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The Southern Ocean has experienced a complex set of changes 
over the past several decades. There have been strong, region-
ally opposing trends in sea-ice since satellite observations 

began in 1979, with a small but significant overall increase in sea-
ice cover and an associated near-surface cooling1–3. However, below 
the surface, repeat observations show a significant warming trend  
since 19504,5, and a broadscale freshening6. At mid depths and  
within the latitudes of the Antarctic Circumpolar Current, the 
warming has proceeded at nearly twice the rate of global upper 
ocean warming4. The processes that drive this warming make the 
Southern Ocean the dominant region of anthropogenic heat and 
carbon uptake7–9. Hence, to understand the drivers of these changes 
is vital to make reliable future climate projections10,11, but it is com-
plicated by several factors.

The Southern Ocean is subject to a strong internal climate vari-
ability, which may account for a substantial portion of the observed 
change12–16. It is also one of the more poorly sampled regions of 
the global ocean5, which accentuates the difficulty of quantify-
ing forced trends. Modelling results suggest that both greenhouse 
gas increases17 and stratospheric ozone depletion18,19 are impor-
tant drivers of Southern Ocean change. However, the ability of 
coarse resolution climate models to simulate changes accurately 
in the Southern Ocean, in which the dynamics are modulated by 
small-scale eddies, has been questioned10. Human influence on 
the ocean thermohaline change has been detected previously in 
large-scale basin averages20–23. However, the observed patterns of 
Southern Ocean thermohaline change have not yet been attributed 
to specific forcing agents. Here we present a new observational 
synthesis of Southern Ocean temperature and salinity changes, 
address the questions of data sparsity and model skill, and then 
develop a framework to attribute these changes to individual  
forcing agents.

Observed and simulated changes
To quantify historical changes in the Southern Ocean temperature 
and salinity, we used all the hydrographic profiles available in the 
World Ocean Database for the period 1950–2015. We computed 
anomalies between each profile and the closest matching point in a 
modern Argo-based climatology24 to avoid aliasing due to the sparse 
historical sampling, and gridded the data (see below and Methods).

The observed zonal-mean temperature change over the Southern 
Ocean, computed as the 2006–2015 mean minus the 1950–1980 
mean, is dominated by a region of warming centred near 45 °S that 
extends from the surface to over 1,500 m (Fig. 1a). An interesting 
exception to this warming pattern is a subsurface cooling between 
about 250 and 2,000 m and between 30–36° S. Salinity shows a more 
complex pattern of change (Fig. 1b). The salinity pattern is domi-
nated by a strong surface freshening south of 45° S, which extends 
into the ocean interior in a northward arc, which is contrasted 
against a strong salinification in the upper 500 m, north of 45° S. 
These patterns of change are largely consistent with previous obser-
vational studies6,10.

To help understand these observed changes, we turned to the 
Canadian Earth System Model in which the ALL forcing experi-
ment (which includes solar, volcanic, anthropogenic aerosol, ozone 
depletion, land use change and greenhouse gas effects (Methods)) 
was run 50 times from slightly different initial conditions to pro-
duce a large ensemble. The ensemble mean over the 50 realiza-
tions provides an estimate of the forced response—the fingerprint 
of change associated with the forcing, and the spread across the 
ensemble provides an estimate of the uncertainty due to internal 
climate variability. We subsampled the model using the same cover-
age of historical hydrographic profiles, determined to the nearest 
month, to make our results directly comparable with the observa-
tions above (Methods).
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The ALL forcing fingerprints reproduce the observed patterns 
of change very well (Fig. 1c,d). The correlation coefficients between 
the simulated and observed patterns are 0.83 and 0.72 for tem-
perature and salinity, respectively. Regions in which the observed 
changes fall within the 2.5th to 97.5th percentile spread of the 50 
model realizations are indicated by the stippling in Fig. 1a,b, which 
indicates where the model and observations agree at the 5% level. 
Most regions are stippled, but in the non-stippled areas the model 
typically correctly simulates the sign of the observed change, but 
does not capture the correct magnitude of the changes. In particu-
lar, the model underestimates the magnitude of the observed sub-
surface cooling and freshening, between about 30 to 42° S. This is 
partly addressed by the scaling factors introduced in the detection 
and attribution analysis below.

The observational coverage is extremely sparse in the early part 
of the record and increases over time, with a step-like jump after 
the introduction of the Argo array in 2004 (Supplementary Figs. 1 
and 2). We can use the model to address the question of whether 
the sparse observational sampling biases our estimates of tempera-
ture and salinity change since 1950, despite our careful analyti-
cal approach (Methods). Figure 1e,f shows the patterns of change 
obtained when we use the full model coverage (no subsampling). 
Relative to Fig. 1c,d, in which the model was subsampled with 
observational coverage, we see minor differences in detail, but 
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Fig. 1 | Observed and simulated changes in temperature and salinity. a–f, Zonal mean temperature (a, c and e) and salinity changes (b, d and f) from 
observations (a and b), the ensemble mean of the CanESM2 ALL forcing experiment, subsampled to match the observational coverage (c and d), and the 
ensemble mean of the CanESM2 ALL forcing ensemble with full sampling (e and f). The stipples in a and b show where the observations fall within the 
2.5th to 97.5th percentile spread across the model ensemble. The anomalies represent the difference between the 2006–2015 mean and the mean over a 
1950–1980 base period. Black contours are the climatological temperatures and salinities. psu, practical salinity unit.
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Fig. 2 | Detection and attribution scaling factors. a,b, Temperature (a) and 
salinity (b) scaling factors are shown for a one-signal analysis of the ALL 
forcing experiment, and for the multisignal analysis using the GHG, NAT, 
OZ and AER experiments. Scaling factors are the regression coefficients 
between the observations and the ensemble mean patterns of change for 
each experiment. The 90% confidence intervals (grey bars) were generated 
from the spread across the 200 individual realizations of the model internal 
variability (Methods), with the individual ensemble members shown as 
small black dots.
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no fundamental changes in the patterns. This result suggests that 
the sparse observational sampling of the Southern Ocean has not 
systematically biased our estimates of the multidecade-scale zonal 
mean temperature and salinity changes. Analysis of more regional 
scales and a shorter period variability would, however, be increas-
ingly subject to aliasing, and hence we did not attempt to move our 
analysis beyond zonal mean scales. Next, we address the drivers of 
these observed changes.

Detection and attribution
To objectively compare the simulated and observed Southern Ocean 
changes, and to determine the relative contributions of individual 
climate forcings to the changes, we applied a detection-and-attribu-
tion analysis25 (Methods). We began with a one-signal analysis that 
regressed the observed changes (Fig. 1a,b) onto the model-derived 
fingerprints of change associated with the ALL forcing experiment 
(Fig. 1c,d). The resulting scaling factors are significantly different 
from zero at the 5% significance level for both temperature and 
salinity (Fig. 2). This means that we formally detected the finger-
prints of climate change in the observed Southern Ocean tempera-
ture and salinity, and the observed changes are not explainable by 
internal climate variability alone25. The salinity scaling factor is con-
sistent with unity, which means that the magnitude of the simulated 
changes is consistent with the observations. The temperature scal-
ing factor of 0.74 does not include unity in its uncertainty range, 
which implies that the model response has to be scaled down to 
best fit the observations. This is consistent with our knowledge that 
the Canadian Earth System Model version 2 (CanESM2) warms too 
rapidly over the historical period26.

To identify the roles of individual forcing agents, we then con-
ducted a multisignal analysis (Methods). The fingerprints were 
derived from four experiments, each of which comprised 50 sim-
ulations, in which the CanESM2 model was forced by (1) green-
house gas forcing only (GHG), (2) natural (solar and volcanic) 
forcing only (NAT), (3) anthropogenic aerosols only (AER) and 

(4) stratospheric ozone depletion only (OZ). The resulting scaling 
factors represent the best combined fit to the observations of the 
fingerprints for each individual forcing (Fig. 2). The scaling factors 
associated with the NAT fingerprints are not significantly different 
from zero, which indicates no detectable influence of the natural 
forcing (solar and volcanic) in these zonal mean sections. Similarly, 
the AER fingerprints were not detected in the observations. By con-
trast, we can independently detect the fingerprints of both GHG- 
and OZ-induced changes in the observed temperatures, whereas for 
salinity only the GHG fingerprint is detected. We did a combined 
analysis on the temperature and salinity and detected both the GHG 
and OZ patterns (Supplementary Fig. 3).

The relative contribution of each forcing to the observed pat-
tern of change (Fig. 3) is given by the fingerprints multiplied by the 
appropriate scaling factor. For both temperature and salinity, GHG 
plays the dominant role (Fig. 3a,b) and shows patterns of change 
similar to those of the ALL forcing experiment and observations 
(Fig. 1). This is consistent with the understanding that increasing 
greenhouse gases are the principal driver of climate warming25 and 
recent anomalous ocean heat uptake27. In our simulations, OZ is 
responsible for the cooling observed north of 40° S and for warm-
ing to the south (Fig. 3c), consistent with previous modelling stud-
ies18,28,29. The OZ response is distinct from the uniformly warming 
GHG signal in this regard. That the fingerprint of OZ was detected 
in the observations for temperature, but not of salinity, most prob-
ably lies in the fact that the GHG and OZ fingerprints are highly 
correlated for salinity (Fig. 3b,d), which makes independent detec-
tion difficult.

Based on these results, we conclude that the observed Southern 
Ocean temperature and salinity changes are inconsistent with inter-
nal variability or natural forcing alone, but can be attributed to 
anthropogenic influences in general, and greenhouse gas increases 
and stratospheric ozone depletion in particular. These results are in 
agreement with the previous detection of anthropogenic influence 
on ocean temperature and salinity at the global scale and in other 
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Fig. 3 | Fingerprints of temperature and salinity change. a–d, Zonal mean temperature (a and c) and salinity changes (b and d) from the ensemble 
means of CanESM2 single-forcing experiments using GHG and OZ, respectively. All are subsampled to match the observational coverage. The anomalies 
represent the difference between the 2006–2015 mean and the mean over a 1950–1980 base period. The fields are scaled to best match the observations 
using the scaling factors from Fig. 2
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ocean basins20–23. We have advanced on previous work by using an 
updated observational synthesis to focus on the Southern Ocean 
patterns of change, and by attributing the observed changes to GHG 
and OZ in particular, rather than just to the combined anthropo-
genic signal (ALL).

Physical mechanisms
Changes in temperature and salinity on pressure surfaces (Fig. 1) 
can be driven by changes in surface fluxes and water masses, or by 
adiabatic shifts of density surfaces, which do not alter water masses 
(known as heave), induced by wind and ocean circulation changes. 
To help separate these effects, we recomputed the changes on isopyc-
nal surfaces, 26 ≤​ σθ ≤​ 27.75 (σθ is the potential density) which com-
prise the main water masses of the Antarctic Circumpolar Current 
(Fig. 4). The observations show a warming and salinification of the 
Upper Circumpolar Deep Water centred on σθ =​ 27.5, south of 45° S, 
and a cooling and freshening of the thermocline waters north of 
this and centred on σθ =​ 27.0 (Fig. 4a,b). The CanESM2 ALL forc-
ing simulation overall shows similar patterns of change (Fig. 4c,d), 
although the model does have some climatological biases in the 
water mass structure, and the cooling/freshening tends to occur 
in lighter density classes than observed. Overall, these patterns of 
change are consistent with previously identified water mass changes 
in the Southern Ocean10,30–32 and imply water mass modification by 
surface fluxes.

In the model, a heat budget analysis of the ALL forcing experi-
ment shows that 75% of the depth-integrated warming in the 
Southern Ocean can be explained by overlying anomalous surface 
heat fluxes (Fig. 5a,c). Given conservation of heat, we can infer that 
the remaining 25% of the simulated warming is driven by anoma-
lous ocean heat transport across the boundaries of the domain. The 
salinity budget shows that most of the additional freshwater enters 
the ocean to the south of the boundary of our analysis area at 60° S 
(Fig. 5b,d), and then is advected into the analysis region by the pre-
vailing northward Ekman transport. These results are consistent 
with a previous study1, which argues that Southern Ocean warming 
is largely driven by anomalous surface fluxes combined with clima-
tological transport, and that the changes in transport play only a 
secondary role. In our simulations, the Southern Ocean meridional 
overturning circulation does change (Supplementary Fig. 4), mostly 
driven by GHG and intensified westerly winds (Supplementary  
Fig. 5), whereas the Antarctic Circumpolar Current shows only a 
very small increase in strength (Supplementary Fig. 6).

Previous studies proposed that the observed Southern Ocean 
warming may be associated with poleward shifts of the Southern 
Ocean fronts5,10. The additional constraint of salinity changes sug-
gests that this is unlikely to be the case. As salinity increases towards 
the north over the upper water column, the observed pattern of 
freshening is inconsistent with a simple southward shift of isopyc-
nals (that is, fronts). Indeed, recent studies found no evidence that 
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the Southern Ocean fronts have shifted poleward33,34. It is also inter-
esting that CanESM2 does not include an interactive ice sheet, but 
is able to simulate the observed large-scale salinity change in the 
Southern Ocean north of 60° S. This is evidence that the observed 
salinity changes are not primarily driven by freshwater input from 
the ice-sheet melt, which is small relative to the changes in precipi-
tation minus evaporation6,35,36 and northward advection of freshwa-
ter by sea-ice37,38.

Implications for the future
Our detection and attribution analysis shows that the thermoha-
line changes simulated by CanESM2 are statistically consistent with 
the observed changes. This provides increased confidence in the 
ability of coarse resolution climate models (~1°) to simulate large-
scale temperature and salinity changes in the Southern Ocean. Our 
attribution results also indicate that GHG dominated over OZ in 
the observed warming and freshening of the Southern Ocean since 
1950 (Fig. 3). Given this, we expect to see continued warming and 
freshening of the Southern Ocean over the coming decades, despite 
the mitigating effects of ozone recovery39,40. Such changes are highly 
relevant for the future of Southern Ocean sea-ice12,29, the Antarctic 
ice-sheets41 and the global ocean uptake of heat and carbon7–9.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, statements of data availability and associated acces-
sion codes are available at https://doi.org/10.1038/s41561-018-0226-1.
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Methods
Observations. As the observational record is sparse, particularly in the early part 
of the record (Supplementary Fig. 1), we need to compute anomalies carefully to 
avoid aliasing. For a reliable baseline, we used the well-sampled modern Argo era 
(2004–2008), specifically the gridded Roemmich and Gilson (RG) Argo based 
climatology24, which is available at http://sio-argo.ucsd.edu/RG_Climatology.html. 
For every historical profile available in the World Ocean Database (https://www.
nodc.noaa.gov/OC5/WOD/pr_wod.html) for the period 1950–2015, we computed 
the temperature and salinity anomaly relative to the RG climatological value for the 
same month, and the closest position in space to the profile. Computing anomalies 
in such a manner is used to avoid seasonal and spatial aliasing effects that result from 
averaging sparse observations10. We then bin averaged these observed anomalies in 
space onto the CanESM2 model grid, with a nominal resolution of 1° in latitude and 
1.5° in longitude and at a time resolution of one month. After using this monthly 
resolved data to define the subsampling of the model (see below), we further 
averaged to 5-yr means. Finally, we computed the differences between the mean over 
the decade 2006–2015 minus the base period, which is a mean over 1950–1980.

CanESM2 large ensembles. We used CanESM242,43, the version of the model used 
for the Coupled Model Intercomparison Project Phase 5 (CMIP5). The model 
consists of the CanAM4 atmosphere model, run at a T63 spectral resolution and 
coupled to the CanOM4 ocean model, which has a nominal resolution of 1° in 
latitude and 1.5° in longitude. CanESM2 includes a land surface scheme (CLASS) 
and interactive carbon cycle components on the land (CTEM) and in the ocean 
(CMOC).

Four CMIP5 attribution experiments were conducted with the model:  
(1) ALL, (2) NAT, (3) AER and (4) OZ. In all cases, the model was run over the 
historical period (1950–2005) joined with future runs using the appropriate forcing 
from the Representative Concentration Pathway (RCP) 8.5 (2006–2100). We are 
only interested in the period that extends from 1950 to 2015. There is very little 
difference between the RCPs between 2006 and 2015. For each experiment, the 
initial condition in 1950 is taken from the five CanESM5 realizations submitted 
to the CMIP5 archive. In this year, the five realizations were branched into 
50 realizations per experiment (for a total of 200), by introducing a random 
permutation to the seed used in the random number generator for cloud physics, 
which was then integrated forwards under the appropriate historical or RCP8.5 
forcing. No other perturbation was made to the realizations, but the subtle change 
to the random seed for cloud physics ensures that internal variability diverges 
rapidly across the realizations. Therefore, within each experiment, the forcing is 
identical, and the runs only differ in their realization of internal variability.

A large ensemble was not run with GHG, but we are interested in the impacts 
of GHGs alone. The difference between the all forcing experiment and the sum 
of the other three provides an estimate of the influence of greenhouse gases, 
under the assumption that the responses to these forcings sum linearly (that is 
ALL =​ GHG +​ NAT +​ OZ +​ AER). We can verify that this assumption holds by 
comparing to five CanESM2 simulations forced by GHG, which were submitted to 
CMIP5. The ensemble mean response to GHG inferred from the large ensembles, 
using the assumption of linearity above, is nearly identical to the ensemble mean 
response in the five actual GHG simulations (Supplementary Fig. 7).

In the model at each spatial point and for each month, we computed anomalies 
relative to the model climatology over 2004 to 2008 (the same period used to 
compute the RG observed climatology—the model and RG baseline climatologies 
both have complete spatial coverage). The observations have many grid points 
that contain no data. We used the missing data mask from the observations and 
applied it to the model, so that data coverage was exactly consistent between them. 
After this point, all the averages were applied in the same way to the model and 
observations, which ensured consistent sampling. Specifically, we bin averaged the 
data into 5-yr means, and then we computed the differences between the mean over 
the decade 2006–2015 minus the base period, which is the mean over 1950–1980.

Although the large size of the CanESM2 ensemble provides robust estimates 
of the forced response (fingerprints), and the range of internal variability, it does 
not sample model uncertainty. However, the warming pattern in CanESM2 is 
consistent with the average across the CMIP5 models1.

Detection and attribution methodology. In the context of our study, detection 
means to demonstrate that the Southern Ocean temperature and salinity have 

changed in a statistical sense, and that this change is inconsistent with internal 
variability. Attribution means to determine the relative contributions of multiple 
climate forcings to the change, with an assigned statistical confidence25. Attribution 
to a specific forcing is done by showing that the observed changes are consistent 
with the process-based model (CanESM2), which includes the forcing (for 
example, greenhouse gas increases), but is inconsistent with an otherwise identical 
model that excludes this forcing.

We adopted the widely used fingerprinting approach, which means that we 
assumed that the model simulates the pattern (or fingerprint) of the response to 
external forcing, but not necessarily the correct magnitude of the response25. For 
each of the experiments (ALL, GHG, NAT, AER and OZ), the fingerprint is the 
ensemble mean over 50 model realizations, which differ only in their rendition 
of internal variability. The analysis produces scaling factors that describe how the 
magnitude of the model response to individual forcings should be scaled up or 
down to best match the observations and associated uncertainty estimates25.

To obtain the scaling factors, we regressed the observed changes onto the 
simulated fingerprint(s). In the one-signal case, the observations were regressed 
on the ALL forcing fingerprint. In the multisignal case, a multiple linear regression 
was used to regress the observations onto the fingerprints for each of the four 
experiments. As the simulated forced response is estimated from the ensemble 
mean of a 50-member ensemble, internal variability in the forced response is 
negligible, and so we used an ordinary least squares regression25.

To estimate uncertainty of the coefficients, we computed the residual between 
each realization and the ensemble mean from its experiment, which provides 
us with 200 realizations of internal variability. We rescaled the realization by 

∕50 49  to account for subtraction of the ensemble mean44. We then repeated the 
regressions 200 times, in each iteration replacing the observations with a different 
realization of the variability. That is, we regressed the realization of internal 
variability against the ensemble means. The spread (5th to 95th percentile) in 
parameters derived in this way provides the uncertainty in the scaling factors, 
and informs us of the likelihood of obtaining the scaling factors due to internal 
variability alone. This confidence interval allows us to evaluate if the scaling factors 
are significantly different from zero at the 5% level. For display purposes, in Fig. 2  
we centre this distribution of scaling factors on the corresponding regression 
coefficient of the forced response. Our approach leverages the large number of 
independent samples of internal variability available to avoid the need to estimate 
uncertainty intervals from an ill-conditioned covariance matrix and to avoid 
assuming normally distributed internal variability, as has been done previously22.

Using different variables that are physically linked, such as temperature and 
salinity, can increase the signal detectability23. For the combined temperature and 
salinity analysis (Supplementary Fig. 3), the temperature and salinity fingerprints 
used above were normalized (that is, the mean was removed and they were divided 
by the standard deviation). The data were then concatenated (to produce a series 
double the length of the temperature or salinity data alone), and the above analysis 
was repeated.

Code availability. The analysis code is available from the authors upon request.

Data availability
All the data used in this article are publicly available. The CanESM2 large 
ensembles are available at http://open.canada.ca/data/en/dataset/aa7b6823-fd1e-
49ff-a6fb-68076a4a477c. The RG Argo climatology is available at http://sio-argo.
ucsd.edu/RG_Climatology.html. The historical profiles from the World Ocean 
Database can be found at https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html.
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