

1 **Adult low pH exposure influences larval abundance in Pacific**
2 **oysters (*Crassostrea gigas*)**

3 Yaamini R. Venkataraman, Laura H. Spencer, Steven B. Roberts

4 School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA, USA

5 **Abstract**

6 As negative effects of ocean acidification are experienced by coastal ecosystems, there is a
7 growing trend to investigate the effect ocean acidification has on multiple generations. Parental
8 exposure to ocean acidification has been shown to induce larval carryover effects, but whether
9 or not an acute exposure to a stressor as an adult can influence the larval generation long after
10 the stress has been removed has yet to be tested. To assess how a temporary exposure to
11 experimental ocean acidification affects the ecologically and commercially relevant Pacific
12 oyster (*Crassostrea gigas*), adult oysters were exposed to either low pH (7.31 ± 0.02) or
13 ambient pH (7.82 ± 0.02) conditions for seven weeks. Oysters were then held for eight weeks in
14 ambient conditions, and subsequently reproductively conditioned for four weeks at ambient pH.
15 After conditioning, oysters were strip-spawned to create four families based on maternal and
16 paternal ocean acidification exposure. The number of D-hinge larvae were counted eighteen
17 hours post fertilization. A sex-specific broodstock response was observed, where female
18 exposure to low pH conditions resulted in fewer D-hinge larvae. This study demonstrates that
19 the effects of ocean acidification can last beyond the time from when the environmental
20 perturbation is experienced. Broadening the understanding of environmental memory will be
21 valuable when considering an organism's ability to persist in the face of environmental change.

22
23 *Keywords: ocean acidification, maternal effect, carryover effect, Pacific oyster, Crassostrea*
24 *gigas, D-hinge larvae, response timing*

25 **Introduction**

26 Determining how parental exposure to ocean acidification carries over into early larval
27 stages is important for understanding cumulative effects of climate-related environmental
28 change. Gametogenesis is a key period during which parental exposure to ocean acidification
29 can influence offspring (Donelson et al. 2018). Several studies exposing Sydney rock oysters
30 (*Saccostrea glomerata*) to high pCO₂ conditions (856 µatm, pH_{NBS} 7.89-7.90) during
31 reproductive conditioning identified positive larval carryover effects (Parker et al. 2012, 2015,
32 2017). Specifically, larvae from parents exposed to low pH conditions were larger and
33 developed faster in acidified conditions compared to those from parents reared in ambient pH
34 conditions (Parker et al. 2012, 2015, 2017). Conversely, similar experiments conducted with
35 hard clams (*Mercenaria mercenaria*) and bay scallops (*Argopecten irradians*) demonstrated
36 negative larval carryover effects (Griffith and Gobler 2017). *A. irradians* and *M. mercenaria*
37 larvae from parents exposed to low pH were more sensitive to acidified conditions than those
38 spawned from parents exposed to ambient pH during reproductive conditioning (Griffith and
39 Gobler 2017). These studies demonstrate the importance of parental exposure during
40 reproductive conditioning (late stage gametogenesis) on offspring.

41 As the Pacific oyster (*Crassostrea gigas*; Thunberg, 1793) is a commercially and
42 ecologically relevant species in much of the world, several research efforts have identified
43 consequences of ocean acidification for distinct *C. gigas* life stages. While fertilization still
44 occurs under near-future ocean acidification conditions (Kurihara et al. 2007; Havenhand and
45 Schlegel 2009; Boulais et al. 2018), fertilization success in acidified conditions is variable
46 between *C. gigas* populations (Parker et al. 2010; Barros et al. 2013). Researchers have found
47 that larvae experience developmental delays and reduced shell growth when exposed to
48 experimental ocean acidification conditions (Kurihara et al. 2007; Gazeau et al. 2011; Timmins-
49 Schiffman et al. 2013; Waldbusser et al. 2014). Natural upwelling-induced ocean acidification

50 conditions also reduced larval production and growth in a hatchery setting (Barton et al. 2012).
51 Ocean acidification hampers protein expression in larvae, especially for proteins related to
52 calcification and cytoskeleton production (Dineshram et al. 2012). During metamorphosis, oyster
53 larvae experience down-regulation of proteins related to energy production, metabolism, and
54 protein synthesis (Dineshram et al. 2016). Adult *C. gigas* calcification rates decrease as
55 seawater pCO₂ increases (Gazeau et al. 2007), with oysters grown at 2800 μatm displaying
56 significantly lower fracture toughness than oyster shells from ambient conditions (Timmings-
57 Schiffman et al. 2014). Exposure to ocean acidification also affects adults' antioxidant response,
58 carbohydrate metabolism, transcription, and translation protein pathways (Timmings-Schiffman et
59 al. 2014). There is also evidence of predator-prey interactions changing under experimental
60 ocean acidification (Wright et al. 2018). However, there is limited evidence of how ocean
61 acidification influences Pacific oysters across multiple generations.

62 The current study is the first to discern how exposure to experimental ocean acidification
63 prior to reproductive conditioning affects larval abundance in *C. gigas*. This experiment not only
64 describes how isolated exposure to low pH during early gametogenesis influences larvae, but
65 also provides information on the effects of acute pH exposure on adult gonad morphology.
66 Additionally, the study demonstrates how environmental perturbation experienced before
67 reproductive maturity affects the subsequent generation, even if the stressor is long-removed.

68 **Methods**

69 **Experimental overview**

70 Experimental trials were conducted at the Kenneth K. Chew Center for Shellfish
71 Research and Restoration at the National Oceanic and Atmospheric Administration (NOAA)
72 Manchester Field Station (47°34'09.1"N 122°33'19.0"W, Manchester, Washington, USA) in
73 2017. Adult hatchery-raised *C. gigas* (average shell length = 117.46 \pm 19.16 cm) were

74 acclimated in the facility for 10 days, then exposed to either low or ambient pH conditions for 48
75 days (Figure 1). After pH exposure, oysters were held at ambient pH and water temperature
76 conditions for 90 days. Oysters underwent reproductive conditioning for 22 days, then strip-
77 spawned. D-hinge larvae were counted eighteen hours after fertilization occurred.

78 Experimental pH exposure

79 The experimental system consisted of a 1,610 liter storage tank that fed two 757 liter
80 header tanks. Water from Clam Bay, WA was pumped through a sand filter, then UV-treated.
81 The UV-treated water passed through a set of three sock filters (100 µm, 50 µm, and 25 µm)
82 and a degassing column. Once degassed, water passed through three more sock filters (25 µm,
83 then 10 µm, and 5 µm) before entering the storage tank. The storage tank was outfitted with an
84 off-gas vent and pump to recirculate water such that CO₂ in the water could be equilibrated with
85 atmospheric CO₂. Equilibrated water flowed into the two header tanks, each of which fed three
86 50L flow-through (1.2 L/min) experimental tanks (six experimental tanks total). For all header
87 and experimental tanks, pH in header and experimental tanks was continuously monitored using
88 Durafet pH probes (Honeywell Model 51453503-505) and an AVTECH system. Addition of CO₂
89 in the low pH header tank was controlled using a solenoid valve. A Dual Input Analytical
90 Analyzer (Honeywell Model 50003691-501) automatically mediated solenoid injections. A CO₂
91 air line with a back pressure of 15 psi, controlled with a regulator, injected CO₂ into the low pH
92 header tank every 180 seconds with an injection duration of 0.4 seconds. Injections only
93 occurred if real-time pH from the Durafet was above pH 7.22. A venturi injector connected to the
94 ambient water line mixed ambient pH water with CO₂-rich water to lower pH. There were no CO₂
95 injections in the ambient header tank.

96 Prior to the pH exposure trial, twenty randomly selected *C. gigas* were lethally sampled
97 to assess gonadal status (see Histological analysis). *C. gigas* were placed in each flow-through
98 experimental tank in ambient water conditions and exposed to ambient or low pH conditions for

99 seven weeks. Each treatment consisted of 3 tanks, each with 20 oysters. All experimental tanks
100 received algae from a common reservoir. The algal tank contained 300-500 mL of Shellfish Diet
101 1800® (Reed Mariculture) diluted in 200L of ambient pH seawater (Helm and Bourne 2004).
102 Algae was continuously dosed to oyster experimental tanks using an Iwaki Metering Pump.
103 Algal lines were cleaned twice weekly, and experimental tanks were fully drained and cleaned
104 once a week.

105 Seawater chemistry analysis

106 Twice a week, water samples (1L) were collected from each header and oyster
107 experimental tank. For each sample, salinity (PSU) was measured with a Bench/Portable
108 Conductivity Meter (Model 23226-505, VWR), pH (mV) was measured with a Combination pH
109 Electrode (Model 11278-220, Mettler Toledo), and temperature (°C) was measured using a
110 Traceable Digital Thermometer (Model 15-077, Fisher). To calibrate the pH probe, a Tris buffer
111 (0.08 M, 28.0 PSU) was prepared using 0.3603 mol of NaCl (J.T. Baker), 0.0106 mol of KCl
112 (Fisher Scientific), 0.0293 mol MgSO₄-(H₂O)₇ (Fisher Scientific), 0.0107 mol of CaCl₂-2(H₂O)
113 (MP Biomedicals), 0.0401 HCl (J.T. Baker), and 0.0799 mol of Tris base (Fisher Scientific).
114 Deionized water was added for a final volume of 1L. Salinity, temperature, and pH
115 measurements for the Tris buffer were obtained at five temperatures before measuring samples
116 to generate a standard curve. This standard curve was used to calibrate the pH electrode and
117 convert measured millivolts to pH units.

118 For total alkalinity measurements, duplicate seawater samples (250 mL) were collected
119 from experimental tanks twice weekly and dosed with mercuric chloride (50 µL of 0.18 M
120 solution) to preserve samples (Bandstra et al. 2006). Samples from days 5, 33, and 48 were run
121 on a T5 Excellence titrator (Mettler Toledo) to determine alkalinity. Salinity (PSU) from discrete
122 samples was used to calculate total alkalinity, using the *seacarb* library in R (Gattuso et al.
123 2018). Calculated pH, total alkalinity, temperature, and salinity were also used in *seacarb* to

124 calculate in situ pH, pCO₂, dissolved organic carbon (DIC), calcite saturation (Ω_{calcite}), and
125 aragonite saturation ($\Omega_{\text{aragonite}}$) for days 5, 33, and 48. R code used to calculate water chemistry
126 parameters is available (Venkataraman et al. 2018).

127 Histological analysis

128 Twenty randomly selected *C. gigas* were lethally sampled before pH exposure for
129 histological analyses. On the last day of low pH exposure, ten oysters from each treatment —
130 randomly selected from each tank — were also lethally sampled to assess gonadal status. For
131 each sampled oyster, a piece of gonad tissue was cut and placed in a histology cassette.
132 Gonad tissue in cassettes was fixed for histology using PAXgene Tissue FIX and STABILIZER
133 and sent to Diagnostic Pathology Medical Group, Inc. (Sacramento, CA) for staining with
134 hematoxylin and eosin and slide preparation. Tissues exposed to ambient pH were confounded
135 during processing, preventing any tank identification. Maturation state and organism sex was
136 evaluated histologically at 40x magnification (Fabioux et al. 2005; Enríquez-Díaz et al. 2008).

137 Reproductive conditioning

138 Following seven weeks of low pH exposure, oysters were returned to a common garden
139 and maintained at ambient pH conditions for eight weeks. Afterwards, oysters were
140 reproductively conditioned. Water temperatures and food quantity are known to regulate the
141 timing, speed, and intensity of gametogenesis in *C. gigas* (Enríquez-Díaz et al. 2008).

142 Conditioning protocol was modeled after standard hatchery practices (Molly Jackson,
143 Broodstock Manager at Taylor Shellfish, pers. comm., June 2017). Water temperature was
144 raised from ambient conditions (13°C) to 23°C over three weeks (1°C/2 days), since optimal
145 temperature for *C. gigas* gametogenesis is between 18°C and 26°C (Parker et al. 2010).
146 Conditions were maintained at 23°C for one more week prior to spawning. During conditioning,
147 *C. gigas* were fed 700-800 mL of Shellfish Diet 1800® daily (Helm and Bourne 2004).

148 Strip spawning and larval rearing

149 After reproductive conditioning, all surviving oysters were prepared for strip spawning. A
150 sample of gonad from each individual was assessed for presence of active sperm or eggs using
151 a microscope at 10x magnification. Only *C. gigas* with active sperm or eggs were used for
152 crosses ($n_{male, low} = 6$, $n_{female, low} = 22$, $n_{male, ambient} = 6$, $n_{female, ambient} = 26$). Presence of mature
153 gametes and ripe oysters indicated that oysters were in good condition and not affected by use
154 of Shellfish Diet 1800® instead of live algae during reproductive conditioning. For each treatment
155 (low pH and ambient conditions), one gram of mature gonad from each ripe female was pooled.
156 The number of eggs in both the ambient and low pH pools were counted to determine the
157 number of eggs used for parental crosses. Parental crosses were created using 210,000 eggs
158 from the female egg pools and sperm (200 μ L) from individual males.

159 Four half-sibling families were created based on parental pH exposure: low pH female
160 (pool) x low pH male, low pH female (pool) x ambient pH male, ambient pH female (pool) x low
161 pH male, and ambient pH (pool) female x ambient pH male. These crosses were conducted
162 using pooled eggs from either low pH or ambient pH females, and sperm from one of six males
163 within each pH treatment (e.g. low pH female pool x low pH male-01, low pH female pool x low
164 pH male-02, ... low pH female pool x low pH male-06), totaling 24 crosses. All crosses were
165 performed in duplicate, resulting in 48 separate fertilization events.

166 Fertilization was carried out in plastic beakers (1L) for 20 minutes with static 23°C filtered
167 seawater (1 μ m) in ambient pH conditions. After confirming polar body formation, beaker
168 contents were transferred to larger plastic tanks (19L) with aerated, static 23°C filtered seawater
169 (1 μ m) for eighteen hours of incubation. Duplicate containers were combined eighteen hours
170 post-fertilization, and D-hinge larvae were counted for each cross (n= 24).

171 **Statistical analyses**

172 Differences in *in situ* pH, total alkalinity, pCO₂, DIC, Ω_{calcite} , and $\Omega_{\text{aragonite}}$ between pH
173 treatments were evaluated with a one-way ANOVA. Because tissue samples were confounded
174 during histological processing, a binomial GLM model was used to compare gonad maturation
175 between pH treatments. Differences in sex ratios between pH treatments were evaluated using
176 a chi-squared test of homogeneity. To identify differences in D-hinge larval counts, a linear
177 mixed model was used, with sire and female egg pool as random effects. Differences in D-hinge
178 larval counts by female treatment were assessed using a similar linear mixed model, with only
179 sire as a random effect. Normality of data, as well as independence and homoscedasticity, were
180 verified visually. All statistical analyses were carried out in R (Version 3.4.0). R Scripts are
181 available in the supplementary Github repository (Venkataraman et al. 2018).

182 **Results**

183 **Water chemistry**

184 *C. gigas* exposed to low pH experienced different water chemistry parameters than
185 those in the ambient pH treatment (Table 1). Using water samples from days 5, 33, and 48, pH
186 (One-way ANOVA; $F_{1, 16} = 5838.7810$, $p = 6.1165e-22$), pCO₂ (One-way ANOVA; $F_{1, 16} =$
187 235.4018, $p = 5.4421e-11$), DIC (One-way ANOVA; $F_{1, 16} = 7.1222$, $p = 0.0168$), Ω_{calcite} (One-way
188 ANOVA; $F_{1, 16} = 528.9468$, $p = 1.0989e-13$), $\Omega_{\text{aragonite}}$ (One-way ANOVA; $F_{1, 16} = 526.5207$, p
189 $= 1.1389e-13$) were significantly lower in the low pH treatment. Total alkalinity, however, was not
190 significantly different between pH treatments (One-way ANOVA; $F_{1, 16} = F = 1.382$, $p = 0.2570$).

191 **Gonad maturation**

192 A binomial GLM was used to compare gonad maturation of individuals sampled before
193 and immediately after pH exposure, but before reproductive conditioning. The most
194 parsimonious model included only sampling time (before or after pH treatment). Gonad
195 maturation status was not significantly different between *C. gigas* sampled before and after pH
196 treatment (binomial GLM; $F_{2,37} = 0.7973$, $p = 0.3442$). Additionally, maturation status was not
197 different between pH treatments (binomial GLM; $F_{3,36} = 2.2675$, $p = 0.1408$). No sampled
198 oysters possessed fully mature gametes, but some males sampled appeared to be undergoing
199 resorption (Table S1; Figure S1). Sex ratios were also similar between low and ambient pH
200 treatments (Chi-squared test for homogeneity; $\chi^2_2 = 3.2279$; $p = 0.1942$).

201 **Larval Survival**

202 A linear mixed effect model, with female pool and sire as a random effects,
203 demonstrated no significant difference in the number of D-hinge larvae counted eighteen hours
204 post-fertilization between all four parental families (Linear mixed effect model; $\chi^2_3 = 3.1325$; $p =$
205 0.1066). Sire and female egg pools accounted for 0.8530% and 3.1623% of total variance,
206 respectively. Significantly fewer D-hinge larvae were present in half-sibling families where
207 females were exposed to low pH conditions (Figure 2; Linear mixed effect model; $t = -2.999$; $p =$
208 0.0119), with sire accounting for 0.3116% of total variance.

209 **Discussion**

210 The present study is the first to document the transgenerational influence of ocean
211 acidification on Pacific oysters. Larval *C. gigas* was negatively impacted when maternal
212 broodstock were exposed to low pH ($pH = 7.31$), suggesting a maternal carryover effect. The
213 experimental design of this study is also unique — adult *C. gigas* experienced low pH conditions

214 three months prior to reproductive conditioning, then were kept solely in ambient pH conditions
215 through strip spawning and larval rearing. Since environmental perturbation experienced before
216 *C. gigas* were mature still affected larval oysters, the results indicate a role for environmental
217 memory in the Pacific oyster's response to ocean acidification. Mechanisms for
218 transgenerational environmental memory have been explored in response to acute stressors in
219 other species. *Daphnia magna* exposed to high salinity conditions had altered DNA methylation
220 patterns, and these patterns were inherited by the following three non-exposed generations
221 (Jeremias et al. 2018). Significant carryover effects observed in *C. gigas* — solely exposed to
222 low pH when immature — broaden the current understanding of stressor timing and its effect on
223 organismal physiology.

224 While it is evident that acute exposure to low pH experienced by adult *C. gigas* resulted
225 in detrimental effects for larvae, the fact that larvae were not reared in acidified conditions
226 makes cross-study comparison difficult. If *C. gigas* larvae were also reared in acidified
227 conditions, it is possible that larvae with a history of parental exposure to experimental ocean
228 acidification may have exhibited a negative carryover effect on larval growth and performance.
229 Negative carryover effects have been found in other marine invertebrate taxa, but all studies
230 involved exposure to experimental ocean acidification during reproductive conditioning and
231 larval rearing in acidified conditions. Tanner crabs (*Chionoecetes bairdi*) solely exposed to
232 acidified water (pH 7.5 or 7.8) as larvae did not exhibit significant changes in morphology, size,
233 Ca/Mg content, or metabolic rate (Long et al. 2016). However, substantial effects on physiology
234 was observed when larvae had a history of maternal exposure during oogenesis (Long et al.
235 2016). Larvae from adult Atlantic hard clams (*Mercenaria mercenaria*) and bay scallops
236 (*Argopecten irradians*) developed slower when parents were reproductively conditioned in low
237 pH conditions ($\text{pH}_T = 7.4$) (Griffith and Gobler 2017). Additionally, larvae with a history of
238 parental low pH exposure were more vulnerable to additional stressors like thermal stress,
239 limited food, and harmful algae exposure (Griffith and Gobler 2017). Although *C. gigas* were not

240 reproductively conditioned in acidified water, and the present study cannot distinguish between
241 hatching success and early mortality, identifying a similar negative larval carryover effect four
242 months after an acute environmental perturbation is arguably more surprising and significant,
243 particularly in terms of efforts to understand the mechanism of environmental memory.

244 The severity of conditions experienced by organisms may also explain whether or not
245 offspring demonstrate transgenerational acclimatization to stressors. For example, the negative
246 carryover effect observed in *C. gigas* is different from the positive carryover effects observed in
247 ocean acidification experiments conducted with Sydney rock oysters. When adult *S. glomerata*
248 were exposed to acidified seawater ($p\text{CO}_2 = 856 \mu\text{atm}$; $\text{pH}_{\text{NBS}} = 7.89\text{-}7.90$) during reproductive
249 conditioning, resultant larvae were larger and developed faster in acidified conditions when
250 compared to larvae from parents exposed to ambient conditions (Parker et al. 2012). This
251 positive carryover effect was found to persist in the F_2 generation. In acidified conditions, F_2
252 offspring with a history of transgenerational (F_0 and F_1) $p\text{CO}_2$ exposure grew faster and
253 demonstrated fewer shell abnormalities (Parker et al. 2015). While species-specific responses
254 can certainly explain the observed differences in larval phenotypes, it is also likely that
255 inconsistencies in treatment conditions between experiments resulted in dose-dependent
256 effects. Parker et al. (2012, 2015, 2017) used a high $p\text{CO}_2$ treatment of $856 \mu\text{atm}$ ($\text{pH} = 7.89\text{-}$
257 7.90), with a control of $380\text{-}385 \mu\text{atm}$ ($\text{pH} = 8.19\text{-}8.20$). Therefore, the elevated $p\text{CO}_2$ treatment
258 used in Parker et al. (2012, 2015, 2017) is similar to the ambient pH treatment (7.82 ; $p\text{CO}_2 =$
259 $747.51\text{-}912.22$) in the present study. Sydney rock oyster larvae with a history of
260 transgenerational exposure exhibited faster development, but exhibited similar survival and
261 were only 10% larger in acidified conditions when compared to larvae with no transgenerational
262 exposure history (Parker et al. 2012). With a relatively smaller effect size and a milder treatment
263 than used in this study, it is possible these studies are not at odds, but reflect dose-dependent
264 effects on larval phenotypes. Negative carryover effects demonstrated in this study and in
265 Griffith and Gobler (2017) can also be attributed to similar treatment pH levels (Griffith and

266 Gobler 2017: $\text{pH}_T = 7.4$, this study: $\text{pH} = 7.31$). Both of these studies used treatment levels more
267 extreme than International Panel of Climate Change projections for open ocean acidification, but
268 consistent with coastal and estuarine acidification scenarios experienced at study locations
269 (Feely et al. 2010; Griffith and Gobler 2017; Pelletier et al. 2018). More research is required to
270 understand how location-specific conditions will affect multiple generations in a single species.

271 Although the effect of water chemistry on gametogenesis has been recorded in other
272 taxa, it is unlikely that a low pH exposure occurring three months prior to reproductive
273 conditioning could have affected gonad maturation. Studies in which reproductive conditioning
274 and experimental ocean acidification occur concurrently have demonstrated negative effects on
275 maturation and fecundity. Gametogenesis, especially oogenesis, was disrupted in Eastern
276 oysters (*Crassostrea virginica*) that experienced severe ocean acidification conditions during
277 reproductive conditioning ($\text{pH} = 7.71$, 5584 μatm) (Boulais et al. 2017). Green sea urchins
278 (*Strongylocentrotus droebachiensis*) exposed to high pCO_2 (1200 μatm) conditions for four
279 months demonstrated low fecundity (Dupont et al. 2013), and *S. glomerata* conditioned in high
280 pCO_2 (856 μatm) conditions exhibited reduced rates of gametogenesis, smaller gonad area, and
281 reduced fecundity (Parker et al. 2018). Gonad histology from *C. gigas* taken immediately after
282 low or ambient pH exposure did not indicate any differences in maturation state, or interaction
283 between sex and maturation state, between treatments. Even if fecundity or rates of
284 gametogenesis differed between treatments, a return to ambient conditions for three months
285 may have reversed any detrimental effects.

286 Reduced *C. gigas* larval abundance could have been a result of altered maternal
287 provisioning in female oysters exposed to low pH conditions. In the face of stressors, females
288 can either increase maternal provisioning (Allen et al. 2008; Sunday et al. 2011) — diverting
289 more resources, like lipids or proteins, into eggs — or decrease provisioning due to energetic
290 constraints (Liu et al. 2010; Uthicke et al. 2013). For example, changes in fatty acid provisioning
291 from maternal exposure to high pCO_2 conditions (2300 μatm) in Atlantic silverside (*Menidia*

292 *menidia*) resulted in lower embryo survival when eggs lacked certain fatty acids (Snyder et al.
293 2018). This phenomenon, however, was not documented in the Sydney rock oyster: while
294 elevated pCO₂ conditions (856 µatm) reduced the amount of energy invested in maternal
295 gonads, these conditions did not impact *S. glomerata* egg size or total lipid content (Parker et al.
296 2018). Since adult *C. gigas* did not experience environmental perturbation after low pH
297 exposure, and received enough food to spawn well, any impact on maternal provisioning and
298 subsequent larval abundance was likely a result of low pH three months prior to reproductive
299 conditioning.

300 The documented effect on Pacific oyster larval abundance four months after low pH
301 exposure indicates an important a role for environmental memory in *C. gigas* response to ocean
302 acidification. Low pH exposure may have induced epigenetic modifications (eg. changes in DNA
303 methylation) in adult *C. gigas*. Studies of finfish and shellfish aquaculture species have
304 demonstrated environmentally-induced epigenetic modifications that modify phenotypic
305 responses in organisms (Gavery and Roberts 2017). One notable study in *C. gigas* examined
306 parental effects of adult pollutant exposure on offspring (Rondon et al. 2017). Spat from parents
307 exposed to the herbicide diuron had differential methylation in coding regions, with some
308 changes leading to differential gene expression (Rondon et al. 2017). This research indicates
309 that a mechanism crucial for phenotypic plasticity and acclimation across generations exists,
310 and this knowledge can be analyzed in the context of climate-related environmental stressors.
311 Epigenetic modifications in response to ocean acidification have been documented in coral
312 species (Putnam et al. 2016), but not in molluscs. However, several experimental ocean
313 acidification studies hint at the role of epigenetic memory. Hettinger et al.'s (2013) finding that
314 Olympia oyster (*Ostrea lurida*) exposed to high pCO₂ (1000 µatm) conditions still grew less in
315 the juvenile life stage than counterparts reared in ambient pCO₂, even after the stressor had
316 been removed, and Parker et al.'s (2012, 2015, 2017) documentation of transgenerational
317 acclimation in *S. glomerata* larvae with a history of exposure to acidified conditions could be

318 explained by changes in the epigenome that affect organismal performance. Methylation levels
319 are known to increase over the course of gametogenesis, with male and female *C. gigas*
320 exhibiting significantly different methylation patterns (Zhang et al. 2018). If epigenetic
321 modifications were acquired by female oysters during low pH exposure, it could explain why a
322 significant effect on larval abundance was detected four months after the exposure ended.
323 Epigenetic mechanisms and altered maternal provisioning are not necessarily mutually
324 exclusive — changes in the methylome could influence maternal provisioning — and both could
325 contribute to the results observed in this study.

326 The results of this study emphasize the need to broaden the scope of when
327 environmental perturbation experienced by an organism is considered stressful, and when an
328 effect can be detected. Although there was no observable effect on adult gonad maturation right
329 after low pH exposure, significant differences in larval abundance were detected four months
330 after the exposure ended. Stressor timing and duration can impact transgenerational responses
331 between mature parents and offspring (Donelson et al. 2018). While experimental ocean
332 acidification (pH 7.7; $p\text{CO}_2 = 800 \mu\text{atm}$) increased female investment in amphipods (*Gammarus*
333 *locusta*), the subsequent generation exhibited fewer eggs and lower fecundity in the same
334 conditions (Borges et al. 2018). Transgenerational benefits of maternal exposure to different
335 temperatures (17°C or 21°C) in threespine stickleback (*Gasterosteus aculeatus*) differed based
336 on exposure duration (Shama and Wegner 2014). Grandparents (F_0) were only exposed to
337 treatment temperatures during reproductive conditioning, while parents (F_1) experienced either
338 temperature over the course of development. The F_1 generation exhibited temperature
339 tolerances similar to the F_0 maternal rearing environment, but the F_2 generation tolerance was
340 more similar to the F_0 generation than the F_1 generation (Shama and Wegner 2014). However,
341 the present study demonstrates that length and timing of environmental perturbation
342 experienced by immature individuals can still affect offspring. Massamba-N'Siala et al. (2014)
343 elucidated a similar phenomenon with marine polychaetes (*Ophryotocha labronica*): offspring

344 experienced positive carryover effects of female exposure to temperature conditioning only
345 when mothers were exposed to these conditions during late oogenesis; exposure during early
346 oogenesis lead to negative carryover effects. More research should be conducted to understand
347 how stressor timing, specifically before reproductive maturity, can impact carryover effects.

348 Most other experiments investigating stressor timing are conducted in a multiple stressor
349 framework (Gunderson et al. 2016). For example, elevated temperatures and low salinity had
350 synergistic effects on *O. lurida* when they were co-occurring stressors, but two to four weeks of
351 recovery in between stressors negated these effects (Bible et al. 2017). Incorporating recovery
352 time in a single-stressor experimental design is also crucial for accurately understanding how
353 environmental perturbation impacts organism physiology. Exposure at one point in time may
354 elicit a response much later in time, in a different environmental setting, or in a different
355 generation, as evidenced by the present study and Hettinger et al. (2013). The experimental
356 design in the present study is unique, featuring a significant recovery time between low pH
357 exposure and spawning. More single-stressor experiments should incorporate lag times
358 between exposure to stress and measuring response variables to understand if these
359 responses change over time. Adding a multigenerational component to such experiments can
360 elucidate if acute exposures generate carryover effects.

361 Significant decreases in larval abundance four months after broodstock were exposed to
362 acidified seawater has implications for both aquaculture and natural *C. gigas* populations.
363 Parents and offspring — or even different offspring life stages — may not experience the same
364 environmental chemistry. For example, upwelling conditions affecting adult *C. gigas* may
365 subside once spawning occurs. Long-term monitoring of wild Pacific oyster populations, with
366 detailed environmental chemistry reporting, will be crucial for understanding how brief
367 exposures to adverse conditions affect reproductive success and larval abundance in the field.
368 Responses to stressors should not only be documented during and after the perturbation
369 occurs, but also for an extended time afterwards. Hatchery-reared *C. gigas* larvae can also

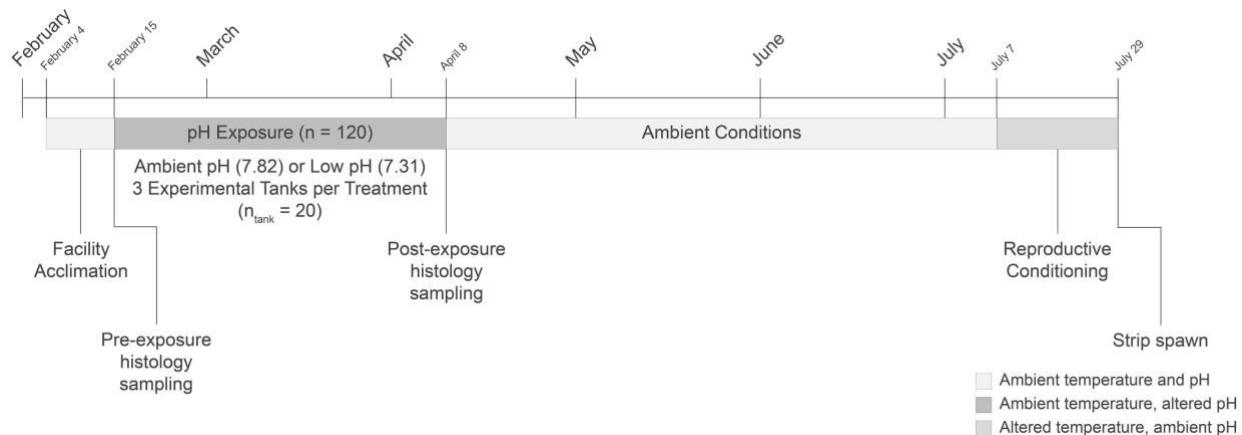
370 experience different conditions than broodstock. Facilities unable to control water chemistry
371 conditions may be exposing immature individuals to environmental perturbations that could
372 affect larvae once spawned. The success of “priming” — exposing *C. gigas* to stressful
373 conditions to induce environmental memory and increase fitness — hinges on the identification
374 of “programming windows” (Gavery and Roberts 2017). The present study shows that the period
375 of time before reproductive conditioning can be important for transferring environmental
376 memory, although only negative carryover effects have been demonstrated in *C. gigas*.

377 Conclusion

378 Four months after adult *C. gigas* experienced experimental ocean acidification, larval
379 abundance of female oysters exposed to low pH was significantly lower than those exposed to
380 ambient pH eighteen hours post-fertilization. Not only did this experiment elucidate
381 intergenerational effects of ocean acidification on the Pacific oyster, but it also demonstrated a
382 need to consider the timing of altered environmental conditions on organismal physiology.
383 Although adult oysters experienced a low pH stressor prior to reproductive conditioning, larval
384 abundance was still significantly affected. Therefore, conditions experienced by aquaculture
385 broodstock before reproductive conditioning should be taken into consideration. Likewise these
386 results should be considered when modeling large-scale ecosystem responses to ocean
387 change. Future work on multigenerational responses to ocean acidification should investigate
388 how exposure to adverse conditions while an organism is immature can affect reproductive
389 success and offspring fitness. The significant lag time between the end of the low pH exposure
390 and spawning possibly indicates some form of epigenetic “memory.” Additional research is
391 needed to investigate the degree of environmental memory that can be maintained and the
392 contributing epigenetic phenomenon.

393 **Acknowledgements**

394 This work was partially funded by National Science Foundation Grant 1634167 and the
395 University of Washington Hall Conservation Genetics Research Fund. Taylor Shellfish provided
396 the oysters used in this experiment. Dr. Frederick Goetz (NOAA Manchester), and the Puget
397 Sound Restoration Fund (Betsy Peabody, Ryan Crim, Stuart Ryan, Jade Austin, Dana Eckert)
398 provided facilities for adult oyster rearing and pH experiment. Grace Crandall (University of
399 Washington School of Aquatic and Fishery Sciences) assisted with histology imaging and
400 maturation stage identification. Dr. Jonathan Davis (Baywater Shellfish) also provided facilities
401 for spawning and larval rearing. Molly Jackson (Taylor Shellfish) provided information regarding
402 hatchery procedures for reproductive conditioning and spawning. Rhonda Elliot (Taylor
403 Shellfish), Kelsey Donahue and Ashley Lockhart (Baywater Shellfish), Grace Crandall and
404 Kaitlyn Mitchell (University of Washington School of Aquatic and Fishery Sciences) assisted
405 with spawning and larval rearing. Sam White (University of Washington School of Aquatic and
406 Fishery Sciences) developed the titrator methods and analyzed water chemistry samples. We
407 also thank the two anonymous reviewers and editor Dr. George Waldbusser for providing
408 important feedback on earlier manuscript drafts.


409 **Tables and Figures**

410 **Table 1.** Average (\pm SE) pH, total alkalinity ($\mu\text{mol/kg}$), pCO_2 (μatm), dissolved organic carbon
 411 (DIC; $\mu\text{mol/kg}$), calcite saturation state (Ω_{calcite}), and aragonite saturation state ($\Omega_{\text{aragonite}}$) for
 412 three time points during low pH exposure (Day). The *seacarb* library in R was used to calculate
 413 total alkalinity, and in situ pCO_2 , Dissolved Inorganic Carbon (DIC), calcite saturation (Ω_{calcite}),
 414 and aragonite saturation ($\Omega_{\text{aragonite}}$) for each oyster tank. Averages for both control (ambient pH)
 415 and experimental (low pH) values were calculated from three replicate tanks each. Between all
 416 three days, pH (One-way ANOVA; $F_{1, 16} = 5838.7810$, $p = 6.1165\text{e-}22$), pCO_2 (One-way
 417 ANOVA; $F_{1, 16} = 235.4018$, $p = 5.4421\text{e-}11$), DIC (One-way ANOVA; $F_{1, 16} = 7.1222$, $p = 0.0168$),
 418 Ω_{calcite} (One-way ANOVA; $F_{1, 16} = 528.9468$, $p = 1.0989\text{e-}13$), $\Omega_{\text{aragonite}}$ (One-way ANOVA; $F_{1, 16} =$
 419 526.5207, $p = 1.1389\text{e-}13$) were significantly lower experimental treatment. Total alkalinity,
 420 however, was not significantly different between treatments (One-way ANOVA; $F_{1, 16} = 1.382$, p
 421 = 0.2570).

422

Day	pH		Total Alkalinity ($\mu\text{mol/kg}$)		pCO_2 (μatm)		DIC ($\mu\text{mol/kg}$)		Ω_{calcite}		$\Omega_{\text{aragonite}}$	
	Control	Experiment	Control	Experiment	Control	Experiment	Control	Experiment	Control	Experiment	Control	Experiment
5	7.82 \pm 0.004	7.33 \pm 0.002	2307.41 \pm 25.45	2332.36 \pm 31.05	747.51 \pm 13.94	2481.23 \pm 29.83	2233.41 \pm 25.29	2408.51 \pm 31.76	1.86 \pm 0.02	0.62 \pm 0.01	1.16 \pm 0.012	0.58 \pm 0.007
33	7.81 \pm 0.005	7.31 \pm 0.004	2747.00 \pm 21.13	2917.60 \pm 18.36	912.22 \pm 12.69	3309.52 \pm 7.22	2664.57 \pm 19.99	3020.99 \pm 17.99	2.23 \pm 0.03	0.77 \pm 0.02	1.40 \pm 0.020	0.48 \pm 0.014
48	7.82 \pm 0.015	7.29 \pm 0.004	2611.40 \pm 31.01	2808.39 \pm 12.24	863.47 \pm 42.42	3343.89 \pm 49.49	2533.28 \pm 35.45	2920.52 \pm 15.11	2.13 \pm 0.06	0.68 \pm 0.01	1.32 \pm 0.035	0.42 \pm 0.004

423

424

425

426 **Figure 1.** Experimental timeline. Pacific oysters ($n = 140$) were acclimated for 15 days, then
427 twenty were randomly sampled for histological analyses. Remaining oysters were divided into
428 ambient pH or low pH treatments for seven weeks. Three experimental tanks for each treatment
429 were used with 20 oysters per tank for a total 60 oysters per treatment. At the end of the pH
430 exposure, a total of ten oysters were randomly selected from each treatment and sampled for
431 histological analyses. All remaining oysters were then held in ambient pH conditions for 3
432 months. Finally, oysters were reproductively conditioned and strip spawned. Larvae were
433 counted eighteen hours post-fertilization.

434

435

436 **Figure 2.** Proportion of live D-hinge larvae eighteen hours post-fertilization by female treatment.

437 Each box represents proportions of live larvae between the first and third quartiles for half-

438 sibling families where the female was exposed to either ambient or low pH conditions.

439 Horizontal lines outside the box indicate the minimum value before the lower fence and the

440 maximum value before the upper fence, with the solid line marks the median. Circles represent

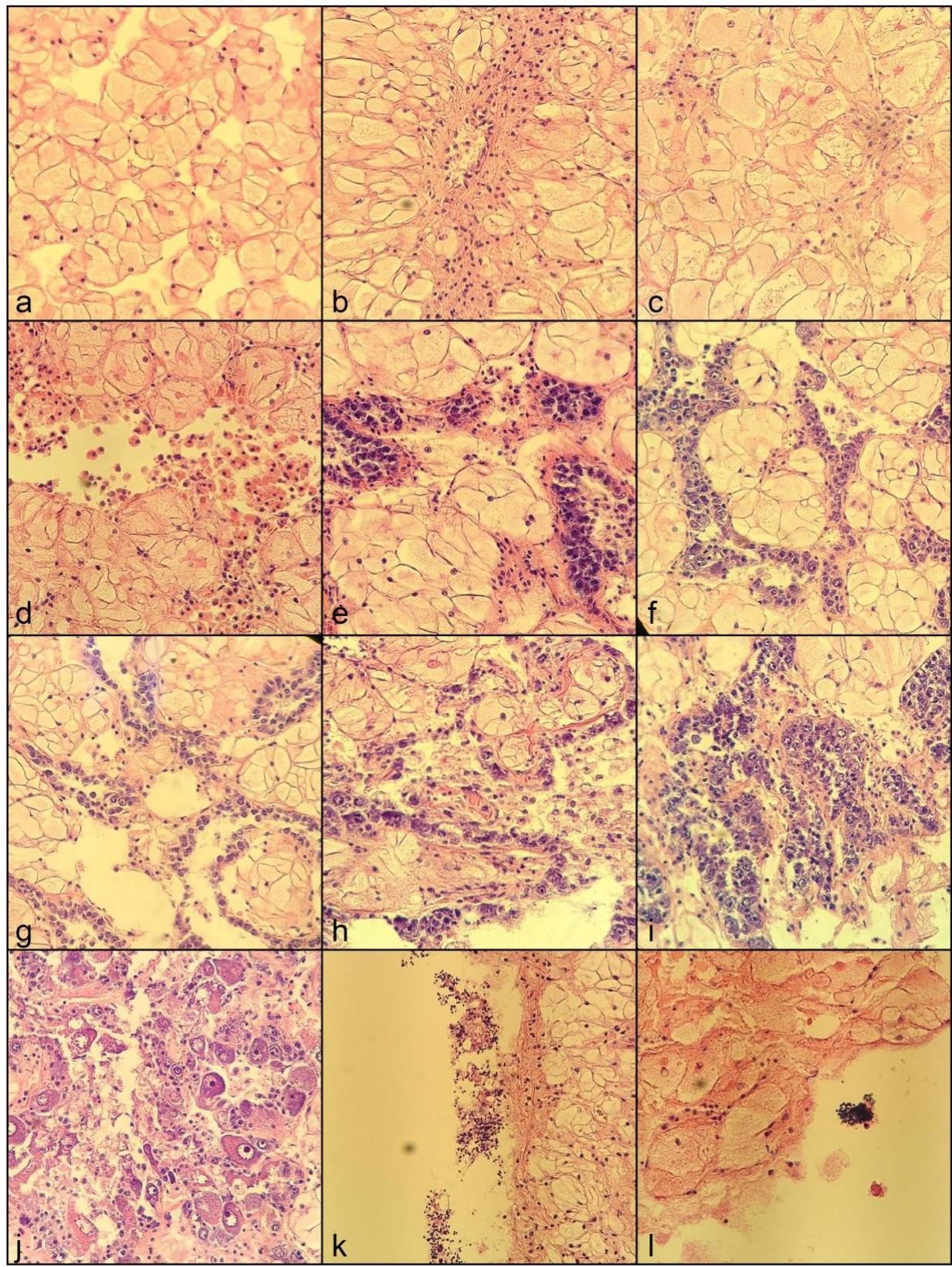
441 outliers. A proportion of 1.0 indicates that all eggs in a cross were successfully fertilized and

442 developed into D-hinge larvae. A linear mixed model, with sire as a random effect, indicated

443 significantly fewer D-hinge larvae were present in half-sibling families where females were

444 exposed to low pH conditions ($t = -2.999$; $p = 0.0119$). Significantly different proportions are

445 indicated by letter.


446 **Supplementary Material**

447 **Table S1.** Proportion of *C. gigas* sampled at distinct maturation stages before and after a seven
448 week exposure to either ambient ($\text{pH} = 7.82 \pm 0.02$) or low ($\text{pH} = 7.31 \pm 0.02$) pH conditions.
449 Classifications were adapted from (Fabioux et al. 2005; Enríquez-Díaz et al. 2008). Stage 0
450 indicates a complete lack of sexuality. Stage 1 gonads feature small follicles and early
451 indications of spermatogonia and oogonia. Primary gametes are apparent in Stage 2, and fully
452 mature gametes are present in Stage 3. Both spawning and resorbing gonads are classified as
453 Stage 4. See Figure S1 for example histology images.

454

Maturation Stage	Sex	Pre-treatment (n = 20)	Post-treatment: Low pH (n = 10)	Post-treatment: Ambient pH (n = 10)
Stage 0	N/A	0.3	0.5	0.3
Stage 1	Male	0.1	0	0
	Female	0.45	0.2	0.2
Stage 2	Male	0	0	0
	Female	0.05	0.3	0.3
Stage 3	Male	0	0	0
	Female	0	0	0
Stage 4	Male	0.1	0	0.2
	Female	0	0	0

455

456
457

458 **Figure S1.** Example histology images. No Stage 3 individuals of either sex were identified in
459 pre-treatment or post-treatment samples. All images were taken at 40x magnification. All
460 histology images are available in S3.

- 461 a. Stage 0 individual from pre-treatment sampling. Individuals at this stage have a
462 complete lack of sexuality.
- 463 b. Stage 0 individual from low pH post-treatment sampling. Individuals at this stage have a
464 complete lack of sexuality.
- 465 c. Stage 0 individual from ambient pH pre-treatment sampling. Individuals at this stage
466 have a complete lack of sexuality.
- 467 d. Stage 1 male from pre-treatment sampling. Gonads feature small follicles and early
468 indications of spermatogonia.
- 469 e. Stage 1 female from pre-treatment sampling. Gonads feature small follicles and early
470 indications of oogonia.
- 471 f. Stage 1 female from low pH post-treatment sampling. Gonads feature small follicles and
472 early indications of oogonia.
- 473 g. Stage 1 female from ambient pH post-treatment sampling. Gonads feature small follicles
474 and early indications of oogonia.
- 475 h. Stage 2 female from pre-treatment sampling. Primary gametes are apparent. No Stage 2
476 males were identified in either pre-treatment or post-treatment samples.
- 477 i. Stage 2 female from low pH post-treatment sampling. Primary gametes are apparent. No
478 Stage 2 males were identified in either pre-treatment or post-treatment samples.
- 479 j. Stage 2 female from ambient pH post-treatment sampling. Primary gametes are
480 apparent. No Stage 2 males were identified in either pre-treatment or post-treatment
481 samples.
- 482 k. Stage 4 male from pre-treatment sampling. Indications of residual spermatozoa. No
483 Stage 4 females were identified in either pre-treatment or post-treatment samples.

484 I. Stage 4 male from ambient pH post-treatment sampling. Indications of residual
485 spermatozoa. No Stage 4 females were identified in either pre-treatment or post-
486 treatment samples.

487

References

488 Allen, Richard M., Yvonne M. Buckley, and Dustin J. Marshall. 2008. "Offspring Size Plasticity in
489 Response to Intraspecific Competition: An Adaptive Maternal Effect across Life-History
490 Stages." *The American Naturalist* 171 (2): 225–37.

491 Bandstra, Leah, Burke Hales, and Taro Takahashi. 2006. "High-Frequency Measurements of
492 Total CO₂: Method Development and First Oceanographic Observations." *Marine
493 Chemistry* 100 (1): 24–38.

494 Barros, P., P. Sobral, P. Range, L. Chicharo, and D. Matias. 2013. "Effects of Sea-Water
495 Acidification on Fertilization and Larval Development of the Oyster *Crassostrea Gigas*."
496 *Journal of Experimental Marine Biology and Ecology* 440 (February): 200–206.

497 Barton, Alan, Burke Hales, George G. Waldbusser, Chris Langdon, and Richard A. Feely. 2012.
498 "The Pacific Oyster, *Crassostrea Gigas*, Shows Negative Correlation to Naturally Elevated
499 Carbon Dioxide Levels: Implications for near-Term Ocean Acidification Effects." *Limnology
500 and Oceanography* 57 (3): 698–710.

501 Bible, Jillian M., Brian S. Cheng, Andrew L. Chang, Matthew C. Ferner, Kerstin Wasson, Chela
502 J. Zabin, Marilyn Latta, Eric Sanford, Anna Deck, and Edwin D. Grosholz. 2017. "Timing of
503 Stressors Alters Interactive Effects on a Coastal Foundation Species." *Ecology* 98 (9):
504 2468–78.

505 Borges, Francisco O., Cátia Figueiredo, Eduardo Sampaio, Rui Rosa, and Tiago F. Grilo. 2018.
506 "Transgenerational Deleterious Effects of Ocean Acidification on the Reproductive Success
507 of a Keystone Crustacean (*Gammarus Locusta*)." *Marine Environmental Research* 138
508 (July): 55–64.

509 Boulais, Myrina, Kyle John Chenevert, Ashley Taylor Demey, Elizabeth S. Darrow, Madison
510 Raine Robison, John Park Roberts, and Aswani Volety. 2017. "Oyster Reproduction Is
511 Compromised by Acidification Experienced Seasonally in Coastal Regions." *Scientific
512 Reports* 7 (1): 13276.

513 Boulais, Myrina, Marc Suquet, Eve Julie Arsenault-Pernet, Florent Malo, Isabelle Queau,
514 Patricia Pignet, Dominique Ratiskol, Jacqueline Le Grand, Matthias Huber, and Jacky
515 Cosson. 2018. "pH Controls Spermatozoa Motility in the Pacific Oyster (*Crassostrea
516 Gigas*)."*Biology Open* 7 (3). <https://doi.org/10.1242/bio.031427>.

517 Dineshram, Ramadoss, Kondethimmanahalli Chandramouli, Ginger Wai Kuen Ko, Huoming
518 Zhang, Pei-Yuan Qian, Timothy Ravasi, and Vengatesen Thiagarajan. 2016. "Quantitative
519 Analysis of Oyster Larval Proteome Provides New Insights into the Effects of Multiple
520 Climate Change Stressors." *Global Change Biology* 22 (6): 2054–68.

521 Dineshram, R., Kelvin K. W. Wong, Shu Xiao, Ziniu Yu, Pei Yuan Qian, and Vengatesen
522 Thiagarajan. 2012. "Analysis of Pacific Oyster Larval Proteome and Its Response to High-
523 CO₂." *Marine Pollution Bulletin* 64 (10): 2160–67.

524 Donelson, Jennifer M., Santiago Salinas, Philip L. Munday, and Lisa N. S. Shama. 2018.
525 "Transgenerational Plasticity and Climate Change Experiments: Where Do We Go from
526 Here?" *Global Change Biology* 24 (1): 13–34.

527 Dupont, S., N. Dorey, M. Stumpp, F. Melzner, and M. Thorndyke. 2013. "Long-Term and Trans-
528 Life-Cycle Effects of Exposure to Ocean Acidification in the Green Sea Urchin
529 *Strongylocentrotus Droebackiensis*." *Marine Biology* 160 (8): 1835–43.

530 Enríquez-Díaz, M., S. Povreau, J. Chávez-Villalba, and M. Le Pennec. 2008. "Gametogenesis,
531 Reproductive Investment, and Spawning Behavior of the Pacific Giant Oyster *Crassostrea
532 Gigas*: Evidence of an Environment-Dependent Strategy." *Aquaculture International:
533 Journal of the European Aquaculture Society* 17 (5): 491.

534 Fabioux, Caroline, Arnaud Huvet, Pierrick Le Souchu, Marcel Le Pennec, and Stéphane
535 Povreau. 2005. "Temperature and Photoperiod Drive *Crassostrea Gigas* Reproductive
536 Internal Clock." *Aquaculture* 250 (1): 458–70.

537 Feely, Richard A., Simone R. Alin, Jan Newton, Christopher L. Sabine, Mark Warner, Allan
538 Devol, Christopher Krembs, and Carol Maloy. 2010. "The Combined Effects of Ocean
539 Acidification, Mixing, and Respiration on pH and Carbonate Saturation in an Urbanized
540 Estuary." *Estuarine, Coastal and Shelf Science* 88 (4): 442–49.

541 Gattuso, Jean-Pierre, Jean-Marie Epitalon, Heloise Lavigne, James Orr, Bernard Gentili,
542 Mathilde Hagens, Andreas Hofmann, et al. 2018. "Package 'seacarb'."
543 <ftp://eclipse.c3sl.ufpr.br/CRAN/web/packages/seacarb/seacarb.pdf>.

544 Gavery, Mackenzie R., and Steven B. Roberts. 2017. "Epigenetic Considerations in
545 Aquaculture." *PeerJ* 5 (December): e4147.

546 Gazeau, Frédéric, Jean-Pierre Gattuso, Mervyn Greaves, Henry Elderfield, Jan Peene, Carlo H.
547 R. Heip, and Jack J. Middelburg. 2011. "Effect of Carbonate Chemistry Alteration on the
548 Early Embryonic Development of the Pacific Oyster (*Crassostrea Gigas*)." *PloS One* 6 (8):
549 e23010.

550 Gazeau, Frédéric, Christophe Quiblier, Jeroen M. Jansen, Jean-Pierre Gattuso, Jack J.
551 Middelburg, and Carlo H. R. Heip. 2007. "Impact of Elevated CO₂ on Shellfish
552 Calcification." *Geophysical Research Letters* 34 (7): L07603.

553 Griffith, Andrew W., and Christopher J. Gobler. 2017. "Transgenerational Exposure of North
554 Atlantic Bivalves to Ocean Acidification Renders Offspring More Vulnerable to Low pH and
555 Additional Stressors." *Scientific Reports* 7 (1): 11394.

556 Gunderson, Alex R., Eric J. Armstrong, and Jonathon H. Stillman. 2016. "Multiple Stressors in a
557 Changing World: The Need for an Improved Perspective on Physiological Responses to the
558 Dynamic Marine Environment." *Annual Review of Marine Science* 8: 357–78.

559 Havenhand, J. N., and P. Schlegel. 2009. "Near-Future Levels of Ocean Acidification Do Not
560 Affect Sperm Motility and Fertilization Kinetics in the Oyster *Crassostrea Gigas*."
561 *Biogeosciences* 6 (12): 3009–15.

562 Helm, Michael M., and Neil Bourne. 2004. *Hatchery Culture of Bivalves: A Practical Manual*.
563 Food and Agriculture Organization of the United Nations.

564 Hettinger, Annaliese, Eric Sanford, Tessa M. Hill, Elizabeth A. Lenz, Ann D. Russell, and Brian
565 Gaylord. 2013. "Larval Carry-over Effects from Ocean Acidification Persist in the Natural
566 Environment." *Global Change Biology* 19 (11): 3317–26.

567 Jeremias, Guilherme, João Barbosa, Sérgio M. Marques, Karel A. C. De Schamphelaere, Filip
568 Van Nieuwerburgh, Dieter Deforce, Fernando J. M. Gonçalves, Joana Luísa Pereira, and
569 Jana Asselman. 2018. "Transgenerational Inheritance of DNA Hypomethylation in *Daphnia*
570 *Magna* in Response to Salinity Stress." *Environmental Science & Technology* 52 (17):
571 10114–23.

572 Kurihara, H., S. Kato, and A. Ishimatsu. 2007. "Effects of Increased Seawater pCO₂ on Early
573 Development of the Oyster *Crassostrea Gigas*." *Aquatic Biology* 1 (October): 91–98.

574 Liu, Wenguang, Qi Li, Fengxiang Gao, and Lingfeng Kong. 2010. "Effect of Starvation on
575 Biochemical Composition and Gametogenesis in the Pacific Oyster *Crassostrea Gigas*."
576 *Fisheries Science: FS* 76 (5): 737–45.

577 Long, W. Christopher, Katherine M. Swiney, and Robert J. Foy. 2016. "Effects of High pCO₂ on
578 Tanner Crab Reproduction and Early Life History, Part II: Carryover Effects on Larvae from
579 Oogenesis and Embryogenesis Are Stronger than Direct Effects." *ICES Journal of Marine
580 Science: Journal Du Conseil* 73 (3): 836–48.

581 Massamba-N'Siala, Gloria, Daniela Prevedelli, and Roberto Simonini. 2014. "Trans-
582 Generational Plasticity in Physiological Thermal Tolerance Is Modulated by Maternal Pre-
583 Reproductive Environment in the Polychaete *Ophryotrocha Labronica*." *The Journal of
584 Experimental Biology* 217 (Pt 11): 2004–12.

585 Parker, Laura M., Wayne A. O'Connor, Maria Byrne, Ross A. Coleman, Patti Virtue, Michael
586 Dove, Mitchell Gibbs, Lorraine Spohr, Elliot Scanes, and Pauline M. Ross. 2017. "Adult
587 Exposure to Ocean Acidification Is Maladaptive for Larvae of the Sydney Rock Oyster

588 Saccostrea Glomerata in the Presence of Multiple Stressors." *Biology Letters* 13 (2):
589 20160798.

590 Parker, Laura M., Wayne A. O'Connor, Maria Byrne, Michael Dove, Ross A. Coleman, Hans-O
591 Pörtner, Elliot Scanes, Patti Virtue, Mitchell Gibbs, and Pauline M. Ross. 2018. "Ocean
592 Acidification but Not Warming Alters Sex Determination in the Sydney Rock Oyster,
593 Saccostrea Glomerata." *Proc. R. Soc. B* 285 (1872): 20172869.

594 Parker, Laura M., Wayne A. O'Connor, David A. Raftos, Hans-Otto Pörtner, and Pauline M.
595 Ross. 2015. "Persistence of Positive Carryover Effects in the Oyster, Saccostrea
596 Glomerata, Following Transgenerational Exposure to Ocean Acidification." *PLoS One* 10
597 (7): e0132276.

598 Parker, Laura M., Pauline M. Ross, and Wayne A. O'Connor. 2010. "Comparing the Effect of
599 Elevated pCO₂ and Temperature on the Fertilization and Early Development of Two
600 Species of Oysters." *Marine Biology* 157 (11): 2435–52.

601 Parker, Laura M., Pauline M. Ross, Wayne A. O'Connor, Larissa Borysko, David A. Raftos, and
602 Hans-Otto Pörtner. 2012. "Adult Exposure Influences Offspring Response to Ocean
603 Acidification in Oysters." *Global Change Biology* 18 (1): 82–92.

604 Pelletier, Gregory, Mindy Roberts, Mya Keyzers, and Simone R. Alin. 2018. "Seasonal Variation
605 in Aragonite Saturation in Surface Waters of Puget Sound – a Pilot Study."
606 <https://doi.org/10.1525/elementa.270>.

607 Putnam, Hollie M., Jennifer M. Davidson, and Ruth D. Gates. 2016. "Ocean Acidification
608 Influences Host DNA Methylation and Phenotypic Plasticity in Environmentally Susceptible
609 Corals." *Evolutionary Applications* 9 (9): 1165–78.

610 Rondon, Rodolfo, Christoph Grunau, Manon Fallet, Nicolas Charlemagne, Rossana Sussarellu,
611 Cristian Chaparro, Caroline Montagnani, et al. 2017. "Effects of a Parental Exposure to
612 Diuron on Pacific Oyster Spat Methylome." *Environmental Epigenetics* 3 (1).
613 <https://doi.org/10.1093/EEP/DVX004>.

614 Shama, L. N. S., and K. M. Wegner. 2014. "Grandparental Effects in Marine Sticklebacks:
615 Transgenerational Plasticity across Multiple Generations." *Journal of Evolutionary Biology*
616 27 (11): 2297–2307.

617 Snyder, Jacob T., Christopher S. Murray, and Hannes Baumann. 2018. "Potential for Maternal
618 Effects on Offspring CO₂ Sensitivities in the Atlantic Silverside (*Menidia Menidia*)." *Journal
619 of Experimental Marine Biology and Ecology* 499 (February): 1–8.

620 Sunday, Jennifer M., Ryan N. Crim, Christopher D. G. Harley, and Michael W. Hart. 2011.
621 "Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification." *PLoS
622 One* 6 (8): e22881.

623 Timmins-Schiffman, Emma, William D. Coffey, Wilber Hua, Brook L. Nunn, Gary H. Dickinson,
624 and Steven B. Roberts. 2014. "Shotgun Proteomics Reveals Physiological Response to
625 Ocean Acidification in *Crassostrea Gigas*." *BMC Genomics* 15 (November): 951.

626 Timmins-Schiffman, Emma, Michael J. O'Donnell, Carolyn S. Friedman, and Steven B. Roberts.
627 2013. "Elevated pCO₂ Causes Developmental Delay in Early Larval Pacific Oysters,
628 *Crassostrea Gigas*." *Marine Biology* 160 (8): 1973–82.

629 Uthicke, S., N. Soars, S. Foo, and M. Byrne. 2013. "Effects of Elevated pCO₂ and the Effect of
630 Parent Acclimation on Development in the Tropical Pacific Sea Urchin *Echinometra
631 Mathaei*." *Marine Biology* 160 (8): 1913–26.

632 Venkataraman, Yaamini R., Laura H. Spencer, Steven B. Roberts. 2018. "Adult low pH
633 exposure influences larval abundance in Pacific oysters (*Crassostrea gigas*)".
634 <https://doi.org/10.6084/m9.figshare.7155074>.

635 Waldbusser, George G., Burke Hales, Chris J. Langdon, Brian A. Haley, Paul Schrader,
636 Elizabeth L. Brunner, Matthew W. Gray, Cale A. Miller, and Iria Gimenez. 2014.
637 "Saturation-State Sensitivity of Marine Bivalve Larvae to Ocean Acidification." *Nature
638 Climate Change* 5 (December): 273.

639 Wright, John M., Laura M. Parker, Wayne A. O'Connor, Elliot Scanes, and Pauline M. Ross.
640 2018. "Ocean Acidification Affects Both the Predator and Prey to Alter Interactions between
641 the Oyster *Crassostrea Gigas* (Thunberg, 1793) and the Whelk *Tenguella Marginalba*
642 (Blainville, 1832)." *Marine Biology* 165 (3): 46.
643 Zhang, Xin, Qi Li, Lingfeng Kong, and Hong Yu. 2018. "DNA Methylation Frequency and
644 Epigenetic Variability of the Pacific Oyster *Crassostrea Gigas* in Relation to the
645 Gametogenesis." *Fisheries Science: FS* 84 (5): 789–97.