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Abstract— This paper introduces techniques for mosquito
population surveys in the field using electrified screens (bug
zappers) mounted to a UAV. Instrumentation on the UAV
logs the UAV path and the GPS location, altitude, and time
of each mosquito elimination. Hardware experiments with a
UAV equipped with an electrified screen provide real-time
measurements of (former) mosquito locations and mosquito-
free volumes. Planning a trajectory for the UAV that maximizes
the number of mosquito kills is related to the Traveling
Salesman Problem, the Lawn Mower Problem and, most closely,
Milling with Turn Cost. We reduce this problem to considering
variants of covering a grid graph with minimum turn cost,
corresponding to optimized energy consumption. We describe
an exact method based on Integer Programming that is able
to compute provably optimal instances with over 1,500 pixels.
These solutions are then implemented on the UAV.

I. INTRODUCTION

Mosquito-borne diseases kill millions of humans each

year [1]. Because of this threat, governments worldwide

track mosquito populations. Tracking individual mosquitoes

is difficult because of their small size, wide-ranging flight,

and preference for low-light. Tracking studies of individual

mosquitos have chosen to use small (1.2m× 2.4m) indoor

regions [2], or mating swarms backlit against a solid back-

ground [3].

The dominant tools for tracking mosquito populations

are stationary traps that are checked at weekly intervals

(e.g. Encephalitis Vector Surveillance traps and/or gravid

traps [4]). Recent research has focused on making these

traps smaller, cheaper, and capable of providing real-time

data [5], [6]; however, they still rely on attracting mosquitoes

to the trap. This paper presents an alternate solution using

an electrified bug-zapping screen mounted on an unmanned

aerial vehicle (UAV) as shown in Fig. 1 to seek out the

mosquitoes in their habitat. As the UAV follows a path, it

sweeps out a volume of air, temporarily removing all the

mosquitoes in this volume. By monitoring the voltage across

this screen, we can track individual mosquito contacts. UAVs

have strict energy budgets, so optimized flight patterns are

of crucial importance. As a consequence, putting the UAV

to good use requires methods for computing trajectories that

minimize energy consumption along the way, but maximize

the total volume of mosquitoes at visited locations.

This paper is arranged as follows. After a review of

related work in §II, we describe a design and rationale for
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Fig. 1. A hexacopter UAV carrying a 48 cm × 61 cm rectangular bug-
zapping screen. An onboard micro controller monitors the voltage across
the screen and records the time, GPS location, humidity, and altitude for
each mosquito strike. At right are three frames recorded by the onboard
camera showing mosquito hits, during the day (top) and at twilight. See
attachment for videos of flight experiments [7].

a UAV with bug zapper in §III. We next present a path

planning optimization strategy in §IV. We then describe

hardware experiments with the UAV in §V and conclude

with directions for future research in §VI.

II. RELATED WORK

Robotic Coverage: Robotic coverage has a long history. The

basic problem is one of designing a path for a robot that

ensures the robot visits within r distance of every point on

the workspace. For an overview see [8]. This work has been

extended to use multiple coverage robots in a variety of ways,

including using simple behaviors for the robots [9], [10].

Mosquito Control Solutions: Mosquito control also has a long

history of efforts associated both with monitoring mosquito

populations [11] and with eliminating mosquitoes. The work

involves both draining potential breeding grounds and de-

stroying living mosquitoes [12]. An array of insecticidal

compounds has been used with different application methods,

concentrations, and quantities, including both larvicides and

compounds directed at adult mosquitoes [13].

Various traps have been designed to capture and/or kill

mosquitoes with increasing sophistication in imitating human

bait, as designers strive to achieve a trap that can rival the

attraction of a live human [14]. In recent history, methods

have also included genetically modifying mosquitoes so that

they either cannot reproduce effectively or cannot transmit

diseases successfully [15], and with the recent genomic

mapping of mosquito species, new ideas for more targeted

work have been formulated [16].

Popular methods to control mosquitoes such as insec-

ticides are effective, but they have the potential to in-
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troduce long-term environmental damage and mosquitoes

have demonstrated the ability to become resistant to pes-

ticides [17]. Traditional electrified screens (bug zappers) use

UV light to attract pests but have a large bycatch of non-pest

insects [18].

Robotic Pest Management: As GPS technology has flour-

ished and data processing has become cheaper and more

readily available, researchers have explored options for im-

plementing the new technologies in breeding ground re-

moval [19] and more effective insecticide dispersion [20].

Low-cost UAVs for residential spraying are under devel-

opment [21]. Even optical solutions have been considered,

including laser containment [22] or, by extension, exclusion

and laser tracking and extermination [23].

III. HARDWARE DESIGN

This section examines the components of the mosquito

UAV system, shown in Fig. 1. This includes the UAV,

electrified screen, surveying electronics, and a discussion of

the energy budget.

A. UAV

The UAV is a custom-built, 177 cm wingspan hexacopter,

controlled by a Pixhawk flight controller running ArduPilot

Mega flight software. The UAV has a 3DR GPS module

using the UBlox NEO-7 chipset.

B. Screen Design

The mosquito screen is designed to eliminate high density

mosquito populations. This screen was constructed from two

expanded aluminum mesh panels, spaced apart by 3mm
thick ABS grid. These mesh panels have 12mm diamond-

shaped openings, and is held taught by nylon bolts around

the perimeter. The bottom mesh panel is offset by half a

diamond (6 mm) to the right to ensure all insects greater than

6 mm cannot pass through the net. The top mesh is held at

the reference voltage and the bottom mesh is energized to

1.8 kV above the reference voltage.

The perimeter is reinforced by two sets of 7mm diameter

fiberglass rods that are inset into 3D printed corner fixtures.

These rods protect the frame from getting damaged from any

side, and allows the UAV to land without damaging the net.

Once assembled, the net weighs 0.948 kg and has an over-

all area of 0.194m2, with the spacer occupying 0.0325m2.

This makes the effective net area 0.161m2.

C. Screen Location

The UAV carries the bug-zapping screen, which is sus-

pended by paracord rope at each corner. The location of

this screen determines the efficacy of the mosquito UAV,

measured in mosquitoes detected per second of flight time.

The following describes a simplified analysis to optimize the

screen location.

For manufacturing ease, the electrified screen is a rectangle

with a width of ds. The screen is suspended a distance hs

beneath the UAV flying at height hd. We chose to suspend

the screen beneath the UAV to avoid the weight of the
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Fig. 2. The UAV suspends a rectangular bug-zapping screen beneath it.
Propwash pushes incoming mosquitoes downwards, and the UAV clears a
volume hm × ds × vf each second. Circles show two mosquitoes at equal
time intervals relative to the UAV.

rigid frame that would be required if the screen were above

the UAV and because most mosquito species prefer low

flight [24]. This screen can be suspended at any desired angle

θ in comparison to horizontal, as shown in Fig. 2. Two key

parameters are the distance hs and the optimal angle θ. The

goal is to clear the greatest volume of mosquitoes per second,

a volume defined by the UAV forward velocity vf and the

cross-sectional area hm×ds cleared by the screen, as shown

in Fig. 3.

To hover, the UAV must push sufficient air down with

velocity vd to apply a force that cancels the pull of gravity.

The UAV and screen combined have mass md and its cross

section can be approximated as a square with a side length

of dd. The mass flow of air through the UAV’s propellers is

equal to the product of the change in velocity of the air, the

density of the air ρa, and the cross sectional area.

We assume that air above the UAV is quiescent, so the

change in velocity of the air is vd m/s.

Force gravity = (mass flow) · air velocity

md · g = (vd · ρa · d
2
d) · vd (1)

Then the required propwash, the velocity of air beneath

the UAV, for hovering is

vd =

√
mdg

ρad2d
(2)

The flight testing site in Houston, Texas is 15m above sea

level. At sea level the density of air ρa is 1.225 kg/m3.

The UAV and instrumentation combined weigh 5.1 kg with

a width of 0.75m. The acceleration due to gravity is

9.871m/s2. Substituting these values gives vd = 8.5m/s.

Due to propwash, an initially hovering mosquito will fall

when under the UAV at a rate of vd. Relative to the UAV,

the mosquito moves horizontally at a rate of −vf . As shown

in Fig. 2, we can extend lines with slope −vd/vf from the

screen’s trailing edge to htop and from the leading edge to
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Fig. 3. The volume cleared by a UAV is a function of screen angle θ and
forward velocity vf . Dotted line shows the optimal angle given in (4).

hbottom.
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2

sin(θ) +
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2
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2
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vd
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hm = htop − hbottom = ds

(
vd
vf

cos(θ) + sin(θ)

)
(3)

The optimal angle is therefore a function of forward and

propwash velocity:

θ = ArcTan

(
vf
vd

)
(4)

To ensure the maximum number of mosquitoes are col-

lected, the screen must be sufficiently far below the UAV

hs >
ds

2 sin(θ)+ dd+ds cos(θ)
2

vd

vf
and the bottom of the screen

must not touch the ground, hd > hs +
ds

2 sin(θ).
There are practical limits to hs as well. Tests with hs >

2m were abandoned because the long length caused the

screen to act as a pendulum, introducing dynamics that made

the system difficult to fly.

Changing the flying height hd of the UAV will target

different mosquito populations because mosquitoes are not

distributed uniformly vertically. Gillies and Wilkes demon-

strated that different species of mosquitoes prefer to fly at

different heights [24].

D. Wind Tunnel Verification of Net Angle

This section describes experiments run in a wind tunnel

to verify the simplified net angle analysis in the previous

section. Smoke streaklines were used to visualize the flow

of air as it passed by the UAV. Due to space constraints in

the wind tunnel, a free-flying phantom 4 was used instead of

the hexacopter used for carrying the zapper. The wind tunnel

was set to a 3m/s flow speed, and the UAV manually flown

in approximately stable hovering. The solo UAV is 0.3 × 0.3
× 0.2m. The windtunnel has a 1m × 1m cross section. As

seen from Fig. 4, the proposed screen position captures free

Fig. 4. Frames from wind tunnel test with free-flying UAV at 3m/s
windspeed with smoke for streaklines [7]. As shown in the frames at right,
the proposed screen position (in red) captures free flowing air and air
entrained by the UAV propellers. Each black square is 25.4mm in width.

flowing air and air entrained by the UAV propellers. This

test encouraged us to mount the net as close to the UAV as

possible, so that air, and flying mosquitos, entrained by the

propellers are pushed into the net.

E. Data Logger

The electrical detection and logging system is powered by

a 9 V lithium ion battery applied directly to the controller

and two AA 3 V lithium ion batteries applied to the power

circuit for the screen. The controller uses a GPS shield for

monitoring the location and altitude as well as a real time

clock to timestamp each data point collected from the system.

A Raspberry Pi 3 is used for data logging, sensors include a

GPS sensor (NEO-6M Ublox), a capacitive humidity sensor,

a thermistor (DHT22), and an INA219 high side, 12-bit

DC current sensor for monitoring the supply-side current

delivered to the net. The net current draw is logged at 100

Hz, while GPS and weather sensor data is logged at 1Hz.

All data is stored on an onboard SD card.

F. Energy Budget

Tests with an oscilloscope show that in the steady state,

a 30.5 cm × 61 cm screen and electronics have a power

consumption of 3.6W. During a zap, the screen voltage

monitoring circuit shorts briefly when the mosquito contacts

the screen. Figure 5 shows the time sequences for battery

and screen voltages, current, and power during five mosquito

zaps. Multiplying voltage by current to find the instantaneous

power (p = iv) and integrating the area under the power

curve show a total energy consumption of 4.2mJ for each

zap. Recharging the screen requires more power and is rep-

resented in the latter part of the curves. The overall recovery

time is about 160ms. Most of the energy is consumed

charging and maintaining the charge on the screen rather

than in zapping the mosquitoes.

IV. PATH PLANNING

A. Modelling

The data on the distribution of mosquitoes is given for a

two-dimensional grid environment; the grid size is induced

by the size of the screen, the available data and the desired

resolution of the extracted map. For each pixel pi ∈ P , we
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Fig. 5. Current, voltage, and power traces for five Culex quinquefasciatus

mosquitoes as each contacts the bug-zapping screen at t = 0. Contact causes
a brief short that recovers in 160ms.

are given a relative value c(pi) that describes the estimated

a-priori density of mosquitoes, based on data obtained from

boustrophedon (back and forth) scans of the area by the UAV;

this implies that only a subset of pixels carry a significant

value. Visiting one of the pixels corresponds to sampling

and mapping the actual density distribution of mosquitoes.

For a dense distribution of mosquitoes (which is the case

for the instances relevant for pest control), multiple visits to

the same pixel do not contribute additional knowledge. As a

consequence, the objective is to maximize the sampling value

of the set S ⊆ P of visited pixels, i.e., maxS⊆P

∑

pi∈S c(pi)
within the available battery capacity; this may be over the

course of a single closed trajectory, or over a combination

of multiple roundtrips.

Planning good trajectories for a UAV is not subject to the

same curvature constraints of an ordinary aircraft because

UAVs can turn on the spot. However, turns are a critical

aspect of path planning due to their impact on energy

consumption. Battery capacity is the limiting factor for UAV

flight time. As shown in Fig. 6, the power output for a desired

trajectory is non-uniform. Flying along a straight path is

relatively inexpensive but turning is energy intensive.
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Fig. 6. Turns are expensive. See our related video at https://youtu.
be/SFyOMDgdNao for details, and [25] for an accompanying abstract.

As a consequence, we must consider the total turn costs

associated with changing direction, as measured by the turn

angle. As we are not limited by trajectory curvature, we refer

to straight-line connections and a finite set of 2ω different

headings for visiting vertices. For the most natural case

of orthogonal grids ω = 2. When surveying non-isolated

mosquito hotspots (whose size greatly exceeds the size of

the UAV), we are not dealing with isolated pixels and the

modeling error of this restriction is small.

Now we consider different trajectory types. A cycle is a

roundtrip of a subset S ⊆ P that visits all points in S and

returns to the origin, a cycle cover of P is a set of cycles

that together visit all points in P , and a tour is a single cycle

that visits all points in P . A subset cycle cover for S ⊂ P
is a cycle cover that covers at least the points in S, while a

subset tour is a tour of at least the points in S. For any of

these structures, we are interested in cycle covers or tours of

minimum total travel cost. The travel/battery cost is a linear

combination of the number of pixel transitions (distance) and

the weighted number of turns, corresponding to the total turn

angle. In addition, a minimum turn-cost penalty cycle cover

or a minimum turn-cost penalty tour visits a subset R ⊂ P ,

such that the sum of total travel cost and the sum
∑

i6∈R c(pi)
of values of unvisited pixels is minimized.

B. Computational Complexity

Finding optimal covering paths that map a given region is

closely related to the famous Traveling Salesman Problem

(TSP), which asks to minimize total length of a single tour

that covers all of a given set of locations. The TSP is one

of the classic NP-hard problems, so we cannot expect a

general method that finds a provably optimal solution for any

instance in polynomially bounded time. A generalization of

the TSP is the Lawnmower Problem (see Arkin et al. [26],

which considers coverage by a tool of nontrivial size. For the

objective of minimizing the total cost (in particular, the turn

cost), Arkin et al. [27] showed that finding minimum-turn

tours in grid graphs is NP-hard, even if a minimum-turn cycle

cover is given. The complexity of finding a set of multiple

cycles that cover a given set of locations at minimum total

turn cost had remained elusive for many years; Problem 53

https://youtu.be/SFyOMDgdNao
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in The Open Problems Project asks for the complexity of

finding a minimum-cost (full) cycle cover in a 2-dimensional

grid graph. This is not obvious: large parts of a solution

can usually easily be deduced by local information and 2-

factor techniques. Arkin et al. showed [27], [28] that the full

coverage variant in thin grid graphs (which do not contain a

2× 2 square, so every pixel is a boundary pixel) is solvable

in polynomial time. In separate work [29], two of us were

able to resolve this issue by showing that finding a cycle

cover of minimum turn cost is NP-hard.

C. Mathematical Optimization

A powerful approach for finding optimal solutions to

instances of NP-hard problems is the use of Integer Pro-

gramming (IP). While solving an IP still requires exponential

time in the worst case, using carefully crafted mathematical

models in combination with specific algorithm engineering

and available IP solvers enables solving instances of consid-

erable size to provable optimality. For our purposes, we can

describe the problem as follows.

a) Penalty Cycle Covers: The set P of pixels corre-

sponds to a given grid graph G(P,E) in which each pixel

pj ∈ P is adjacent to the set N(pj) of pixels in P that share

an edge with pj . Each vertex pj ∈ P has a scalar reward

c(pj) for visiting (or penalty for not visiting), and a function

costj(i, k) ∈ Z
+
0 that maps the cost of traveling from pi

to pj to pk, where pi, pk ∈ N(pj) are adjacent pixels to

pj . This cost is symmetric, i.e. costj(i, k) = costj(k, i). The

integer program uses two types of variables: integer variables

xijk = xkji that state how often passage pi − pj − pk or

pk − pj − pi is used and Boolean variables yj that indicate

that the pixel pj ∈ V is not covered, i.e., the penalty is paid.

This results in the following formulation:

min
∑

pj∈P

∑

pi,pk∈N(pj)

costj(i, k) · xijk +
∑

pj∈P

c(pj) · yj (5)

with constraints

1 ≤ 4 · yj +
∑

pi,pk∈N(pj)

xijk ≤ 4, ∀pj ∈ P (6)

2xjij +
∑

xjik

pk∈N(pi),pk 6=pj

= 2xiji +
∑

xijk

pk∈N(pj),pk 6=pi

, ∀{pi, pj} ∈ E (7)

xijk ∈ N0, yj ∈ B, ∀pj ∈ P, {pi, pk} ⊆ N(pj) (8)

The objective function in Eq. 5 minimizes the total cost of

the cycles and the uncovered pixels. Eq. 6 enforces a pixel

to be covered or the not covered variable to be set to true.

Arkin et al. [27] showed that no pixel needs to be visited

more than four times, otherwise a simple local optimization

can be performed. Eq. 7 enforces the transitions between two

adjacent pixels to match. Eq. 8 enforces that the variables are

integers or booleans.

We can solve a wide spectrum of instances with different

kinds of probability distributions up to a size of 1500 pixels

to provable optimality. Optimal solutions for different den-

sities scalings of an instance with 1783 pixels are shown in

Fig. 7. Optimal cycle covers with different density scaling. The middle has
twice and the right instance has four times the density as the left. In these
instances, the cost of a 90

◦ is five times that of a straight pixel transition.

Fig. 7. To solve larger instances the optimality constraint can

be relaxed or the grid graph can be split and the subgraphs

solved separately.

b) Tours: Computing a minimum cycle cover may

result in several subcycles that need to be visited separately,

which is appropriate for the use of several UAVs or when

several separate roundtrips by the same UAV are convenient.

If we want to determine connected roundtrips by a single

UAV, we need to connect the components of a cycle cover

to a tour. This can be achieved via integer programming by

adding additional constraints for separating these subtours.

This separation of subtours is more complicated than for

the classic TSP because there may be tours that cross but

are not connected. Instead of connecting two subtours, one

subtour can also be discarded.

We first consider a constraint (Eq. 9) that is able to

separate any given solution with multiple subtours. Let Q be

the pixels of a selected subtour. Let pℓ ∈ Q be a pixel with

high density and no other subtours crossing it and pℓ′ 6∈ Q
be another covered pixel with high density. These two pixels

are used for ‘defusing’: if one of them is no longer covered,

the constraint is automatically fulfilled. We denote by Qs the

pixels that are covered only by straight paths in the subtour.

T (pj) describes the turn variables of a pixel pj . x′ refers to

the variable assignment in the current solution.

1 ≤ yℓ + yℓ′ +
∑

pi,pk∈N(pℓ),x′

iℓk
=0

xiℓk +
∑

t∈T (v),v∈Qs−pℓ

t

+
∑

pj∈Q\(Qs+pℓ),pi 6=pk∈N(pj),x′

ijk
=0

xijk (9)

While this constraint suffices for capturing the mathemati-

cal conditions, its practical performance is unsatisfactory for

connecting distant subtours. A better approach is described in

the following; this is not always sufficient but more efficient

in connecting distant cycles. We use the same definitions as

for the previous constraint, but consider an additional set Q′

that is a superset of Q. Q are the pixels of a subtour and



pℓ is a valuable pixel. Q′ is a superset of Q (possibly equal

to Q). pℓ′ is a valuable pixel outside of Q′. The constraint

enforces that either pℓ or pℓ′ is uncovered, or there is a path

on the margin of Q′ that connects pℓ and pℓ′ .

yℓ + yℓ′ +
∑

x∈Leaving(Q′)

x ≥ 1 (10)

We use two ways to choose Q′ for these subtour elimination

constraints: Q′ = Q which is similar to the classical TSP

constraint or Q′ is the Voronoi cell of the subtour.

D. Computational Results
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Fig. 8. Runtime of solving benchmark instances to optimality. Shown are
the times of ten instances for each size, with a timeout at 900 s, as well as
the percentage of solved instances. Only the number of turns is minimized
in these instances.

We evaluated the effectiveness of our optimization method

by testing it on a suite of benchmark instances based on

random natural grid graphs with random densities; the prob-

ability of a pixel to be added during test instance generation

is correlated with its neighborhood, resulting in smoother

boundaries which are more natural than purely random

instances. The tests were carried out for 10 instances for

each size in the range up to 1400 pixels. We used modern

desktop computers equipped with an Intel(R) Core(TM) i7-

6700K CPU @ 4.00GHz and 64GB of RAM. The integer

programs were computed with CPLEX version 12.5.0.0 and

the parameters EpInt=0, EpGap=0, EpOpt=1e-9, and

EpAGap=0. Fig. 8 shows runtimes for solving penalty cycle

cover to optimality. Instances that took longer than 15min
were aborted. As shown in the figure, even at 1400 pixels

we were still able to solve half of the instances to provable

optimality. Even for the aborted instances, the computed

solutions were within a few percentage points of the provable

lower bound, meaning that they were nearly optimal.

Fig. 9 shows an example of iteratively computing an op-

timal tour with the described integer program. This example

took less than a minute of total computing time. It assumed

that 90◦ turns cost five times as much as a straight pixel

transition (distance).

V. EXPERIMENTS

The results for representative flights are described below.

Figure 10 compares the energy consumption for three cov-

Fig. 9. Left is an optimal penalty cycle cover. Cycles (blue) cover all areas
with high density. After three applications of the tour constraints, a single
cycle remains (right). In the intermediate solutions, the subcycles first try
to evade the new constraints by reshaping. The final tour omits two of the
small hotspots because the cost of integrating them into the single tour is
prohibitively expensive.

erage schemes for a region including a large obstacle in

the center. A boustrophedon path requires 50 turns, 187 kJ,

160 s, and 181m. A hand-designed path requires 45 turns,

214 kJ, 155 s, and 178m. A path computed using the optimal

penalty cycle cover requires only 33 turns, 184 kJ, 133 s, and

176m.
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Fig. 10. Paths for an environment surrounding a fountain, which poses
an obstacle for the UAV. (Top left) The energy consumption during a real
world flight for a boustrophedon path. (Top right) The energy consumption
during a real world flight for a hand-designed loop path. (Bottom left) The
optimal penalty cycle cover path. (Bottom right) The energy consumption
during a real-world flight along the optimal path.

A boustrophedon (back-and-forth) path with 2m spacing

was generated to cover a region 120m×15m at height 1.5m.

The path was generated using Mission Planner software from

ardupilot.org [30].

For each trial the UAV took off from a resting position

on top of the screen. Flight began manually, with a piloted

takeoff of the UAV. After establishing a stable hover at 3m,

control was switched to the autonomous flight plan. The pilot

monitored the flight with the ability to switch to manual

operation in case of potential crashes due to GPS error or

hazards in the flight plan. Mosquito strikes detected by the



Fig. 11. The UAV’s path for flight 3 is in red. Strikes collected along this
path are represented by yellow dots.
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Fig. 12. Density map showing mosquito distribution on the field, overlaid
by flight path 4 in white.

data logger were verified using a GoPro Hero 4 Silver camera

attached at the top of the net, as shown in Fig. 1. At night

and twilight, the sparks could be detected both visually and

audibly from the recorded video. During the day, the sparks

were loud enough to observe over the audio channel of the

videos.

The UAV flew eight missions on this field, covering the

same path. It was mainly flown in the early morning and

late afternoon, when mosquito activities are more active.

Three flights were flown at noon and early afternoon to

ensure that mosquito activities during these periods were not

ignored. However, only two mosquito strikes were observed

during this period. The path covered is about 1 km long and

typically takes 12min.

Over the eight missions on this field, there were a total of

11 mosquito strikes. Figure 11 shows the mission’s flight path

and the map of all collected strikes. The mosquito strikes are

concentrated at the north and south ends of the field, where

there are more trees. A density map was generated from the

collected strikes’ position by representing each strike by a

Gaussian distribution with the norm on the strike’s location

and a σ of 10m. Figure 12 shows the density map generated

by summing these Gaussian distributions.

These results not only tell where mosquitoes were but also

show where mosquitoes were not. This is a key difference

from stationary traps such as [5], [6]. Figure 13 shows the

UAV during a dawn flight test near the ocean.

VI. CONCLUSION AND FUTURE WORK

This paper presented an approach for finding optimal

tours given turn costs and an energy budget, inspired by

a mosquito-killing UAV with limited battery life. Initial

experiments with the UAV and electrified screen track the

Fig. 13. The UAV and screen during a flight trial near the ocean.

location of a mosquito-killing UAV as it patrols a field and

maps mosquito kills.

Many refinements to the algorithm could be pursued in

future work, including changes to both the mosquito-biasing

algorithm and the robot flight simulation. The model may

be expanded to continuous space, three dimensions, and to

arbitrary turn angles. These and other considerations will

make a more realistic model for future work.

Further testing of the multi-copter UAV is indicated and

will allow more extensive testing of the robustness and

accuracy of the hardware design. New sensors that can

identify and detect flying insects [5] may be added to the

UAV and enable it to proactively steer toward insect swarms

and identify insects in realtime.

The concept may be extended to a non-destructive pop-

ulation survey in which the screen could be replaced with

a net and, with appropriate lighting, the camera used to

record capture events. Teams of UAVs could work together

to map areas more quickly and, by measuring gradients of

the distribution, quickly find large mosquito populations.
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