Section VI
discusses extensions of the model and future work.

II. PROBLEM FORMULATION

Let R denote the real numbers, R≥0 be the
nonnegative real numbers, Rd be the d dimensional
Euclidean space, and S be a connected region in
Rd that represents the space on which we are in-
terested in monitoring the environmental field. Our
main focus in this paper is on monitoring spatial
phenomena that can be considered to not evolve
over the time scale of interest (such as remotely
monitoring soil humidity levels), so we assume
throughout that d = 2. However, extending the
model to three-dimensional time-varying settings
(such as monitoring the movement of a gas plume)
is conceptually straightforward (see Section VI).

In the sequel we denote f : S → R the unknown
scalar field that we are interested in monitoring
and consider an autonomous vehicle that follows

a nonholonomic trajectory q : R≥0 → S . For
example, for monitoring soil humidity levels we
could consider aerial vehicles, and we might re-
quire that the curvature of q does not exceed the
maximum turning rate of the vehicle and that the
speed should not be lower than the minimum flight
speed. While moving, the vehicle takes noisy mea-
surements y1, y2, . . . of the unknown field f with
sampling frequency 1/∆ so that measurements are
taken at locations s1, s2, . . ., where si = q(i∆).

We are interested in developing algorithms that
use the information about f provided by the obser-
vations y1, y2, . . . to guide the design of the glob-
ally optimal trajectory. Because this information
is acquired sequentially as the vehicle explores
the region S , we approach this problem by de-
signing locally optimal trajectories that are revised
every few steps to incorporate the most recent
information collected by the vehicle. These locally
optimal trajectories are then stitched together to
generate q(t). Trajectory planning thus becomes
a problem of sequential experimental design for
which Bayesian design methods [21] have impor-
tant advantages over classical tools. For example,
Bayesian approaches to experimental design natu-
rally deal with the exploration/exploitation trade-
off [22] and, under mild conditions, their results
are not influenced by the stopping rule used [23].

In the context of our problem, applying a
Bayesian approach to experimental design involves
the maximization of an objective function Ũ(q),

Ũ(q) =
∫
U(q, f) p(f | Data) df, (1)

where U(q, f) is a utility function that depends
on the trajectory q and the underlying field f ,
and p(f |Data) is the posterior probability density
associated with f , which captures our knowledge
about the field, including that from the observa-
tions. The previous expressions implicitly assume
that we treat f as a stochastic process over R, so
that for any point s the value of f(s) is a random
variable, and we can talk about quantities such as
its expected value and its variance.

We use the improvement function as the starting
point to construct our objective function. Given
a finite sample of measurements y1, . . . , yn taken
at locations s1, . . . , sn, the expected improvement
associated with a new point s∗ is given by
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E (max{f(s∗)− ynmax, 0}) =∫∞
ynmax
{f(s∗)− ynmax} p(f(s∗) | Data) df(s∗), (2)

where ynmax = maxi≤n {yi} is the maximum value
observed so far. When considering sampling at ñ
new points that reside on a trajectory q, (2) can
be extended in a few different ways. In this paper
we consider the maximum expected improvement
over the next ñ measurements, defining Ũ(q) as

max
i=1,...,ñ

E (max{f(q({n+ i}∆))− ynmax, 0}) . (3)

Another possible definition for the objective func-
tion, based on the average expected improvement,
is 1

ñ

∑ñ
i=1 E (max{f(q({n+ i}∆))− ynmax, 0}),

which in our experience, tends to be more
conservative in terms of exploration.

As we will discuss in Section III-C, the expected
improvement automatically trades off exploration
and exploitation of S . However, when little in-
formation about the structure of f is available,
directly optimizing (3) can potentially lead to tra-
jectories that take the vehicle outside S. To address
this issue, the objective function we use in our
analysis is a slightly modified version of (3) that
incorporates a penalty that discourages the vehicle
from going far away from S [24]. In particular, if
a measurement yn+i is taken at a location sn+i that
is far from S, we penalize the associated expected
improvement with a term that is proportional to the
distance between sn+i and the barycenter of S, so.
This results in the reward function

R(q) = Ũ(q)− (4)
α max
i=1,...,ñ

‖q({n+ i}∆)− so‖1ScB(q({n+ i}∆)),

where α ≥ 0 is a tuning parameter, 1ScB is the indi-
cator function of the set ScB, which is the comple-
ment of the smallest ball completely enclosing S.
When α = 0 there is no penalty for exploring far
away from SB, while as α increases the incentive
to explore outside of SB decreases. Our goal is
to construct a trajectory q consisting of segments
q̃1, q̃2, . . . that maximize (4) sequentially.

III. FIELD ESTIMATION
Implementation of the strategy described in

the previous section requires that we describe
a Bayesian model for the unknown function f
(i.e., a likelihood for the observations y1, y2, . . .

conditional on the unknown function f , a prior
distribution for f that reflects our assumptions
about the form of the underlying field before any
data is collected, and hyperprior distributions on
key parameters of the prior distribution for f ).
This section describes such a model and derives
the form of the expected improvement in (2) under
the corresponding posterior distribution.

A. Gaussian process model

We assume that, given the field f , the obser-
vations collected by our vehicle are independent
and follow an additive model yi = f(si) + εi,
where εi ∼ N (0, σ2) represents the measurement
noise. Furthermore, we model f as following a
Gaussian process with mean function m(s) and
covariance function γ(s, s′), denoted by f ∼
GP(m, γ(s, s′)). This implies that for any finite
set of locations {s1, ..., sn}, the joint distribution
of (f(s1), ..., f(sn))T is normal N (m,Γ), where
m = (m(s1), . . . ,m(sn))T and [Γ]ij = γ(si, sj)
for i, j = 1, 2, . . . , n.

In the sequel we assume that no prior informa-
tion is available about the shape of f and thus
assume a constant prior mean function m(s) = β.
This assumption is not central to our approach;
if prior information is available (either from mea-
surements obtained from other sources, such as
satellites or fixed sensors, or from a computer
model of the underlying phenomena), it can easily
be incorporated by altering the form of m. Further-
more, in this paper we assume that f is stationary
and isotropic and employ an exponential covari-
ance function, γ(s, s′) = τ 2 exp{−‖s − s′‖/λ},
where τ 2 is the process variance and λ > 0
is the length scale. Again, the assumption of an
exponential covariance function is not key, and
the approach can be modified to accommodate
more general stationary families such as the power
exponential or Matérn families (which provide ad-
ditional parameters that can be used to control the
differentiability of f ), or even covariance functions
that can capture nonstationarity.

Note that, if the values of the parameters β, σ2,
τ 2 and λ are known, then for any s∗ ∈ S, the poste-
rior distribution of f(s∗) given n observations y =
(y1, . . . , yn) taken at locations s = (s1, . . . , sn)
implied by the Gaussian process model is normal

42



with mean

µ(s∗) = β + γ(s∗, s)T
[
Γ + σ2I

]−1
(y − β1) (5)

and variance

ς2(s∗) = τ 2 − γ(s∗, s)T
[
Γ + σ2I

]−1
γ(s∗, s), (6)

where I is the identity matrix, 1 is a vector
of ones, and γ(s∗, s) = (γ(s∗, s1), ..., γ(s∗, sn))T.
Hence, under squared error loss, µ(s∗) provides
the optimal estimate of the true value of the field
f at location s∗.

B. Optimal selection of hyperparameters
The quality of the reconstruction provided by

the Gaussian process model just described strongly
depends on the values of the hyperparameters
β, σ2, τ 2 and λ. Hence, rather than fixing their
values, we treat them as unknown and estimate
them from the data using a quasi-empirical Bayes
approach [25], [26]. More specifically, we set β,
σ2, τ 2, and λ to the values that maximize their
joint marginal posterior distribution p(β, σ2, τ 2, λ |
Data) =

∫
p(f, β, σ2, τ 2, λ | Data) df .

Standard applications of empirical Bayes pro-
cedures assume a flat prior for the hyperparam-
eters, i.e., p(β, σ2, τ 2, λ) ∝ 1. However, be-
cause flat priors are improper and there are po-
tential identifiability issues associated with the
pair (τ 2, λ), we instead assume that the hy-
perparameters are independent a priori and let
p(β) ∝ 1, σ2 ∼ Inverse-Gamma(a1, b1), τ 2 ∼
Inverse-Gamma(a2, b2), and λ ∼ Gamma(a3, b3),
where a1, b1, a2, b2, a3, b3 are fixed to reflect the
general scale of the data. Under these priors, the
logarithm of the joint posterior distribution is

log p(β, σ2, τ 2, λ | Data) = c− 1

2
log
∣∣Γ + σ2I

∣∣
−1

2
(y−β1)T

[
Γ + σ2I

]−1
(y−β1)−(a1+1) log σ2

− b1

σ2
−(a2 +1) log τ 2− b2

τ 2
+(a3−1) log λ−b3λ,

(7)

where c is a constant. The optimal values
for the hyperparameters are the β, σ2, τ 2, λ that
jointly maximize log p(β, σ2, τ 2, λ |Data), which
are found numerically using the Nelder-Mead al-
gorithm [27]. These values are then substituted into
(5) and (6) for posterior inference about f .

We use this empirical Bayes approach for es-
timating the hyperparameters rather than more
common Markov chain Monte Carlo (MCMC) al-
gorithms [28] because we are interested in fast al-
gorithms that can be used in real time applications.
Since the trajectory is constructed sequentially as
observations are collected, our estimate of the
hyperparameters also needs to be updated online,
precluding the use of computationally intensive
algorithms such as MCMC.

C. The expected improvement under the Gaussian
process prior

One advantage of working with Gaussian pro-
cess priors for the unknown field f is that the com-
putation of the expected improvement is relatively
simple. Indeed, under our model the expected
improvement (2) at any point s∗ ∈ S reduces to

E (max{f(s∗)− ynmax, 0}) =

(µ(s∗)− ynmax) Φ (z(s∗)) + ς(s∗)φ (z(s∗)) , (8)

where z(s∗) = µ(s∗)−ynmax

ς(s∗)
, and φ and Φ are, respec-

tively, the density and the cumulative distribution
function of the standard Gaussian distribution.

The structure of (8) highlights how the expected
improvement trades off exploration and exploita-
tion. For locations s∗ where µ(s∗) is large and ς(s∗)
is small the first term of (8) dominates, whereas
for locations where µ(s∗) is small and ς(s∗) is
large the second term dominates. Hence, we can
think of the first term as the exploitation term,
which favors points where the Gaussian process
estimation suggests that we can improve with a
high probability, while the second term can be in-
terpreted as an exploration term that favors visiting
locations where the uncertainty of the value of the
field is large.

IV. OPTIMAL TRAJECTORY PLANNING
ALGORITHM

As mentioned in Section II, our approach to
constructing the optimal trajectory q involves se-
quentially computing locally optimal trajectories
q̃1, q̃2, . . . as batches of new observations be-
come available. These local trajectory segments
are stitched together by enforcing continuity in the
position and the velocity fields at their endpoints.
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Let k be the number of locations on a local tra-
jectory. Our algorithm selects the local trajectories
by looking pk∆ time units ahead and maximizing
the reward in (4) associated with the potential pk
new locations along each possible trajectory that
satisfies the nonholonomic constraints given by the
vehicle kinematics model. The vehicle then follows
this locally optimal trajectory for k∆ time units, at
which point the information from the most recent
k measurements is incorporated into the posterior
distribution for f , and the process is repeated to
compute the next locally optimal segment. In other
words, the vehicle plans an optimal segment over
pk∆ time, follows it for k∆ time, and then plans
the next optimal segment. The values of ∆ and k
are decided by the user on the basis of factors
such as the sampling frequency of the sensors,
the average speed of the vehicle, and the size
of the region to be studied. p ≥ 1 is a tuning
parameter for the planning horizon. Larger values
of p generate less myopic trajectory segments at
the cost of longer computation time.

More formally, given n = (j−1)k total observa-
tions collected during the first j−1 locally optimal
trajectory segments, the next local trajectory q̃j
is obtained by maximizing (4) with ñ = pk and
subject to the constraints

c1(q̃j) = q̃j(n∆)− q̃j−1(n∆) = 0

c2(q̃j) = q̃′j(n∆)− q̃′j−1(n∆) = 0 (9)
c3(q̃j) = g(q̃′j(t), q̃

′′
j (t), t) ≤ 0

for all t ∈ [n∆, (n+pk)∆]. In the previous expres-
sions, c1(q̃j) and c2(q̃j) represent the constraints
on the continuity of the position and velocity fields,
while c3(q̃j) represents a vector of nonholonomic
constraints. The procedure just described is then
applied iteratively until the stopping rule is met
(e.g., fixed amount of time or the maximum ex-
pected improvement over S falls below a prede-
termined threshold). The general structure of the
algorithm is outlined in Algorithm 1.

A. Constant speed circular arcs
In practice, we simplify the optimization process

by parametrizing q̃1, q̃2, . . . in terms of a small
set of parameters ξ1, ξ2, . . ., thereby transform-
ing the trajectory planning problem into a low-
dimensional nonlinear optimization problem. As

Algorithm 1 Optimal trajectory algorithm
Input: S, out-of-bound penalty α, vehicle’s initial location and heading

angle, prior distributions for hyperparameters (β, σ2, τ2, λ), length of
local trajectory k, sampling rate ∆, planning horizon parameter p,
nonholonomic constraints c3(·), and stopping rule.

Output: Optimal trajectory q that finds the maximum over S.
1: Initialize j = 1, n = k, and fix ñ = pk.
2: Initialize q by setting q̃1 as a straight-line trajectory (along an initial

heading angle) from vehicle’s initial location.
3: Initialize y with the measurements taken at q̃1(∆), . . . , q̃1(k∆).
4: while stopping rule is not met do
5: Set j = j + 1.
6: Estimate (β, σ2, τ2, λ) by maximizing (7).
7: Obtain q̃j by maximizing R(q̃j) in (4) subject to (9).
8: Add q̃j({n+ i}∆), i = 1, . . . , k to q.
9: Sample at q̃j({n+ i}∆), i = 1, . . . , k.

10: Add new measurements to y.
11: Set n = n+ k.
12: end while

an example, consider designing a trajectory for an
aerial vehicle that needs to maintain a minimum
flight speed νmin and whose turning radius cannot
be smaller than a constant 1/κmax. A simple choice
for the local trajectories is to use constant-speed
circular arcs parameterized as

q̃j(t) =

[
ξj,1 cos(ξj,2t+ ξj,3) + ξj,4
ξj,1 sin(ξj,2t+ ξj,3) + ξj,5

]
, (10)

where ξj,1ξj,2 = ν∗ > νmin. (Note that a straight
trajectory arises as a special case when the ra-
dius of curvature goes to infinity.) An advantage
of using these circular trajectories is that, after
continuity on the position and velocity fields are
enforced, finding the optimal trajectory reduces to
finding the optimal radius ξj,1 for the circle subject
to the constraint |ξj,1| ≥ 1/κmax. This is a sim-
ple univariate maximization problem that can be
solved using a numerical method such as Brent’s
method [29]. Fig. 1 shows a sample trajectory
parametrized by circular arcs as described above.

B. Variable speed circular arcs
For more generality, the constant speed circular

arc parametrization can be extended to allow the
aerial vehicle to fly at speeds in a range ν ∈
[νmin, νmax]. In particular, we consider a parame-
terization of the form

q̃j(t) =

ξj,1 cos
(

1
2

ξj,2
ξj,1
t2 + ξj,3t+ ξj,4

)
+ ξj,5

ξj,1 sin
(

1
2

ξj,2
ξj,1
t2 + ξj,3t+ ξj,4

)
+ ξj,6

 ,
(11)

which is a specific solution of the Dubin’s ve-
hicle system q′j,1(t) = ν(t) cos θj(t), q′j,2(t) =
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Fig. 1. Vehicle following trajectory composed straight of lines and
circular arcs. Large (small) black dots show where the vehicle has
taken (will possibly take) measurements. Yellow curves sweep over
an area of feasible trajectories for the next pk∆ time period.

ν(t) sin θj(t), θ
′
j(t) = uj(t), where the speed ν(t)

is continuous for all t, and the angular velocity
control has the form uj(t) =

ξj,2
ξj,1
t + ξj,3 and is

piecewise continuous during each iteration of the
algorithm. Note that ξj,2 is a linear acceleration
term and (11) reduces to (10) when ξj,2 = 0.
With this parametrization, ξj,3 and ξj,4 are set by
enforcing continuity of velocity, and ξj,5 and ξj,6
are set by enforcing continuity of position. This
leaves optimizing over ξj,1 and ξj,2 subject to the
constraints |ξj,1| ≥ 1/κmax and νmin ≤ ‖q̃′(k{j −
1}∆)‖ + ξj,2t ≤ νmax for all t ∈ [(j − 1)k∆, (j +
p−1)k∆], where ‖q̃′(k{j−1}∆)‖ is the speed of
the vehicle at the end of the previous segment. We
solve this bivariate maximization problem using a
quasi-Newton method with box constraints [30].

V. SIMULATIONS

In this section we use simulations to investigate
the performance of Algorithm 1 in two differ-
ent scenarios. Our first experiment compares the
performance of the constant speed and variable
speed circular arc parametrizations and that of the
biased random walk strategy presented in [9] (with
a mean free path bias of 25%) in the context
of a bimodal field whose global maximum is
obstructed by a local maximum. Our second exper-
iment focuses on a trimodal field and investigates
the performance of our constant speed algorithm
against that of a popular “lawnmower” trajectory
that exhaustively explores the region of interest.

A. Constant and variable speed algorithms versus
biased random walk

In this first experiment data is generated from a
true field of the form

f1(s) = exp
{
−10

[
(s1 − 0.75)2 + (s2 − 0.75)2

]}
+ 0.75 exp

{
−10

[
(s1 − 0.25)2 + (s2 − 0.25)2

]}
over S = [0, 1]2 (see Fig. 2). The global maxi-
mum value of 1.0052 occurs at (0.7473, 0.7473),
and there is a local maximum at (0.2549, 0.2549)
with value 0.7571. The true observational noise
associated with the measurements in this simulated
system is set as σT = 0.04.

When applying our algorithm to this simulated
system, we set out-of-bounds penalty α = 10−10,
sampling period ∆ = 1, local trajectory length
k = 4, planning horizon factor p = 2, maximum
curvature allowed κmax = 10, constant speed
ν∗ = 0.04, and a variable speed in the range
ν ∈ [0.01, 0.04]. The hyperpriors for σ2 and τ 2 are
based on rough estimates of the variance of the first
n observations, with a1 = a2 = 2 and b1 = b2 =
1

2n
{
∑n

i=1 y
2
i − 1

n
(
∑n

i=1 yi)
2}. This choice reflects

the assumption that, a priori, we expect about half
the variability of the data to be due to measurement
noise and about half to come from the variability
in f . Furthermore, for the prior on λ we take
a3 = 2 and b3 = −

√
2 log(0.05), reflecting the

assumption that, a priori, the correlation between
measurements taken at the two farthest points on
S is around 0.05. The algorithm is run for 200
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Fig. 2. True field f1. The white × marks the location of the global
maximum of f1. The white circle has radius 0.025

√
2. The outer

black circle circumscribes [0, 1]2 and is the boundary of SB .

45



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

C
on

st
an

t

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l
l l

l

l

l

l

l

l

l
l

lll
l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l
l l

l
l l

l

l

l
l l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l
l l

l

l

l

l

l
l l l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
llllllll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

V
ar

ia
bl

e

l

l

l

l

l

l

l
l

l
l l l l l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l
ll

l
l

l

l

l

l

l

l

l

l

l

l
l l l l ll

l
l

l l l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

lll
l

l

l

l

l

l

l
l

l l
l

l

l

l

l
l l l

l
l

l

l

l

l
l l l

l

l

l

l

l

l

l
lll

l
l

l

l

l

l
l

lllll
l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

llllll
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Longitude

B
ia

se
d 

R
an

do
m

 W
al

k

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l
l l l l l l l l l l l

l
l

l

l

l

l

l

l
ll

l

l

l

l
llll

l
l

l

l
l

lll
l

l

l

l

l

l

l

l

l

l

l

l

l
l l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
lll

l
l

ll
l

l

l

l

l

l
l

ll
l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l l l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l
lllll

l
l

l

l
l

ll

0 0.25 0.5 0.75 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.25 0.5 0.75 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.005 0.01 0.015 0.02

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Not calculated for
biased random walk.

0 0.00015 0.0003 0.00045 0.0006

                         Truth                                                          Mean                                                   Variance                                       Expected Improvement

              (a)                                                            (b)                                                            (c)                                                           (d)

Fig. 3. For each of constant speed circular arcs, variable speed circular arcs, and biased random walk trajectories, (a) true field with
snapshot of the optimal trajectory at t = 224; (b) the estimate of the field at t = 224 over a discretized 41× 41 grid; (c) the variance of
the estimate over the grid; (d) expected improvement evaluated over the grid.

iterations, equivalent to 800∆ time units, for a total
of 800 measurements.

To evaluate the performance of our method, we
run 200 simulations of each of the constant speed
and variable speed cases in addition to 200 biased
random walk trajectories. In every simulation the
vehicle starts at the origin with a heading angle
of π

4
. We assume that no data is available at

the beginning of the simulation and instruct the
vehicle to go straight for k∆ time units, collect-
ing k measurements that are used to initialize
our algorithm. The code for these simulations is
available from the first author by request. Fig. 3
shows examples of trajectories obtained for one
of these simulations after 224 measurements have
been taken (first column), as well as the posterior

mean of f1 (which provides the current optimal
reconstruction, second column), the variance of
posterior distribution (which provides an estimate
of the uncertainty associated with that reconstruc-
tion, third column) and the expected improvement
(fourth column). We see that the trajectories gener-
ated by our constant and variable speed algorithms
find and circle a few times the local maximum and
then head toward and find the global maximum.
By this point in time, the posterior means of f1

computed from the constant and variable speed
trajectories capture most of the features of the true
field. However, the biased random walk trajectory
so far has stayed mostly in the lower half of S and
has not gotten near enough to the global maximum
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Fig. 4. The proportion of our simulations that have located the
global maximum as a function of time.

to estimate the field or the location of the global
maximum accurately.

A summary of the results for all simulations
under the first scenario is presented in Fig. 4,
which shows the probability that the algorithm
has found the true global maximum as a func-
tion of flight time. For the purpose of this plot
we assume that the global maximum has been
accurately found if the location of the maximum
of the posterior mean is inside an ε-disk centered
at the true global maximum’s location, and preset
ε = 0.025

√
2. In both constant and variable speed

cases, our algorithm seems to be able to find
the global maximum with high probability more
quickly than the biased random walk strategy.
Moreover, the curves for constant and variable
speed are very close. To illustrate why, we show in
Fig. 5 a representative path for the optimal speed
resulting from the variable speed parametrization
(11). Note that the vehicle tends to fly at maximum
speed when it moves away from the currently
estimated maximum and it tends to slow down
when it approaches and flies over a maximum.
The result that the constant and variable speed
algorithms seem to perform very similarly and that
the two-dimensional optimization associated with

0 50 100 150 200
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04

Variable Speed

vmin

vmax

         Time

Fig. 5. An example of the speed path under variable speed
parametrization in our first simulation study.
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Fig. 6. True field f2. The white × marks the location of the
maximum of f2. The white circle has radius 0.075

√
2. The outer

black circle circumscribes [0, 3]2 and is the boundary of SB .

the variable speed is computationally expensive
suggest that the constant speed algorithm is better
suited for online trajectory generation for a phys-
ical system.

B. Constant speed algorithm versus lawnmower

In our second experiment data is generated from
a trimodal true field

f2(s) = exp
{
−[(s1 − 2.25)2 + (s2 − 2.25)2]/0.9

}
+ 0.85 exp

{
−[(s1 − 1.8)2 + (s2 − 0.6)2]/0.9

}
+ 0.7 exp

{
−[(s1 − 0.6)2 + (s2 − 1.8)2]/0.9

}
over S = [0, 3]2 (see Fig. 6). Of the three modes,
the global maximum occurs at (2.1685, 2.1575)
with value 1.0721. In this simulation we com-
pare Algorithm 1 with constant speed circular
arc parametrization against the “lawnmower” tra-
jectory that exhaustively explores the region of
interest. As in our first experiment, we set σT =
0.04, α = 10−10, ∆ = 1, k = 4, p = 2,
κmax = 10, ν∗ = 0.04, and use the same reasoning
for specifying the hyperprior distributions of σ2,
τ 2, and λ. The algorithm is run for a total of 1224∆
time units, which is the amount of time needed for
the “lawnmower” trajectory to cover the region at
the same speed and maximum curvature constraint
as our constant speed algorithm.

Fig. 7 shows a sample trajectory of the constant
speed algorithm obtained for one of these simula-
tions after 1224 measurements. Results from this
experiment show that, without a local mode close

47



C
on

st
an

t

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l
l

l

l

l
l

l
l l l l

l
l

l

l
l

l l l
l

l

l

l
l

l
l l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l
l

l
l

l l l l l l l
l

l
l l l l

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l
l

l
lllll

l
l

l
l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l l l l l l l

l
l

l
l

l

l

l

l

l
l

l
l

lllllllllllllll
l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l l l l l l l l l l l l l l l l l l l l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

lllllllllllllllllll
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l l l l

l
l

l l l
l

l

l

l
l

l
l

l
lllll

l
l

l

l
l

l l l l
l

l
l

l
l

l l l
l

l

l

l

l
l

lll
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l

l

l
l

l
l

l

l

l

l
l l l

l
l

l

l

l

l

l

l
l

l
l

l

l

l
l

l l
l

l
l

l

l

l

l
l

l
lll

l
l

l

l

l
l

l l l
l

l

l

l
l

l
lll

l
l

l

l
l

l l l
l

l
l

l

l

l
l

lll
l

l

l

l

l
l

l l l
l

l
l

l

l

l
l

l
lll

l
l

l

l
l

l

l

l
l

l

l

l
l

l
l

l

l

l

l
l

lll
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l

l

l

l
l

l
lll

l
l

l

l

l
l

l
l

l
l l l l l

l
l

l
l

l

l

l
l

lll
l

l
l

l
l

l
l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l
l

l
l

l
llll

l
l

l
l

l

l
l

l
l l l l l

l
l

l
l

l

l

l
l

l
llll

l
l

l

l

l

l
l

l
l l l l

l
l

l

l

l

l
l

lll
l

l

l

l
l

l l l l
l

l

l

l
l

lll
l

l

l

l
l

l
l l l

l
l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l
l

l
l

l
l

llllll
l

l

l

l

l

l
l

l
l

l
llllll

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l
l

l
l

lllll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l l l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l l l l
l

l

l

l
l

l
lll

l
l

l

l
l

l l l
l

l

l

l
l

l l l
l

l

l

l

l
l

l
llllll

l
l

l

l

l

l
l

l

l

l

l

l

l

l
l

lll
l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l
l

l
lllllllllllllllllllllllllllllllllllll

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l l l l l l l l l l l l l l l l l l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l l l l l

l
l

l
l

l

l
l

l
l l l

l
l

l

l
l

llll
l

l

l

l

l

l
l

l
l l l

l
l

l

l

l

l

l
l

l
l

l
l

l

l

l
l

l
lllll

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

llll
l

l
l

l
l

l
l

l

l

l
l

l
l l l

l
l

l

l
l

l

l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

La
w

nm
ow

er

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

0 0.25 0.5 0.75 1

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

0 0.25 0.5 0.75 1

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

0 0.002 0.004 0.006

0 0.6 1.2 1.8 2.4 3

0
0.

6
1.

2
1.

8
2.

4
3

Not calculated for
lawnmower trajectory.

0 0.4 0.8 1.2
x 10−17

                       Truth                                                          Mean                                                    Variance                                    Expected Improvement

              (a)                                                            (b)                                                            (c)                                                           (d)

Fig. 7. For constant speed circular arcs and lawnmower trajectories, (a) true field with snapshot of the optimal trajectory at t = 1224;
(b) the estimate of the field at t = 1224 over a discretized 41 × 41 grid; (c) the variance of the estimate over the grid; (d) expected
improvement evaluated over the grid.
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Fig. 8. Proportion of our simulations (out of 200) that have located
the global maximum as a function of time.

to the origin obstructing the global maximum, our
algorithm generates optimal trajectories that head
towards the global maximum very quickly from the
beginning. Furthermore, because the global maxi-
mum is far away from the vehicle’s starting posi-
tion, the lawnmower trajectory takes much longer
to find it, as plotted in Fig. 8. The one advantage
of the lawnmower trajectory is that its computed
variance for the posterior distribution of f2 is, on
average over the region, lower than that of our
algorithm’s. This is due to the even measurements
over the region, and so the lawnmower trajectory
is perhaps better suited for different applications

of optimal monitoring of a spatio-temporal field.
On a similar note, the variance around the global
maximum is much lower for our algorithm be-
cause the optimally computed trajectories converge
toward the global maximum and sample around
there often, giving more accurate estimates of the
maximum’s location.

VI. CONCLUSIONS

We have developed a method for trajectory
planning to find the maximum of a spatial field that
seems to outperform both an exhaustive search of
the space as well as search algorithms based on bi-
ased random walks. Extending our method to three
dimensional and/or time varying environmental
processes can be done by increasing the dimension
of s and q and modifying the covariance function
of the Gaussian process to reflect all dimensions.
Similarly, extending to nonstationary processes can
be done through nonstationary covariance func-
tions [31]. Because the vehicle has an up-to-
date reconstruction of the field, other operational
goals (e.g., finding the boundary of a gas plume)
can be achieved using the same basic framework
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with replacement of the expected improvement by
a different objective function. Another direction
for future work is to involve multiple vehicles
by looking into additional penalty terms in the
reward function and additional constraints in the
sequential optimization of the reward function.

Although the results from these and similar
experiments are encouraging, it is important to
acknowledge some shortcomings we noted during
our simulations. Firstly, although in all of our
experiments we seemed to be able to eventually
find the global mode, the myopic nature of our
algorithm can be an issue (especially if ∆, k, or
p is too small), as the vehicle may stay close to
a local mode for a long time. Also, our focus on
circular trajectory segments can be a problem be-
cause the vehicle may get trapped flying in circles
around the perceived mode for a while. A third
direction for future work explores more general
parametrizations of the trajectory segments.
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