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ABSTRACT
We develop a sparse autologistic model for investigating the impact
of diversification and disintermediation strategies in the evolution of
financial trading networks. In order to induce sparsity in the model
estimates and address substantive questions about the underly-
ing processes the model includes an L1 regularization penalty. This
makes implementation feasible for complex dynamic networks in
which the number of parameters is considerably greater than the
number of observations over time. We use the model to character-
ize trader behavior in the NYMEX natural gas futures market, where
we find that disintermediation and not diversification ormomentum
tend to drive market microstructure.
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1. Introduction

Historically, the empirical study of financialmarkets has emphasized the behavior of aggre-
gatemeasures such as price discovery or transaction volumes. However, the challenges that
come from the rise of electronic and automated trading have highlighted the need to study
patterns of individual market transactions (the so-called market microstructure) in order
to understand the mechanisms that underpin price formation.

Financial Trading Networks (FTNs), which are directed graphs in which nodes cor-
respond to traders operating in a financial market and edges/weights represent pairwise
buy-sell transactions among them that occur within a period of time, are becoming a pop-
ular tool for studying the complexity associated with modern financial markets. Indeed,
FTNs contain key information about patterns of order execution in order-driven markets,
which can in turn provide important insights into the functioning of themarket. Empirical
work on trading networks so far has focused on studying the evolution of summary statis-
tics such as degree distributions, average betweenness and clustering coefficients and their
relationship with market variables such as the volatility of returns (e.g. see [1]). Model-
based approaches are quite rare, one exception is Betancourt et al. [4], where a hidden
Markov model for dynamic network data is introduced to identify change points in the
underlying market microstructure.
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In this paper we are interested in using FTNs to investigate whether traders in financial
markets engage in strategic behaviors such as diversification and disintermediation as part
of their long term trading strategies. To accomplish this goal we extend the notion of an
autologistic model to directed binary network data. In the much simpler case of a binary
time series y1, y2, . . . , yT with yt ∈ {0, 1}, a first-order autologistic model with parameters
α and ξ assumes that

logit Pr(yt = 1 | yt−1, . . . , y1) = ηt = α + ξyt−1, (1)

where logit x = log{x/(1 − x)} and the unknown parameters α and ξ control the structure
of the temporal dependence (in particular, note that ξ = 0 implies that the observations
are independent and identically distributed). This implies that

p(y2, . . . , yT | y1,α, ξ) =
T∏
t=2

exp{yt(α + ξyt−1)}
1 + exp{α + ξyt−1} .

Autologistic models for spatio-temporal binary data have been discussed in [33,34]. How-
ever, these models for spatio-temporal data cannot be directly applied to the network time
series data discussed in this paper because they are not designed to account for common
features of directed network data such as reciprocity (e.g. the tendency of nodes in the
network to consistently respond to a positive action with another positive action) and tran-
sitivity (e.g. the tendency of nodes to interact if they share links with a common third
party). In contrast, the class of models we introduce in this paper are specifically designed
to account for these features, and its parameters have a direct interpretation in terms of
network properties.

The autologistic models developed in this paper are special cases of the so-called p1
models of Holland and Leinhardt [14], which have been extended to dynamic settings in
[3,10,18], among others. However, our approach differs from these by directly incorporat-
ing the observed network links at previous time points rather than relying on summary
network statistics. Our approach is also loosely related to the temporal version of the
Exponential Random Graph model (ERGM) introduced in [12] and further developed in
[7,26]. However, our approach allows for networks effects to be different for each pair of
nodes, leading to additional expressive power and richer interpretation. Other relevant
approaches for modeling network data include the dynamic version of the latent space
model of Hoff et al. [13] developed by Sarkar and Moore [23] and Sewell and Chen [24],
the work of Xing et al. [31] presenting the temporal extension of the stochastic blockmodel
first introduced in [2], the work of Huang and Lin [15], who present an autoregressive
integratedmoving averagemodel and combine it with link occurrence scores based on sim-
ilarity indices of network topology measures (e.g. Adamic-Adar coefficient, Katz index),
and Bliss et al. [6], who propose a method based on similarity indices and node attributes
(e.g. common neighbors and preferential attachment) together with a covariance matrix
adaptation evolution strategy for link prediction in networks with a large number of nodes.

One challenge for statistical inference for the class of models we discuss in this paper
is that the number of parameters is large and grows linearly with the number of nodes
in the network. Indeed, unless the system is observed for a very long time, the number
of parameters in our autologistic model will typically be much larger than the number of
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available observations. To deal with this challenge we employ L1 regularization which is
particularly useful to reduce the number of parameters in the p > N case. The use of an L1
penalty leads to sparse solutions in which a large number of model coefficients are set to
zero, allowing us to address substantive questions about the type of processes driving the
evolution of the network. In addition, while performing short-term predictions is a sec-
ondary goal for our model, prediction accuracy can sometimes be improved by shrinking
themodel coefficients [27]. Computation of the procedure is carried out using a coordinate
descentmethod on a surrogate quadratic approximation for an L1 regularizedmultinomial
likelihood (e.g. see [9]).

Themethodology described in this paper is illustrated using a dataset on transactions in
the NYMEX natural gas futures market that took place between January 2005 and Decem-
ber 2008. This dataset was previously analyzed in [4] using a hiddenMarkovmodel to iden-
tify points of structural change in themarket. In contrast, the analysis in this paper suggests
that disintermediation effects tend to be the most important drivers of network evolution,
a pattern that was previously unknown and is consistent with competitive markets.

The remainder of the paper is organized as follows: Section 3 describes our model and
discusses some of its properties. Section 4 describes our computational algorithmand some
of the properties of the estimators. Section 5 discusses two illustrations, one based on
simulated data and a second one that focuses on real trading networks from the natural
gas futures market on the New York Mercantile Exchange (NYMEX). Finally, Section 6
presents a short discussion.

2. DATA

The dataset we analyze in this paper consists of individual transaction records from the
New York Mercantile Exchange (NYMEX), a commodity futures exchange owned by the
Chicago Mercantile Exchange. Commodities traded on NYMEX include coal, electricity,
palladium uranium, and natural gas, among others. Our analysis focuses on proprietary
trades (i.e. transactions carried out by traders for their own accounts rather than on their
client’s behalf) in the natural gas futures market covering the period from January 2005 to
December 2008. During this period, the NYMEX natural gas market operated as an open
outcry market until 5 September 2006, and as a hybrid market that included electronic
trading (conducted via the CMEGlobex platform) after that date. Over 900 unique traders
participated in the market during the period under study; however, the vast majority of
the traders participated in the market only sporadically. Furthermore, we have no access
to information about whether a specific trader entered or left the market at a given point
in time. Hence, we focus our analysis on 71 large traders identified as being present in
the market (although not necessarily active) during the whole period. From the original
transaction data we construct a sequence of weekly binary FTNs by setting the entries of
the adjacency matrices to yi,j,t = 1 if there was at least one transaction in which trader i
sold a contract to trader j during week t.

3. Modeling approach

Consider a sequence of T binary directed networks, each one observed over a common
set of n nodes. The adjacency matrix of the network at time t is therefore an n × n binary
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matrix Yt = [yi,j,t], where yi,j,t = 1 if there is a link directed from node i to node j at time
t, and yi,j,t = 0 otherwise. We adopt the convention yi,i,t ≡ 0 so that there are no loops
within the network. In the illustration we discuss in Section 5, the nodes in the network
correspond to traders in NYMEX natural gas futures market, so that yi,j,t = 1 if trader i
sold a contract to trader j at least once during week t.

We consider an extension of (1) in which the pairs {(yi,j,t , yj,i,t) : i < j} are assumed
conditionally independent given the history of the network, and each pair (yi,j,t , yj,i,t) is
modeled using a logistic model of the form

p(yi,j,t , yj,i,t | Yt−1) = exp{ηi,j,t,1yi,j,t + ηi,j,t,2yj,i,t + ηi,j,t,3yi,j,tyj,i,t
− C(ηi,j,t,1, ηi,j,t,2, ηi,j,t,3)}, (2)

where the normalizing factor is given by

C(ηi,j,t,1, ηi,j,t,2, ηi,j,t,3) = log[1 + exp{ηi,j,t,1} + exp{ηi,j,t,2}
+ exp{ηi,j,t,1 + ηi,j,t,2 + ηi,j,t,3}],

and the natural parameters ηi,j,t,1 = fi,j,1(Yt−1), ηi,j,t,2 = fi,j,2(Yt−1) and ηi,j,t,3 = fi,j,3(Yt−1)

depend on time only through Yt−1. Note that ηi,j,t,3 controls the level of dependence
between yi,j,t and yj,i,t . For example, ηi,j,t,3 = 0 implies that yi,j,t and yj,i,t are condition-
ally independent with Pr(yi,j,t = 1 | Yt−1) = exp{ηi,j,t,1}/(1 + exp{ηi,j,t,1}) and Pr(yj,i,t =
1 | Yt−1) = exp{ηi,j,t,2}/(1 + exp{ηi,j,t,2}). On the other hand, ηi,j,t,3 > 0 favors outcomes
in which yi,j,t = yj,i,t (a phenomenon often called positive reciprocity), while ηi,j,t,3 < 0
favors situations in which yi,j,t �= yj,i,t (often called negative reciprocity). Hence, by allow-
ing the values of yi,j,t and yj,i,t to be potentially correlated the model can accommodate
(intra-temporal) reciprocity in the network.

A full specification of the model requires that we specify the form of the functions fi,j,1,
fi,j,2 and fi,j,3. A tempting option is to make these predictors dependent of all entries of
Yt−1, including all high-order interactions. However, such an approach leads to models
with an extremely high number of parameters that is computationally unmanageable even
for networks with a relatively small number of nodes. On the other hand, while focusing
only on first-order effects associated with the entries of Yt−1 can substantially reduce the
number of parameters, the resulting model ignores interactions that could be expected to
be important. We take a middle ground approach and include in the specification of the
functions fi,j,1, fi,j,2 and fi,j,3 a subset of the first- and second-order effects that are associated
with the interactions of nodes i and j among themselves and with other nodes during the
previous period. In particular, we set

fi,j,l(Yt−1) = αi,j,l + βi,j,lyi,j,t−1 + γi,j,lyj,i,t−1

+
∑
k�=i,j

δi,j,k,lyi,k,t−1 +
∑
k�=i,j

φi,j,k,lyk,j,t−1

+
∑
k�=i,j

ψi,j,k,lyj,k,t−1 +
∑
k�=i,j

ωi,j,k,lyk,i,t−1
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+ ρi,j,lyi,j,t−1yj,i,t−1 +
∑
k�=i,j

ξi,j,k,lyi,k,t−1yk,j,t−1

+
∑
k�=i,j

ζi,j,k,lyj,k,t−1yk,i,t−1 (3)

for l=1,2,3. To better motivate this specification, consider for example the structure of
fi,j,1(Yt−1) in Equation (3). As we showed before, we can roughly interpret fi,j,1(Yt−1) as
controlling the probability of a directed link between i and j. Hence, αi,j,1 can be inter-
preted as the baseline probability of a link between nodes i and j, the coefficients βi,j,1 and
γi,j1 can be interpreted as the persistence (momentum) in the relationship (e.g. if βi,j,1 > 0
then once trader i starts selling to trader j, they tend to keep selling in future periods),
the coefficients {δi,j,k,1 : k �= i, j}, {φi,j,k,1 : k �= i, j}, {ψi,j,k,1 : k �= i, j} and {ωi,j,k,1 : k �= i, j}
capture diversification effects (e.g. if δi,j,k,1 > 0 then it is more likely that i will sell to j if it
sold to k in the previous term), ρi,j,1 captures inter-temporal reciprocity (as opposed to the
intra-temporal reciprocity captured by ηi,j,t,3), and {ξi,j,k,1 : k �= i, j} and {ζi,j,k,1 : k �= i, j}
capture disintermediation effects (e.g. if ξi,j,k,1 > 0 then so that i is more likely to sell to j if
in the previous period i sold to k and k sold to j, so that i and j tend to cut k as middleman).

Although our model is not in the class of time-varying Exponential Random Graph
models (tERGMs) [7,12,26], some classes of tERGMs can be obtained as special cases of
our model. Indeed, consider making the model parameters independent of the traders’
identities so that αi,j,l = αl, βi,j,l = βl, γi,j,l = γl, δi,j,k,l = δl, φi,j,k,l = φl, etc. for all i,j,k. In
that case, the joint distribution p(Y2, . . . ,YT | Y1) is proportional to

exp

{ T∑
t=2

3∑
l=1

[αlSα,l(Yt)+ βlSβ ,l(Yt ,Yt−1)

+ γlSγ ,l(Yt ,Yt−1)+ δlSδ,l(Yt ,Yt−1)

+ φlSφ,l(Yt ,Yt−1)+ ψlSβ ,l(Yt ,Yt−1)

+ ωlSω,l(Yt ,Yt−1)+ ρlSρ,l(Yt ,Yt−1)

+ ξlSξ ,l(Yt ,Yt−1)+ ζlSζ ,l(Yt ,Yt−1)]

}
, (4)

where Sα,l(Yt ,Yt−1), Sβ ,l(Yt ,Yt−1), etc. are appropriately chosen sufficient statistics, for
example,

Sα,1(Yt) =
n∑

i=1

n∑
j=i+1

yi,j,t ,

Sα,2(Yt) =
n∑

i=1

i−1∑
j=1

yi,j,t ,

Sα,3(Yt) =
n∑

i=1

i−1∑
j=1

yi,j,tyj,i,t ,



1162 B. BETANCOURT ET AL.

Sδ,2(Yt ,Yt−1) =
n∑

i=1

i−1∑
j=1

yi,k,t−1yi,j,t

Sξ ,1(Yt ,Yt−1) =
n∑

i=1

n∑
j=i+1

∑
k�=i,j

yi,j,tyi,k,t−1yk,j,t−1.

Hence, if we were to strip away the identity of the nodes in the definition of the model coeffi-
cients, the model would reduce to a tERGM constructed on the basis of sufficient statistics
that correspond to the number of links in the network as well as the number of (some
selected types of) two-stars and triangles. By allowing the parameters to differ according
to the identity of the nodes, our formulation generalizes the basic tERGM and allows for
additional expressive power.

It is worthwhile noting that the collapsed model in Equation (4) does not include
triangles in which all observations happen in the same time point, for example,∑n

i=1
∑n

j=i+1
∑

k�=i,j yi,j,tyi,k,tyk,j,t . Hence, our model cannot capture the effects of intra-
temporal transitivity (i.e. an increase/decrease in the probability of a link between nodes
i and j at time t if they both link to a third node k also at time t) on the evolution of
the network. This modeling choice is made out of practical necessity; including this type
of interactions into the model would complicate computation. Indeed, assuming condi-
tional independence among pairs of dyads on the same point in time is key to obtain a
closed-form structure for the normalizing constant of the likelihood, which is in turn key
to speed-up computation (see Section 4). However, potential concerns surrounding this
choice are mitigated by the fact that the second-order interactions in Equation (3) do allow
us to capture inter-temporal transitivity (i.e. an increase/decrease in the probability of a link
between nodes i and j at time t if they both linked to a third node k at time t−1), which is
more interesting and realistic in this type of scenarios.

3.1. A penalized regressionmodel

The total number of parameters in our model is (n(n − 1)/2){9 + 18(n − 2)}, which will
typically be quite large. In fact, the number of parameters in the model will often be larger
than the number of observations available to estimate them. To address this issue we adopt
a regularized likelihood approach based on L1 penalty functions. More specifically, point
estimates for the model parameters are obtained by solving:

argmax
α,�

∑
i<j

{Vi,j(αi,j,�i,j)− λ‖�i,j‖1}, (5)

where

Vi,j(αi,j,�i,j) =
T∑
t=2

{yi,j[αi,j,1 + xTi,j,tθ i,j,1] + yj,i[αi,j,2 + xTi,j,tθ i,j,2]

+ yi,jyj,i[αi,j,3 + xTi,j,tθ i,j,3]}
is the (unpenalized) log-likelihood, ‖ · ‖1 denotes the L1-norm, λ > 0 is the penalty
parameter that controls the shrinkage level of the coefficients towards zero, αi,j =
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(αi,j,1,αi,j,2,αi,j,3)′, the vector of parameters θ i,j,r is defined as

θ i,j,r = (βi,j,r, γi,j,r, δi,j,1,r, . . . , δi,j,n,r,φi,j,1,r, . . . ,φi,j,n,r,ψi,j,1,r, . . . ,ψi,j,n,r,ωi,j,1,r,

. . . ,ωi,j,n,r, ρi,j,r, ξi,j,1,r, . . . , ξi,j,n,r, ζi,j,1,r, . . . , ζi,j,n,r)′,

�i,j = (θ ′
i,j,1, θ

′
i,j,2, θ

′
i,j,3)

′, and the vector of covariates is

xi,j,t = (yi,j,t−1, yj,i,t−1, yi,1,t−1, . . . , yi,n,t−1, y1,j,t−1,

. . . , yn,j,t−1, yj,1,t−1, . . . , yj,n,t−1, y1,i,t−1,

. . . , yn,i,t−1, yi,j,t−1yj,i,t−1, yi,1,t−1y1,j,t−1,

. . . , yi,n,t−1yn,j,t−1, yj,1,t−1y1,i,t−1, . . . , yj,n,t−1yn,i,t−1)
′.

Note that the structure Vi,j is equivalent to that of a multinomial likelihood and that
the intercept parameters {αi,j,r} remain unpenalized. Furthermore, the imposition of a
lasso penalty is equivalent to assuming independent double exponential prior distribu-
tions with variance 2/λ on each component of �, so that the point estimates obtained
from Equation (5) coincide with the maximum a posteriori estimates.

4. Estimation and prediction

One important consequence of the conditional independence assumption is that
Equation (5) can be broken down into n(n − 1)/2 optimization problems, each one corre-
sponding to fitting a separate L1 regularized multinomial regression for each pair of nodes
in the network. In the sequel we focus on an algorithm to solve each of these indepen-
dent problems (and drop the subindex (i, j) to simplify notation). This algorithm is then
implemented in a parallel environment.

There is an extensive literature on efficient algorithm for estimation in L1 regularized
multinomial regression (e.g. see [9,11,19]). In this paper we resort to a relatively simple
computational algorithm similar to iterative reweighed least squares (see [9]). In particular,
we solve Equation (5) by iteratively setting

(α̂(m+1), �̂
(m+1)

) = argmax
�

Q(α,� | α̂
(m), �̂

(m)
)

until convergence, where Q(α,� | α̃, �̃) is a surrogate function obtained by replacing
V(α,�) by its second-order Taylor expansion around the current iterate. Furthermore,
rather than attempting to solve the problem using blockwise updates, we proceed with
componentwise steps. In particular, the estimate of a component θr,k of θ r is updated as

θ̂
(m+1)
r,k = soft

(
θ̂
(m)
r,k − g(m)r,k

G(m)r,k,k

;
−λ
G(m)r,k,k

)
, (6)

where soft(w, λ) = sign(w)max{0, |w| − λ} is the soft-thresholding operator, g(m)r,k =
∂V/∂θr,k|

α̂(m),�̂
(m) and G(m)r,k,k = −∂2V/∂θ2r,k|α̂(m),�̂(m) are the gradient and the information
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in the direction of θr,k evaluated in the current iterate values. On the other hand, since the
intercepts are not penalized, their estimates are updated using the recursion

α̂
(m+1)
k = α̂

(m)
k − g(m)k

G(m)k,k

.

One consequence of the use of L1 penalized likelihoods is that point estimates of the coeffi-
cients can be exactly zero. Hence, the algorithm automatically performs variable selection,
allowing us to assess the presence of diversification and disintermediation effects in the net-
work. This allows us to explicitly test hypotheses about the kind of effects that influence the
evolution of the network. However, when the regression matrix is not full rank (for exam-
ple, when T < 9 + 18(n − 2)), interpretation of the individual effects is difficult because
of confounding/multicolinearity. To address this issue we focus on identifying regression
coefficients for which there is no evidence of significance. These are selected by identify-
ing the effects that lie in the orthogonal complement of the column space of Xi,j(Aλ), the
submatrix that contains the columns associated with variables that have been identified as
significant using the penalty λ.

4.1. Selection of the penalty parameter

The value of the penaltyλhas a direct impact on the quality of the estimates and predictions
generated by themodel. Our default approach is to select λ from among a pre-specified grid
of values by maximizing the Bayesian Information Criteria (BIC)

BICλ =
∑
i<j

[2Vi,j(α̂i,j, �̂i,j)− Ki,j(λ) log(T − 1)],

whereKi,j(λ) = rank{Xi,j(Aλ)} is an estimate of the number of degrees of freedom when
the penalty parameter λ is used to compute (α̂i,j, �̂i,j), and Xi,j(Aλ) is a (T − 1)× d
matrix whose t-th row contains a subset of elements of xi,j,t and whose columns corre-
spond to the covariates for which θ̂ i,j,r is different from zero for at least one value r=1,2,3
[22,28,36]. Note that for all values of λ, the degrees of freedom satisfy the condition
0 ≤ Kλ ≤ min{d,T − 1}.

4.2. Link prediction

Although the main goal of our analysis is not short-term link prediction, our autologistic
model can be used for this purpose. In particular, given a point estimate (α̂i,j, �̂i,j) based
on an observed sample Y1, . . . ,YT , we can estimate (for i> j) the probability of a directed
link from node i to node j at time T+1 as

p̂(yi,j,T+1 = 1 | YT) = p[(yi,j,T+1, yj,i,T+1) = (1, 0) | α̂i,j, �̂i,j)]

+ p[(yi,j,T+1, yj,i,T+1) = (1, 1) | α̂i,j, �̂i,j)],

with a similar expression being valid for p̂(yj,i,T+1 = 1 | YT).
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4.3. Theoretical properties

Because our estimation procedure reduces to fitting independent L1 regularized multino-
mial logistic regressions for each pair of nodes, the procedure shares all the positive (and
negative) properties of this type of approaches (for a review, see [29]). For example, for n
fixed and T growing to infinity, the estimators are both consistent and sparse consistent,
and have the oracle property (see [8] for the full rank case and [20,32] for the non-full rank
case).Under some additional restrictions (such as theRestrictedEigenvalue (RE) condition
described in [5]), these results apply for n growing with T (e.g. see [17,30]).

5. Application

5.1. Simulation study

Webegin by demonstrating the predictive performance of themodel in a simulated dataset
consisting of T=201 networks observed over n=71 nodes (the same values as in the
NYMEX data). The data was generated according to our model in such a way that for
each of the 2,485 pairs of nodes only six non-zero coefficients are present for each class,
l=1,2,3. Three of the non-zero coefficients for each class correspond to αi,j,l, βi,j,l, and
γi,j,l. We randomly draw these parameters from common Gaussian distributions across
pairs (e.g. αi,j,l ∼ N(ᾱl, τ 2l )). The other relevant coefficients correspond to ξi,j,k,l for three
different values of k. Four groups of pairs of traders of similar sizes were simulated
with different selections of the three values of k, and the respective parameter values of
ξi,j,k,l where fixed equal within each of the groups and with opposites signs to the global
mean of βi,j,l and γi,j,l. Under this simulation scheme, the persistence of the relationship
between the nodes i and j and a few transitive relationships drive the network structure
and dynamics over time. The resulting network is relatively dense with a average num-
ber of links of 2971 (out of 4970 possible ties), and it shows low reciprocity and high
transitivity.

As a benchmark, we also fit to the data a tERGM [21] that includes all the typical ERGM
terms, the square root of in and out-degrees as node covariates, and the lagged network and
the delayed reciprocity tomodel cross-temporal dependencies. Thismodel was fit using the
btergm function of the R package xergm. Our evaluation is based on an out-of-sample
crossvalidation exercise where we held out the last 10 weeks in the data set and made one-
step-ahead predictions for the structure of the held-out networks. More specifically, for
each t = 191, 192, . . . , 200 we use the information contained in Y1, . . . ,Yt to estimate the
model parameters and obtain predictions for Ŷt+1. The quality of the prediction is eval-
uated by constructing receiver operating characteristic (ROC) curves and computing the
area under this curve. Predictions for the tERGMmodel are based on 1000 MCMC simu-
lations generated using the default parameter values for the xergm package (see btergm
documentation for more details).

We search for the optimal value of λ over a grid of 29 values between 3.5 and 25, with
the optimal value being λ = 12 (see Figure 1). Figure 2 shows the 10 operating characteris-
tic curves associated with one-step-ahead out of sample predictions from our autologistic
model, along with estimates of the area under the receiver operating characteristic curves
(AUC) for the proposed model and the tERGM. From these results it can be seen that
the predictive accuracy of the temporal ERGM is poor as it only reaches AUC values below
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Figure 1. BIC values over a grid of values of λ for autologistic model in simulated dataset.

75% inmost cases. In this scenario, the autologisticmodel shows superior prediction ability
outperforming the tERGM by 11% to 14% in the AUC values for all cases.

5.2. Analysis of the NYMEX data

In this sectionwe analyze a sequence ofT=201weekly FTNs constructed fromproprietary
trades in the natural gas futures market on the New York Mercantile Exchange (NYMEX)
between January 2005 andDecember 2008 (see Section 2). Previous exploration of this data
showed that these trading networks are moderately sparse (with an average of 826 links
out 4970 possible ones), and consistently show very high reciprocity, moderate transitivity,
mixing patterns and community structure [4]. These features suggests that link formation
between a pair of nodes is very likely to depend on how other actors relate in the network.

Selection of the optimal penalization parameter in this case was performed by search-
ing over a grid of 24 values between 2.5 and 18 for a resulting optimal value of λ = 10 (see
Figure 3). As before, we carry out an out-of-sample cross-validation exercise in which our
model and the tERGMare fitted to the first 191weeks, and the estimatedmodel parameters
are then used to predict each of the last 10 weeks of data. Figure 4 shows the ten operating
characteristic curves associated with the out-of-sample predictions from the autologistic



JOURNAL OF APPLIED STATISTICS 1167

ROC curves

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
65

0.
70

0.
75

0.
80

0.
85

Week

A
U

C

192 193 194 195 196 197 198 199 200 201

tergm
Autologistic

Figure 2. Plots of the 10 operating characteristic curves associated with one-step-ahead out of sample
predictions from the autologistic model, and the area under the curves (AUC) for the autologistic model
and the temporal ERGM for the simulated dataset.

model, and the estimates of the area under the ROC curves (AUC) for both models. In
this particular case, the temporal ERGM outperforms our proposed model by between 3%
and 6% in the AUC. However, the prediction accuracy of the autologistic model is res-
onably good with an average AUC value of 85% over the 10 weeks. The temporal ERGM
slightly outperforming our model for the NYMEX data is probably a result of the presence
of moderate intra-temporal transitivity that we are unable to capture in our model. In con-
trast, the simulated network in Section 5.1 is dominated by inter-temporal transitivity that
the temporal ERGM is unable to capture.

Now,we turn our attention to the interpretation of the regression coefficients. Recall that
the trading network has n=71 traders, so that the autologisticmodel includes 1251 covari-
ates (excluding the unpenalized intercept). Of these 1251 coefficients, 6 capture persistence
effects, 3 capture inter-temporal reciprocity, 828 capture substitution effects, and 414 cap-
ture disintermediation effects. However, since the number of covariates ismuch larger than
the number of observations, these effects are confoundedwith each other, complicating the
interpretation of the model. To address this issue we focus on identifying effects for which
there is no evidence of significance (see Section 4).

First, we note that the individual regressionmodels for each pair tend to be quite sparse.
Indeed, only 812 out of 2485 regressions have at least one non-zero regression coefficient
aside from the intercept and the number of non-zero coefficients (i.e. the rank ofXi,j(Aλ))
tend to be very low across these pairs (see first panel Figure 5). However, the number of
significant effects varies dramatically across the different pairs. For example, the interac-
tion between traders 2 and 17 (we identify traders by a number rather than their name
because of confidentiality restrictions) seems to be driven by five significant effects: two of
them are associated with persistence, one with reciprocity, and the other two with substi-
tution/diversification. This is in contrast with the interaction between traders 64 and 71,
which appear to be driven by over 100 potentially significant effects.
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Figure 5. Histogram of the number non-zero coefficients and boxplots of the percentage of non-
significant effects of substitution/diversification and transitivity for 812 pairs of traders.

Table 1. Number of effects, and non-presence percentage over
812 pairs of traders.

# of effects % non-present

Persistence 6 72.8
Reciprocity 3 88.8
Substitution/diversification 828 0.0
Disintermediation 414 0.4

To understand the overall impact of different trading mechanisms we focus on the 812
pairs that show at least one significant effect and note that a large percentage have no
persistence (72.8%) or inter-temporal reciprocity (88.8%) coefficients that are significant
(see Table 1). In contrast, each one of these 812 pairs presents at least one substitu-
tion/diversification coefficient that might be significant, and the vast majority (99.6%)
present at least one potentially significant inter-temporal transitivity effect. This clearly
suggests that second-order effects (substitution/diversification and transitivity) are much
more important in this FTN than first-order effects (persistence and reciprocity).

To better understand the relative importance of the second-order effects, we also com-
pute the number of non-significant effects of each type for each pair of traders (see
Figure 5). Note that, although all 812 pairs present at least one substitution/diversification
effect, the number of these effects thatmight be significant on each pair is relatively small. In
contrast, the number of potentially significant coefficients associated with inter-temporal
transitivity effects tends to be larger, with a few pairs presenting more than 30% of poten-
tially significant effects. These results suggests that the evolution of this trading network is
driven in majority by inter-temporal transitivity effects.

We can contrast these results with those obtained from the tERGMmodel (see Table 2).
Interestingly, all coefficients appear to be significant in this case. Hence, unlike our model,
the tERGM suggests that trading is ‘sticky’ (both momentum effects are significant). This
is likely driven by the fact that in the default specification of the tERGM the momentum
terms are the only ones that capture the temporal evolution of the network.
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Table 2. Point estimates and 95% confidence intervals for the
coefficients of tERGMmodel in the NYMEX FTN data.

Parameter Estimate

Number of edges −7.542 (−7.671,−7.421)
Number of paths 0.174 (0.122, 0.230)
Reciprocity 1.134 (1.103, 1.165)
Transitive Triplets −0.043 (−0.046,−0.039)
Cyclic triplets 0.074 (0.067, 0.081)
Sqrt of in-degree for receiver 1.096 (1.075, 1.117)
Sqrt of out-degree for receiver −0.368 (−0.385,−0.350)
Sqrt of out-degree for emitter 0.751 (0.727, 0.777)
Momentum 0.771 (0.745, 0.797)
Momentum of reciprocal 0.720 (0.696, 0.744)

6. Discussion

We introduced a novel statistical model for the analysis of FTNs and applied it to study
the NYMEX natural gas futures market between January 2005 and December 2008. Our
analysis shows that diversification and substitution effects rather than persistence tend to
dominate this market’s microstructure.

Our approach focuses on L1 penalties mainly because of computational expediency.
However, alternatives such as the adaptive Lasso [35] or smoothly clipped absolute devia-
tion [8] penalties can potentially improve variable selection. We would also like to explore
in the future fully Bayesian implementation using spike-and-slab priors (e.g. see [16])
instead of convex non-differentiable penalties. However, computation for this type ofmod-
els (particularly for networks with a large number of nodes) is challenging. Furthermore,
we note that the model can be easily extended to undirected network by considering a
reduced set of predictors, and to weighted networks by replacing the multinomial likeli-
hood with an appropriate member of the exponential family. Similarly, we could extend
to model to consider higher order autoregressive processes, but the number of parameters
grows dramatically in that case. One way to deal with this issue is to focus on a smaller
number of hyperparameters or drop interactions from the model.

In addition to the componentwise maximization algorithm described in Section 4,
we also investigated the use of a split-Bregman algorithm [11] and a stochastic gradi-
ent algorithm [25], but found both algorithms to have suboptimal performance in this
problem. However, for problems with very large T (e.g. high frequency FTNs in highly
liquid markets), a stochastic gradient descent approach might be appropriate, and its
implementation is relatively straightforward.
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