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ABSTRACT
We propose a multinomial logistic regression model for link prediction in a time series of directed binary
networks. To account for the dynamic nature of the data, we employ a dynamicmodel for themodel param-
eters that is strongly connectedwith the fused lasso penalty. In addition to promoting sparseness, this prior
allows us to explore the presence of change points in the structure of the network. We introduce fast com-
putational algorithms for estimation and prediction using both optimization and Bayesian approaches. The
performance of the model is illustrated using simulated data and data from a financial trading network in
theNYMEXnatural gas futuresmarket. Supplementarymaterial containing the trading network dataset and
code to implement the algorithms is available online.

1. Introduction

Network data, in which observations correspond to the inter-
actions among a group of nodes, have become pervasive in
disciplines as diverse as social, physical, and biological sciences.
Accordingly, there has been a growing interest in developing
tools for the analysis of network data, particularly from a
model-based perspective (for excellent reviews see Newman
2003; Goldenberg et al. 2009; Snijders 2011). The focus on this
article is on models for time series of binary directed networks
that involve the same set of subjects at each time point. In
particular, our work is motivated by the study of financial
trading networks (FTNs), which capture the pattern of buy and
sell transactions in a financial market. A primary goal in the
analysis of this type of dynamic network data is link prediction
at future times, going as far as predicting the structure of the
whole network. An additional goal is to provide a simple model
to explore the evolution of the network, and possibly identify
change-points in the network dynamic. To accomplish these
goals, we extend the idea of p1 models initially proposed by
Holland and Leinhardt (1981) for static binary networks.

Consider a directed binary network among n nodes,
Y = [yi, j], where yi, j = 1 if there is a link directed from
node i to node j, and yi, j = 0 otherwise. Holland and Lein-
hardt’s model assumes conditional independence between pairs
of nodes (dyads) and focuses on modeling the pairs (yi, j, y j,i)
jointly for i < j, j = 1, . . . , n as follows:

p
(
yi, j, y j,i

) ∝ exp
{
θ1yi, j + θ2y j,i + θ3yi, jy j,i

}
. (1)

This class of models has been extended to a dynamic set-
ting by introducingMarkov dependency upon past observations
(e.g., see Banks and Carley 1996). In contrast, in the modeling
approach discussed in this article, the model parameters are set
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to be time dependent to add flexibility and account for alter-
ations in the network evolution over time. One challenging fea-
ture that is often present in model-based approaches to network
data is high-dimensionality. In particular, the number of param-
eters in our proposed model is larger than the number of avail-
able observations. To deal with this issue, we resort to fused lasso
regression by imposing an L1 penalty on the difference between
neighboring model parameters (Tibshirani et al. 2005). In a
Bayesian setting, this is equivalent to assuming a double expo-
nential prior on the differences of the coefficients in contigu-
ous time points. Here, we explore two different computational
approaches for our model. First, full Bayesian inference is pre-
sented and implemented using two different sampling schemes.
However, the heavy computational load of a full Bayesian anal-
ysis is a challenging task as the number of nodes in the network
increases. As an alternative, we also carry out maximum a pos-
teriori (MAP) estimation using an optimization approach.

The remainder of the article is organized as follows: Section 2
describes our modeling approach. Section 3 describes the com-
putational algorithms for estimation and prediction from opti-
mization and Bayesian perspectives. Section 4 discusses other
related work. Section 5 presents three illustrations, two based on
simulated data and a third one that focuses on trading networks
from the natural gas futures market in the New York Mercantile
Exchange (NYMEX). Finally, a short discussion is presented in
Section 6.

2. Modeling Approach

Consider a sequence of binary directed networks Y1, . . . ,YT ,
each one observed over a common set of n nodes. The adja-
cencymatrix of the network at time t is therefore ann × n binary
matrix Yt = [yi, j,t ], where yi, j,t = 1 if there is a link directed
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from node i to node j at time t , and yi, j,t = 0 otherwise. We
adopt the convention yi,i,t ≡ 0 so that there are no loops within
the network. In the illustration we discuss in Section 5.3, the
nodes in the network correspond to traders in the NYMEX nat-
ural gas futures market, so that yi, j,t = 1 if trader i sold to trader
j at least once during week t .

We consider an extension of (1) in which the pairs
{(yi, j,t , y j,i,t ) : i < j} aremodeled independently using a logistic
model of the form

p
(
yi, j,t , y j,i,t

) ∝ exp
{
θi, j,t,1yi, j,t + θi, j,t,2y j,i,t + θi, j,t,3yi, j,t y j,i,t

}
,

(2)
where θi, j,t,1 and θi, j,t,2 represent the baseline probabilities of
a directed link between nodes i and j, and θi, j,t,3 controls
the level of dependence between yi, j,t and y j,i,t . For example,
θi, j,t,3 = 0 implies that yi, j,t and y j,i,t are conditionally indepen-
dent with Pr(yi, j,t = 1) = exp{θi, j,t,1}/(1 + exp{θi, j,t,1}) and
Pr(y j,i,t = 1) = exp{θi, j,t,2}/(1 + exp{θi, j,t,2}). On the other
hand, θi, j,t,3 > 0 favors outcomes in which yi, j,t = y j,i,t (a phe-
nomenon often called positive reciprocity in the network liter-
ature), while θi, j,t,3 < 0 favors situations in which yi, j,t �= y j,i,t
(often called negative reciprocity). Hence, by allowing the val-
ues of yi, j,t and y j,i,t to be potentially correlated the model can
accommodate reciprocity.

The parameters in the multinomial logistic model we just
described are time dependent. Hence, it is natural and useful to
take into account the information about their temporal corre-
lation structure in the estimation process. In particular, we are
interested in a randomwalkmodel with double exponential pri-
ors of the form

θi, j,t,r = θi, j,t−1,r + εi, j,t,r, εi, j,t,r ∼ DE(0, 1/λ),

where DE represents the double exponential distribution, and
λ > 0 is the parameter that controls the shrinkage level in the
differences of the coefficients. A dynamic model of this type of
the parameters leads to the joint prior

p
(
�i, j,r | λ) ∝ exp

{
−λ

T∑
t=1

|θi, j,t,r − θi, j,t−1,r|
}
,

where �i, j,r = (θi, j,0,r, θi, j,1,r, . . . , θi, j,T,r) is the vector of
parameters for class r and pair of nodes (i, j), and θi, j,0,r = θ̂r,0
is assumed known. This pairwise difference prior belongs to the
class of Markov random fields and corresponds to a scale mix-
ture of conditionally autoregressive (CAR) priors, which are fre-
quently used in time series, spatial statistics, and image pro-
cessing (e.g., see Rue and Held 2005). By assuming that θi, j,0,r
is known, we ensure that the prior distribution, and therefore
the associated posterior, is proper. Indeed, note that the more
common choice of a flat (improper) prior on θi, j,t,r leads in this
case to an improper posterior distribution (Sun, Tsutakawa, and
Speckman 1999). In addition, assuming double exponential pri-
ors is equivalent to imposing L1 penalty functions on the differ-
ences of the parameters in contiguous time points. This penalty
type is commonly referred to as the fused lasso with tuning
parameter λ. An extensive review of the fused lasso and its the-
oretical properties is presented in Rinaldo (2009).

We propose to set the hyperparameters θ̂1,0, θ̂2,0, and θ̂3,0
using a procedure reminiscent of empirical Bayes. In particular,

we assume values of θ̂1,0, θ̂2,0, and θ̂3,0 so that the probabilities of
the (unobserved) events (yi, j,0, y j,i,0) = (0, 0), (yi, j,0, y j,i,0) =
(1, 0), (yi, j,0, y j,i,0) = (0, 1), and (yi, j,0, y j,i,0) = (1, 1) corre-
spond to their time-average probabilities, that is,

θ̂1,0 = p̂1,0
p̂0,0

θ̂2,0 = p̂0,1
p̂0,0

θ̂3,0 = p̂1,1
p̂0,0

− p̂1,0
p̂0,0

− p̂0,1
p̂0,0

,

where

p̂0,0 = 2
n(n − 1)

T∑
t=1

I∑
i=1

J∑
j=i+1

I(yi, j,t = 0, y j,i,t = 0),

p̂1,0 = 2
n(n − 1)

T∑
t=1

I∑
i=1

J∑
j=i+1

I(yi, j,t = 1, y j,i,t = 0),

p̂0,1 = 2
n(n − 1)

T∑
t=1

I∑
i=1

J∑
j=i+1

I(yi, j,t = 0, y j,i,t = 1),

p̂1,1 = 2
n(n − 1)

T∑
t=1

I∑
i=1

J∑
j=i+1

I(yi, j,t = 1, y j,i,t = 1),

and I(·) represents the indicator function. Other appealing
default alternatives are possible, and we use them to study the
sensitivity of the model to the prior specification. For example,
we could specify θ̂1,0 as the logit of the average probability of an
incoming link over the whole history of the network, θ̂2,0 as the
logit of the average probability of an outgoing link, and θ̂3,0 = 0
to reflect our assumption of no reciprocity a priori. Finally, we
also tried setting θ1,0 = θ2,0 = θ3,0 = 0, which is consistent with
the idea that all categories have the same probability a priori at
time 0.

3. Estimation and Prediction

Let �i, j = {�i, j,2,�i, j,3,�i, j,4} be the vector of all nonzero
parameters for the pair of nodes (i, j). The log-posterior dis-
tribution of the parameters is given by

∑
i< j

{
Vi, j(�i, j)− λ

4∑
r=2

‖L�i, j,r‖1
}
, (3)

where

Vi, j(�i, j) =
T∑
t=1

{
yi, j,tθi, j,t,1 + y j,i,tθi, j,t,2 + yi, j,t y j,i,tθi, j,t,3

− log
(
1 + exp

{
θi, j,t,1

} + exp
{
θi, j,t,2

}
+ exp

{
θi, j,t,1 + θi, j,t,2 + θi, j,t,3

}) }
is the (unpenalized) log-likelihood, ‖ · ‖1 denotes the L1-norm,
and L is a pairwise difference matrix of dimension T × (T + 1)
of the form

L =

⎡
⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1

⎤
⎥⎥⎥⎦.
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Given λ, (3) can be broken down into n(n − 1)/2 estima-
tion problems, each one corresponding to fitting a multinomial
regression for each pair of nodes in the network.

In the sequel, we focus on algorithms that can be used to solve
each of these independent problems, which are then naively
implemented in a parallel environment. First, we describe two
different sampling algorithms for full Bayesian inference. Esti-
mation results with these sampling schemes are identical but we
are interested in comparing their efficiency (see Section 5). We
also present a faster optimization alternative for point estima-
tion and prediction that allows implementation of the model in
big data settings.

3.1. Full Bayesian Inference

To perform Bayesian inference with a multinomial likelihood,
we exploit the data-augmentation method based on Pólya-
Gamma latent variables proposed by Polson, Scott, and Windle
(2013). Using this approach, the multinomial likelihood can be
represented as a mixture of normals with Pólya-Gamma mix-
ing distribution. This approach allows for a full conjugate hier-
archical representation of the model and posterior inference
through relatively simple Markov chain Monte Carlo (MCMC)
algorithms.

For the Bernoulli case, the contribution of the observation
yt ∈ {0, 1} to the likelihood can be written as

L(ψt ) = exp(ytψt )

1 + exp(ψt )
∝ exp(κtψt )∫ ∞

0
exp{−ωtψ

2
t /2}p(ωt )dωt ,

where ψt is the log odds of yt = 1, κt = yt − 1/2, and p(ωt )

is the Pólya-Gamma density with parameters (1, 0). Hence, by
augmenting the model with the latent variable ωt , conditional
Gaussianity for the Bernoulli likelihood can be easily achieved.

Similarly, for themultinomial case, conditional onωi, j,t,r, the
full conditional likelihood of each θt,r is given by

L(θi, j,t,r | θi, j,t,−r) ∝ exp
{

− ωi, j,t,r

2
(θt,r +Ci, j,t,r)

2

+κi, j,t,r(θi, j,t,r +Ci, j,t,r)

}

with

Ct,1 = log
1 + exp

{
θt,2 + θt,3

}
1 + exp

{
θt,2

} κt,1 = yi, j − 1/2

Ct,2 = log
1 + exp

{
θt,1 + θt,3

}
1 + exp

{
θt,1

} κt,2 = y j,i − 1/2

Ct,3 = log
exp

{
θt,1 + θt,1

}
exp

{
θt,1

} + exp
{
θt,2

} κt,3 = yi, jy j,i − 1/2

and ωi, j,t,r | � ∼ PG(1, θi, j,t,r +Ci, j,t,r). In the previous
expression, PG denotes a Pólya-Gamma distribution. Hence,
conditionally on the latent variable ωi, j,t,r we obtain an
augmented Gaussian likelihood with observations y∗

i, j,t,r ∼
Normal (θi, j,t,r, ω−1

i, j,t,r), where y∗
i, j,t,r = κi, j,t,r/ωi, j,t,r −Ci, j,t,r.

Hereinafter, we simplify notation by dropping the subindex i
and j associated with the subject pair.

... Latent Variables Approach
Using the fact that the double exponential distribution can be
expressed as a scalemixture of normals with exponential mixing
density (Park and Casella 2008):

a
2
exp(−a|x|) =

∫ ∞

0

1√
2πτ

exp
(
x2

2τ

)
a2

2
exp

(
−a2τ

2

)
dτ,

the proposed model can be expressed as a simple hierarchical
extension of a dynamic linear model

y∗
t,r = θt,r + εt,r, εt,r ∼ Normal (0, ω−1

t,r ),

θt,r = θt−1,r + εt,r, εt,r ∼ Normal (0, τ 2t,r),

for 2 ≤ t ≤ T , where θ1,r ∼ Normal (θ̂0,r, τ 21,r) and τ 2t,r is expo-
nentially distributed a priori with mean 2

λ2
.

We rely on the dynamic linear model representation to
update the parameters in a component-wise fashion using a for-
ward filtering backward sampling (FFBS) algorithm (Carter and
Kohn 1994; Frühwirth-Schnatter 1994). Furthermore, the latent
parameters τt,r for t = 0, . . . ,T − 1 are independent a posteri-
ori and updated as

(
1/τ 2t,r|�r, λ

) ∼ IGau

(√
λ2

(θt,r − θt−1,r)2
, λ2

)
,

where IGau denotes the Inverse Gaussian distribution (Kyung
et al. 2010).

... Direct Sampling
Note that the full conditional prior on θt,r only involves its two
nearest neighbors, so that for 1 ≤ t ≤ T − 1:

π(θt,r|θt−1,r, θt+1,r) ∝ exp
{−λ(|θt,r − θt−1,r| + |θt+1,r − θt,r|)

}
.

Hence, the full conditional posterior distribution of θt,r is a mix-
ture of truncated normal distributions with three components:

(θt,r | y∗
t,r, θt−1,r, θt+1,r, ωt,r) ∼ w1TN(μ(1)t,r , σt,r; θt,r < ξt,r)

+w2TN(μ(2)t,r , σt,r; θt,r > ζt,r)

+w3TN(μ(3)t,r , σt,r; ξt,r < θt,r < ζt,r),

where σt,r = 1/√ωt,r, ξt,r = min{θt−1,r, θt+1,r}, ζt,r =
max{θt−1,r, θt+1,r}, the means of the truncated normal dis-
tributions are given by the following expressions:

μ
(1)
t,r = y∗

t,r + 2λ
ωt,r

, μ
(2)
t,r = y∗

t,r − 2λ
ωt,r

, μ
(3)
t,r = y∗

t,r,

and the conditional posterior probabilities of the components of
the mixture are given by

w1 = exp
{ωt,r

2
μ
(1)
t,r − λ(ξt,r + ζt,r)

}
�

(
ξt,r − μ

(1)
t,r

σt,r

)

w2 = exp
{ωt,r

2
μ
(2)
t,r + λ(ξt,r + ζt,r)

}
�

(
−ζt,r − μ

(2)
t,r

σt,r

)
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w3 = exp
{ωt,r

2
μ
(3)
t,r − λ(ζt,r − ξt,r)

}
[
�

(
ζt,r − μ

(3)
t,r

σt,r

)
−�

(
ξt,r − μ

(3)
t,r

σt,r

)]
,

where � represents the Gaussian cumulative distribution
function.

The direct characterization of the posterior distribution for
our model is similar to the work of Hans (2009) on Bayesian
lasso regression with Gaussian likelihoods. In principle, the
efficiency of this algorithm is limited by the use of the full
conditional distributions for posterior sampling. However, this
approach avoids the introduction of the latent variables {τt,r}
discussed in Section 3.1.1.

... Penalty Parameter Estimation
The value of the penalty parameter λ has a direct impact on the
quality of the estimates and predictions generated by the model.
Hence, under the Bayesian version of our model we assign λ a
Gamma hyperprior, λ ∼ Gam(a, b). This choice is condition-
ally conjugate and the full-conditional posterior is simply

λ | · · · ∼ Gam

⎛
⎝a + 3(T − 1)n(n − 1)

4
,

b+ 1
2

T∑
t=2

n∑
i=1

n∑
j=i+1

3∑
r=1

∣∣θi, j,t,r − θi, j,t−1,r
∣∣
⎞
⎠ .

Because the parameters are on the logistic scale, we select val-
ues of a and b such that, marginally, var {θi, j,t,r | θi, j,t−1,r} is no
larger than 1 (so that we do not favor link probabilities that are
very close to either 0 or 1). We suggest a = 1 and b = 1/5, so
that the median of var {θi, j,t,r | θi, j,t−1,r, λ} is approximately 0.4,
and perform a sensitivity analysis to investigate the effect of our
choice in the quality of the predictions.

... Link Prediction
Aswe discussed in the introduction, one of the goals of our anal-
ysis is short-term link prediction. For either of our sampling
algorithms, Monte Carlo posterior samples of the parameters at
a future time T + 1 can be obtained as

θ
(b)
i, j,T+1,r ∼ DE

(
θ
(b)
i, j,T,r, 1/λ

(b)
)
, b = 1, . . . ,B.

Hence, we can estimate (for i < j) the probability of a directed
link from node i to node j at time T + 1 as

p̂
(
yi, j,T+1 = 1 | YT

)
= 1

B

B∑
b=1

{
p
[
(yi, j,T+1, y j,i,T+1) = (1, 0) | θ

(b)
i, j,T+1

]

+ p
[
(yi, j,T+1, y j,i,T+1) = (1, 1) | θ

(b)
i, j,T+1

]}
,

with a similar expression being valid for p̂(y j,i,T+1 = 1 | YT ).

3.2. PosteriorMode Estimation

Markov chain Monte Carlo algorithms allow for full posterior
inference on our model, but can be too slow to be of practi-
cal applicability in large datasets. This issue is particularly pro-
nounced in the case of network data because the number of
observations grows as the square of the number of nodes. As
an alternative, we develop an optimization algorithm for maxi-
mumaposteriori estimation andprediction.Our algorithm is an
extension of the split Bregman method proposed by Ye and Xie
(2011) to solve general optimization problems with convex loss
functions and L1 penalized parameters (see also Goldstein and
Osher 2009). The algorithm is iterative and involves the refor-
mulation of (3) as a constrained problem with the linear restric-
tion L� = b, and the introduction of a vector of dual variables v
used to split the optimization problem intomore tractable steps.
Furthermore, we also rely on a second-order Taylor approxima-
tion to the multinomial likelihood for the implementation.

The proposed algorithm consists on repeating the following
steps until convergence for each vector of parameters �r:

(i) �(m+1)
r = argmax

�

V (�(m))− 〈v(m)r , L�(m)
r −

b(m)r 〉 − μ

2 ‖L�(m)
r − b(m)r ‖22

(ii) b(m+1)
r = Tλ2μ−1 (L�(m+1)

r + μ−1v(m)r )

(iii) v(m+1)
r = v(m)r + δ(L�(m+1)

r − b(m+1)
r ),

where vr is a vector of dual variables, and Tλ(w) =
[tλ(w1), tλ(w2), . . .]

′ is a thresholding operator with tλ(wi) =
sgn(wi)max{0, |wi| − λ}, and 0 < δ ≤ μ. We follow previous
literature and set δ = μ for our implementation noting that
convergence of the algorithm is guaranteed for any value of μ
(Goldstein and Osher 2009; Ye and Xie 2011).

Efficiency of this algorithm ismainly constrained by themax-
imization of�r in the first step. To accelerate it, we replaceV (�)
by its second-order Taylor expansion around the current iterate
and proceed to perform component-wise optimization (e.g., see
Krishnapuram and Hartemink 2005). Using this substitution,
subproblem (i) is differentiable and the estimate of a component
θt,r of �r for 1 < t < T − 1 is updated as

θ̂
(m+1)
t,r =

(
G(m)t,r − 2μ

)−1 [
G(m)t,r θ̂

(m)
t,r − g(m)t,r − (v (m)t,r − v (m)t−1,r)

−μ(θ̂ (m)t+1,r + θ̂
(m)
t−1,r + b(m)t−1,r − b(m)t,r )

]
,

where g(m)t,r = ∂V
∂θt,r

|�(m)
r

and G(m)t,r = − ∂2V
∂θ2t,r

|�(m)
r

are the gradient
and the information in the direction of θt,r evaluated in the cur-
rent iterate values. The updates for t = T are obtained in a sim-
ilar fashion with some minor adjustments.

Note that in the maximum a posteriori estimates obtained in
this fashion, the coefficient differences (b = L�) can be exactly
zero. This induces a block partition of the parameters that is suit-
able for change-point identification (Harchaoui and Levy-Leduc
2008; Rojas and Wahlberg 2014).

... Selection of the Penalty Parameter
The penalty λ can be selected through cross-validation by train-
ing the model on an observed sample Y1, . . . ,Yt , and perform-
ing a one-step-ahead prediction for Yt+1 for a grid of values of
λ. This procedure can be repeated to obtain a set of predicted
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networks Ŷt+1, . . . , Ŷt+m for t + m ≤ T , each of these predic-
tions can then be compared against the respective observed net-
works, the number of false and true positives is computed, and
a receiver operating characteristic (ROC) curve is constructed.
Finally, the optimal penalty parameter can be chosen as the value
of λ in the grid that provides the highest area under the curve
(AUC) average over the m predicted networks in the testing
dataset.

One potential drawback of this approach is that selection of
the optimal tuning parameter through cross-validation can be
computationally expensive (Tibshirani et al. 2005). A popular
alternative method that can be used with our MAP estimation
procedure is to usemodel selection criteria (e.g., AIC, BIC). Our
approach is to select the penalty λ from among a prespecified
grid of values by maximizing the Bayesian information criteria
(BIC)

BICλ =
∑
i< j

[2Vi, j(�̂i, j)− Ki, j(λ) log(T − 1)],

whereKi, j(λ) is an estimate of the number of degrees of freedom
when the penalty parameter λ is used to compute the MAP esti-
mate. In the case of the fused lasso, Tibshirani and Taylor (2011)
showed that the number of nonzero blocks of coefficients in �̂i, j
is a rough unbiased estimate of the degrees of freedom.

... Link Prediction
Given a point estimate θ̂i, j,T based on an observed sample
Y1, . . . ,YT , the probability of a directed link from node i to
node j at time T + 1 is estimated as

p̂
(
yi, j,T+1 = 1 | YT

) = p[(yi, j,T+1, y j,i,T+1) = (1, 0) | θ̂i, j,T ]

+ p
[
(yi, j,T+1, y j,i,T+1) = (1, 1) | θ̂i, j,T

]
,

with a similar expression being valid for p̂(y j,i,T+1 = 1 | YT ).

4. RelatedWork

4.1. Computation

The literature on algorithms for parameter estimation for linear
regression with a fused lasso penalty is extensive. This is a
challenging problem because the fused lasso penalty is not a
separable and smooth function, and traditional optimization
methods fail under these conditions. In particular, some algo-
rithms that provide a solution path for sequential increments of
the regularization parameter have been developed for the fused
lasso signal approximator (FLSA) where the design matrix is
X = I (Friedman et al. 2007; Höfling 2010b), and for a general
full rank design matrix X (Tibshirani and Taylor 2011) only in
the case of Gaussian regression.

In this work, we are interested in fused lasso penalized
multiclass logistic regression. Friedman, Hastie, and Tibshi-
rani (2010) explored coordinate descent regularization paths
for logistic and multinomial logistic regression by using itera-
tively reweighted least squares (IRLS) but only for lasso, ridge,
and elastic net penalties (see also Krishnapuram andHartemink
2005). Höfling (2010a) proposed a coordinate-wise algorithm

for the fused lasso that can be extended to logistic regres-
sion using iterative reweighted least squares (IRWLS), but no
path solution algorithms have been fully developed for the
multinomial logistic regression setting that is the focus of this
article. Recently, Yu et al. (2013) introduced a majorization-
minimization (MM) algorithm for fused lasso penalized gen-
eralized linear models that benefits from parallel processing.
They also presented a good comparisonwith other existing algo-
rithms including regularization path and first-order methods.
For a fixed set of penalization parameters, several optimization
algorithms have been proposed for fused lasso problems with
general smooth and convex loss functions but not for the specific
case of multinomial logistic regression. Liu, Yuan, and Ye (2010)
proposed an efficient fused lasso algorithm (EFLA), which
solves an FLSA subproblem via a subgradient finding algorithm.
Goldstein and Osher (2009) used the split Bregman iteration
method to deal with a set of image processing problems that can
be treated as general L1 penalized problems. Motivated by this
idea, Ye andXie (2011) developed the split Bregman-based algo-
rithm for the generalized fused lasso with Gaussian likelihoods.
We further extend split Bregman algorithms by introducing a
version of the approach for categorical and, in particular, dyadic
data likelihoods. In our experience, these kinds of algorithms
tend to converge faster and avoid local modes that offer difficul-
ties to most of the other algorithms mentioned above.

From aBayesian perspective, a general hierarchicalmodel for
penalized linear regression that includes the fused lasso penalty
is presented in Kyung et al. (2010) for the Gaussian case (see
also Park and Casella 2008; Hans 2009). In contrast, the MCMC
algorithms discussed in Section 3.1 are designed to deal with
categorical data. Furthermore, the latent variable approach from
Section 3.1.1 exploits the particular Markovian structure of the
problem at hand to generate a much more efficient algorithm
than the naive implementation of Kyung et al. (2010) would sug-
gest. On the other hand, and to the best of our knowledge, the
direct sampling algorithm of Section 3.1.2, which extend that of
Hans (2009) from the regular to the fussed lasso has never been
described in the literature before. It is also worthmentioning the
work of Scott and Pillow (2012), who used a data augmentation
approach for full Bayesian inference of neural spike data counts
observed over time by proposing a dynamic negative-binomial
factor model with an autoregressive structure. Although both
kinds of problems share time-dependent parameters and their
algorithm shares some features with our latent variable sample,
the structure of our dyad-based likelihood is quite different, and
the Pólya-Gamma augmentation scheme required for our net-
work represents a nontrivial extension.

Alternative sparsity inducing priors for time-varying param-
eters to the fused lasso have been introduced in Chan et al.
(2012), who discussed priors for model selection in dynamic
contexts, and by Frühwirth-Schnatter and Wagner (2010), Kalli
and Griffin (2014), and Belmonte, Koop, and Korobilis (2014),
who derived a continuous shrinkage prior that aggressively
shrink small coefficients without explicitly zeroing them out.
All these techniques were developed in the context of dynamic
regression models. Although they could be adapted to identify
change points by considering differences between parame-
ter levels, implementing them would come at a significant
additional computational cost.
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4.2. Models for Dynamic Networks

Sarkar, Chakrabarti, and Jordan (2012) presented a nonparamet-
ric link prediction algorithm for sequences of directed binary
networks where each observation in time is modeled using a
moving window, and the function is estimated through kernel
regression. They also incorporated pair specific features, and
a spatial dimension using local neighborhoods for each node.
Huang and Lin (2009) presented an autoregressive integrated
moving average model (ARIMA), and combined it with link
occurrence scores based on similarity indices of network topol-
ogymeasures for link prediction in temporal weighted networks
(see also da Silva and Bastos 2012). More recently, Bliss et al.
(2014) proposed a method based on similarity indices and node
attributes joined with a covariance matrix adaptation evolution
strategy for link prediction in networks with a large number of
nodes.

Other relevant approaches include the dynamic versions of
the latent space model of Hoff, Raftery, and Handcock (2002)
presented in Sarkar and Moore (2005) and Sewell and Chen
(2015), and the work of Xing, Fu, and Song (2010) develop-
ing the temporal extension of the mixed membership block-
model first introduced in Airoldi et al. (2008) for community
identification in social networks. Betancourt, Rodríguez, and
Boyd (2015) extended the Bayesian infinite-dimensional model
of Kemp et al. (2006) by linking different time periods through
a hidden Markov model. On the other hand, Hanneke, Fu, and
Xing (2010) introduced a temporal version of the Exponential
random graph model (tERGM) first introduced in Frank and
Strauss (1986). This temporal model can be used to infer links
but its prediction ability is poor unless node attributes or dyadic
covariates are included in the model in addition to traditional
static network statistics (e.g., reciprocity, transitivity, and pop-
ularity statistics). Cranmer and Desmarais (2011) presented a
more general temporal ERGMthat includes node anddyad-level
covariates with applications to political science (see also Sni-
jders, Steglich, and van de Bunt 2010). In this extension, the
square root of the indegree and outdegree are added as node
attributes at every time point, and functions of past networks
can be used as a dyadic covariates.

A key feature of our model is its scalability and efficiency.
Because the model structure is relatively simple and dyads are
modeled as conditionally independent, estimation and predic-
tion algorithms are fast and can be easily implemented in par-
allel environments. This means that our model can more easily
be scaled to long series of large networks than those discussed
above. Conditional independence does have some drawbacks.
In particular, although the model directly models reciprocity, it
does not explicitly account for transitivity. In spite of this, the
illustrationswe present in the following sections suggest that our
model is at least competitive and, in some cases, superior from
a predictive point of view to other state-of-the-art models.

5. Illustrations

The purpose of this section is to evaluate the performance of
our model and compare it with the temporal exponential ran-
dom graph (tERGM) in terms of its link prediction ability. We
used the xergm package in R to estimate the tERGM (Leifeld,
Cranmer, and Desmarais 2014). More specifically, the tERGM

is estimated with the btergm function, which implements
the bootstrapped pseudolikelihood procedure presented in
Desmarais and Cranmer (2012). The model we fit includes all
the typical ERGM terms, the square root of in- and outdegrees
as node covariates, and the lagged network and the delayed
reciprocity to model cross-temporal dependencies.

We start by evaluating the performance of the two sampling
schemes for Bayesian inference using the effective sample
size (ESS) and execution time metrics, and comparing their
efficiency with the optimization method for posterior mode
estimation using simulated data. We then move on to evaluate
the predictive capabilities of the models on both simulated and
real data examples consisting of n = 71 actors and T = 201
observations in time. For this purpose, we carry out out-of-
sample cross-validation exercises where we hold out the last 10
weeks in the dataset and make one-step-ahead predictions for
the structure of the held-out networks. More specifically, for
each t = 191, 192, . . . , 200 we use the information contained
in Y1, . . . ,Yt to estimate the model parameters and obtain pre-
dictions Ŷt+1. Using a simple 0/1 utility function, a future link
from node i to node j is predicted as ŷi, j,T+1 = I( p̂(yi, j,T+1 =
1 | YT ) > f ), for some threshold f that reflects the relative
cost associated with false positive and false negative links. Each
of these predictions is compared against the observed network
Yt+1 to construct a receiver operating characteristic (ROC)
curve. For the tERGM, these results are based on 1000 MCMC
simulations with other function parameters left as the default
values (see btergm documentation for more details).

5.1. MCMC Performance

To asses and compare the performance of the latent variable
FFBS and the direct sampling MCMC algorithms, we simulated
data from our model. The parameters across all the pairs of
nodes were randomly drawn from double exponential distribu-
tions as θt,r ∼ DE(θt,r−1, 1/λ)with a true concentration param-
eter value of λ = 3. As a measure of efficiency, we use the ESS
computed as

ESS = B
1 + 2

∑K
k=1 ρ(k)

,

where B is the number of post burn-in samples, ρ(k) is the auto-
correlation at lag k, andK is the cutoff lag point according to the
initial monotone sequence estimator (Geyer 1992).

We computed the effective sample size and the CPU run
time in seconds for each pair of nodes based on 20,000 itera-
tions after a burn-in period of 2000 iterations. Table 1 shows
the results obtained by averaging over five runs for each sam-
pling scheme, including the relative efficiency of the algorithms
standardizing for CPU run time. From these results, it is clear
that the latent parameters scheme for the fused lasso is much
more efficient than the direct sampler that uses the mixture
of truncated normals. Based on these results, in the following

Table . Average ESS and CPU times per pair of nodes for MCMC algorithms.

Scheme ESS CPU(s) Rel.ESS

Direct  . .
FFBS  . .
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Figure . Simulation : Mean AUC over t = 182, 183, . . . , 191 (left panel), and BIC values (right) using the optimization method over a grid of values of λ for simulated
dataset. The vertical lines indicate the optimal values of λ.

sections we perform time series cross-validation and predic-
tion for the Bayesian approach using the latent variable FFBS
algorithm.

It is also useful to contrast the execution time of the MCMC
algorithms with that of the optimization method, which is only
8.03 sec on average for each pair of nodes using a stopping crite-
ria of 10−5 for the relative error. Hence, execution times for the
MAP algorithm appear to be at least two orders of magnitude
smaller than the fastest version of our MCMC algorithms.

5.2. Simulation Studies

We first evaluate our model using two simulations. In the first
setting, the parameters across all the pairs of nodes were ran-
domly drawn from double exponential distributions so that
θt,r ∼ DE(θt−1,r, 1/λ) with a true penalty parameter value of
λ = 12 using initial values θr,0 = 0. Because the initial value of
θr,0 = 0 implies a relatively high initial link probability and the
evolution variance 1/λ is relatively small, the resulting network
is relatively dense (average number of links of 2682 at each time
point, out of 4970 possible ties). A simple descriptive analysis of
the networks shows that they also tend to exhibit low reciprocity
and high transitivity.

As discussed in Section 3.2.1, we evaluate two methods to
select the penalty parameter λ for the split Bregman optimiza-
tion algorithm and evaluate the predictive ability of the model.
First, we use a setup similar to calibration cross-validation
(CCV) by partitioning the data into three sets. The first set
is used for modeling and consists of the first 181 observa-
tions. Selection of the optimal penalization parameter was
performed on the calibration set corresponding to observations
t = 182, . . . , 191, by searching the value ofλ thatmaximizes the
meanAUCover the predictions of thesemiddle 10 observations.
The search for λwas conducted over a grid of 31 values between
0.1 and 15; as shown in the left panel of Figure 1, the optimal
value is 2.5. Finally, we report out-of-sample prediction accu-
racy on the validation set consisting of the last 10 observations,
t = 192, . . . , 201. Second, we used the first 191 observations
to estimate the model and search the value of λ that optimizes
BIC over the same grid of 31 values between 0.1 and 15. The

resulting optimal parameter value in this case is λ = 6 (see
right panel of Figure 1). Again, we evaluate the out-of-sample
prediction accuracy of the model on the last 10 observations.

Following Section 3.1.3, for the Bayesian scheme, we used a
prior λ ∼ Gam(1, 1/5) (mean 5.0, 95% prior symmetric cred-
ible interval (0.12, 18), which is similar to the range of values
used to select λ under the optimization algorithm). TheMCMC
algorithm is first used to fit our model to the first 191 obser-
vations, and then an out-of-sample prediction for observation
192 is generated. This process is repeated by fitting 192 obser-
vations and then predicting observation 193, and so on. The
posterior mean of λ is around 9, and varies only very slightly
over time. Figure 2 shows the 10 operating characteristic curves
associated with the out-of-sample predictions for the last 10
observations using the full Bayesian approach of our model
(FFBS algorithm). The right panel of Figure 2 shows the AUC
values for the FFBS approach, the tERGM, and MAP predic-
tions generated by using the optimal value of λ obtained from
cross-validation (denoted by Bregman-CV) and BIC (denoted
by Bregman-BIC). The prediction accuracies for the FFBS algo-
rithm and the Bregman optimization algorithm with cross-
validation are almost identical and quite stable over time (both
approaches show a good, roughly constant AUC around 83%).
On the other hand, Bregman-BIC performs slightly worse than
our two other approaches. Furthermore, in this scenario our
model outperforms the tERGM, which shows only a fair pre-
dictive performance with an average AUC of 72%.

For our second simulation, we generated data with sim-
ilar characteristics to the trading network dataset. The net-
work is sparse with an average of 784 links over time, consis-
tently shows relatively high reciprocity and includes a structural
change around time 85, which can be seen in a shift from low to
moderate transitivity (see left panel of Figure 3).

In this case, the search for the optimal penalization param-
eter for the optimization algorithm was performed by search-
ing the value of λ over a grid of 21 values between 0.1 and 10.
Figure 4 shows that the optimal values using the optimization
algorithm are λ = 1.5 for cross-validation, and λ = 3.5 using
BIC. For the Bayesian approach, assuming a hyperprior λ ∼
Gam(1, 1/5), the posterior mean for λ over all pairs of nodes is
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Figure . Simulation : Plots of the  operating characteristic curves associated with one-step-ahead out of sample predictions from the fused lasso model with FFBS
algorithm (left panel). Area under the curves (AUC) for the temporal ERGM, and the fused lasso model with FFBS algorithm and Bregman optimization for simulated data.
CV (cross-validation) and BIC represent the two methods for tuning parameter selection.

3.7. Figure 5 shows the 10 operating characteristic curves associ-
ated with the out-of-sample predictions for the last 10 observa-
tions using the full Bayesian approach of our model (FFBS algo-
rithm). The right panel of Figure 5 shows the AUC values for the
tERGM and the different algorithms for our model. As before,
the prediction accuracies for the FFBS algorithm and the Breg-
man optimization algorithmwith cross-validation are very good
(roughly 91% for both approaches), and Bregman-BIC performs
just slightly worse. In this scenario, our model again outper-
forms the tERGM, which shows a good predictive performance
with an average AUC of 80%.

As we mentioned in Section 3.2, the maximum a posteriori
estimates of the parameters in the fused lasso regression model
can be used to identify changes in the network structure over
time. In particular, we use an indicator variable that assigns a
value of 1 if at least one of the three parameters for pair (i, j)
change from time t − 1 to time t , and 0 otherwise. The frac-
tion of these indicators over all pairs of nodes provides a rough
estimate of the chances that a change-point has occurred on a
givenweek t . The right panel of Figure 3 shows how that propor-
tion changes over time for our second simulation study, which
includes a clear change-point around week 85. As expected, the

proportion of dyads showing changes in their parameters peaks
on the week the change-point occurs.

5.3. Inference for Financial Trading Networks

In this section, we analyze a sequence of T = 201 weekly
financial trading networks constructed from proprietary trades
in the natural gas futures market on the New York Mercan-
tile Exchange (NYMEX) between January 2005 and December
2008. The directed binary networks were constructed by setting
yi, j,t = 1 if there was at least one transaction in which trader i
sold a contract to trader j during week t .

One particularity of this market is that futures were traded
on the New York Mercantile Exchange (NYMEX) only through
traditional open-outcry trades until September 5, 2006, and as
a hybrid market that included electronic trading conducted via
the CME Globex platform after that date. Our analysis focuses
on 71 traders we identified as being present in the market
(although not necessarily active) during thewhole period. These
trading network is sparse with an average of 826 links eachweek,
and consistently shows very high reciprocity, moderate transi-
tivity, mixing patterns, and community structure (Betancourt,

Figure . Left panel: Clustering coefficient for the networks in our second simulated dataset. Right panel: Time series of the estimated change-point probability for second
simulated dataset. The vertical line represents a structural change at time point .



848 B. BETANCOURT, A. RODRÍGUEZ, AND N. BOYD

Figure . Simulation : Mean AUC over t = 182, 183, . . . , 191 (left panel), and BIC values (right) using the optimization method over a grid of values of λ for simulated
dataset. The vertical lines indicate the optimal values of λ.

Figure . Simulation : Plots of the  operating characteristic curves associated with one-step-ahead out of sample predictions from the fused lasso model with FFBS
algorithm (left panel). Area under the curves (AUC) for the temporal ERGM, and the fused lasso model with FFBS algorithm and Bregman optimization for simulated data.
CV (cross-validation) and BIC represent the two methods for tuning parameter selection.

Rodríguez, and Boyd 2015). Analogous to the previous section,
selection of the optimal penalization parameter for the opti-
mization algorithm was performed by searching over a grid of
21 values between 0.1 and 10. The value of λ that maximizes the
mean AUC over the predictions of 10 weeks t = 182, . . . , 191

(left panel of Figure 6) isλ = 1.5,while the optimal value for BIC
over the first 191 weeks is λ = 3. Similarly, for the MCMC algo-
rithm we employ the same Gam(1, 1/5) prior we used in our
simulations. The left panel in Figure 7 shows the operating char-
acteristic curves associated with the out-of-sample predictions

Figure . Mean AUC over t = 182, 183, . . . , 191 (left panel), and BIC values (right) using the optimizationmethod over a grid of values ofλ for trading network. The vertical
lines indicate the optimal values of λ.
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Figure . Plots of the  operating characteristic curves associated with one-step-ahead out of sample predictions from the fused lasso model with FFBS algorithm (left
panel). Area under the curves (AUC) for the temporal ERGM, and the fused lasso model with FFBS algorithm and Bregman optimization for the trading network. CV (cross-
validation) and BIC represent the two methods for tuning parameter selection.

generated by our model fitted using the full Bayesian approach.
Note that all the curves are very similar, showing that the perfor-
mance of our model is quite stable over time. In the same spirit,
the right panel of Figure 7 shows weekly AUCs for the FFBS
algorithm, the tERGM, Bregman-CV, and Bregman-BIC. The
results show that our model performs quite well, with AUC val-
ues between 86% and 90% on every week. However, in this par-
ticular case the tERGMperforms slightly but consistently better,
with AUC values around 2% higher. Furthermore, as in the sim-
ulations, the performance of the FFBS and the Bregman-CV
algorithm is very similar over all 10 weeks, and the Bregman-
BIC performs slightly worse particularly during the first 6
weeks.

As discussed in our simulation study, the fraction of dyads
for which at least one of the three parameters presents a change
point at time t provides a rough estimate of the chances that a
change-point has occurred on a given week. Figure 8 presents
the time series of the fraction of pairs that show at least one
parameter change each week under the Bregman-CV algorithm

Figure . Time series of the estimated change-point probability for the trading net-
work. The vertical line represents the introduction of electronic trading in the mar-
ket at week .

with the optimal cross-validated λ = 1.5. The vertical line cor-
responds to the date of introduction of electronic trading. Note
that the maximum of the time series over the 201 weeks appears
right after the introduction of the electronic market and that a
second, lessmarked peak appear aroundweek 124. These results
are consistent with previous analyses of these data (Betancourt,
Rodríguez, and Boyd 2015).

6. Discussion

We have discussed a flexible and powerful model for prediction
ondynamic networks. Indeed, themodelwe present shows com-
petitive performance in the trading network dataset and supe-
rior performance in the simulation studies while being much
more computationally efficient than alternatives available in the
literature. Furthermore, the model can be easily extended to
weighted networks by replacing themultinomial likelihoodwith
an appropriate member of the exponential family. Similarly, a
variation of the model can be devised for undirected networks.

Interestingly, the results on both the simulated and the trad-
ing network data showed that the prediction ability of the
optimization approach is very similar to that of the Bayesian
method, while being farmore computationally efficient. In addi-
tion, the optimization approach also provides a way of explor-
ing the presence of change points in the network dynamics.
On the other hand, the cross-validation approach for tun-
ing parameter selection provides slightly better results than
the BIC method, but the computational cost is considerably
higher.

Supplementary Materials

C++ Code: Code to implement the algorithms for estimation
and prediction described in this article. Please refer to the
README file contained in the zip file for more details. (.cpp
files)

Trading network dataset: Dataset used in the illustration in
Section 5.3. (.txt file)

Funding

This researchwas partially supported byNSF/DMSawardnumber 1441433.



850 B. BETANCOURT, A. RODRÍGUEZ, AND N. BOYD

References

Airoldi, E., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008), “Mixed
Membership Stochastic Blockmodels,” Journal of Machine Learning
Research, 9, 1981–2014. [845]

Banks, D., and Carley, K. M. (1996), “Models for Network Evolution,” Jour-
nal of Mathematical Sociology, 21, 173–196. [840]

Belmonte, M. A., Koop, G., and Korobilis, D. (2014), “Hierarchical Shrink-
age in Time-Varying ParameterModels,” Journal of Forecasting, 33, 80–
94. [844]

Betancourt, B., Rodríguez, A., and Boyd, N. (2015), “Modelling and Pre-
diction of Financial Trading Networks: An Application to the NYMEX
Natural Gas Futures Market,” Technical Report UCSC-SOE-13-07,
University of California - Santa Cruz. [845,848,849]

Bliss, C., Frank,M., Danforth, C., andDodds, P. S. (2014), “An Evolutionary
Algorithm Approach to Link Prediction in Dynamic Social Networks,”
Journal of Computer Science and Technology, 2, 750–764. [845]

Carter, C., and Kohn, R. (1994), “On Gibbs Sampling for State Space Mod-
els,” Biometrika, 81, 541–553. [842]

Chan, J. C., Koop, G., Leon-Gonzalez, R., and Strachan, R.W. (2012), “Time
Varying Dimension Models,” Journal of Business & Economic Statistics,
30, 358–367. [844]

Cranmer, S., and Desmarais, B. (2011), “Inferential Network Analysis with
Exponential Random Graph Models,” Political Analysis, 19, 66–86.
[845]

da Silva, P., and Bastos, R. (2012), “Time Series Based Link Prediction,”
in IEEE World Congress on Computational Intelligence, Brisbane, Aus-
tralia, pp. 784–790. [845]

Desmarais, B., and Cranmer, S. (2012), “Statistical Mechanics of Networks:
Estimation and Uncertainty,” Physica A: Statistical Mechanics and its
Applications, 391, 1865–1876. [845]

Frank, O., and Strauss, D. (1986), “Markov Graphs,” Journal of the American
Statistical Association, 81, 832–842. [845]

Friedman, J., Hastie, T., Hoefling, H., and Tibshirani, R. (2007), “Path-
wiseCoordinateOptimization,”Annals of Applied Statistics, 2, 302–332.
[844]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “Regularization Paths for
Generalized Linear Models via Coordinate Descent,” Journal of Statis-
tical Software, 33, 1–22. [844]

Frühwirth-Schnatter, S. (1994), “Data Augmentation and Dynamic Linear
Models,” Journal of Time Series Analysis, 15, 183–202. [842]

Frühwirth-Schnatter, S., andWagner, H. (2010), “Stochastic Model Specifi-
cation Search for Gaussian and Partial Non-Gaussian State SpaceMod-
els,” Journal of Econometrics, 154, 85–100. [844]

Geyer, C. (1992), “PracticalMarkov ChainMonte Carlo,” Statistical Science,
7, 473–483. [845]

Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi, E. M. (2009),
“A Survey of Statistical Network Models,” Foundations and Trends in
Machine Learning, 2, 129–233. [840]

Goldstein, T., and Osher, S. (2009), “The Split Bregman Method for L1-
Regularized Problems,” SIAM Journal on Imaging Sciences, 2, 323–343.
[843,844]

Hanneke, S., Fu, W., and Xing, E. P. (2010), “Discrete Temporal Models of
Social Networks,” Electronical Journal of Statistics, 4, 585–605. [845]

Hans, C. (2009), “Bayesian Lasso Regression,” Biometrika, 96, 835–845.
[843,844]

Harchaoui, Z., and Levy-Leduc, C. (2008), “Catching Change-Points with
Lasso.” [843]

Hoff, P., Raftery, A., and Handcock, M. (2002), “Latent Space Approaches
to Social Network Analysis,” Journal of the American Statistical Associ-
ation, 97, 1090–1098. [845]

Höfling, H. (2010a), “A Coordinate-Wise Optimization Algorithm for the
Fused Lasso,” arXiv:1011.6409 [stat.CO]. [844]

——— (2010b), “A Path Algorithm for the Fused Lasso Signal Approxima-
tor,” Journal of Computational and Graphical Statistics, 19, 984–1006.
[844]

Holland, P., and Leinhardt, K. (1981), “An Exponential Family of Probabil-
ity Distributions for Directed Graphs,” Journal of the American Statis-
tical Association, 76, 33–65. [840]

Huang, Z., and Lin, D. (2009), “The Time-Series Link Prediction Problem
with Applications in Communication Surveillance,” INFORMS Journal
on Computing, 21, 286–303. [845]

Kalli, M., and Griffin, J. E. (2014), “Time-Varying Sparsity in
Dynamic Regression Models,” Journal of Econometrics, 178,
779–793. [844]

Kemp, C., Tenenbaum, J. B., Griffiths, T., Yamada, T., and Ueda, N. (2006),
“Learning Systems of Concepts with an Infinite Relational Data,” in
Proceedings of the 22nd Annual Conference on Artificial Intelligence
(UAI 2006), Cambridge, pp. 381–388. [845]

Krishnapuram, B., and Hartemink, A. (2005), “Sparse Multinomial Logis-
tic Regression: Fast Algorithms and Generalization Bounds,” IEEE
Transactions on Pattern Analysis andMachine Intelligence, 27, 957–968.
[843,844]

Kyung, M., Gill, J., Ghosh, M., and Casella, G. (2010), “Penalized Regres-
sion, Standard Errors, and Bayesian Lassos,” Bayesian Analysis, 5, 369–
412. [842,844]

Leifeld, P., Cranmer, S., and Desmarais, B. (2014), xergm: Extensions
of Exponential Random Graph Models, R Package. Available at
http://CRAN.R-project.org/package=xergm. [845]

Liu, J., Yuan, L., and Ye, J. (2010), “An Efficient Algorithm for a Class of
Fused Lasso Problems,” inTheACMSIGKnowledgeDiscovery andData
Mining, Washington, DC, pp. 323–332. [844]

Newman, M. E. J. (2003), “The Structure and Function of Complex Net-
works,” SIAM Review, 45, 167–256. [840]

Park, T., and Casella, G. (2008), “The Bayesian Lasso,” Journal of the Amer-
ican Statistical Association, 103, 681–686. [842,844]

Polson, N., Scott, J., and Windle, J. (2013), “Bayesian Inference
for Logistic Models using Polya-Gamma Latent Variables,”
arXiv:1205.0310v3; Journal of the American Statistical Association, 108,
1339–1349. [842]

Rinaldo, A. (2009), “Properties andRefinements of the Fused Lasso,”Annals
of Statistics, 37, 2922–2952. [841]

Rojas, C., and Wahlberg, B. (2014), “On Change Point Detection using the
Fused Lasso Method,” arXiv:1401.5408 [math.ST]. [843]

Rue, H., and Held, L. (2005), Gaussian Markov Random Fields: Theory and
Applications, Boca Raton, FL: CRC Press. [841]

Sarkar, P., Chakrabarti, D., and Jordan, M. (2012), “Nonparametric Link
Prediction in Dynamic Networks,” in Proceedings of the 29th Interna-
tional Conference in Machine Learning, Edinburgh, Scotland, UK, pp.
1–8. [845]

Sarkar, P., and Moore, A. (2005), “Dynamic Social Network Analysis using
Latent Space Models,” SIGKDD Explorations: Special Edition on Link
Mining, 7, 31–40. [845]

Scott, J., and Pillow, J. W. (2012), “Fully Bayesian Inference
for Neural Models with Negative-Binomial Spiking,” in
Advances in Neural Information Processing Systems (Vol. 25),
pp. 1898–1906. [844]

Sewell, D. K., and Chen, Y. (2015), “Analysis of the Formation of the Struc-
ture of Social Networks by using Latent Space Models for Ranked
Dynamic Networks,” Journal of the Royal Statistical Society, Series C,
611–633. [845]

Snijders, T. A. B. (2011), “Statistical Models for Social Networks,” Annual
Review of Sociology, 37, 129–151. [840]

Snijders, T. A. B., Steglich, C., and van de Bunt, G. (2010), “Introduction
to Actor-Based Models for Network Dynamics,” Social Networks, 32,
44–60. [845]

Sun, D., Tsutakawa, R. K., and Speckman, P. L. (1999), “Posterior Distribu-
tion of Hierarchical Models using CAR (1) Distributions,” Biometrika,
86, 341–350. [841]

Tibshirani, R., Saunders,M., Rosset, S., Zhu, J., andKnight, K. (2005), “Spar-
sity and Smoothness via the Fused Lasso,” Journal of the Royal Statistical
Society, Series B, 67, 91–108. [840,844]

Tibshirani, R., and Taylor, J. (2011), “The Solution Path of the Generalized
Lasso,” The Annals of Statistics, 39, 1335–1371. [844]

Xing, E. P., Fu, W., and Song, L. (2010), “A State-Space Mixed Membership
Blockmodel for Dynamic Network Tomography,” Annals of Applied
Statistics, 4, 535–566. [845]

Ye, G., and Xie, X. (2011), “Split Bregman Method for Large Scale Fused
Lasso,” Computational Statistics and Data Analysis, 55, 1552–1569.
[843,844]

Yu, D., Won, J., Lee, T., Lim, J., and Yoon, S. (2013), “High-Dimensional
Fused Lasso Regression using Majorization-Minimization and Paral-
lel Processing,” arXiv:1306.1970v2 [stat.ME] Journal of Computational
and Graphical Statistics, 24, 121–153. [844]

http://CRAN.R-project.org/package=xergm

	Abstract
	1.Introduction
	2.Modeling Approach
	3.Estimation and Prediction
	3.1.Full Bayesian Inference
	3.2.Posterior Mode Estimation

	4.Related Work
	4.1.Computation
	4.2.Models for Dynamic Networks

	5.Illustrations
	5.1.MCMC Performance
	5.2.Simulation Studies
	5.3.Inference for Financial Trading Networks

	6.Discussion
	Supplementary Materials
	Funding
	References

