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Abstract

Motivated by the results of Scott and Patel about “untangling” closed geodesics in
finite covers of hyperbolic surfaces, we introduce and study primitivity, simplicity and
non-filling index functions for finitely generated free groups. We obtain lower bounds
for these functions and relate these free group results back to the setting of hyperbolic
surfaces. An appendix by Khalid Bou-Rabee connects the primitivity index function
fprim(n, Fn) to the residual finiteness growth function for Fy.
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1. Introduction

Let ¥ be a compact connected surface with a hyperbolic metric p and with (possibly
empty) geodesic boundary. In [52, 53] Scott proved that m1(X) is subgroup separable
or LERF, meaning that for every finitely generated subgroup K < 71(X) and every
g € m1(X) such that g € K there exists a subgroup H < m1(X) of finite index in m (%)
such that K < H but g & H. (Scott’s result dealt with the case of a closed surface S since
in the case S # 0, the group 7 (S) is free and hence known to be subgroup separable by
a much older result of Hall [29]). In the same work [52] Scott showed that if 7 is a closed
geodesic on (X, p) then there exists a finite cover & — ¥ such that ~ lifts to a simple
closed geodesic in E where 3 is given the hyperbolic structure obtained by the pull-back
of p. As customary in the context of hyperbolic surfaces, the term “closed geodesic”
here assumes that the curve in question is not a proper power in the fundamental group
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of the surface. Recently Patel [44] obtained quantitative versions of Scott’s subgroup
separability result and of his result about lifting a closed geodesic to a simple one in a
finite cover. Thus she proved that for every ¥ as above there exists a hyperbolic metric
po on 3 such that every closed geodesic of length L on (X, pg) lifts to a simple closed
geodesic in some finite cover of 3 of degree < 16.2L. Since the length functions on 1 (%)
coming from any two hyperbolic structures on ¥ are bi-Lipschitz equivalent, it follows
that for any hyperbolic structure p on X there is some constant ¢ > 0 such that every
closed geodesic of length L on (X, p) lifts to a simple closed geodesic in some finite cover
of 3 of degree < cL. Motivated by these results, if p is a hyperbolic structure on X, for
every closed geodesic v on (X, p) we denote by degy, ,(7v) the smallest degree of a finite
cover of ¥ such that v lifts to a simple closed geodesic in that cover. For L > sys(p)
(where sys(p) is the shortest length of a closed geodesic on (£, p)) put fx ,(L) to be the
maximum of degy, ,(v) taken over all closed geodesics v on (%, p) of length < L. Patel’s
result mentioned above implies that for every hyperbolic structure p on X there is ¢ > 0
such that fx ,(L) < cL for all L > sys(p).

A simple closed geodesic on a hyperbolic surface is a particular example of a non-filling
curve. Thus for a hyperbolic surface (X, p) as above and for a closed geodesic v on X
we can also define deggﬁ (7) to be the smallest degree of a finite cover of ¥ such that ~

lifts to a non-filling closed geodesic in that cover. Then put fgfﬁ)l(L) to be the maximum

of deggﬁ () taken over all closed geodesics v on (X, p) of length < L. Thus, in view of

Patel’s result, we have féfil(L) < fu,p(L) < cL for all L > sys(p). However, up to now,
nothing has been known about lower bounds for f5, ,(L) or g’;l(L) (Note that the first
place where the question about quantitative properties of fs; ,(L) was raised, although
somewhat indirectly, appears to have been the paper of Rivin [48]).

In general, obtaining lower bounds for quantitative results related to residual finiteness
is quite difficult, and is usually harder than obtaining upper bounds. Recently there has
been a significant amount of research regarding quantitative aspects of residual finiteness;
see, for example [8, 5, 11, 12, 13, 14, 10, 17, 27, 37, 38, 44, 48, 19, 9, 16, 18]. We
will discuss some of these results in more detail below.

Let N > 2 be an integer and let Fly be the free group of rank N. If A is a free basis of
Fy, for an element g € Fy we denote by |g|4 the freely reduced length of g over A and
we denote by ||g||4 the cyclically reduced length of g over A. A classic result of Marshall
Hall [29], mentioned above, (see also [34] for a modern proof using Stallings subgroup
graphs) proves that finitely generated free groups are subgroup separable. More precisely,
Hall proved that if K < Fly is a finitely generated subgroup and g € Fiy — K then there
exists a subgroup H < Fiy of finite index such that ¢ ¢ H, K < H, and, moreover, K is
a free factor of H. It is not hard to adapt the proof of this result to show that for every
g € Fn,g # 1 there exists a subgroup H < Fiy of finite index such that g € H and that
g is a primitive element of H, that is, that g belongs to some free basis of H. In fact,
a simple argument using Stallings subgroup graphs (see Proposition 3-5 below) shows
that if A is a free basis of Fy and w is a nontrivial cyclically reduced word in F'(A) of
length n then there exists a subgroup H < Fiy with [Fy : H] = n such that w € H is a
primitive element of H. For a nontrivial element g € Fiyv we define the primitivity index
Aprim (9) = dprim (g; Fv) as the minimum of [Fyy : H| where H varies over all subgroups
of finite index in Fjy containing ¢g as a primitive element. Given a free basis A of Fy,
for n > 1 we then define fp,im(n) = fprim(n; Fy) as the maximum of dprim(g) where g
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varies over all nontrivial freely reduced words of length < n in Fiy = F(A) which are not
proper powers in Fy. It is not hard to see that fp.im(n) does not depend on the choice
of a free basis A of Fi; we call fprim(n) the primitivity index function for Fy. Thus
fprim(n) is the smallest monotone non-decreasing function such that for every nontrivial
root-free g € Fy we have dprim (9) < fprim(|g]a)-

A nontrivial element g € Fl is called simple in F) if g belongs to some proper free
factor of Fjy. A nontrivial element g € Fy is called filling in Fy if g does not belong to
a vertex group of a nontrivial splitting of F over the trivial or maximal infinite cyclic
subgroup. See Section 2-3 for more precise definitions and a discussion of these notions.
Note that for 1 # g € Fy, if g is primitive then g is simple, and if g is simple then
g is non-filling. For a nontrivial element g € Fn let dgimp(9) = dsimp(g; Fn) be the
smallest index [Fiy : H] where H varies over all subgroups of finite index in Fy such that
g € H and that ¢ is simple in H. Finally, let ds;;(g) = driu(g; Fn) be the smallest index
[Fv : H] where H varies over all subgroups of finite index in Fi such that g € H and
that g is non-filling in H. Thus by definition, we have d;i(g) < dsimp(9) < dprim(9g)-
For n > 1 we then define the simplicity index function fsimp(n) = feimp(n; Fn) as the
maximum of dgmp(g) where g varies over all nontrivial freely reduced words of length
< nin Fy = F(A) that are not proper powers in Fy. Also, for n > 1 we then define
the non-filling index function friyi(n) = frui(n; Fn) as the maximum of dy;;(g) where g
varies over all nontrivial freely reduced words of length < n in Fy = F(A) that are not
proper powers in Fly.

In view of Proposition 3-5 mentioned above, for every nontrivial ¢ € Fy we have
dsimp(9) < dprim(9) < |lglla < |g|a, and hence fru(n) < fsimp(n) < forim(n) < n (see
Lemma 3-6 for details).

In general, we are interested in the following types of questions:

o Understand the actual asymptotics of the “worst-case” index functions fri;(n),
Jsimp(n), fprim(n) for free groups and of their geometric counterparts fs ,(L) or
i),

e Find specific sequences of elements in free groups or curves on surfaces realizing
this “worst-case” behavior or at least exhibiting reasonably fast growth of the
corresponding index and degree functions.

e Understand the asymptotics of the indexes dprim (gn); dsimp(gn), drii(gn) and of
degs. ,(Vn)s degglff(’yn) for various “natural” sequences of group elements g,, € Fi
or closed geodesics v, on (X, p).

e Understand the relationship between the index functions for free groups and the
degree functions for surfaces, and relate both to other functions measuring quan-
titative aspects of residual properties of free and surface groups.

Our first main result provides a lower bound for ff;;(n; Fiv); see Theorem 6-2 below:

THEOREM 1-1. Let N > 2 and let Fy = F(A) where A = aq,...,an. Then there
exists a constant ¢ > 0 and an integer M > 1 such that for all n > M we have

logn
forim(n) = fsimp(n) = friu(n) > “loglogn’

For a finitely generated group G equipped with a finite generating set A, the residual
finiteness growth function RF g (n) is defined as the smallest number d such that for every
nontrivial element g € G of word-length < n with respect to A there exists a subgroup

of index at most d in G that does not contain g.
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In an appendix to this paper, for a free group Fy with a free basis A, Khalid Bou-
Rabee relates fprim(n, Fy) to the residual finiteness growth function RF g, (n). Namely,
he shows in Theorem Al below that for n > 1 one has fyrim(4n + 4, Fx) > RF g, (n).
Using a recent result of Kozma and Thom [38] about lower bounds for RF g, (n), Bou-
Rabee then shows in Corollary A2 below that for all sufficiently large n one has

log(n) \'*
Jorim(4n +4) > exp <(Ologlog(n)> ) .

Note that this lower bound behaves almost like n'/4. Moreover, if we assume Babai’s Con-
jecture on the diameter of Cayley graphs of permutation groups, then for all sufficiently
large n we have an almost linear lower bound:

1
fprim(4n + 4) > mn Cloglog(n) |

Bou-Rabee’s homological trick used in Theorem A1 does not work for the index functions
fsimp(n) and fri(n). Thus for these functions the lower bound given by Theorem 1-1
remains the best known bound.

We also obtain a bound from below on dgjmp(wy,) and d i (w,,) where w, is a “random”
freely reduced word in F'(A) of length n >> 1.

THEOREM 1-2. Let N > 2 and let Fn = F(A) where A ={a1,...,an}.

Then there exist constants ¢c(N) > 0, D1(N) > 1, 1 > Dy(N) > 0 such that for n >1
and for a freely reduced word w,, € F(A) of length n chosen uniformly at random from
the sphere S(n) of radius n in F'(A) we have

1-P,, (dsimp(wn) > clog!/? n) =0 ((Dl)fn%)
and
1-P,, (dfm(’wn) > clog!/® n) =0 ((Dl)in%)
so that
Tim By, (dusplae) > clog?n) = 1
and

lim P,, (dﬁ”(wn) > clog!/® n) =1

n—oo

Here (i, is the uniform probability distribution on the n-sphere S(n) C Fy = F(A).
See Convention 7-1 for our use of the big-O notation.

It remains an interesting question to understand the actual behavior of dg;pmp(wy,) and
drin(wy) on “random” elements w, € Fy and, in particular, to see if dgjmp(wy,) and
drin(wy) admit sublinear upper bounds.

Finally, in Section 9 we relate the above results for free groups to the original motivating
questions about the degree functions for hyperbolic surfaces. Thus, using Theorem 1-2,
we obtain (see Theorem 9-6 below):

COROLLARY 1-3. Let (3,p) be a compact connected hyperbolic surface with b > 1
geodesic boundary components. Then there exists C' > 0 such that for all sufficiently
large L we have

i log L
L) > fIy > o 22
o) = £ (L) = O 2
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Similarly, using Theorem 1-1, we obtain (see Theorem 9-3 below):

COROLLARY 1-4. Let ¥ be a compact connected surface with a hyperbolic structure
p and with (possibly empty) geodesic boundary. Let 1 C X be a compact connected
subsurface with > 3 boundary components, each of which is a geodesic in (3,p). Let
x € X1 and let A be a free basis of (31, x).

Let w, € F(A) = 71(21,) be a freely reduced word of length n over AT generated
by a simple non-backtracking random walk on F(A) = 71 (X1,z). Let vy, be the closed
geodesic on (X, p) in the free homotopy class of w,,.

Then there exist constants ¢ > 0, K' > 1 such that

1i_>m Pr(degy. ,(7n) > clogt?n) =1

and such that with probability tending to 1 as n — oo we have that w, € w1 (X, x) is not
a proper power and that n/K' < {,(y,) < K'n.

In the original November 2014 version of this paper we used Corollary 1-4 to obtain,
for all sufficiently large L, a lower bound

fo,p(L) > clogl/?’ L,

where (X, p) is a closed hyperbolic surface. At the time this was the only known lower
bound for fs; ,(L). Motivated by our work, Jonah Gaster [26] subsequently obtained a
linear lower bound fs ,(L) > c¢L and exhibited a specific sequence of curves =, in 3,
living in a pair-of-pants subsurface of ¥, realizing this lower bound. Since these curves

are already non-filling in ¥ and have deggllf (vn) = 1, Gaster’s proof does not provide

any lower bounds for félg(L) Thus for the moment the lower bound for féfg(L) given
by Corollary 1-3 remains the best bound known. In Section 9 we also relate our results
to the versions of fx ,(L) and féflpl(L) that do not involve a hyperbolic metric and use
the geometric intersection number i([v], [7]) instead of the hyperbolic length of v in their
definitions.

Also, in Section 4 we prove algorithmic computability of the indexes dprim(g, Fn)
dsimp(9, Fn), dfin(g, Fn) and of the corresponding index functions fp,im (1), fsimp(n), frai(n);
see Theorem 4-14 and Theorem 4-18 below.

A recent paper of Puder [45] (see also [46, 47] for related work) introduces the notion
of a primitivity rank m(g) for an element g € Fyy. Namely, m(g) is defined as the smallest
rank of a subgroup H < Fy such that g € H but g is not primitive in H. Puder proves in
[45, Corollary 4.2] that for an element g € Fiy one has either 7(g) = co or 0 < 7(g) < N,
and that every integer between 0 and N does occur as a value of w(g) for some g. He also
defines and studies the primitivity rank «(H) for a finitely generated subgroup H < Fl,
where w(H) is defined as the minimum rank of J such that H < J < Fy and that H
is not a proper free factor of J. These notions are related to and in some sense dual
to our definitions of dprim(g) and dgimp(g), but the precise connection of our results
with Puder’s work remains to be understood. Malestein and Putman [41] obtained a
number of lower bound results (in terms of k) for the minimal self-intersection number
of nontrivial elements of the k-term of the lower central series and the derived series of a
surface group. It would be interesting to see if their methods can be used to obtain lower
bounds for the function fx ,. It would also be interesting to investigate if looking inside
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the lower central series and the derived series of Fiy may produce new lower bounds for
forim(n) and foimp(n).

We are grateful to Yuliy Baryshnikov for providing us with a proof of Lemma 5-1.
We then used the idea of the proof of Lemma 5-1 to obtain Proposition 5-7, which
plays a crucial role in the proof of our main results. We are also grateful to Igor Rivin for
suggesting to try to apply our free group results to untangling closed curves on hyperbolic
surfaces, and to Priyam Patel for suggesting to apply our results to the degree functions
based in the self-intersection number rather than the length of a curve. We thank Kasra
Rafi for the suggestion to consider degglff and fg?lpl. We thank Nathan Dunfield and Chris
Leininger for many useful conversations. We are grateful to Andreas Thom, Gady Kozma,
Doron Puder and Khalid Bou-Rabee for helpful feedback. We are particularly grateful to
the referee of the original version of this paper for pointing out that our methods implied
a much better lower bound for fyrim(n) and fsimp(n) than the one we originally had in
mind. We are also grateful to the referee of the current version for numerous detailed
helpful suggestions.

2. Preliminaries
2-1. Graphs and Edge Paths

The exposition in this subsection follows that of [36].

DEFINITION 2-1. A graph is a 1-dimensional cell-complex. The 0-cells of T' are called
vertices and we denote the set of vertices of I' by VI'. The open 1-cells of T are called
topological edges of I' and the set of topological edges are denoted by Eyopl.

Every topological edge of I is homeomorphic to the open interval (0,1) and thus, when
viewed as a l-manifold, admits two possible orientations. An oriented edge of T is a
topological edge with a choice of orientation on it. We denote by ET the set of all
oriented edges of I'. If e € ET is an oriented edge, we denote by € the same underlying
edge with the opposite orientation. Note that for every e € ET" we have € # ¢ and e = ¢;
thus 7: ET' — ET is an involution with no fixed points.

Since I' is a cell-complex, every oriented edge e € ET comes equipped with the
orientation-preserving attaching map j. : [0,1] — T such that j. maps (0,1) homeo-
morphically to e and such that j.(0), je(1) € VI' (though not necessarily distinct). For
e € ET" we call j.(0) the initial vertez of e, denoted o(e), and we call j.(1) the terminal
vertex of e, denoted t(e). Thus, by definition, o(€) = t(e) and ¢(€) = o(e).

For any vertex x € VT, the degree of x in T denoted by deg(x) is the cardinality of the
set {e € ET|o(e) = z}.

An orientation on a graph I' is a partition ET' = E,I' U E_T" such that for an edge
e € ET we have e € F, I if and only if e € E_T'. If T is a graph with an orientation,
and A C I' is a subgraph, then A inherits an induced orientation from I' by setting
E. A :=FE,TNFEA and E_A := E_T' N EA. Whenever we are dealing with a graph,
equipped with an orientation, and a subgraph of that graph, we will always assume that
the subgraph is given the induced orientation.

An edge-path p in T is a sequence of edges e, es,...,e, with e; € ET for all ¢ and
o(e;) = t(ej_1) for all 2 < j < k. The length |p|, of the path p is the number of edges in p,
that is |p| = k. We put o(p) = o(ey), and t(p) = t(ex). We define p~! := ex,ex_1,...,e1.
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A path p in a graph T is reduced if it does not contain any sub-paths of the form e,e™?

where e € ET is an edge.

Note that if " is a graph and = € VT is a vertex, there is a canonical identification of
m1(T, ) with the set of reduced edge-paths from z to z in T'. We will use this identification
throughout the paper.

DEFINITION 2:2. For two graphs I'y and I's, a morphism or a graph-map f :T7 — T’y
is a continuous map f such that f(VIT1) C VTs and such that the restriction of f to
any topological edge e € Ty is a homeomorphism between e and some topological edge e’
of I's. Thus a morphism f : Iy — I's naturally defines functions f : ETy — ETs and
f: VI — VT such that for any e € ET'1 we have f(€) = f(e) € ET'2, o(f(e)) = f(o(e))
and t((€)) = F(t(e)).

DEFINITION 2-3. Let I" be a graph and x € VI'. Then the core of T at = is defined as:

Core(T',z) = U{p| wherep is a reduced path inT fromzx tox}.

Note that Core(I',x) is a connected subgraph of T' containing x. If Core(T,z) = T
we say that T' is a core graph with respect to x. The graph Core(T',x) has no degree 1
vertices except possibly x itself.

We say that a graph T' is a core graph if I' is connected and for every vertex x € VI’
we have Core(T',z) =T.

If a graph T is a tree then for vertices v,v’ € VT we denote by [v,v']7 the unique
reduced edge-path from v to v’ in T.

PROPOSITION-DEFINITION 2-4. Let I' be a connected graph, and x € VI'. Choose a
mazimal subtree T C T', and an orientation ET' = E,T' U E_T. For e € ET define
[x,0(e)]T to be the unique reduced path in T from x to o(e), and let s, := [x,0(e)]r e [t(e), x]r.
Let St :={s.|e € E;I'—E.T}. Then w1 (T, x) is free and St is a free basis of (T, x).

We call St the free basis of m1 (T, z) dual to T.

We need to explicitly say how to rewrite elements of 71 (I', z) in terms of the basis S,
both as freely reduced words and cyclically reduced words.

PROPOSITION 2:5. Let T' be a connected graph, let x € VI and let T C T be a mazimal
subtree. Suppose E4T — E4T = {e1,...,en} where e; # e; for i # j, so that Sp =
{8¢,]1 < i <m}. Then:

(i)Rewriting v as a freely reduced word in St: Delete from ~ all edges of T and replace

each eli

Ly 521. The result is a freely reduced word over St representing v € m (T, ).
(i) Rewriting v as a cyclically reduced word in St: First cyclically reduce the edge-path
v by removing the mazimal initial and terminal segments of v that cancel in the
concatenation yy. The result is a subpath v1 of v such that 1 is a closed cyclically
reduced path (though v1 maybe based at a vertex different from x). Now apply the
previous procedure to ~y1: delete all edges of T and replace each efl by seiil. The

result is the cyclically reduced form of v € w1 (I',x) over Sr.

2-2. Graphs and subgroups

In a seminal paper from 1983 Stallings [56] used labeled graphs to study subgroups of
free groups. We give a brief exposition of the relevant definitions and results below and
refer the reader to[34] for details.
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Recall that we fix for the free group Fy = F(A) = F(ay,...,ay) (where N > 2), a
distinguished free basis A = {a1,...,anx}. If wis a word in T = AU A~!, we will denote
by w the freely reduced word in T obtained from w by performing all possible (if any)
free reductions.

DEFINITION 2-6. An A-graph T' consists of an underlying oriented graph where every
edge e € ET is labeled by a letter u(e) € AU A7 in such a way that u(e) = (u(e)) = .
Multiple edges between vertices and loops at a vertex are allowed. An A-graph T is said
to be folded if there does not exist a vertex x and two distinct edges ey, ex with o(e1) =
o(es) = x such that u(e;) = u(ez). Otherwise T' is said to be non-folded.

An A-graph I is said to be A-regular if for every vertex x € VT and for every a;, there
is precisely one outgoing edge at x labeled by a; and precisely one incoming edge at x
labeled by a; (thus, in particular, an A-regular graph is folded).

If ' is an A-graph and p = ey, ..., e is an edge-path in I', then p has a label which is a
word in AL A~ and we denote this label by u(p) = u(e1)u(e2) ... u(er). The definitions
immediately imply:

LEMMA 2-7. An A-graph I is folded if and only if the label of every reduced path in T’
is a freely reduced word.

DEFINITION 2-8. For any two A-graphs I'y and I's, a map f : 'y — Ty is an A-
morphism if f is a graph-map such that p(e) = p(f(e)).

For Fy = F(ay,...,ay) we define the standard N-rose Ry to be the wedge of N loop-
edges each labeled by aq,...,ay respectively, at a vertex xg. Then F(A) = m (Ry, o).

For I an A-graph, z € VI and p as before, we can define a map py : m (I, x) — F(A)
as p — pu(p). This map is a group homomorphism.

NOTATION 2-9. For T an A-graph, x € VI we say that (', x) represents the subgroup
H = py(m(D,2)) < F(A).

PROPOSITION-DEFINITION 2-10. [56, 34] Let H < F(A). Then there exists a con-
nected, folded A-graph I with xo € VI such that I' = Core(T', zy) and (I',xo) represents

H = {u(p) | pis a reduced path inT fromzgtoxg} < F(A)

Moreover, such a (I',xq) is unique. This graph (T, xq) is called the Stallings subgroup
graph of H with respect to A.

If (T, zo) is the Stallings subgroup graph for H, then the labeling map u : 71 (T, xg) —
H is a group isomorphism. If T C T is a maximal tree and St = {s.|le € £, (I' — T)} is
the dual free basis of m1 (I', zg), then u(St) = {p(se)le € E+(I' —T)} is a free basis of H.

2-3. Primitive, simple and non-filling elements

DEFINITION 2-11 (Primitive and simple elements). In the free group F, a non-trivial
element g € Fy is called primitive in Fy if g belongs to some free basis of Fy .

In the free group Fi, a non-trivial element g € Fy is called simple in Fy if g belongs
to a proper free factor of Fi.

DEFINITION 2-12 (Noun-filling elements). An element g € F is said to be non-filling
in Fy if there exists a splitting of Fn as an amalgamated free product Fy = K x¢c L or
as an HNN-extension Fy = (K, t|t71Ct = C"), such that C < Fy s either trivial or a
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mazimal cyclic subgroup, such that in the Fy = K x¢ L case C # K,C # L, and such
that g € K.
An element g € Fy is said to be filling in Fy if g is not non-filling.

REMARK 2-13. Note that if g € Fn is primitive, then it is also simple. Similarly, if
g € Fn is simple, then g is non-filling.

Also, for elements of F the properties of being primitive, being simple and being
non-filling are preserved under applying arbitrary automorphisms of Fin.

The following known key fact relates the property of being filling in Fy to the compact-
ification CVy of the projectivized Culler-Vogtmann Outer space CV . This compact-
ification consists of the projective classes of all minimal “very small” isometric actions
of Fy on R-trees. An isometric action of a group G on an R-tree T is called very small
if for every nondegenerate segment of T' the setwise stabilizer of that segment in G is
either trivial or maximal infinite cyclic in G, and if the setwise stabilizer of every tripod
in T is trivial. For example, the Bass-Serre tree corresponding to a splitting of Fy as an
amalgamated product or an HNN-extension over a maximal infinite cyclic subgroup is a
very small Fiy-tree. See [33, 4] for a more detailed explanation of the relevant terminol-
ogy. Also, if T is an R-tree equipped with an isometric action of a group G, for g € G
we denote ||g||7 := inf er d(z, gx); the quantity ||g||r is called the translation length of
ginT.

PROPOSITION 2-14. [33, 55| Let 1 # g € Fx. Then the following conditions are
equivalent:
(i) The element g is filling in Fi.
(ii)For every minimal very small isometric action of Fy on a nontrivial simplicial tree
T we have ||g||7 > 0.
(iii)For every minimal very small isometric action of Fy on a nontrivial R-tree T we
have ||g||7 > 0.

Proof. The proof of this statement is implicit in [33, 55] but we sketch the argument
for completeness.

Part (3) directly implies part (2). Since the simplicial splittings that appear in Defini-
tion 2-12 are very small, part (2) also directly implies part (1).

To see that part (1) implies part (3), suppose that 1 # g € Fly is filling but that there
exists a minimal very small isometric action of Fy on a nontrivial R-tree 7" we have
[lg||l7 = 0. Then a result of Bestvina and Feighn [4] (see also a paper of Guirardel [28])
implies that there exists a very small minimal simplicial Fy-tree 77 with ||g||7» = 0.
Taking the quotient graph of groups T”/Fx and collapsing all edges except one in this
graph gives us a splitting of Fy as in Definition 2-12 such that g is conjugate to a vertex
group element for that splitting. This contradicts the assumption that g is filling in Fly.
Thus (1) implies (3), as required.

O

2-4. Whitehead Graphs

We now describe the relationship between simple elements, primitive elements, and
Whitehead graphs.

DEFINITION 2-15. [Whitehead graph] Let Fn = F(A) be as before and let w € Fy be
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a nontrivial cyclically reduced word. Let ¢ be the first letter of w. The word wc is then
freely reduced.

The Whitehead graph of w with respect to A, denoted by Why(w), is an undirected
graph whose set of vertices V(Why(w)) = Y. Edges are added as follows: For a,b €
V(Wha(w)), there is an undirected edge joining a=* and b if ab or b=ta™*
subword of we.

Note that if W is a cyclic permutation of w or of w=! then Wha(w) = Wha ().

For an arbitrary 1 # g € Fn, we put Wha(g) := Wha(w), where w is the cyclically
reduced form of g in F(A).

occurs as a

Recall that a cut verter in a graph A is a vertex x such that A — {x} is disconnected.
Note that if A has at least one edge and is disconnected, then I" does possess a cut vertex;
namely any end-vertex of an edge of A is a cut vertex in this case.

Generalizing a result of Whitehead, Stallings established the relationship between sim-
ple elements and Whitehead graphs [57]:

PROPOSITION 2-16. [57] Let Fy = F(A), where N > 2 and let g € F(A) be a
cyclically reduced word. If g is simple, then the Whitehead graph Wha(g) has a cut
vertex.

Notice that Remark 2-13 implies that if g € F'(A) is primitive, then Wha(g) has a cut
vertex.

REMARK 2-17. Stallings’ definition of Whitehead graphs differs slightly from our def-
inition. Assume the same setting as in Definition 2-15. Stallings adds an edge from a=!
to b for each occurrence of a subword ab in wc. Let us call the Whitehead graph of a cycli-
cally reduced word w under Stallings’ definition T, and the corresponding graph under our
definition I'y. It is clear that V(I') = V(I'1). Further it is easily checked that x € V(T') is
a cut-vertez in T if and only if x € V(I'1) is a cut-vertez in T'y. Thus Proposition 2-16
holds for our definition of Whitehead graphs just as well.

Finally, note that if a graph has a reduced circuit that contains all the vertices, then the
graph can not have a cut vertex. This observation applies, for instance, to the Whitead
graph of an element g € Fyy when the string a3.a%a3...a% occurs as a subword of a
cyclically reduced form of g. In this case g is not simple (and hence not primitive) as its
Whitehead graph does not have a cut vertex. We state this fact explicitly as a corollary
of Proposition 2-16:

COROLLARY 2:18. Let Fy = F(A), where N > 2 and A = {a1,...,an}. If a cyclically
reduced word w € F(A) contains the subword aata}...a% then w is not simple (and

hence not primitive) in F(A).

The Whitehead graph, as defined above, records the information about two-letter sub-
words in the cyclically reduced form w of a nontrivial element g € Fy = F(A). There are
also generalizations of the Whitehead graph recording the information about k-letter sub-
words of w, where k > 2 is a fixed integer. These generalizations are commonly known as
“Rauzy graphs” or “initial graphs” and naturally occur in the study of geodesic currents
on free groups [30, 31, 32].

We do not formally define these “level k” versions of the Whitehead graph in this
paper, because we only need the following specific statement related to the k = 3 case:
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PROPOSITION 2-19. [21] Let Fy = F(A), where N > 2 and A = {aq,...,an}. Let w

be a nontrivial cyclically reduced word in F(A) such that for every freely reduced word

v € F(A) with |v| = 3 the word v occurs as a subword of a cyclic permutation of w or of
w1

Then w is filling in Fr (and, in particular, w is non-simple and non-primitive in Fy ).

3. Primitivity, Simplicity, and Non-Filling Index Functions

In 1949 Marshall Hall Jr. proved in [29] that any finitely generated subgroup of a free
group Fy is a free factor of a finite index subgroup of Fy. We state the result in a more
precise form, as stated in [56]:

PROPOSITION 3-1. [56] Let aq,...,ax,B1,...,0; be elements of a free group Fy. Let
S be the subgroup of Fy generated by {au, ..., ax}. Suppose §; ¢ S fori=1,...,1. Then
there exists a subgroup S’ of finite index in Fy, such that S C S', B; ¢ S’ fori=1,...,1,
and there exists a free basis of S’ having a subset that is a free basis of S.

If we pick ¢ # 1 € Fy and apply the above result to the infinite cyclic subgroup
S = (g), we get that there must exist a finite index subgroup S’ of Fiy such that ¢ is a
primitive element in S’ (and hence g € S’ is non-simple and non-filling in S”).

This fact motivates the following definition:

DEFINITION 3-2. [Primitivity, simplicity and non-filling indexes/

Let N > 2 be an integer and let Fy be a free group of rank N. Let 1 # g € F.

Define the primitivity index dprim(9) = dprim(g, Fn) of g in Fy to be the smallest
possible index for a subgroup L < Fn containing g as a primitive element.

Define the simplicity index dsimp(g) = dsimp(g, Fn) to be the smallest possible index
for a subgroup L < Fy containing g as a simple element.

Finally, define the non-filling index dyii(g) = driu(g, Fn) to be the smallest possible
index for a subgroup L < F containing g as a non-filling element.

As noted above, Proposition 3-1 implies that for every nontrivial g € Fn we have
drin(9) < dsimp(9) < dprim(g) < 0.

DEFINITION 3-3 (Primitivity, simplicity and non-filling index functions). Let Fiy be a
free group of rank N > 2 and let A be a free basis of F. For any n > 1 define the
primitivity index function for Fiy as

Sorim(n) = fprim(n; F) = max dprim (9)

1<]gla<n, g#1
g not a proper power in Fn

Similarly, for n > 1 define the simplicity index function for Fy as

imp(N) = feimp(n; Fy) := max dsi
fszmp( ) fszmp( 3 N) 1§|£]\AS7L7§?51 szmp(g)
g not a proper power in Fpn

Finally, for for n > 1 define the non-filling index function for F as

a1(n) = frai(n; Fiy) = max dy;
frin(n) = friu(n; Fy) Lo rin(g)
g not a proper power in Fy

It is easy to see that the definitions of fprim(n; Fn), fsimp(n; Fn) and fru(n; Fy) do
not depend on the choice of a free basis A of Fn. Note that furim(n) is the smallest
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Fig. 1. Proof by Picture for Proposition 3-5

monotone non-decreasing function such that for every non-trivial root-free g € Fy we
have dprim(9) < fprim(|g]a); similar reformulations hold for fgim,(n) and fri(n). We
recall the following well-known fact, which is Lemma 8.10 in [34]:

LEMMA 3-4. LetT be a finite folded A-graph. Then there exists a finite folded A-regular
graph T’ such that T is a subgraph of I and such that VI = VI".

PROPOSITION 3-5. For every non-trivial cyclically reduced word w € F(A) of length

n, there exists a finite index subgroup H < F(A) of index n such that w € H is primitive
in H.

Proof. Take the word w of length n and write it on a circle of simplicial length n. Pick
a vertex x as the base vertex. Call this graph (I'y,, ). By Lemma 3-4 we can complete
this graph to a finite cover (I'},, z) of the N-rose without adding any extra vertices. Thus
(T, z) has n vertices and represents a subgroup H of Fy of index precisely n. The fact
that w is realized as the label of a simple closed curve in (I, z) implies that w is a
primitive element in H. It is clear that w € H by definition of H. Note that since (I, z)
has no extra vertices, a maximal tree T of (I, z) consists of all but one edge of the simple
closed curve representing w. Let e € ELT” —T. Then pu(s.) = w and hence w is primitive.
See Figure 1 for a pictorial proof.

U]
Proposition 3-5, together with the definitions, directly implies:

LEMMA 3-6. Let N > 2 and let Fn be free of rank N. Then the following hold:
(i)If 1 #£ g € Fy = F(A) then
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(ii)For every n > 1 we have

ffill(n) < fsimp(n) < fprim(n) <n.

(iWi)Let 1 # g € Fn and let o € Aut(Fn). Then dprim(9) = dprim(c(g)), dsimp(g) =
dsimp(a(g)) and dpu(g) = dpiu(a(g))-

(w)If 1 # g € Fy and k > 1 is an integer, then dsimp(g*) < dsimp(g9) and dpi(g*) <
din(g)-

In particular, part (3) of the above lemma shows that for g1, go conjugate non-trivial
elements of Fy, we have dprim(91) = dprim(92), dsimp(91) = dsimp(g2) and drii(g1) =
drin(g2)-

As noted above, if 1 # g € Fiy and k > 1 is an integer, then dgimp(9*) < dsimp(g) and
drin(g®) < dyin(g). However, the function dpinm(g) does not behave well under taking
powers, as demonstrated by the following lemma:

LEMMA 3-7. For any a; € {a1,...,an}, and any positive integer n, dprim(al) = n.

Proof. As noted above, for every nontrivial g € Fn we have dgimp(9) < dprim(g) <
llgl|a. Thus dprim(al) < ||a}||la = n. We need to show that dypim (al) > n.

Let d = dprim(a]) and let H < Fy be a subgroup of index d such that a] € H and
that @l is a primitive element of H. Let (I', %) be the d-fold cover of Ry corresponding to
H, so that for the covering map p: I' = Ry have m(I', ) =2 H and py = p: m (T, %) —
H < Fy = m (RN, o) is an isomorphism.

The fact that a € H implies that there exists a reduced closed path vy from * to * in
I’ with p(y) = a?. Since a is primitive in H, the element «y is primitive in m (T, *).

Since aj is cyclically reduced, the closed path - is also cyclically reduced. We claim
that v is a simple closed path in I'. Indeed, suppose not. Then v = ¥ where k > 2 and
where 71 is a simple closed path at * in I' with label a?/ ¥ Therefore v is a proper power
in (T, %), which contradicts the fact that « is primitive in w1 (T, ). Thus indeed 7 is
a simple closed path in I' with label a’. This means that the full p-preimage of the i-th
petal of Ry, labeled a;, in ' consists of > n distinct topological edges. Therefore the
degree d of the cover p : I' — Ry satisfies d > n.

Thus d = dppim(al) > n. Since we already know that dpyim(al’) < n, it follows that
dprim (al) = n, as required. [

Avoiding the bad behavior of dp,im(g) under taking powers of g, demonstrated by
Lemma 3-7, is the main reason why in Definition 3-2 we take the maximum over all
root-free nontrivial elements g € Fiy with |g|a < n rather than over all nontrivial g € Fy
with |g|a < n.

4. Algorithmic computability of dprim(9), dsimp(9), and dsiu(g)

In this section we will establish algorithmic computability of dprim(9), dsimp(g), and
dyin(g). Consequently, we will also establish the algorithmic computability of fprim (1),
fsimp(n)v and ffill(n)~

We first need to recall some basic definitions and facts related to Whitehead automor-
phisms and Whitehead’s algorithm. We only briefly cover this topic here and refer the
reader for further details to [40, pp. 30-35] and to [43, 35, 32, 49] for some of the recent
developments. As before, Fy = F(A) = F(aq,...,an) is the free group of rank N > 2
with a free basis A = {a1,...,an}.
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DEFINITION 4-1 (Whitehead automorphisms). A Whitehead automorphism 7 of Fy =
F(A) with respect to A is an automorphism 7 of F(A) of one of the following types:
(i) There exists a permutation t of ¥ = AU A=Y such that 7|y = t. In this case T is
called a relabeling automorphism or ¢ Whitehead automorphism of the first kind.
(ii) There exists an element a € T which we call the multiplier such that for any x € T,
7(z) € {z,za,a™"
the second kind.

x,a Yza}. In this case T is called a Whitehead automorphism of

Note that since 7 € Aut(F(A)), if 7 is a Whitehead automorphism of the second
kind with multiplier a, then 7(a) = a. Also for any a € T, the inner automorphism
corresponding to conjugation by a is a Whitehead automorphism of the second kind.

DEFINITION 4-2 (Automorphically minimal and Whitehead minimal elements). An el-
ement g € F(A) = F is automorphically minimal in F(A) with respect to a basis A of
Fn if, for every ¢ € Aut(F(A)) we have [|g|[a < |lp(g)]]a-

An element g € F(A) is Whitehead minimal in F(A) with respect to a free basis A if,
for every Whitehead automorphism T of F(A) we have ||g||a < ||T(g)||a. For an element
g € F(A) we say that § € F(A) is a Whitehead minimal form of g with respect to A if g is
Whitehead minimal with respect to A and there exists an automorphism ¢ € Aut(F(A))
such that o(g) = §.

Note that neither Whitehead automorphisms of the first kind nor inner automorphisms
change the cyclically reduced length of an element.

The following proposition summarizes the key known facts regarding Whitehead’s al-
gorithm (see [61] for the original proof by Whitehead and see [40, Proposition 4.17] for
a modern exposition):

PROPOSITION 4-3 (Whitehead’s Theorem). Let N > 2 and let Fiy = F(A) be free of

rank N with a free basis A. Then:

(i)An element g € F(A) is automorphically minimal in F(A) with respect to a basis A
if and only if g is Whitehead minimal in F(A) with respect to A. (Hence g € F(A) is
not automorphically minimal with respect to A if and only if there exists a Whitehead
automorphism T such that ||7(g)||a < l9]|a)-

(i) Whenever u,v € F(A) are Whitehead minimal with respect to A such that the orbits
Aut(F(A))u = Aut(F(A))v (so that, in particular, ||u||a = ||v]|a), then there exists
a sequence of Whitehead automorphisms 11,...,Tm of F(A) with respect to A such
that Tp...71(w) = v and that ||7;..71(w)||a = ||ul|a fori=1,..,m.

Note that part (2) of Proposition 4-3 holds even if u,v are conjugate in F'(A) since
conjugation by an element of A*! is a Whitehead automorphism.

4-1. Algorithmic computability of dprim(g) and dsimp(g)

The following useful lemma explicitly states the relationship between primitivity, sim-
plicity and Whitehead minimality:

LEMMA 4-4. Let1 #w € F(A) = Fy.
(i)w primitive in F(A) if and only if every (equivalently, some) Whitehead minimal
form w of w has ||w||a = 1.
(i )w is simple in F(A) if and only if some Whitehead minimal form w of w misses an

+1
a;
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(it )w is simple in F(A) if and only if every Whitehead minimal cyclically reduced form
W of w misses an al.

Proof.

Part (1) of the lemma is well-known and follows directly from Proposition 4-3.

If some Whitehead minimal form w of w misses an aiil, then w is simple in F(A) as
w € F(B) where B = A — {a;} and F(B) is a proper free factor of F(A).

Conversely, suppose that w is simple in F'(A). Then there exists an automorphism ¢
of F(A) such that the cyclically reduced form @ of p(w) misses aL'.

Claim 1. We claim that some Whitehead minimal form of @ also misses aﬁl.

We prove this claim by induction on ||w||a. If ||@W||a = 1, then the claim clearly
holds. Suppose now that ||@w||4 =m > 1 and that the claim has been established for all
nontrivial cyclically reduced words in F(ai,...,an—1) of length < m — 1.

If @ is already Whitehead minimal in F(A) then we are done as the claim holds in
this case.

If @ is not Whitehead minimal in F'(A) then there exists a Whitehead automorphism
7 of F(A) such that ||7(®)||a < ||W]|a. Note first that since the cyclically reduced length
of W changes under 7, we must have that 7 is a Whitehead automorphisms of the second
kind that is not an inner automorphism.

Let a € T = AL A~ be the multiplier of 7. If @ = ajj\t,l, since © is a cyclically reduced
word in F(A) that misses the letter aﬁl, the definition of a Whitehead automorphism

implies that there can be no cancellation in 7(@w) between the letters {ai,...,an—1}
when a cyclically reduced form of 7(@) is computed. Hence ||7(@)||a > ||®W]||a, contrary
to the fact that ||7(@)||a < ||@||a. Therefore a € {ai,...,any_1}*'. We then define
a Whitehead automorphism 7/ of F(aj,...,ay_1) with respect to {ai,...,any_1} as
7" = T|tay,....an_1}- Hence 7(w) = 7/(w). Thus 7(w) still misses af! and ||7(@)||a <

||w]| 4 = m. Applying the inductive hypothesis to 7(@), we conclude that some Whitehead
minimal form @ of 7(@) in F(A) misses ai'. Then @ is also a Whitehead minimal form
of w, and Claim 1 is verified.

Thus we have established part (2) of the lemma.

To see that part (3) holds, note that if every Whitehead minimal cyclically reduced
form @ of w misses an aF! then w is simple in F(A).

Now suppose w is simple in F(A). From (2) we know that there is a @ Whitehead
minimal cyclically reduced form of w that misses aﬁl. Let w’ be another Whitehead
minimal cyclically reduced form of w in F(A). Then Aut(F(A))w’ = Aut(F(A))w, and
so by part (2) of Proposition 4-3, there exists a sequence of Whitehead automorphisms
T1,...,Tm Of F(A) with respect to A such that 7,,,...71 (@) = w’ and that ||7;...71 (W)||4 =
[lw]|a for i =1,...,m.

For j =0,1,...,m denote w; = 7j...7y (W), where wy = w.
Claim 2. We claim that for each j = 0, ..., m the cyclically reduced form of w; misses
some afﬂ.

We will establish Claim 2 by induction on j.

If j = 0 then wy = w and there is nothing to prove. Suppose now that j > 1 and that
the claim has been verified for w;_;.

Thus the cyclically reduced form of w;_; misses some a;tl. If 7; is a Whitehead auto-
morphism of the first kind, it is clear that the cyclically reduced form of 7;(w;_1) = w;
still misses some afl (this afl is not necessarily a?ﬂ). Suppose now that 7; is a White-
head automorphism of the second kind. The restriction that ||7j(w;—1)||la = |[w;—1]|
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forces the condition that either 7;(w;_1) is equal to w;_; after cyclic reduction, or
else 7; is a Whitehead automorphism of the second kind with multiplier a € B U B -1

where B = {z € AL A~!|x occurs in the cyclically reduced form of w;_1} (in particular
+1

7

a # aiﬂ). In both cases we see that the cyclically reduced form of w; still misses a
required. This completes the inductive step and the proof of Claim 2.

as

Applying Claim 2 with ;7 = m shows that the cyclically reduced form of w' = w,,
misses some a', and part (3) of the lemma is proved. [

PROPOSITION 4-5. Let 1 # g € H < F(A), where H is a proper free factor of F(A).
Then the following hold:
(i) The element g is primitive in H if and only if g is primitive in Fi.
(i1) There is an algorithm which decides, given g € F(A), whether or not g € F(A) is
primitive.
(iii) There is an algorithm which given g € F(A), whether or not g € F(A) is simple.

Proof.

We first prove part (1). The “only if” direction is obvious. Thus we assume that g € H
is primitive in Fly.

Let K < Fy be such that Fy = H « K. Let By = {h1,...,h;} be a free basis for H,
and Bx = {ki1,...,km} be a free basis for K. Then Br = {hy,...,h;,k1,..., kn} is a
free basis for Fiy (here [ +m = n).

Since g € H, then g is a freely reduced word over By, with cyclically reduced form w.
We prove that g is primitive in H by induction on the length m of w.

If w has length 1, then g is primitive in H, as required. If w has length m > 1, then
the fact that w is primitive in Fjy implies that w is not Whitehead minimal in F with
respect to the free basis Br of Fly. Hence there exists a Whitehead automorphism 7 of
Fy with respect to Bp such that ||7(w)||g, < m. (Note that at this point we do not yet
know that 7(w) € H since 7 is a Whitehead automorphism of Fy, and not of H).

By the same argument as in the proof of Lemma 4-4, we see that there exists a White-
head automorphism 7" of H = F(Bg) such that 7/(w) = 7(w). Then 7(w) = 7/(w) € H is
primitive in Fy with ||7(w)||s, < m. Therefore by the inductive hypothesis the element
7(w) = 7/(w) is primitive in H. Since 7/ € Aut(H), it follows that w is also primitive in
H, as required. Thus part (1) of the proposition holds.

To prove parts (2) and (3) for g € F(A) = F(ai,...,Fn), let g be a Whitehead
minimal form of g in F(A) (such g exists by Proposition 4-3. By part (1) of Lemma 4-4,
[|g]]4 = 1 if and only if g is primitive in F(A). By part (3) of Lemma 4-4, § misses some
aF' if and only if w is simple in F(A4). O

K2

REMARK 4-6. The algorithm described in part (2) of Proposition 45 is due to White-
head [61]. The first algorithms for deciding whether an element of Fy is simple in Fy
were provided by Stallings [57] and Stong [58] in 1990s. Their algorithms are somewhat
different from the algorithm given in part (3) of Proposition 4-5 above, but they are also
based on using Whitehead’s algorithm.

DEFINITION 4-7 (Principal quotient). Following the terminology of [34], for a finite
connected A-graph T’y and a folded A-graph T's, we say that I's is a principal quotient of
T’y if there exists a surjective A-morphism I'y — T's.

DEFINITION 4-8. Let w € Fy = F(A) be a nontrivial cyclically reduced word. We
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denote by C,, the A-graph which is a simplicial circle subdivided into n = ||wl|| 4 topological
edges, such that the label of the closed path of length n corresponding to going around
this circle once from some vertex x to x is the word w.

By definition, the graph C,, has a distinguished base-vertex x. Thus a principal quo-
tient of Cy, also come equipped with a distinguished base-vertex. We say that (I',x) is a
principal quotient of Cy, if I' is a finite connected folded A-graph, if x € VI' and if there
exists a surjective A-morphism f : Cy, — ' such that f(x) = x.

Note that if (I', z) is a principal quotient of C,, then there exists a unique path 7, » in
T" starting with = and with label w, and, moreover, this path is closed and passes through
every topological edge of T'.

The following lemma is an immediate corollary of the definitions:

LEMMA 4-9. The following hold:

(i)Let T'1 be a finite connected A-graph and Ty be a finite folded A-graph. Then Ty is
a principal quotient of I'1 if and only if I's can be obtained from I'y by the following
procedure: choose some partition VI = ViU---UV,, (with all V; # 0), then for each
i=1,...,m collapse V; to a single vertex to get an A-graph T}, and then fold the
graph T to obtain Ts.

(iW)If w € Fy = F(A) is a nontrivial cyclically reduced word and T' is a finite connected
folded A-graph, then T is a principal quotient of Cy, if and only if I is a core graph
and there exists a closed path v,, in T' with label w such that 7, passes through every
topological edge of T'.

A priori it is unclear that the functions fprim(n) and fsimp(n) are even computable
for a given Fy. We now give an algorithm that calculates dprim(9) and dgimp(g) for any
non-trivial g. This would then show that the functions fprim(n) and feimp(n) are indeed
algorithmically computable.

DEFINITION 4-10. Let 1 # g € Fy = F(A) and let w € F(A) be the cyclically reduced
form of g. We denote by Go(w) the set of all finite connected folded basepointed A-graphs
(T', ) such that there exists a closed path v from x to x labeled w with the property that
passes through every topological edge of ' at least once and such that either the labeling
map I' = Ry is not a covering (that is, there exists a vertex of I' of degree < 2N ), or the
labeling map I' — Ry is a covering and the element v € w1 (T, x) is simple in m (T, z).

We denote by G(w) the set of all finite connected folded basepointed A-graphs (T, x)
such that there exists a closed path v from x to x labeled w with the property that v passes
through every topological edge of T' at least once and such that the element v € 71 (T, x)
is primitive in m (T, x).

Let (I',z) € G(w) or (I',x) € Go(w). Since w is cyclically reduced and 7 passes through
every topological edge of I" at least once, every vertex of I' has degree > 2, so that I' is
a core graph.

Note further that the condition that - is simple in 71 (T', z) is equivalent to the condition
that w is simple in the subgroup H < Fy represented by (I, x). This follows from the
fact that the labeling map gives an isomorphism p : m (I, z) — H, with u(y) = w.

We recall the following basic fact:

LEMMA 4-11 ([34], p.13). Let T be a folded connected A-graph and let TV be a con-



18 NEHA GuPTA AND ILYA KAPOVICH

nected subgraph of T'. Let x be a vertex of IV, If H' < F(A) is the subgroup represented
by (I, %) and H is the subgroup represented by (T',x), then H' is a free factor of H.

REMARK 4:12. In the setting of Lemma 4-11, 71 (I”, %) is a free factor of w1 (T, *).

PROPOSITION 4-13. Let 1 # g € Fy = F(A) and let w € F(A) be the cyclically
reduced form of g. Then the following hold:

(1) The number dyrim/(g) equals to the minimum of #VT, taken over all (T',z) € G(w).
(i1) The number dgimp(g) equals to the minimum of #VT, taken over all (T, z) € Go(w).

Proof. We give a proof of part (2). The proof of part (1) is very similar in nature.
However, it additionally involves using part (1) of Proposition 4:5 to prove one of the
inequalities. For 1 # g € Fiy = F(A) and w € F(A) the cyclically reduced form of g, let

dsimp(g) = " I)Iliél( )#VF. First suppose that H < Fy such that [Fx : H] = dsimp(9) =
,x)EGo (w

dsimp(w), and that w € H is simple in H. Let (T, z) be the graph representing H as in
Proposition-Definition 2-10. We have that #VT' = dg;,(w). Since w € H, there exists a
path v from x to x in T with label w. Also since w € H is simple in H, v € m (T, z) is
simple in 71 (T, ). Let TV C T be the subgraph spanned by ~. Then v is a path from x to
z in IV that passes through every topological edge in IV at least once. If IV = T, then the
labeling map IV — Ry is a covering. Since + is simple in T' = IV, we have (T, z) € Go(w).
Since #VT' = #VT = dgimp(g), we have that dsimp(9) < dsimp(g). If IV # T, then
#VT' < #VT and #ET — #ET’ > 1. From Remark 4-12, (I, x) is a proper free factor
of (T, z). In this case the labeling map I — Ry is not a covering and (I, z) € Go(w).
Thus dsimp(g) < dsimp(g)' L

Conversely suppose that (I',z) € Go(w) with #VT = dgsimp(g). Let v be the closed
path from x to = labeled by w such that + passes through every topological edge of I'
at least once. If the labeling map I' — Ry is a covering then v € 71 (T, z) is simple in
m1(T, z) by definition of Go(w). Let H be the subgroup represented by (T, x). H is then
a subgroup of Fiy of index dgjmp(g) with w € H and w simple in H. Hence dgimyp(g) =
dsimp(W0) < dsimp(g). If the labeling map T' — Ry is not a covering, we use Lemma 3-4
to complete (I, z) to a finite cover (T', ) of Ry without adding any extra vertices and
by adding at least one edge. Again from Remark 4-12; (T, x) is a proper free factor of
(T, z). Hence v € (T, z) is simple in 7 (T, z). Let H be the subgroup represented by
(f,m) We have shown that w € H is simple in H. Since #VT = #VI = dsimp(g), we
see that dgimp(g) < dsimp(g). O

We can now prove:

THEOREM 4-14. Let Fy = F(A), where N > 2 and where A = {a1,...,an} is a free
basis of F. Then:

(i) There exists an algorithm that, given 1 # g € Fn, computes dprim(9) and dsimp(g)-
(i1) There exists an algorithm that, for every n > 1 computes fprim(n) and foimp(n)

Proof.

Let 1 # g € Fy and let w be the cyclically reduced form of g. Note that a finite
connected folded base-pointed A-graph (I', z) admits a closed path «y from z to = labeled
w and passing through every topological edge of I' at least once if and only if (I', x) is a
principal quotient of ', with = being the image of the base-vertex * of C,.

Therefore we can algorithmically find all the graphs in Go(w) as follows: List all par-
titions on V(. For each partition of V() as a disjoint union of nonempty subsets
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Vi,... Vi, collapse V; to a single vertex for ¢ = 1,...,m, and fold the resulting graph to
obtain a principal quotient (T, z) of Cy,, with  being the image of the base-vertex * of C,,,.
Let =y be the path from x to x in I" labeled w (so that, by construction, v passes through
every topological edge of " at least once). Then check whether the labeling map I' — Ry
is a covering, that is, whether it is true that every vertex of I' has degree 2N. If ' — Ry
is not a covering, the graph (T, ) belongs to Go(w). f T" — Ry is a covering, check, using
the algorithm from part (3) of Proposition 4-5, whether or not v € 1 (T, x) is simple in
the finite rank free group 71 (T, z). If v € 71 (T, z) is simple in 71 (T, ), we conclude that
the graph (T',z) belongs to Go(w), and v € 71 (T, z) is not simple in 71 (T, z), we con-
clude that he graph (T", z) does not belong to Go(w). Performing this procedure for each
partition of VC,, as a disjoint union of nonempty subsets produces the finite set Go(w).
Proposition 4-13 then implies that dgimp(9) = dsimp(w) = min{#VT : (T',z) € Go(w)}.

The algorithm for computing dprim (9) = dprim (w) is similar. We first find all the graphs
in G(w) as follows. Enumerate all partitions of VC,, as a disjoint union of nonempty
subsets. For each such partition Vi,...V,, collapse each V;, i = 1,...,m, to a vertex and
then fold the result to get a principal quotient (I',z) of C,,. There is a path ~ from x
to z in T labeled w. Then check, using the algorithm from part (2) of Proposition 4-5,,
whether or not v € 71 (T, ) is primitive in the free group (T, ). If yes, we conclude that
(T, z) € G(w) and if not, we conclude that (I', z) & G(w). This procedure algorithmically
computes the set G(w).

Proposition 4-13 then implies that dprim(9) = dprim (w) = min{#VT : (T',z) € G(w)}.
Thus part (1) of the theorem is verified.

Part (2) now follows directly from part (1) using the definitions of fyim(n) and
fsimp (’I’L)

]

REMARK 4-15. The complezity of the algorithms for computing dsimp(g) and dprim(9g)
given in part (1) of Theorem 4-14 is super-exponential in n = ||g||a. The reason is that
enumerating all principal quotients of the graph C., requires listing all partitions of the
n-element set VCy. The Bell number B,,, which is the number of all partitions of an
n-element set, grows roughly as n™.

4-2. Algorithmic computability of dyiu(g)

We now want to give an algorithm for computing dy;;(g). Computationally this al-
gorithm is not nearly as nice as the algorithms for computing dgimp(g) and dprim(9)
described above.

We briefly recall here some definitions and notations related to the Outer space. We
refer the reader to [28, 33, 59] for more details. Let N > 2 be an integer. The unpro-
jectivized Outer space cvy is the set of all of Fy-equivariant isometry classes of R-trees
T such that T is equipped with a free discrete minimal isometric action of Fj. The
projectivized Outer space CV y consists of the projective classes [T] where T € cvyy. Here
for T' € cvy the projective class [T] of T is the set of all ¢I' € cvy where ¢ € R>(. Here
cT' is the same set as T, with the same action of Fy, but where the metric on T is the
multiple by ¢ of the metric on T

The space ¢vy is the closure of cvyy in the equivariant Gromov-Hausdorff convergence
topology. It is known that ¢V consists precisely of all of Fiy-equivariant isometry classes
of R-trees T such that T is equipped with a free minimal very small isometric action of
Fy. The space CV y is the set of all projective classes [T] where T' € cvy (the projective
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class [T] for T € vy is defined similarly as above, as the set of f all ¢T' € Tvy where
cE RZQ).
The following result provides a useful characterization of filling elements:

PROPOSITION 4-16. Let1 # g € Fy. Then g € Fu is filling if and only if Staboy(ry)([g])
is finite.

Proof. Solie [54, Lemma 2.42, Lemma 2.44] proves that if g € Fy is non-filling then
Stabout(ry)(lg]) is infinite. Thus the the “if” direction of Proposition 4-16 holds.

Let us now prove the “only if” direction. Suppose Stabous(ry)([g]) is infinite. Choose
a basepoint [Tp] € CVy. Since the action of Out(Fy) on CVy is properly discon-
tinuous and since CVy is compact, it follows that there exist an infinite sequence of
distinct elements ¢, € Stabou(ry)(lg]) and a point [T] € CVy — CVy such that
lim,, oo [To]™ = [T]. Then for some sequence of scalars ¢, > 0 with ¢, — 0 as
n — oo we have lim, . ¢, Tow, = T in Ty. Since ¢,([g]) = [g], it follows that
llgll7 = limp 00 ¢nll@n(9)|lT, = 0. Then by Proposition 2-14 the element g is not filling
in Fy, as required. [J

PROPOSITION 4-17. Let Fy = F(A), where N > 2 and where A = {a1,...,an} is a
free basis of Fy. Then there exists an algorithm that, given a nontrivial element g € Fy,
decides whether or not g is filling in Fy.

Proof.

Let g € Fiv = F(A) be a nontrivial freely reduced word. By a result of McCool [42]
the group Staboyi(ry)([g]) is finitely generated and, moreover, we can algorithmically
compute a finite generating set Y = {t1,...,¥r} of Stabout(ry)(lg])-

In view of Proposition 4:16 we next need to determine if H := (Y) < Out(Fy) is
finite. Wang and Zimmermann [60] prove that for N > 2, the maximum order of a
finite subgroup of Out(Fy) is 2V N!. Also, the word problem for Out(Fy) is solvable
(even solvable in polynomial time [50]). Thus we then start building the Cayley graph
Cay(H;Y) of H with respect to Y. Using solvability of the word problem in Out(Fy),
for any finite k we can algorithmically construct the ball B(k) of radius k& cantered
at identity in Cay(H;Y). We construct the balls B(2¥N!) and B(1 + 2V N!). By the
result of Wang and Zimmermann mentioned above, the group H is finite if and only if
B(2VN!) = B(1 + 2N N)).

Thus we can algorithmically decide whether or not Staboys(ry)([g]) is finite, and hence,
by Proposition 4-16, whether or not g is filling in Fly.

]

THEOREM 4-18. Let Fy = F(A), where N > 2 and where A = {a1,...,an} is a free
basis of F. Then:

(i) There exists an algorithm that, given 1 # g € Fn, computes dsi;i(g).

(i1) There exists an algorithm that, for every n > 1 computes fri(n)

Proof. Part (2) follows directly from part (1) and from the definition of ff;;(n). Thus
we only need to establish part (1).

Given g € Fp, let w be the cyclically reduced form of g. Let C, and its princi-
ple quotients be as in Definitions 4-8, 4-7. Enumerate all principle quotients of C,, as
{T'y,...,Tx}. For each I'; with 1 < < k, two possibilities arise:

Case (i) (I'; is not a finite cover of Ry): In this case, we call I'; a “success”. In this



The primitivity index function for a free group 21
case we can complete I'; to a finite cover I'; of Ry and now m1(I';) is a free factor of
71(I';). Hence w is simple in in the subgroup represented by I'} i.e. w is not filling in the
subgroup represented by I'..

Case (ii) (T'; is a finite cover of Ry ): In this case there is a closed loop v; in T'; with
label w. We then use the algorithm from Proposition 4-17 to check whether ~; is filling
in 71 (T;). If ; is not filling in 71 (T';), and we call T'; a success.

Finally, observe that ds;;(g) = min{VT;|T; is a “success” } where this equality is estab-
lished in a manner similar to that in Proposition 4-13. Thus part (1) of the theorem is
proved. [

5. Special words and finite covers

The main goal of this section is to find a suitable sufficient condition implying that a
given freely reduced word is filling in a given finite index subgroup of F represented by
a finite cover of the rose Ry. Similarly we find a suitable sufficient condition implying
that a given freely reduced word is not simple in a subgroup of F represented by a given
finite cover of the rose Ry .

These goals are accomplished by constructing “simplicity blocking” and “filling forc-
ing” words in Fy of controlled length, provided by Proposition 5-12 and Proposition 5-7
below. Since the proofs of these Propositions are somewhat technical, we first illustrate
the idea of their proof by obtaining a related simpler statement, given in Lemma 5-1
below. The proof of Lemma 5-1 is due to Yuliy Baryshnikov. We then adapt the idea of
this proof to obtain Proposition 5-7 and Proposition 5-12.

LEMMA 5-1. Let N > 2. Then there exists a constant co = co(IN) > 0 with the follow-
ing property. Let (T, %) be a connected d-fold cover of the N-rose Ry, where d > 1. Then
there exists a freely reduced word v = v(T) with |v| < cod? such that for every vertex
x € VT the path p(x,v) from x labeled by v in T' passes through every topological edge of
T" at least once.

Proof. The graph I is a connected 2/ N-regular graph with d vertices and Nd topological
edges. We can view I as a directed graph where the directed edges are labeled by elements
of A (and without using A~'). Then I is a connected directed graph where the in-degree
of every vertex is equal to IV, which is also equal to the out-degree of every vertex. Hence
there exists an Euler circuit in I beginning and ending at * consisting of edges labeled
by elements of A that transverses each topological edge exactly once. Let v; be the label

of this Euler circuit. Then v; is freely reduced and no a;*

occurs in vy fori=1,..., V.
Enumerate the vertices as VI = {x1,23a,...,24} with * = 1. Starting at the vertex
x9 follow a path p; with label v1. Denote the terminal vertex of p; by 2. Let pj be
an Kuler circuit in I" starting and ending at z; and consisting only of edges labeled by
elements of A. Let vy be the label of this path pj. Note that since we only consider
positively labeled edges, the path py = p1p] is reduced and its label vivy is a positive
(and hence freely reduced) word over A. We now inductively define a positive word v;11
over A given that the positive words vy, ...,v; where i € {1,...,d — 1} have already
been defined. Starting at vertex z;11 we follow a path p; with label v; ... v;. Denote the
terminal vertex of the path p; by z;. Let p, be an Euler circuit at z; that transverses every
positively labeled edge exactly once. Let v;41 be the label of this path p;. We define our
word v := v1v3 . ..vq. Since following a path with label vy ...v; at any vertex v; already
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passes through every topological edge of I' at least once, so does following a path with
label v. Since each |v;| = Nd for 1 = 1,...,d, we have that |v| = Nd>. [

5-1. Simplicity blocking words and finite covers

In the above proof the concatenation argument always produces reduced edge-paths
because we only deal with edges and paths labeled by positive words over A. By contrast,
in proving Proposition 5-7 simple concatenation does not always work as it may result
in paths that are not reduced. Also, instead of paths labeled by v passing through every
edge of I', we need to ensure a more complicated condition which implies that all paths
labeled by v in T' pass through a certain “simplicity-blocking” path «(T',T'), which is
defined below.

DEFINITION 5-2. Let I be a finite connected folded A-graph, let T C T be a mazimal
tree in ' and let St be the corresponding basis of w1 (', *). Let u = y; . .. yn, be a nontrivial
freely reduced word over S%l. Thus each y; corresponds to an edge e; € E(I' = T). We
define a reduced path d(u) in I' as

d(u) := [x,0(e1)]rert(er), o(e2)]res ... ... enlt(en), *|r.

Note that if d = #VT then T has < d — 1 topological edges and hence |6(u)| < n+ (n+
Nd-1)=nd+d—-1=dn+1)—1.

DEFINITION 5-3. Let (T, *) be a finite folded core graph with a base-vertex x. Let T C T
be a mazimal subtree in T'. Let Sy = {by,...,b.} be the basis of w1 (T, *) dual to T.
Define a reduced edge-path o(I',T') from * to x in T' as

oD, T) := 6(b2b2 ... b2).

REMARK 5-4. Note that the path o(T, T) is reduced and represents the element b2b3 . . . b?
in w1 (L, x). The following proposition demonstrates the “simplicity-blocking” property of
a(T,T). The word b2b3 ...b2 has length 2r + 2 and hence |a(T, T)| < d(2r +3) — 1 where
d = #VT. In particular, if T is a d-fold cover of the rose Ry, then r = d(N —1)+1 and

|(T, T)| < d(2d(N — 1) +3) — 1 < 2d*(N — 1) + 4d.

PROPOSITION 5-5. Let I' be as in Definition 53 with T a maximal tree in I'. Let St
and «(T,T) be as before. Let v € w1(L, %) be such that v is represented by a cyclically
reduced circuit in T' containing «(T',T) as a subpath. Then v is not simple in 71 (T, ).

Proof. We first use Proposition 2-5 to rewrite v as a cyclically reduced word w in
St = {b1,...,b.}. Then the occurrence of a(I",T) in v produces an occurrence of the
reduced word b2b?...b2 in w. Hence, by Corollary 2-18, in this case 7 is not simple in
F(by,...,b.) =m(L, %).

U]

Note that Definition 2-3 of a core graph implies that if I' is a finite connected core
graph, then I' does not have any degree-1 vertices.

LEMMA 5-6. Let T be a finite connected core graph with d vertices. Suppose that w1 (T)
has rank > 2. Then for any any two edges e1,es € E(T'), there exists a reduced path
ple1, ea) starting at e1, ending at ea, and with |p(e1,ez)| < 3d.
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oo (&

Fig. 2. Proof by picture for Lemma 5-6

Proof. Pick a graph TV C T such that IV is a finite, connected, core graph with m (I")
of rank 2 and e, ey € ET'. Then there are precisely three possibilities for I'V. It can be
the wedge of two circles, or a theta-graph (a circle with a line segment joining two points
on the circle), or a barbell graph (two circles attached to two ends of a line segment). We
will show that the result holds for the graph I, and hence holds for our graph I". Our
proof is essentially going to be a proof by picture for each of these three cases. In Figure
2, green edges (or arrows) indicate e; and blue edges (or arrows) indicate e5. We indicate
the path p(e1, e2) in red with the e representing the starting point of p(ey, e2) and the —
representing the direction. The path p(eq, e3) starts at o(e;) and ends at ¢(vq). We call a
“cusp” any vertex of T of degree > 3 in I". The idea behind finding this path p(eq,es)
is always to travel along e; to the nearest cusp. Then if one is required to go back on the
same path one has already been on to get to es, one instead travels along a disjoint loop
at the cusp. Now one can go back to es and the path p(ep,es) will be reduced. If after
traveling from e; to the cusp one can get to e; without compromising the fact that the
path p(eq, e2) is reduced, then one simply goes to e3 and the path p(ey, es) so obtained
is reduced. From Figure 2 we see that the result holds.

O

The following fact plays a key role in the proof of Theorem 1-2:

PROPOSITION 5-7. Let N > 2. Then there exists a constant ¢ = co(N) > 0 with
the following property. Let (T',*) be a connected d-fold cover of the N-rose Ry, where
d>1 and let T CT be a mazimal subtree of I'. Then there exists a freely reduced word
v =, T) with |v] < cod® such that for every vertex x € VT the path p(z,v) from x
labeled by v in T contains o(T',T) as a subpath.

Proof. Let us begin by enumerating the vertices of VI' = x1,x2,...,24. Let H < Fy
be the subgroup of index d that is represented by (I", %). Let T" be a maximal tree in (I, *)
and let St = {b1,ba,...,b.} be the corresponding basis of 71 (T, *). By Remark 5-4, we
have |a(T, T)| < 2d?(N — 1) + 4d.

Let e be the first edge of the path «(T', T). Starting at the vertex x; € VT, there exists
a unique path [z1,*]7 of length < d — 1 with terminal edge e; (say). Lemma 5-6 then
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gives us a reduced path p(eq,e) = eyp’e of length < 3d. Let the word v; be the label of
the path p; = [x1, *]7p’a(T, T). Note that |vi| = |p1| < 2d*(N — 1) + 8d — 3.

Starting at the vertex x5 we follow a path p) that has label v;. Let ey be the terminal
edge of the path pj. Then from Lemma 5-6, the path p(es,e) = eapfe is reduced with
Ip(e2,e)| < 3d, and hence |pf| < 3d — 2. Let the word va be the label of the path
pe = p{a(T,T). Now the path pips = pip{a(T,T) is reduced. Notice that |vs| = |pa] <
2d?(N — 1) +7d — 1. We now define inductively a sequence of words and paths as follows:
Suppose we have already defined our words vy,vs,...,v;—1 which are respectively the
labels of reduced paths p1, ..., p;—1. Starting at vertex x; we follow the path p,_, labeled
by the word vive...v;—1. Let e; be the terminal edge of the path p,_;. Then the path
ples, e) = e;pl_e is reduced with [p}_ ;| < 3d — 2. Let the word v; be the label of the
reduced path p; = p/_;a(T, T). Now the path p,_,p; = p;_,p/_1a(l’,T) is reduced. Let
the word v := vyvs...v4. Then notice that at any vertex z; with 1 < ¢ < d, the path
p;_qp; is a reduced path labeled by vy ...v; that already contains the subpath «(T",T).
Thus for 4 = 1,...,d the path starting at x; labeled by the word v; ...v4 also contains
the subpath «(T',T). Since for all 2 < i < d, |v;| < 2d*(N — 1) + 7d — 1, we have that
|vo] <2d3(N — 1)+ 7d*> — 2 < (2N + 5)d3. Thus with ¢g = 2N + 5, we are done.

U]

If I is a finite connected graph and T' C I' is a maximal subtree, then, following the
conventions of Bass-Serre theory, we denote

m ([, T) := (ET|ee =1 for all e € ET,e =1 for all e € ET).

If T is equipped with an orientation, then 7 (T, T) is canonically isomorphic to the free
group F(E, T — E,T). Note also that 71 (T",T) is isomorphic to the fundamental group
of the quotient space I'/T (where T is collapsed to a point).

The freely reduced word v = v(T', T') in F(A) can be viewed as a “simplicity blocking”
word for the elements of the fundamental group of a d-fold cover I" of Ry .

COROLLARY 5-8. Let N > 2 and let ¢ = co(N) > 0 be the constant provided by
Proposition 5-7.

Let d > 1, let T be a connected d-fold cover of the N-rose Ry and let T C T' be a
mazimal tree in T'. Let x € VT, let v be a reduced edge-path from x to * in T' and let v
be the cyclically reduced form of the path v (so that the label of ' is a cyclically reduced
word in F(A)). Suppose that the label of v' contains as a subword the word v = v(I',T)
with |v| < cod® provided by Proposition 5-7.

Then v € w1 (T, ) does not belong to a proper free factor of m (T, *).

Proof. From definitions v € w1 (T, *). Using the tree 7' we can obtain a free basis
St ={b1,...,b.} of m(I',T). Then Proposition 2-5 tells us how to rewrite - in terms of
the basis S, both as freely reduced word and as a cyclically reduced word. Let a(T",T")
be as before. Then for the label of 4’ to contain the word v, we must have that the
cyclically reduced form of 4’ in terms of St contains b2b? ... b2 as a subword. Now from
Corollary 2-18 we know that ' is not simple in 1 (T", 7). Finally from Lemma 3.6 + is
not simple in m;(T',T), that is, v € 71 (T, *) does not belong to a proper free factor of
1 (F7 *)

O
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5-2. Filling forcing words and finite covers

To proceed further we will once again adapt the idea of proof of Lemma 5-1 to produce
a “filling-forcing” path B(I',T') of controlled length.

CONVENTION 5-9. If F(B) is a free group with |B| = r > 2, then the total number of
freely reduced words of length 3 in F(B) are L = 2r(2r — 1)%. Let {u1,...,ur} be the
set of all freely reduced words of length 3 in B¥'. Define a freely reduced word up :=
UIY1U2Y2U3Y3 - - . YL —1ur, where each y; is either the empty word, or y; € B, Namely,
whenever the concatenation ujuj1 is reduced to begin with, we define y; to be the empty
word. If this concatenation is not reduced, then we can always choose y; € B*! so that
ujyjuit1 18 reduced in F(B). Note that lu|p <3L+L—-1=4L—1.

We now define the path 5(I', T) as follows:

DEFINITION 5-10. Let (T, %) be a finite connected folded core graph with a base-vertex
. Let T C T be a mazimal subtree in I' with EL(I' = T) = {e1,...,er}, and let Sp =
{b1,...,b.} be the basis of w1 (T, *) dual to T. We put

BT, T) :=0(usy)-

Thus B(I',T) is a reduced edge-path from * to = in I representing the element ug, in
71 (T, ). Recall that ug, has length AL — 1 = 8r(2r — 1)? — 1. Therefore

BT, T)| < 8rd(2r —1)* — 1
where d = #VT. In particular, if T is a d-fold cover of Ry thenr =d(N —1)+1 and
|B(T,T)| < 8d(d(N — 1) + 1)(2d(N — 1) +1)? — 1 < 500d* N3.

The following proposition demonstrates the a “filling-forcing” property of the path
BT, T)

PRrROPOSITION 5:-11. Let ' be as in Definition 5-10 with T a mazximal tree. Let St and
B(T,T) be as before. Let v € w1 (T, *) be such that v is represented by a cyclically reduced
circuit in T containing B(T,T) as a subpath. Then v is filling in m (T, *).

Proof. We first use Proposition 2-5 to rewrite v as a cyclically reduced word w in
St = {b1,...,b.}. Then the occurrence of B(I',T) in ~ produces an occurrence of the
reduced word uiyiusysusys ... y;—1w; in w. Since every reduced word of length 3 now
occurs in w, by Proposition 2-19 v is filling in F(by,...,b,.) = 71 (T, x).

O

We are now in a position to prove a key proposition that is used in the proofs of
Theorem 1-1 and Theorem 1-2:

PROPOSITION 5-12. Let N > 2. Then there exists a constant ¢; = ¢1(N) > 0 with
the following property. Let (I',*) be a connected d-fold cover of the N-rose Ry, where
d>1andlet T CT be a maximal subtree of I'. Then there exists a freely reduced word
w = w(l,T) with |w| < c1d® such that for every vertexr x € VT the path p(z,w) from x
labeled by w in T contains (I, T) as a subpath.

Proof. Let us begin by enumerating the vertices of VI' = {x1,29,...,24}. Let H <
Fx be the subgroup of index d that is represented by (T, ). We have seen above that
|B(T,T)| < 500d*N3.
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Let e be the first edge of the path 3(T', T'). Starting at the vertex 21 € VT, there exists
a unique path [z1,*]7 of length < d — 1 with terminal edge e; (say). Lemma 5-6 then
gives us a reduced path p(ej,e) = ejp’e of length < 3d. Let the word w; be the label of
the path p; = [x1, *]7p'B(T, T). Note that |w;| < 500d* N3 + 3d.

Starting at the vertex xzo we follow a path p) that has label w;. Let e3 be the terminal
edge of the path p). Then from Lemma 5-6, there is a reduced path p(es, €) = eapfe with
Ip(ez, e)] < 3d and |p}| < 3d—2. Let the word ws be the label of the path p, = p{/B(T, T).
Thus |wsa| = |p2| < 500d*N3 + 3d.

Now the path pips = pip{B(T,T) is reduced, starts at xs, ends in S(T',T), has label
wyws and has length

[P, pa| = |wiws| < 2(500d* N3 + 3d).

We proceed inductively as follows. For 2 < ¢ < d suppose that we have already con-
structed freely reduced words wy, ..., w;—1 € Fx = F(A) of length |w;| < 500d* N3 + 3d
such that the word w; ...w;_1 is freely reduced and such that reading w; ... w;_1 from
the vertex xz;_1 gives a reduced path in I" ending in 5(T,T).

Starting at vertex x; we follow the path p,_; labeled by the word wiws...w;—1. Let
e; be the terminal edge of the path p;_ ;. Then the path p(e;,e) = e;pi_,e is reduced
with |p! ;| < 3d — 2. Let the word w; be the label of the reduced path p; = p 8(T, T).
We again have |w;| < 500d*N? + 3d. Now the path p,_,p; = p._,p/ B(I,T) is reduced,
starts with z; and ends in 8(I',T"), completing the inductive step.

Finally let w := wyws ... wg. Then w is freely reduced, has |w| < 500d° N3 + 3d? <
1000N3d°. By construction w has the property that for i = 1,...,d reading w from z;
gives a path in T containing 3(I", T') as a subpath. We put w(I',T) := w and ¢; = 1000N3.
The conclusion of the proposition now holds. [

The freely reduced word w = w(I', T') in F(A) can be viewed as a “filling forcing” word
for the elements of the fundamental group of a d-fold cover I' of Ry.

6. A lower bound for the non-filling index function

REMARK 6-1. Let Fy = F(ay,...,an) be free of rank N > 2, as before. It is well-
known (see, for example, [39]) that for an integer d > 1 there are < (d!) subgroups of
index d in Fy. Indeed, every subgroup of index d in Fy can be uniquely represented by
a finite connected folded 2N -regqular A-graph on vertices 1,...,d, where 1 is viewed as a
base-vertex. Fvery such graph T is uniquely specified by choosing an ordered N -tuple of
permutations in Sq. Indeed, if 01,...,0n € Sq, we construct T' with VI = {1,...,d} by
putting an edge from j to 0;(j) labeled by a; for 1 <i < N, and 1 < j <d.

Thus indeed Fxn has < (d)N subgroups of index d and it has < d(d))N subgroups of
index < d.

THEOREM 6-2. Let N > 2 and let Fy = F(A) where A = ay,...,an. Then there
ezists a constant ¢ > 0 and an integer M > 1 such that for all n > M we have

logn
Forim (1) 2 Foimp(n) 2 fran(n) > e S
Proof.
Let d > 1 be an integer. Denote m(d) = m := d(d)!"V. Enumerate all the subgroups
of Fy of index < d as Hy,...,H,, (we do allow repetitions in this list since the actual
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number of such distinct subgroups is < m(d). Let T'y,..., T, be the base-pointed finite
covers of the rose Ry representing the subgroups Hy,..., H,,.

For i = 1,...,m let w; € F(A) be the freely reduced “filling forcing” word with
|w;| < e1d® corresponding to I'; as provided by Proposition 5-12. We can now construct
a freely reduced and cyclically reduced word

Zd ‘= WiUTW2UD .« . Uy —1 W Um,
where each w; is either the empty word or u; € {ay,...,an}*!. Then
||2a]| < ermd® = c1d®(a)V.

We claim that dgi;(zq) > d. Indeed, suppose not, that is suppose that dyi(zq) < d.
Then there exists 1 < i < m such that z; € H; and that z4 is a non-filling element of
H; = m (T4, x). Let v be the path in T'; from * to * labeled by z4. By Proposition 5-12 the
fact that z4 is cyclically reduced and contains w; as subword implies that + contains the
path 8(T';,T) as a subword. Hence, by Proposition 5-11, « is a filling element in 7 (T';, *),
yielding a contradiction. Thus indeed df;(zq) > d.

Now for d > 1 let ng := c1d%(d!)N. We also put ng = 1. Then for every integer d > 0
we have fri(ng) > d. By Stirling’s formula, there is C' > 0 such that for all sufficiently
large d > 1 we have
log ng

d>C

— loglogng (1)

Similarly, using a standard calculus argument we see that for all sufficiently large d we
have

loglog(ng—1) ~ 2loglog(ng)
Let dy > 2 be such that for all d > dy the inequalities () and () hold and that the

log(ng—1) >1 log(ng) 1)

log =
function the function % is monotone increasing on the interval [ng,_1, 00).
oglogx

Now let n > ng4,+1 be an arbitrary integer. There exists a unique d > 0 such that
ng—1 < n < ng. Since fry(n) is a non-decreasing function, we get that fr(n) >
ffi”(nd_l) >d—1andd—12>dg.

Then

log(ng—1) C log(ng) C logn

i > frin(na— d—1>C > — > = ;
Trin(n) 2 frin(na-1) > loglog(ng—1) — 2 loglog(ng) — 2 loglogn

and the conclusion of the theorem follows. [

7. Non-backtracking simple random walk on Fy

CONVENTION 7-1. In this paper we use the standard big-O and big-© conventions.
For functions f,g : N — R we write f = O(g) (or sometimes f(n) = O(g(n))) if there
exist an integer ng > 1 and a constant C' > 0 such that for all integers n > ng we
have |f(n)] < Clg(n)|. For such f,g we write f = ©(g) if f = O(g) and g = O(f). In
particular, if f(n) = O(g(n)) and lim,,_,oc g(n) = 0 then lim,_,~ f(n) = 0.

Recall that we set for the free group Fiy = F(A) = F(aq,...,an) (where N > 2) a
distinguished free basis A = {ay,...,anx}. Put YT = AU A~L
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DEFINITION 7-2. We consider the following finite-state Markov chain X. The set of
states for X is Y. For x,y € T, the transition probability P, , from x to y is defined as:

P w1 yFa?
Yo, ify=a?

Let M be the transition matrix of X. That is, M is a 2N x 2N matrix with columns
and rows indexed by T where for z,y € T the entry m, , in M is equal to 1 if y # z~!
and is equal to 0 if y = 27 1.

We summarize the following elementary properties of X', which easily follow from the
definitions:

LEMMA 7-3. Let N > 2 and X be as in Definition 7-2. Then:

(1)X is an irreducible aperiodic finite-state Markov chain.
(i) The uniform probability distribution py on Y is stationary for X.
(iii) The matriz M is an irreducible aperiodic nonnegative matrix with the Perron-Frobenius
etgenvalue A = 2N — 1.

Proof. For any z,y € Y there exists z € T such that xzzy is a freely reduced word.
Hence P, .P,, > 0, which means that & is an irreducible Markov chain. The fact that
for every z € T, we have P, ; > 0 implies that X is aperiodic. Thus (1) is verified.

Part (2) easily follows from the definition of X by direct verification.

Part (1) implies that M is an irreducible aperiodic nonnegative matrix. Therefore, by
the basic Perron-Frobenius theory, the spectral radius A := max{|\«| : A« € C is an eigenvalue of M}
is a positive real number which is itself an eigenvalue of M called the Perron-Frobenius
eigenvalue of M. It is also known that A admits an eigenvector with strictly positive
coordinates, and that any other eigenvalue of M admitting such an eigenvector is equal
to A. It is easy to see from the definition of M that for the vector v with all entries equal
to 1 we have Mv = (2N — 1)v. Therefore A = 2N — 1, as claimed. [J

Let Q@ = TN = {w = x1,29,...|7; € T}. We put the discrete topology on Y and the
product topology on 2 so that 2 becomes a compact Hausdorff space. For every finite
word o € T* the cylinder Cyl(c) C Q consists of all sequences w €  with o as the
initial segment. For each o € T* the set Cyl(o) is compact and open in £ and the sets
{Cyl(o)|o € T*} provide a basis for the product topology on €.

By using the uniform distribution 1 on Y as the initial distribution for X', the Markov
chain X defines a Borel probability measure p on € via the standard convolution formula:

Foro=zy...2, € T,

/L(Cyl(a)) = M1 (l‘l)le,xz s Pxn—l,@’n'

Note that the support of i is exactly 0Fy, that is, the set of all semi-infinite freely
reduced words w = x1,Zs,... over Y.

CONVENTION 7-4. For o € T* (where T* is the set of all words over the alphabet
T) we denote u(o) = u(Cyl(o)). Also, for the remainder of this section we denote
A=2N —1.

The following is a direct corollary of the definitions:
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LEMMA 7-5. Leto=x1...x2, € T*, where n > 1. Then

sv—=t,  if 0 is freely reduced,
plo) = 2NENZDT
0, if o is not freely reduced.

NOTATION 7-6. Let v,w € YT*. We denote by (v,w) the number of times the word v
occurs as a subword of w.

Forn > 1 let S(n) be the set of all freely reduced words of length n in Y* (so that
#(S(n)) =2N2N-1)""1 = 28_\") and let p,, be the uniform probability distribution
on S(n).

The following statement is a special case, when applied to X, of Proposition 3.13 in [20]
(which in turn is based on the proof of the main result of Dinwoodie [23]).

PROPOSITION 7-7. Let € > 0 and 0 < £ < 1. Then there exist constants C7 > 1 and
Cy > 0, depending on € and ¢, with the following property. Let n > 1 and o € T* be a
freely reduced word be such that |o| = £logyn = Llogn/logA. Then for w, € S(n) we

have
1= Pﬂn( <Ua wn> - n,LL(O')‘ < n5+(1_4)/2) — O(C;nc2>7
and therefore, since A\ = 2N — 1 and p(c) = 21;7];1/\—\0| _2No1y,
2N —1 .
1— Py, (|(o,wn) — Wnl—t’ < n5+(1—€)/2) _ O(Cf"c )

COROLLARY 7-8. Let ¢ > 0 and 0 < £ < 1. Let constants C; = Ci(g,¢) > 1 and
Cy = Cs(g,£) > 0 be the constants provided by Proposition 7-7.

(i)Let n > 1 and let E, C S(n) consist of those w, € S(n) such that for every freely
reduced o € T* with |o| = Clogy n = £logn/log A\ we have

2N -1

1-¢
oN

< pet(=0/2

<U> wn> -

Then
1-P,, (w, € E,) =0 (necl_”cz> .

(ii)Suppose that ¢ > 0,0 < £ < 1 are chosen so that £ < 1 — 2, and thus 1 — ¢ >
e+ (1—4¢)/2. Let H, C S(n) consist of all w, € S(n) such that for every freely
reduced o with |o| = {logy n we have

2N -1

(o, wy) > v nt=t

Then for n > ng we have
1- P, (w, € Hy,) =0n‘C;™").

Proof. For every freely reduced o with [o| = £logy n let Ej, , consist of all w, € S(n)
such that |(o,wy,) — nu(o)| > ne+t1=0/2 Thus, by Proposition 7-7, for every such o we
C
have Pﬂn (E’I/'L,O') = O(Cl_n 2)'

Suppose w,, € E,. Then there exists freely reduced o € T* with |o| = £log, n such
that w, € EJ ,. Since there are O(n’) freely reduced words o with || = ¢logy n, it

follows that P, (S(n)\ E,) = O (neCf"%). Hence 1 — P, (E,) = O (nZC’f”cz), as
required, and part (1) of Corollary 7-8 is verified.
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Part (2) now directly follows from part (1). [

NOTATION 7-9. For a freely reduced word w € Y* let v(w) be the maximal initial
segment of w such that ((w))~! is a terminal segment of w. Let @ be the word obtained by
removing the initial and terminal segments of w of length |c(w)|. Thus w is the cyclically
reduced form of w.

The following facts are well-known and easy to check by a direct counting argument;
see [2] for details:

LEMMA 7-10. The following hold:
(i)For every 0 < g9 < 1 there exists Co > 1 such that for w, € S(n)

1= P, (|e(wn)] < eon) = O(C5™").
(i) There is C > 1 such that for w, € S(n)

1— Py, (wy is not a proper power in Fn) = O(C™").

8. Bounding below the simplicity and the non-filling index for random elements

Recall that for a nontrivial element g € Fv we denote by dsimp(g) the smallest d > 1
such that there exists a subgroup H < Fy with [Fy : H| < d such that g € H and,
moreover, that g belongs to a proper free factor of H. Similarly, for g € Fy — {1} we
denote by dprim (g) the smallest d > 1 such that there exists a subgroup H < Fy with
[Fv : H] < d such that g € H and, moreover, that g is primitive in H. As we have seen,
for every g € Fy — {1} we have dgimp(9) < dprim(g9) < ||glla, where A = {a1,...,a,}
is a free basis of Fj. Recall that for n > 1 we denote by pu, the uniform probability
distribution on the sphere S(n) C F(A) = Fy.

For the remainder of the paper we adopt the convention that whenever we mention a
word of length ¢ > 0 where ¢ is not necessarily an integer, we actually mean a word of
length |¢].

We can now prove Theorem 1-2 from the Introduction:

THEOREM 1-2. Let N > 2 and let Fy = F(A) where A = {a,...,an}.

Then there exist constants ¢c(N) >0, D1(N) > 1, 1 > Do(N) > 0, such that forn >1

and for a freely reduced word w, € F(A) of length n chosen uniformly at random from
the sphere S(n) of radius n in F(A) we have

1-P,, (dsimp(wn) > clog!/? n) =0 ((Dl)anz)

and
1-P,, (dfill(wn) > clog'/? n) =0 ((Dl)_nDz)

so that

lim P,, (dsimp(wn) > clogl/3 n) =1

n— o0
and

ILm P, (dfill(wn) > 610g1/5 n) =1

Proof.

Choose € > 0 and 0 < ¢ < 1 such that £ < 1 —2e (for concreteness we can take £ = 1/2



The primitivity index function for a free group 31

and e =1/5). Thus 1 — € > e+ (1 —£)/2 > 0. Let ng > 1 be such that for all n > ng we
have
2N -1
AN
(The choice of the number 0.99 here is essentially arbitrary, and the argument would
also work if 0.99 is replaced by any other number sufficiently close to 1.) Let C; > 1

(0.99n)1 ¢ > (0.99n)5F1=0/2 > 1,

and C5 > 0 be the constants provided by Corollary 7-8. Note that we can assume that
0 < C5 < 1 since decreasing Cs preserves the validity of the conclusion of Corollary 7-8.

For w,, € S(n) denote by w,, the subword of w,, obtained by removing the initial and
terminal segments of length 0.005n from w,,. Then |w},| = 0.99n so that w/, € S(0.99n).
Since the uniform distribution on A*! is stationary for the Markov chain X, it follows
that under the map S(n) — S(0.99n), w, — w!, the uniform distribution p, on S(n)
projects to the uniform distribution pg. g9, on S(0.99n).

Let H, be the event that for w, € S(n) the word w], satisfies the property that for
every freely reduced word o € F(A) with |o| = £log, (0.99n) we have

(o,wl) > 1.

Since for n > ng we have 2=1(0.99n)=¢ > (0.99n)=T(1=9/2 > 1, Corollary 7-8 implies
that

1= Py (H}) = 0((0.990)Cy %) = 0 (nf(Cr) ™) =0 ((cf) ),

where C] = (Cy + 1)/2 and C5 = C5/2 (for the last inequality we use the fact that
0 < Cy < 1). Note that C] > 1 and 1 > C% > 0.

Let @Q,, C S(n) be the event that for w, € S(n) we have 1(w,) < 0.001n. Lemma 7-10
implies that P, (Q,) > 1—0(Cy") for some constant Cy > 1. Now let H, be the set of
all w,, € H/ such that ¢(w,) < 0.001n, that is, H! = H], N Q..

Then

) =0 () 0G5 20 mm 0 (D0™),

where D1 = min{Cy, C]} and Dy = min{C%,1} = C%, so that D; > 1 and 1 > D5 > 0.

We choose ¢ > 0 such that coc® < where ¢y > 0 is the constant provided
by Proposition 5-7.

Let n > ng and let w,, € S(n) be such that w, € H,.

Since ¢(wy,) < 0.001n and since w), is the subword of w,, obtained by removing the
initial and terminal segments of length 0.005n from w,,, it follows that w!, is a subword
of the cyclically reduced form 1w, of w,.

Let d = dsimp(Wn) = dsimp(Wp). We claim that d > clogl/3 n.

Indeed, suppose not, that is, suppose that d < clog1/3 n. Let (T, zg) be a d-fold cover
of the N-rose (Ry,*) such that w, lifts to a loop 7, from xg to z¢ in T" such that ~,
belongs to a proper free factor of m (I', 2p). Note that since @, is cyclically reduced, the
closed path 7, is also cyclically reduced.

Let T be a maximal subtree of T and let v = v(I",T) be the freely reduced word in
F(A) with |v] < cpd?® provided by Proposition 5-7. Thus |v] < cod® < coc® logn.

By definition of H]/, the fact that w, € H) implies that the word w] contains as
subwords all freely reduced words in F(A) of length

2log(2N—-1)>

£1og,(0.99n) = logn — |1log0.99])

1
log(2N — 1)(
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There is n1 > ng such that for all n > n; we have

14

¢
> " logn.
= 2log(eN —1) &"

Hence for n > ny the word w), contains as subwords all freely reduced words of length
¢

m logn. Since |v| < coc®logn < TTogeN—T) logn, it follows that w), contains v
as a subword.

Recall that w!, is a subword of the cyclically reduced form w,, of w,. Therefore, by
Proposition 5-7, the path ~, in T', labeled by @, contains a(I",T) as a subpath. Hence,
by Corollary 5-8; 7, does not belong to a proper free factor of (T, xzp), yielding a
contradiction. Thus d = dgjmp(wn) > clogl/?’ n, as claimed.

We have verified that for every w,, € H,/, where n > ny, we have dgimp(wp) > clogl/3 n,

and we also know that

1= Py, (H) =0 ((D)™"").

The conclusion of Theorem 1-2 regarding dgimp(wy,) is established.

The proof of the conclusion of Theorem 1-2 regarding d s, (wy,) is identical, with Propo-
sition 5-11 and Proposition 5-12 used instead of Proposition 5-7 and Corollary 5-8. We
leave the details to the reader.

O

9. Untangling closed geodesics on hyperbolic surfaces
9-1. Lower bounds for degy, , and fx,, for hyperbolic surfaces.

We need the following well-known fact:

LEMMA 9-1. Let S be a compact connected surface with b > 2 boundary components
such that w1 (S) is free of rank > 2. Let v be an essential simple closed curve (possible
peripheral) on S and let © € S be a base-point for S. Then the element of (S, x) given
by any loop at x corresponding to -y belongs to a proper free factor of (S, x).

Proof.

Without loss of generality we may assume that = € ~.

By assumption, we have 71(S,z) = F,, with m > 2. Since S has b > 2 boundary
components, it follows that every boundary component (when realized as a loop at x)
represents a primitive element of Fj,.

Let v be an essential simple closed curve on S. If v is peripheral, then ~ is a primitive
element of F),, and thus belongs to a proper free factor of F,.

Suppose now that ~ is non-peripheral. Then cutting S along 7 yields a nontrivial
splitting of F,, = m1(S) as an amalgamated product (if v is separating) or as an HNN-
extension (if v is non-separating) over (y) = Z. Suppose that v is separating, and it
cuts S into two compact surfaces S; and Se with S; NSy =~ and S; U.Sy; = 5, each of
71(S1), m1(S2) is free of rank > 2. Thus F,,, = m1(S, z) = m1(S1, z) %, m1(S2, ). The fact
that b > 2 means that at least one of S, 52 has > 2 boundary components. Assume for
concreteness that S; has > 2 boundary components. Then « is primitive in (S, x).
Thus we can find a free basis aq, ..., a,;, of m1(S1,x) such that m > 2 and v = a,,. Also
choose a free basis by, ..., b of 71 (S, x), where k > 2. Let v € F(by,...,b;) = m1(Se, )
be the freely reduced word equal to 7 in 71 (S2, ). Then the above splitting of 7 (S, ) can
be written as 71 (S, ) = F(a1,...,am) *q,,= F'(b1,...,b;). By eliminating the generator
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a, from this presentation, we see that 71 (S,2) = F(a1,...,am—1,b1,...,bg). Thus v =
v(by,...,bx) belongs to a proper free factor F(by,...,bx) of m1(S,z), as required. The
case where 7 is non-separating is similar, and we leave the details to the reader.

Note that there is a general result (see, for example, [4, Lemma 4.1] and [55, Propo-
sition 5.1]) which says that whenever the free group Fy (with N > 2) splits nontrivially
as an amalgamated free product or an HNN-extension over a maximal infinite cyclic
subgroup (g), then g belongs to a proper free factor of Fry. [

The following proposition relates the degree function degy; p(’y) for curves in hyperbolic
surfaces discussed in the Introduction, with the simplicity index ds;ymp in free groups for
curves contained in suitable subsurfaces:

PROPOSITION 9-2. Let (X, p) be a compact connected hyperbolic surface with (possibly
empty) geodesic boundary. Let 1 C X be a compact connected subsurface with > 3
boundary components, each of which is a geodesic in (X, p). Let x € 31 be a base-point.
Then for every nontrivial element g € w1 (X1,x) represented by a closed geodesic v4 on
3 we have

degE,p('Yg) > dsimp(g; 771(217 x))

Proof. By assumption 71(31,z) & F,, is free of rank m > 2. The fact that X is
a subsurface of ¥ with geodesic boundary implies that if g € m1(X1,2) is a nontrivial
element, then the shortest geodesic in ¥ in the free homotopy class of ¢ is contained in

%;. Indeed, the universal cover X := (X1, z) is a convex (X1, *)-invariant subset of

(2, 2) = H2. Therefore for every nontrivial element g € m(X1,z) the axis Awis(g) of g
in H? is contained in X. The image of Axis(g) in X is the unique closed geodesic in the
free homotopy class of g; the fact that Azis(g) C X implies that this closed geodesic is
contained in X1, as claimed.

Now let 1 # g € m1(X1, ) and 4 be as in the assumptions of the proposition. Thus
g is contained in ¥;.

Let d = degy, ,(vg). Let p: 5 — ¥ be a d-fold cover of ¥ such that g lifts to a simple
closed geodesic 74, in 5. Let &, C S be the connected component of the full preimage
p~1(21) of ¥; containing 7,. Then p : Zl — ¥, is a d’-fold cover of ¥; with d’ < d. Pick
a base-point 2/ € £ such that p(z') = z.

The cover p: (f)l, a’) = (X1, ) corresponds to a subgroup H < (31, %) of index d,
such that p#(m(El, x)) = H, and that py maps 71 (31, 2') isomorphically to H.

Since 21 is a cover of X1, the surface Zl has > 2 boundary components and 7r1(21)
is free of rank > 2. By Lemma 9-1, the fact that 7, is an essential simple closed curve
on £, implies that 74 corresponds an element w € 71(21,2') which belongs to a proper
free factor of (31, 2'). Since p(Vg) = 74, we have py(w) = g € H. Since py maps
wl(il, x') isomorphically to H, we conclude that g belongs to a proper free factor of H.
Thus H < m1(Z1,2), [71(X1,2) : H] = d’ and g belongs to a proper free factor of H.
Therefore d' > dgimp(g; ™1 (X1, x)). Therefore

degy, ,(vg) = d > d' > dgimp(g; ™1 (31, 1)),

as required.
0

THEOREM 9-3. Let ¥ be a compact connected surface with a hyperbolic structure p and



34 NEHA GuPTA AND ILYA KAPOVICH

with (possibly empty) geodesic boundary. Let 31 C ¥ be a compact connected subsurface
with > 3 boundary components, each of which is a geodesic in (3, p). Let x € X1 and let
A be a free basis of m (X1, x).

Let w, € F(A) = 71(21,2) be a freely reduced word of length n over AT generated
by a simple non-backtracking random walk on F(A) = 71(X1,x). Let v, be the closed
geodesic on (X, p) in the free homotopy class of w,,.

Then there exist constants ¢ > 0, K’ > 1 such that

lim Pr(degy, ,(vn) > clogt?n) =1
n—00 ’

and such that with probability tending to 1 as n — oo we have that w, € w1 (X, x) is not
a proper power and that n/K' < {,(v,) < K'n.

Proof. As we have seen in the proof of Proposition 9-2, the fact that X is a subsurface
of ¥ with geodesic boundary implies that if g € 71(X1, %) is a nontrivial element, then
the shortest geodesic in ¥ in the free homotopy class of g is contained in Y.

By Theorem 1-2 and Lemma 7-10, there exist an integer ng > 1 such that for n > ng,
with probability tending to 1 as n — oo we have that w, is not a proper power in F(A),
that 0.99n < ||wy,||a < n = |w,|a and dsimp(wn; F(A)) > clog'/3 n, where ¢ = ¢(A) > 0
is the constant provided by Theorem 1-2 for the free group F,, = F(A).

Proposition 9-2 now implies that with probability tending to 1 as n — oo we have

degz,p(Vn) > dsimp(wn; FI(A)) > CIOgl/g n.

Finally, the fact that 3X; has geodesic boundary in (3, p) also implies that there exists
a constant K > 1 such that for every nontrivial element g € 71(21, z) represented by a
closed geodesic v on (X, p) we have ||g||a/K < £,(y) < K||g||a. Since with probability
tending to 1 as n — oo we have 0.99n < ||lw,|la < n = |wy|a, it follows that for all
sufficiently large n with with probability tending to 1 as n — oo we have 0.99n/K <
2y(n) < Kn, as required.
O

REMARK 9-4. Theorem 9-3 directly implies (e.g. by taking ¥ to be a suitable pair-of-
pants subsurface) that if (X, p) is a compact connected hyperbolic surface of genus > 2
with (possibly empty) geodesic boundary, then there exists ¢ = ¢/(X) > 0 such that for
every L > sys(p) we have f,(L) > c/(log L)*/3.

9-2. Lower bounds for deggllf and fgilpl for hyperbolic surfaces.

Our results about the behavior of dyy; in free groups can also be used to obtain
fill

information about degZ, p for compact hyperbolic surfaces.
LEMMA 9-5. Let (3, p) be a compact connected hyperbolic surface with b > 1 geodesic
boundary components. Then the following hold:
(i)If v is a non-filling closed geodesic on (X, p) , then v represents a non-filling element
of the free group 7 (%).
(ii)For any closed geodesic v on (X, p) we have degglpl (7) = dpiu(y, m(%)).

Proof. To see that (1) holds, let v be a non-filling closed geodesic on (X, p). Then either
~ is contained in a proper compact connected subsurface 1 of (¥, p) with geodesic
boundary or ¥ — v is a union of disks, peripheral annuli and non-peripheral annuli
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Aq,..., A (where k > 1). In the latter case the simple closed geodesics aq, ...,
homotopic to the core curves of Ay, ..., A are disjoint from -y, and we put ¥; to be the
surface obtained by cutting X open along the curves aq, ..., ag.

In either case, cutting > open along the boundary of ¥, provides a nontrivial graph-of-
groups decomposition of 1 (X) with maximal cyclic edge groups and such that v belongs
to a vertex group of this decomposition. Hence « is non-filling in 71 (X). Thus (1) holds.

For (2), let v be a closed geodesic on (3,p). Let d = degglpl (v) and let & — ¥
be a degree-d cover such that « lifts to a closed non-filling geodesic 5 on $3. This cover
corresponds to a subgroup H = m1(X;) < m1(2) of index d containing the element ~. The
fact that 7 is a non-filling curve in ¥; implies, by part (1) of this lemma, that + is a non-
filling element of H = m;(X;). Therefore, by definition, dgi; (v, m (X)) < d = degglpl (),
as required. [J

THEOREM 9-6. Let (X, p) be a compact connected hyperbolic surface with b > 1 geodesic
boundary components. Then there exists C' > 0 such that for all sufficiently large L we
have

fill , logL
fs,(L)=C foglog L

Proof. Let m(X) = Fy = F(A) where A = {aq,...,an} with N > 2. The universal
cover X = (X,7) is a convex 7 (X)-invariant subset of H2. Therefore the orbit map
F(A) — H?, w + wx (where x € H? is some basepoint) is a m; (X)-equivariant quasi-
isometry. Hence there exists K > 1 such that for every closed geodesic v on (X, p)
representing an element w € m1(X) we have ||w||a/K < £,(y) < K||w]||a.

By Theorem 6-2 there exists a sequence of nontrivial cyclically reduced elements w,, €
F(A) such that ||w,||4 = n and that for all sufficiently large n we have

logn
it(wn, F(A) > Cr—r—ri,
dyin(wy, F(A)) Cloglogn

where C' > 0 is the constant provided by Theorem 6-2. By Lemma 9-5, it follows that for
all sufficiently large n we have

' logn
all g
degé,p(V) > dyiu(wn, F(A)) = C@'

Since ||w||a/K < £,(v) < K||wl||a, the statement of the theorem now follows. [

THEOREM 9:-7. Let (X, p) be a compact connected hyperbolic surface with b > 1 geodesic
boundary components. Let A = {a1,...,an} be a free basis of m1(X,x), so that m (X) =
F(A). Let w, € F(A) = m1(X,2) be a freely reduced word of length n over A*' generated
by a simple non-backtracking random walk on F(A). Let v, be the closed geodesic on
(X, p) in the free homotopy class of w,,.

Then there exist constants ¢; > 0, K1 > 1 such that

lim Pr(degglff(vn) > 1 log!/Pn) =1

n—oo
and such that with probability tending to 1 as n — oo we have that w, € 71 (X, x) is not
a proper power and that n/Ky < £,(7y,) < Kin.

Proof. The proof is essentially identical to the proof of Theorem 9-3, and we leave the
details to the reader. [
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9-3. Degree and index functions based on the geometric intersection number

Let ¥ be a compact connected surface admitting some hyperbolic structure (so that
m1(X) is free of rank > 2). If p is a hyperbolic metric on ¥ and v is a closed geodesic
with respect to p on X, we denote by d,(v) the smallest degree of a finite cover of ¥ such
that ~ lifts to a simple closed geodesic in that cover.

We adopt the following conventions regarding the geometric intersection number for
curves on surfaces. Let S is a compact surface and o, : S' — S be homotopically
nontrivial closed curves on S. Then the geometric intersection number ¢([a], [5]) is defined
as the minimum cardinality |(a; x 81) "1 (A)| where A C S x S is the diagonal and where
aq, 1 vary over all closed curves in the free homotopy classes [a], [3] respectively. It
is well-know that if p is a hyperbolic structure on S (where we always assume that
the boundary curves of S, if any, are geodesic with respect to p) and if «, 5 are distinct
closed primitive (i.e. not proper powers) geodesics on .S with respect to p then i([a], [3]) =
|(cr x B)7L(A)]. See [22] for a proof in the case of simple closed geodesics, and see p. 143
in [7] and p. 99 in [6] for the general case.

Denote by Cs; the set of free homotopy classes of essential closed curves on ¥ that are
not proper powers in 71 (X). For [y] € Cx denote by ds([7]) the smallest degree of a finite
cover of ¥ such that a representative of [7] lifts to a simple closed curve in that cover.
Note that if p is a hyperbolic metric on X, then for every [y] € Cs there exists a unique
closed p-geodesic v € [y] and d, () = dx([7]). Moreover, as noted above, in this case the
geometric intersection number i([v], [7]) is realized by .

For an integer m > 1 we define fx(m) as the maximum of dx([y]) where [y] varies over
all elements of Cx with i([y],[y]) < m. Similarly, for [y] € Cx denote by d5"([4]) the
smallest degree of a finite cover of ¥ such that a representative of [v] lifts to a non-filling
closed curve in that cover. Then define f{™(m) as the maximum of d"'([y]) where [4]
varies over all elements of Cs; with #([y], [7]) < m. Since simple curves are non-filling, we
always have ds([7]) > d&™([]) and hence fs(m) > fL"(m).

A result of Basmajian [3, Theorem 1.1] (which also can be derived from the results of
Bonahon [7]) states:

PROPOSITION 9-8. Let (X, p) be a connected compact hyperbolic surface with a (possi-
bly empty) geodesic boundary. Then there exists a constant K = K(3,p) > 1 such that
for every closed geodesic v on (X, p) we have

i), 1)) < Kep(m)*.

Theorem 9-6 can be used to derive a lower bound for fx:

THEOREM 9-9. Let X be a compact connected surface admitting some hyperbolic struc-
ture. Then there exist a constant ¢ = ¢(X) > 0 and an integer mg > 1 such that for all
m > mg we have

folm) = £ ) = e BT

Proof. Fix a hyperbolic metric p on ¥. By Proposition 9-8, there exists a constant
K = K(p) > 0 such that for every [y] € Cx, we have i([7],[7]) < K{,([])?. Let C' =
C'(%, p) > 0 be the constant provided by Theorem 9-6. Then Theorem 9-6 implies that
there exist a sequence of closed geodesics v, on (%, p) and an integer ng > 1 such that
for every n > ng we have £,(v,) < n and dém([fyn]) > log’ign. Therefore i(vn,1n) <
Kép('yn)2 < Kn? for all n > nyg.
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Fix an integer n1 > ng such that for all integers n > n; we have (n + 1)2 < 2n2.

Let m > Kn% be an integer. Choose an integer n > n; such that Kn2<m< K(n+ 1)2.
Then

i([ynl], [yn]) < Kn? <m < K(n 4+ 1) < 2Kn?

ﬂ

and n > Y2,

Therefore i([vn], [vn]) < m and

%

Vm
dfill([ n]) > C/ logn > C/ 1Og \/ﬁ _ C, logm - log \Y 2K

1
2
Z s = )
loglogn log log \/% log (% logm — log v/ QK)

and the statement of Theorem 9-9 follows. [

REMARK 9-10.

Note that the linear upper bound for fs ,(m), obtained by Patel [44] does not directly
imply any upper bound for fs;(m). The reason is that on a fized hyperbolic surface there
are arbitrarily long simple closed geodesics (which thus have self-intersection number 0).
The lower bound for fs. given by Theorem 9-9 was the first bound (upper or lower) known
for fx. Subsequent to our paper and in part motivated by it, Aougab, Gaster, Patel and
Sapir [1] proved that fx(m) = ©(m), that is fx.(m) has precisely linear growth in m.

Appendiz A. Estimating the primitivity index function from below by the residual
finiteness growth function function

by Khalid Bou-Rabee
City College of the City University of New York

In this appendix we relate the primitivity index function fp,.im(n; Fnv) to the residual
finiteness growth function introduced in [8]. Applying deep results of Gady Kozma and
Andreas Thom [38] then improves the lower bounds for the primitivity index function
to almost linear.

We first recall the residual finiteness growth function. Let G be a finitely generated,
residually finite group. The divisibility function D(g) = D(g; G) is the minimum [G : H]
where H varies over all subgroups of finite index in G with g ¢ H. For a fixed finite gen-
erating set A C G the residual finiteness growth function is RFg a(n) := max{D(g; G) :
g € G,lgla < n,g # 1}. Here |g|4 is the word-length of g with respect to the word
metric on G corresponding to A. In the case where G is a nonabelian free group Fy with
word-length |- |4 given by a free basis A, we simply use this basis and denote the function
by RFg(n).

Next, we recall the primitivity index function introduced by Gupta and Kapovich
above. Fix a free group Fy of finite rank N > 2 with a free basis A = {a1,...,an}. The
primitivity index dprim(9) = dprim(g; Fn) of an element g € Fy \ {1} is the minimum
[Fv : H] where H varies over all subgroups of finite index in Fy containing g as a
primitive element. Recall that the primitivity index function is

fp'r'im(nQ FN) = fprim(n) = max{dprim(g) 19 €G, |g‘A <n,g 7é 1,9 is not a proper power }

THEOREM Al. Let G = Fy be a free group of finite rank N > 2. Then RFg(n) <
fprim(dn+4) for alln > 1.
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Proof. For each n > 1 let w,, be an element in Fy with |w,|4 < n such that Dg(w,) =
RFg(n). In the free group Fy commutativity is a transitive relation on the set of all
nontrivial elements, and therefore there exists a € A such that [wy,a] # 1. Also, in a
free group any two non-commuting elements freely generate a free subgroup of rank two.
Thus wy,, a freely generate a free subgroup of rank 2 in Fi, and hence v, := [wy,, w?] # 1.
(In [13, 15] the property, that for every nontrivial w € Fy there exists a € A such that
[w,w?] # 1, is referred to as Fy being I-malabelian). Note that |[w,,we]|a < 4n + 4.
Since 7, is a nontrivial commutator in Fi, a result of Schiitzenberger [51] then implies
that v, is not a proper power in Fy.

Let H be a finite-index subgroup of G with ~,, primitive in H. If w,, € H and w? € H,
then [w,,w?] € [H, H], and thus [wy,,w?] cannot be primitive in H. Hence, w,, or w®
is not in H. In either case, it follows that [G : H] > Dg(w,) = RFg(n). Since H

@] is primitive, it follows that

was an arbitrary finite-index subgroup for which [w,,,w?

RFg(n) < fprim(4n +4), as desired. [

A result of Kozma and Thom [38] about lower bounds for RF g, (n) now directly
implies:

COROLLARY A2. Let G = Fy be free of finite rank N > 2. There exists a constant
C > 0 such that for all sufficiently large n we have

n 1/4

If we assume Babai’s Conjecture on the diameter of Cayley gm}lahs of permutation groups,
then for all sufficiently large n we have fyrim (4n + 4) > n Tl

At the time of this writing, for a nonabelian free group G, the best upper and lower
bounds for fyrim(n) and RFg(n) have the same asymptotic behavior. Is it true that
fprim(n) and RFg(n) have the same asymptotic behavior?
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