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Abstract— This paper introduces techniques for mosquito
population surveys in the field using electrified screens (bug
zappers) mounted to a UAV. Instrumentation on the UAV
logs the UAV path and the GPS location, altitude, and time
of each mosquito elimination. Hardware experiments with a
UAV equipped with an electrified screen provide real-time
measurements of (former) mosquito locations and mosquito-
free volumes. Planning a trajectory for the UAV that maximizes
the number of mosquito kills is related to the Traveling
Salesman Problem, the Lawn Mower Problem and, most closely,
Milling with Turn Cost. We reduce this problem to considering
variants of covering a grid graph with minimum turn cost,
corresponding to optimized energy consumption. We describe
an exact method based on Integer Programming that is able
to compute provably optimal instances with over 1,500 pixels.
These solutions are then implemented on the UAV.

I. INTRODUCTION

Mosquito-borne diseases kill millions of humans each
year [1]. Because of this threat, governments worldwide
track mosquito populations. Tracking individual mosquitoes
is difficult because of their small size, wide-ranging flight,
and preference for low-light. Tracking studies of individual
mosquitos have chosen to use small (1.2m x 2.4m) indoor
regions [2], or mating swarms backlit against a solid back-
ground [3].

The dominant tools for tracking mosquito populations
are stationary traps that are checked at weekly intervals
(e.g. Encephalitis Vector Surveillance traps and/or gravid
traps [4]). Recent research has focused on making these
traps smaller, cheaper, and capable of providing real-time
data [5], [6]; however, they still rely on attracting mosquitoes
to the trap. This paper presents an alternate solution using
an electrified bug-zapping screen mounted on an unmanned
aerial vehicle (UAV) as shown in Fig. 1 to seek out the
mosquitoes in their habitat. As the UAV follows a path, it
sweeps out a volume of air, temporarily removing all the
mosquitoes in this volume. By monitoring the voltage across
this screen, we can track individual mosquito contacts. UAVs
have strict energy budgets, so optimized flight patterns are
of crucial importance. As a consequence, putting the UAV
to good use requires methods for computing trajectories that
minimize energy consumption along the way, but maximize
the total volume of mosquitoes at visited locations.

This paper is arranged as follows. After a review of
related work in §II, we describe a design and rationale for
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Fig. 1. A hexacopter UAV carrying a 48 cm X 61 cm rectangular bug-
zapping screen. An onboard micro controller monitors the voltage across
the screen and records the time, GPS location, humidity, and altitude for
each mosquito strike. At right are three frames recorded by the onboard
camera showing mosquito hits, during the day (top) and at twilight. See
attachment for videos of flight experiments [7].

a UAV with bug zapper in §III. We next present a path
planning optimization strategy in §IV. We then describe
hardware experiments with the UAV in §V and conclude
with directions for future research in §VI.

II. RELATED WORK

Robotic Coverage: Robotic coverage has a long history. The
basic problem is one of designing a path for a robot that
ensures the robot visits within 7 distance of every point on
the workspace. For an overview see [8]. This work has been
extended to use multiple coverage robots in a variety of ways,
including using simple behaviors for the robots [9], [10].
Mosquito Control Solutions: Mosquito control also has a long
history of efforts associated both with monitoring mosquito
populations [11] and with eliminating mosquitoes. The work
involves both draining potential breeding grounds and de-
stroying living mosquitoes [12]. An array of insecticidal
compounds has been used with different application methods,
concentrations, and quantities, including both larvicides and
compounds directed at adult mosquitoes [13].

Various traps have been designed to capture and/or kill
mosquitoes with increasing sophistication in imitating human
bait, as designers strive to achieve a trap that can rival the
attraction of a live human [14]. In recent history, methods
have also included genetically modifying mosquitoes so that
they either cannot reproduce effectively or cannot transmit
diseases successfully [15], and with the recent genomic
mapping of mosquito species, new ideas for more targeted
work have been formulated [16].

Popular methods to control mosquitoes such as insec-
ticides are effective, but they have the potential to in-
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troduce long-term environmental damage and mosquitoes
have demonstrated the ability to become resistant to pes-
ticides [17]. Traditional electrified screens (bug zappers) use
UV light to attract pests but have a large bycatch of non-pest
insects [18].

Robotic Pest Management: As GPS technology has flour-
ished and data processing has become cheaper and more
readily available, researchers have explored options for im-
plementing the new technologies in breeding ground re-
moval [19] and more effective insecticide dispersion [20].
Low-cost UAVs for residential spraying are under devel-
opment [21]. Even optical solutions have been considered,
including laser containment [22] or, by extension, exclusion
and laser tracking and extermination [23].

III. HARDWARE DESIGN

This section examines the components of the mosquito
UAV system, shown in Fig. 1. This includes the UAYV,
electrified screen, surveying electronics, and a discussion of
the energy budget.

A. UAV

The UAV is a custom-built, 177 cm wingspan hexacopter,
controlled by a Pixhawk flight controller running ArduPilot
Mega flight software. The UAV has a 3DR GPS module
using the UBlox NEO-7 chipset.

B. Screen Design

The mosquito screen is designed to eliminate high density
mosquito populations. This screen was constructed from two
expanded aluminum mesh panels, spaced apart by 3 mm
thick ABS grid. These mesh panels have 12 mm diamond-
shaped openings, and is held taught by nylon bolts around
the perimeter. The bottom mesh panel is offset by half a
diamond (6 mm) to the right to ensure all insects greater than
6 mm cannot pass through the net. The top mesh is held at
the reference voltage and the bottom mesh is energized to
1.8 kV above the reference voltage.

The perimeter is reinforced by two sets of 7mm diameter
fiberglass rods that are inset into 3D printed corner fixtures.
These rods protect the frame from getting damaged from any
side, and allows the UAV to land without damaging the net.

Once assembled, the net weighs 0.948 kg and has an over-
all area of 0.194m?, with the spacer occupying 0.0325m?.
This makes the effective net area 0.161 m?.

C. Screen Location

The UAV carries the bug-zapping screen, which is sus-
pended by paracord rope at each corner. The location of
this screen determines the efficacy of the mosquito UAV,
measured in mosquitoes detected per second of flight time.
The following describes a simplified analysis to optimize the
screen location.

For manufacturing ease, the electrified screen is a rectangle
with a width of ds. The screen is suspended a distance hg
beneath the UAV flying at height h;. We chose to suspend
the screen beneath the UAV to avoid the weight of the
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Fig. 2. The UAV suspends a rectangular bug-zapping screen beneath it.
Propwash pushes incoming mosquitoes downwards, and the UAV clears a
volume Ay, X ds X vy each second. Circles show two mosquitoes at equal
time intervals relative to the UAV.

rigid frame that would be required if the screen were above
the UAV and because most mosquito species prefer low
flight [24]. This screen can be suspended at any desired angle
6 in comparison to horizontal, as shown in Fig. 2. Two key
parameters are the distance hs and the optimal angle §. The
goal is to clear the greatest volume of mosquitoes per second,
a volume defined by the UAV forward velocity vy and the
cross-sectional area h,, X ds cleared by the screen, as shown
in Fig. 3.

To hover, the UAV must push sufficient air down with
velocity vy to apply a force that cancels the pull of gravity.
The UAV and screen combined have mass mg and its cross
section can be approximated as a square with a side length
of d4. The mass flow of air through the UAV’s propellers is
equal to the product of the change in velocity of the air, the
density of the air p,, and the cross sectional area.

We assume that air above the UAV is quiescent, so the
change in velocity of the air is vg m/s.

Force gravity = (mass flow) - air velocity

ma-g= (v pa-d3) - va (1

Then the required propwash, the velocity of air beneath
the UAV, for hovering is

maqg
pady

2)

Vg =

The flight testing site in Houston, Texas is 15m above sea
level. At sea level the density of air p, is 1.225kg/m?>.
The UAV and instrumentation combined weigh 5.1 kg with
a width of 0.75m. The acceleration due to gravity is
9.871m/s?. Substituting these values gives vy = 8.5m/s.
Due to propwash, an initially hovering mosquito will fall
when under the UAV at a rate of v,. Relative to the UAV,
the mosquito moves horizontally at a rate of —vy. As shown
in Fig. 2, we can extend lines with slope —vy/vy from the
screen’s trailing edge to hyp and from the leading edge to
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Fig. 3. The volume cleared by a UAV is a function of screen angle 6 and

forward velocity vy. Dotted line shows the optimal angle given in (4).
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The optimal angle is therefore a function of forward and
propwash velocity:

0 = ArcTan (Uf) ()
Vd

To ensure the maximum number of mosquitoes are col-

lected, the screen must be sufficiently far below the UAV

hs > % sin(0) + M 44 and the bottom of the screen

must not touch the ground, hq > hy + % sin(6).

There are practical limits to hg as well. Tests with h, >
2m were abandoned because the long length caused the
screen to act as a pendulum, introducing dynamics that made
the system difficult to fly.

Changing the flying height hy of the UAV will target
different mosquito populations because mosquitoes are not
distributed uniformly vertically. Gillies and Wilkes demon-
strated that different species of mosquitoes prefer to fly at
different heights [24].

D. Wind Tunnel Verification of Net Angle

This section describes experiments run in a wind tunnel
to verify the simplified net angle analysis in the previous
section. Smoke streaklines were used to visualize the flow
of air as it passed by the UAV. Due to space constraints in
the wind tunnel, a free-flying phantom 4 was used instead of
the hexacopter used for carrying the zapper. The wind tunnel
was set to a 3m/s flow speed, and the UAV manually flown
in approximately stable hovering. The solo UAV is 0.3 x 0.3
x 0.2m. The windtunnel has a 1m x 1m cross section. As
seen from Fig. 4, the proposed screen position captures free

Fig. 4.

Frames from wind tunnel test with free-flying UAV at 3m/s
windspeed with smoke for streaklines [7]. As shown in the frames at right,
the proposed screen position (in red) captures free flowing air and air
entrained by the UAV propellers. Each black square is 25.4 mm in width.

flowing air and air entrained by the UAV propellers. This
test encouraged us to mount the net as close to the UAV as
possible, so that air, and flying mosquitos, entrained by the
propellers are pushed into the net.

E. Data Logger

The electrical detection and logging system is powered by
a 9 V lithium ion battery applied directly to the controller
and two AA 3 V lithium ion batteries applied to the power
circuit for the screen. The controller uses a GPS shield for
monitoring the location and altitude as well as a real time
clock to timestamp each data point collected from the system.
A Raspberry Pi 3 is used for data logging, sensors include a
GPS sensor (NEO-6M Ublox), a capacitive humidity sensor,
a thermistor (DHT22), and an INA219 high side, 12-bit
DC current sensor for monitoring the supply-side current
delivered to the net. The net current draw is logged at 100
Hz, while GPS and weather sensor data is logged at 1Hz.
All data is stored on an onboard SD card.

F. Energy Budget

Tests with an oscilloscope show that in the steady state,
a 30.5bcm x 61lcm screen and electronics have a power
consumption of 3.6 W. During a zap, the screen voltage
monitoring circuit shorts briefly when the mosquito contacts
the screen. Figure 5 shows the time sequences for battery
and screen voltages, current, and power during five mosquito
zaps. Multiplying voltage by current to find the instantaneous
power (p = iv) and integrating the area under the power
curve show a total energy consumption of 4.2mJ for each
zap. Recharging the screen requires more power and is rep-
resented in the latter part of the curves. The overall recovery
time is about 160ms. Most of the energy is consumed
charging and maintaining the charge on the screen rather
than in zapping the mosquitoes.

IV. PATH PLANNING
A. Modelling

The data on the distribution of mosquitoes is given for a
two-dimensional grid environment; the grid size is induced
by the size of the screen, the available data and the desired
resolution of the extracted map. For each pixel p; € P, we
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Fig. 5. Current, voltage, and power traces for five Culex quinquefasciatus
mosquitoes as each contacts the bug-zapping screen at t = 0. Contact causes
a brief short that recovers in 160 ms.

are given a relative value ¢(p;) that describes the estimated
a-priori density of mosquitoes, based on data obtained from
boustrophedon (back and forth) scans of the area by the UAV;
this implies that only a subset of pixels carry a significant
value. Visiting one of the pixels corresponds to sampling
and mapping the actual density distribution of mosquitoes.
For a dense distribution of mosquitoes (which is the case
for the instances relevant for pest control), multiple visits to
the same pixel do not contribute additional knowledge. As a
consequence, the objective is to maximize the sampling value
of the set S C P of visited pixels, i.e., maxscp >, 5 c(pi)
within the available battery capacity; this may be over the
course of a single closed trajectory, or over a combination
of multiple roundtrips.

Planning good trajectories for a UAV is not subject to the
same curvature constraints of an ordinary aircraft because
UAVs can turn on the spot. However, turns are a critical
aspect of path planning due to their impact on energy
consumption. Battery capacity is the limiting factor for UAV
flight time. As shown in Fig. 6, the power output for a desired
trajectory is non-uniform. Flying along a straight path is
relatively inexpensive but turning is energy intensive.
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Fig. 6. Turns are expensive. See our related video at https://youtu.
be/SFyOMDgdNao for details, and [25] for an accompanying abstract.

As a consequence, we must consider the total turn costs
associated with changing direction, as measured by the turn
angle. As we are not limited by trajectory curvature, we refer
to straight-line connections and a finite set of 2w different
headings for visiting vertices. For the most natural case
of orthogonal grids w = 2. When surveying non-isolated
mosquito hotspots (whose size greatly exceeds the size of
the UAV), we are not dealing with isolated pixels and the
modeling error of this restriction is small.

Now we consider different trajectory types. A cycle is a
roundtrip of a subset S C P that visits all points in S and
returns to the origin, a cycle cover of P is a set of cycles
that together visit all points in P, and a tour is a single cycle
that visits all points in P. A subset cycle cover for S C P
is a cycle cover that covers at least the points in S, while a
subset tour is a tour of at least the points in S. For any of
these structures, we are interested in cycle covers or tours of
minimum total travel cost. The travel/battery cost is a linear
combination of the number of pixel transitions (distance) and
the weighted number of turns, corresponding to the total turn
angle. In addition, a minimum turn-cost penalty cycle cover
or a minimum turn-cost penalty tour visits a subset R C P,
such that the sum of total travel cost and the sum } ;. ¢(p;)
of values of unvisited pixels is minimized.

B. Computational Complexity

Finding optimal covering paths that map a given region is
closely related to the famous Traveling Salesman Problem
(TSP), which asks to minimize total length of a single tour
that covers all of a given set of locations. The TSP is one
of the classic NP-hard problems, so we cannot expect a
general method that finds a provably optimal solution for any
instance in polynomially bounded time. A generalization of
the TSP is the Lawnmower Problem (see Arkin et al. [26],
which considers coverage by a tool of nontrivial size. For the
objective of minimizing the total cost (in particular, the turn
cost), Arkin et al. [27] showed that finding minimum-turn
tours in grid graphs is NP-hard, even if a minimum-turn cycle
cover is given. The complexity of finding a set of multiple
cycles that cover a given set of locations at minimum total
turn cost had remained elusive for many years; Problem 53
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in The Open Problems Project asks for the complexity of
finding a minimum-cost (full) cycle cover in a 2-dimensional
grid graph. This is not obvious: large parts of a solution
can usually easily be deduced by local information and 2-
factor techniques. Arkin et al. showed [27], [28] that the full
coverage variant in thin grid graphs (which do not contain a
2 X 2 square, so every pixel is a boundary pixel) is solvable
in polynomial time. In separate work [29], two of us were
able to resolve this issue by showing that finding a cycle
cover of minimum turn cost is NP-hard.

C. Mathematical Optimization

A powerful approach for finding optimal solutions to
instances of NP-hard problems is the use of Integer Pro-
gramming (IP). While solving an IP still requires exponential
time in the worst case, using carefully crafted mathematical
models in combination with specific algorithm engineering
and available IP solvers enables solving instances of consid-
erable size to provable optimality. For our purposes, we can
describe the problem as follows.

a) Penalty Cycle Covers: The set P of pixels corre-
sponds to a given grid graph G(P, E) in which each pixel
p; € P is adjacent to the set N (p;) of pixels in P that share
an edge with p;. Each vertex p; € P has a scalar reward
¢(pj) for visiting (or penalty for not visiting), and a function
cost;(i,k) € Z{ that maps the cost of traveling from p;
to p; to py, where p;,p, € N(p;) are adjacent pixels to
p;. This cost is symmetric, i.e. cost; (i, k) = cost;(k, 7). The
integer program uses two types of variables: integer variables
Zijk = Tkj; that state how often passage p; — p; — pi or
Pk — pj — p; is used and Boolean variables y; that indicate
that the pixel p; € V' is not covered, i.e., the penalty is paid.
This results in the following formulation:

min Z Z cost; (i, k) - xijp + Z c(pj)-y; (5
P;€EP pi,p€N(p;) p;EP
with constraints

1<doy+ Y

pi,pr EN(pj)

zijr <4, Vp; €P (6)

245 +Z$J‘¢k = 2x;j; +Z$iﬂc . pi,pi} € E()
PrEN(Pi),PK#D;) PLEN(P;),PL#Pi

zijr € No,y; € B, Vp; € P {pi,pr} € N(p;)  (8)

The objective function in Eq. 5 minimizes the total cost of
the cycles and the uncovered pixels. Eq. 6 enforces a pixel
to be covered or the not covered variable to be set to true.
Arkin et al. [27] showed that no pixel needs to be visited
more than four times, otherwise a simple local optimization
can be performed. Eq. 7 enforces the transitions between two
adjacent pixels to match. Eq. 8 enforces that the variables are
integers or booleans.

We can solve a wide spectrum of instances with different
kinds of probability distributions up to a size of 1500 pixels
to provable optimality. Optimal solutions for different den-
sities scalings of an instance with 1783 pixels are shown in

ﬁ

Fig. 7. Optimal cycle covers with different density scaling. The middle has
twice and the right instance has four times the density as the left. In these
instances, the cost of a 90° is five times that of a straight pixel transition.

Fig. 7. To solve larger instances the optimality constraint can
be relaxed or the grid graph can be split and the subgraphs
solved separately.

b) Tours: Computing a minimum cycle cover may
result in several subcycles that need to be visited separately,
which is appropriate for the use of several UAVs or when
several separate roundtrips by the same UAV are convenient.
If we want to determine connected roundtrips by a single
UAYV, we need to connect the components of a cycle cover
to a tour. This can be achieved via integer programming by
adding additional constraints for separating these subtours.

This separation of subtours is more complicated than for
the classic TSP because there may be tours that cross but
are not connected. Instead of connecting two subtours, one
subtour can also be discarded.

We first consider a constraint (Eq. 9) that is able to
separate any given solution with multiple subtours. Let () be
the pixels of a selected subtour. Let p, € Q be a pixel with
high density and no other subtours crossing it and py ¢ Q
be another covered pixel with high density. These two pixels
are used for ‘defusing’: if one of them is no longer covered,
the constraint is automatically fulfilled. We denote by () the
pixels that are covered only by straight paths in the subtour.
T(p;) describes the turn variables of a pixel p;. =’ refers to
the variable assignment in the current solution.

1<y +ye + Z Ziek + Z 3

PiPkEN(pe),x 7y, =0 teT (v),vEQs—pe

+ > Tijk 9)

pjGQ\(QSerl)»Pi#Png(Pj)vzéjk:O

While this constraint suffices for capturing the mathemati-
cal conditions, its practical performance is unsatisfactory for
connecting distant subtours. A better approach is described in
the following; this is not always sufficient but more efficient
in connecting distant cycles. We use the same definitions as
for the previous constraint, but consider an additional set Q’
that is a superset of Q). Q are the pixels of a subtour and



pe is a valuable pixel. )’ is a superset of @ (possibly equal
to Q). pe is a valuable pixel outside of Q’. The constraint
enforces that either py or py is uncovered, or there is a path
on the margin of @’ that connects p, and p,.

>

z€Leaving(Q’)

Ye + Yo + x>1 (10)

We use two ways to choose @’ for these subtour elimination
constraints: ' = @ which is similar to the classical TSP
constraint or ()’ is the Voronoi cell of the subtour.

D. Computational Results
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Fig. 8. Runtime of solving benchmark instances to optimality. Shown are
the times of ten instances for each size, with a timeout at 900 s, as well as
the percentage of solved instances. Only the number of turns is minimized
in these instances.

We evaluated the effectiveness of our optimization method
by testing it on a suite of benchmark instances based on
random natural grid graphs with random densities; the prob-
ability of a pixel to be added during test instance generation
is correlated with its neighborhood, resulting in smoother
boundaries which are more natural than purely random
instances. The tests were carried out for 10 instances for
each size in the range up to 1400 pixels. We used modern
desktop computers equipped with an Intel(R) Core(TM) i7-
6700K CPU @ 4.00 GHz and 64 GB of RAM. The integer
programs were computed with CPLEX version 12.5.0.0 and
the parameters EpInt=0, EpGap=0, EpOpt=le-9,and
EpAGap=0. Fig. 8 shows runtimes for solving penalty cycle
cover to optimality. Instances that took longer than 15 min
were aborted. As shown in the figure, even at 1400 pixels
we were still able to solve half of the instances to provable
optimality. Even for the aborted instances, the computed
solutions were within a few percentage points of the provable
lower bound, meaning that they were nearly optimal.

Fig. 9 shows an example of iteratively computing an op-
timal tour with the described integer program. This example
took less than a minute of total computing time. It assumed
that 90° turns cost five times as much as a straight pixel
transition (distance).

V. EXPERIMENTS

The results for representative flights are described below.
Figure 10 compares the energy consumption for three cov-

Fig. 9. Leftis an optimal penalty cycle cover. Cycles (blue) cover all areas
with high density. After three applications of the tour constraints, a single
cycle remains (right). In the intermediate solutions, the subcycles first try
to evade the new constraints by reshaping. The final tour omits two of the
small hotspots because the cost of integrating them into the single tour is
prohibitively expensive.

erage schemes for a region including a large obstacle in
the center. A boustrophedon path requires 50 turns, 187kJ,
160s, and 181 m. A hand-designed path requires 45 turns,
214kJ, 1558, and 178 m. A path computed using the optimal
penalty cycle cover requires only 33 turns, 184 kJ, 133s, and
176 m.
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Fig. 10. Paths for an environment surrounding a fountain, which poses
an obstacle for the UAV. (Top left) The energy consumption during a real
world flight for a boustrophedon path. (Top right) The energy consumption
during a real world flight for a hand-designed loop path. (Bottom left) The
optimal penalty cycle cover path. (Bottom right) The energy consumption
during a real-world flight along the optimal path.

A boustrophedon (back-and-forth) path with 2m spacing
was generated to cover a region 120 m x 15 m at height 1.5 m.
The path was generated using Mission Planner software from
ardupilot.org [30].

For each trial the UAV took off from a resting position
on top of the screen. Flight began manually, with a piloted
takeoff of the UAV. After establishing a stable hover at 3m,
control was switched to the autonomous flight plan. The pilot
monitored the flight with the ability to switch to manual
operation in case of potential crashes due to GPS error or
hazards in the flight plan. Mosquito strikes detected by the



Fig. 11. The UAV’s path for flight 3 is in red. Strikes collected along this
path are represented by yellow dots.
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Fig. 12.  Density map showing mosquito distribution on the field, overlaid
by flight path 4 in white.

data logger were verified using a GoPro Hero 4 Silver camera
attached at the top of the net, as shown in Fig. 1. At night
and twilight, the sparks could be detected both visually and
audibly from the recorded video. During the day, the sparks
were loud enough to observe over the audio channel of the
videos.

The UAV flew eight missions on this field, covering the
same path. It was mainly flown in the early morning and
late afternoon, when mosquito activities are more active.
Three flights were flown at noon and early afternoon to
ensure that mosquito activities during these periods were not
ignored. However, only two mosquito strikes were observed
during this period. The path covered is about 1 km long and
typically takes 12 min.

Over the eight missions on this field, there were a total of
11 mosquito strikes. Figure 11 shows the mission’s flight path
and the map of all collected strikes. The mosquito strikes are
concentrated at the north and south ends of the field, where
there are more trees. A density map was generated from the
collected strikes’ position by representing each strike by a
Gaussian distribution with the norm on the strike’s location
and a o of 10 m. Figure 12 shows the density map generated
by summing these Gaussian distributions.

These results not only tell where mosquitoes were but also
show where mosquitoes were not. This is a key difference
from stationary traps such as [5], [6]. Figure 13 shows the
UAV during a dawn flight test near the ocean.

VI. CONCLUSION AND FUTURE WORK

This paper presented an approach for finding optimal
tours given turn costs and an energy budget, inspired by
a mosquito-killing UAV with limited battery life. Initial
experiments with the UAV and electrified screen track the

Fig. 13.  The UAV and screen during a flight trial near the ocean.

location of a mosquito-killing UAV as it patrols a field and
maps mosquito kills.

Many refinements to the algorithm could be pursued in
future work, including changes to both the mosquito-biasing
algorithm and the robot flight simulation. The model may
be expanded to continuous space, three dimensions, and to
arbitrary turn angles. These and other considerations will
make a more realistic model for future work.

Further testing of the multi-copter UAV is indicated and
will allow more extensive testing of the robustness and
accuracy of the hardware design. New sensors that can
identify and detect flying insects [5] may be added to the
UAV and enable it to proactively steer toward insect swarms
and identify insects in realtime.

The concept may be extended to a non-destructive pop-
ulation survey in which the screen could be replaced with
a net and, with appropriate lighting, the camera used to
record capture events. Teams of UAVs could work together
to map areas more quickly and, by measuring gradients of
the distribution, quickly find large mosquito populations.
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