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Abstract—Phase retrieval deals with the recovery of complex-
or real-valued signals from magnitude measurements. As shown
recently, the method PhaseMax enables phase retrieval via
convex optimization and without lifting the problem to a higher
dimension. To succeed, PhaseMax requires an initial guess of
the solution, which can be calculated via spectral initializers.
In this paper, we show that with the availability of an initial
guess, phase retrieval can be carried out with an ever simpler,
linear procedure. Our algorithm, called PhaseLin, is the linear
estimator that minimizes the mean squared error (MSE) when
applied to the magnitude measurements. The linear nature of
PhaseLin enables an exact and nonasymptotic MSE analysis for
arbitrary measurement matrices. We furthermore demonstrate
that by iteratively using PhaseLin, one arrives at an efficient
phase retrieval algorithm that performs on par with existing
convex and nonconvex methods on synthetic and real-world data.

I. INTRODUCTION

Phase retrieval recovers the N -dimensional signal vector

x ∈ HN , with H being either the set of real (R) or complex (C)

numbers, from the following nonlinear measurement process:

y = |Ax+ nz|2 + ny. (1)

Here, the measurement vector y ∈ R
M contains M real-valued

and phase-less observations, the absolute square function | · |2

operates element-wise on vectors, A ∈ HM×N is a known

measurement matrix, and the vectors nz ∈ HN and ny ∈ R
M

model signal and measurement noise, respectively. In what

follows, we assume a deterministic (and known) measurement

matrix A, but randomness in the signal x to be estimated as

well as the two noise sources nz and ny .

A. Relevant Prior Art

Phase retrieval has been studied extensively over the last

few decades [1], [2] as it finds use in numerous applications,

including X-ray crystallography [3]–[5], microscopy [6], [7],

and imaging [8]. In its original form, the phase retrieval problem

is nonconvex and was solved traditionally using alternating pro-

jection methods, such as the Gerchberg-Saxton [1] or Fienup [2]
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methods. During the last few years, it has been shown that

lifting the phase retrieval problem to a higher-dimensional space

enables the use of semidefinite programming [9]–[11], which

led to a revival of phase retrieval research. While lifting-based

phase retrieval methods provide strong theoretical guarantees,

their computational complexity and storage requirements

quickly become prohibitive for high-dimensional problems

(e.g., for the recovery of high-resolution images). To perform

phase retrieval for high-dimensional problems with methods

that provide theoretical performance guarantees, a number of

nonconvex methods have been proposed and analyzed within

the last years; see, e.g., [12]–[20]. All these methods rely on an

accurate initial guess of the true signal to be recovered, which

can be obtained by means of so-called spectral initializers [12],

[15], [16], [19]–[22]. More recently, it has been shown in [23]–

[27] that given such initial guesses, one can perform phase

retrieval via the convex program PhaseMax, which avoids

lifting and provides accurate performance guarantees.

B. Contributions

In this paper, we show that the availability of an initial

guess enables the use of linear estimators to perform phase

retrieval. Concretely, we propose a novel mean squared error

(MSE)-optimal linear phase retrieval method we call PhaseLin.

Our method provides exact and nonasymptotic expressions of

the recovery MSE and is suitable for scenarios in which the

measurement matrix is finite-dimensional, deterministic, and

(possibly) structured—these aspects are in stark contrast to

most existing theoretical results that are either of asymptotic

nature and/or require randomness in the measurement matrix.

We furthermore show that by iteratively using PhaseLin, one

arrives at a phase retrieval algorithm that performs on par with

existing methods on synthetic and real-world data.

C. Notation

Column vectors and matrices are denoted with lower- and

upper-case bold letters, respectively. For a matrix A, its

transpose, Hermitian transpose, and (entry-wise) complex

conjugate are denoted respectively by AT, AH, and A∗. The

entry on the mth row and nth column of A is denoted as

[A]m,n, and am denotes the mth column vector. For a vector a,

its kth entry is denoted by ak; the ℓ2-norm norm is denoted

by ‖a‖2. The (entry-wise) Hadamard product and the trace

operator are denoted by ⊙ and tr(·), respectively. The notation



diag(a) stands for the square matrix with the vector a on its

main diagonal; diag(A) denotes the column vector comprising

the diagonal elements of the matrix A. The operators ℜ(·) and

ℑ(·) extract the real and imaginary parts of a complex-valued

number, respectively; for a complex-valued vector a, we use

aR and aI to denote the real and imaginary parts. Expectation

with respect to the random vector x is denoted by Ex[·].

II. MAIN RESULTS

We now present PhaseLin. We separately provide results

for the recovery of real-valued and complex-valued signals.

We then provide an exact expression for the recovery MSE

of PhaseLin. We finally show how one can iteratively use

PhaseLin to arrive at a powerful phase retrieval algorithm.

A. The Real Case: PhaseLin-R

We first focus on the case where the signal to be recovered

x ∈ R
N and the measurement matrix A ∈ R

M×N are both

real-valued. We need the following assumptions.

Assumptions 1. We assume that the signal noise vector nz is

zero-mean Gaussian with covariance matrix Cnz , i.e., nz ∼
N (0,Cnz ); the measurement noise vector ny is Gaussian with

mean n̄y and covariance matrix Cny , i.e., ny ∼ N (n̄y,Cny ).
For the signal vector x ∈ R

N , we assume that we have an

initial guess x̄ ∈ R
N (e.g., obtained from a spectral initializer).

We furthermore assume that the true signal can be written as

x = x̄ + e, where the error vector e denotes the difference

between the initial guess x̄ and the true signal x. We assume

that the error vector follows a zero-mean Gaussian distribution

with covariance Ce, i.e., e ∼ N (0,Ce).

With these assumptions, we can derive PhaseLin-R; the

proof of the following result is given in Appendix A.

Theorem 1 (PhaseLin-R). Under Assumptions 1, the linear

estimate x̂ that minimizes the recovery MSE defined as

MSE = E e,nz,ny

[

‖x̂− x‖22
]

(2)

is given by

x̂ = Cx,yv + x̄ with Cyv = y − ȳ,

where x̄ is an initial guess and

ȳ = diag(Cz) + |z̄|2 + n̄y

Cx,y = 2CeA
T diag(z̄)

Cy = (4z̄z̄T + 2Cz)⊙Cz+Cny ,

with z̄ = Ax̄ and Cz = ACeA
T +Cnz .

The above result describes the linear estimate x̂ of the

signal x to be recovered that minimizes the recovery MSE,

given the phase-less measurements in y and an initial guess x̄.

As shown in Lemma 3, we are able to provide a closed form

expression for the recovery MSE of PhaseLin-R.

Remark 1. If the initial guess x̄ is zero, then the quantity z̄

is zero. In this situation, the matrix Cx,y is zero and, hence,

the obtained estimate x̂ is zero as well. Clearly, for such an

initial guess, PhaseLin fails at estimating the signal x. By

using spectral initializers to set the mean x̄, such as the ones

proposed in [12], [15], [16], [19]–[22], PhaseLin performs

well in practice; see Section III for simulation results.

B. The Complex Case: PhaseLin-C

We now focus on the case where the signal to be recovered

x ∈ C
N and the measurement matrix A ∈ C

M×N are both

complex-valued. The measurements, however, remain real-

valued. We need the following assumptions.

Assumptions 2. We assume that the signal noise vector nz

is circularly symmetric complex Gaussian with covariance

matrix Cnz , i.e., nz ∼ CN (0,Cnz ). We assume that the error

vector is also circularly symmetric complex Gaussian with

covariance matrix Ce, i.e., e ∼ CN (0,Ce). The remaining

assumptions are identical to those in Assumptions 1.

We can now derive PhaseLin-C; the proof of the following

result is given in Appendix B.

Theorem 2 (PhaseLin-C). Under Assumptions 2, the linear

estimate x̂ that minimizes the MSE in (2) is given by

x̂ = Cx,yv + x̄ with Cyv = y − ȳ,

where x̄ is an initial guess and

ȳ = diag(Cz) + |z̄|2 + n̄y

Cx,y = CeA
H diag(z̄)

Cy = 2ℜ
{(

z̄z̄H
)

⊙C∗
z

}

+Cz ⊙C∗
z
+Cny ,

with z̄ = Ax̄ and Cz = ACeA
H +Cnz .

As for PhaseLin-C, the above result describes the linear

estimate x̂ of the signal x that minimizes the recovery MSE

given the phase-less measurements in y and an initial guess x̄.

C. Exact Expression for the Recovery MSE

For both PhaseLin-R and PhaseLin-C, the following result

provides an exact and nonasymptotic expression of the recovery

MSE; the proof is given in Appendix C.

Lemma 3 (MSE of PhaseLin). Let either Assumptions 1 or

Assumptions 2 hold. Furthermore, assume that Cy is full rank.

Then, the recovery MSE is given by

MSE = tr(Ce −Cx,yC
−1
y

CH
x,y).

We emphasize that most existing phase retrieval methods

either provide theoretical results that are exact in the asymptotic

regime or provide upper bounds on the recovery error. In

addition, virtually all existing theoretical results require ran-

domness in the measurement matrix A. In contrast, Lemma 3

assumes randomness in the signal to be recovered and the noise

sources, is nonasymptotic and exact, and holds for arbitrary

and deterministic measurement matrices.

Remark 2. Lemma 3 requires the matrix Cy to be full rank.

It can be shown that this full-rank requirement is satisfied for

most scenarios with nondegenerate measurement matrices A

or for situations with nonzero measurement noise.
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Fig. 1. (Top) Reconstructions of a 16× 16-pixel image captured through a scattering medium (real-world dataset provided in [28], reconstructions using
PhasePack [29]) with M = 3N measurements using different phase retrieval methods. (Bottom) The same experiment but with M = 9N measurements. See
Table I for the N-MSE values and runtimes of each phase retrieval algorithm.

D. Iterative Variant of PhaseLin

The authors of [26] proposed an iterative scheme that can

improve upon the performance of the PhaseMax formulation.

The iterative method, called PhaseLamp, first applies PhaseMax

with an estimate obtained from a spectral initializer. In each

subsequent iteration, the result of the previous iteration is then

used as a new initial guess for PhaseMax—this procedure

is repeated for a predefined number of iterations or until

convergence. Inspired by PhaseLamp, we propose to iteratively

apply PhaseLin. The resulting method proceeds as follows.

We start at iteration t = 0 with a spectral initializer x̄(0).

We run PhaseLin with this initial guess to obtain an estimate

of the signal to be recovered x̂(0). We then take this estimate

as a new initial guess, i.e., x̄(1) = x̂(0) and re-use PhaseLin to

obtain a (hopefully improved) estimate. Concretely, we perform

x̄(t+1) = x̂(t) = PhaseLin(x̄(t)) for t = 0, . . . , tmax

with the final estimate being x̂(tmax). In our experiments, we

simply keep the same covariance matrix Ce during all iterations.

We note that more sophisticated methods for selecting the

error covariance matrix Ce on a per-iteration basis may yield

improved performance; the design and analysis of such methods

is left for future work.

III. NUMERICAL RESULTS

We now compare the performance of PhaseLin against

existing phase retrieval methods for both real and synthetic data.

Algorithm and initializer implementations and experimental

setups were provided by PhasePack [29].

A. Image Recovery

We first test the performance of PhaseLin on an image

reconstruction task. In this experiment, an image is captured

through multiple scattering media, producing phase-less mea-

surements [28]; our task is to reconstruct the original image.

In Figure 1, we show the recovered images for a 16 × 16-

pixel image taken from the dataset provided in [28] with

M = 3N and M = 9N measurements, respectively. We

compare PhaseLin to the Wirtinger flow (WF) [14], reweighed

amplitude flow (RAF) [22], Fienup [2], PhaseMax [23]–[25],

PhaseLamp [26], Gerchberg-Saxton (GS) [1], and PhaseLift [9]

TABLE I
RELATIVE RUNTIME (RR) AND NORMALIZED MSE (N-MSE) VERSUS

OVERSAMPLING RATIO (OSR) FOR IMAGE RECOVERY AS IN FIGURE 1.

Metric RR N-MSE RR N-MSE

OSR M = 3N M = 9N

PhaseLin-C 1.00 0.3252 1.00 0.2783

WF [14] 0.61 0.4492 0.13 0.3069

RAF [22] 0.70 0.4769 0.16 0.2946

Fienup [2] 19.1 0.6070 0.45 0.2899

PhaseMax [25] 0.96 0.6254 0.42 0.4872

PhaseLamp [26] 13.3 0.6843 5.31 0.6848

GS [1] 17.9 0.6036 0.43 0.2899

PhaseLift [9] 170 0.3195 35.0 0.2786

methods. For each method, we use the asymptotically-optimal

spectral initializer [20]. For PhaseLin, we use the complex

version and perform tmax = 10 iterations. Table I provides the

associated normalized MSE (N-MSE), which is defined as [29]

N-MSE = min
α∈C

‖x− αx̂‖2/‖x‖2

as well as the relative runtime (compared to that of PhaseLin).

We see that for M = 3N , PhaseLin achieves a lower N-

MSE than all other methods except for PhaseLift, which is

significantly more complex as it must solve a large semidefinite

program. Furthermore, for this image dimension, the runtime

of PhaseLin is comparable to that of the Wirtinger Flow,

RAF, and PhaseMax methods. For M = 9N , PhaseLin

achieves the lowest N-MSE. However, increasing the number

of measurements also increases the complexity of PhaseLin.

B. Synthetic Data

To further illustrate the efficacy of PhaseLin, we study its

performance for different oversampling ratios M/N using

synthetic data in Figure 2. We use the same (empirical)

measurement matrix from the above experiment and generate

synthetic signals of dimension 256 from a zero-mean Gaussian

distribution as x ∼ CN (0, 2I256×256). We then apply each

method to 10 randomly generated instances of x and plot the

median N-MSE. PhaseLin-C with only 15 iterations outper-

forms existing methods at small oversampling ratios except

PhaseLift (which has much higher computational complexity).
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Fig. 2. Normalized MSE of different phase retrieval methods as a function
of the oversampling ratio M/N for Gaussian data with N = 256 and the
same measurement process used in Figure 1. PhaseLin with only 15 iterations
outperforms most existing methods in the regime of small oversampling ratios.

We expect that performance could be improved at higher

sampling ratios with more sophisticated strategies to select

the error covariance Ce in each PhaseLin iteration.

IV. CONCLUSIONS

We have proposed PhaseLin, an MSE-optimal linear esti-

mator that recovers signals from magnitude measurements.

PhaseLin requires an initial guess of the true signal that can

be obtained from spectral initializers and enables an exact and

nonasymptotic analysis of the recovery MSE. Furthermore, we

have demonstrated that PhaseLin performs on par with existing

phase retrieval methods using real images and synthetic data

when used in an iterative manner.

There are many avenues for ongoing work. First, analyzing

the MSE of the iterative version of PhaseLin is a challenging

open research problem. Second, tuning the error covariance

in each PhaseLin iteration and further reducing our method’s

computational complexity is part of ongoing work.

APPENDIX A

PROOF OF THEOREM 1

Our goal is to derive a linear (or affine) estimate x̂L-MMSE =
Wy + b for the unknown signal x that minimizes the MSE

defined in (2). The necessary quantities of this linear minimum

MSE (L-MMSE) estimator are given by

W = Cx,yC
−1
y

and b = x̄−Wȳ, (3)

with x̄ = E[x], ȳ = E[y], and

Cx,y = Cov[x,y] = E
[

(x− x̄)(y − ȳ)H
]

= E
[

xyH
]

− x̄ȳH

Cy = Var[y] = E
[

(y − ȳ)(y − ȳ)H
]

= E
[

yyH
]

− ȳȳH,

where we assumed that Cy is full rank. Our task is to compute

the remaining quantities ȳ, Cx,y, and Cy. We will frequently

use the following lemma with proof given in [30, Sec. 3.1].

Lemma 4. Let (u1, u2) ∼ N (µ,Σ) be a pair of real-valued

jointly Gaussian random variables with covariance matrix

Σ =

[

σ2
1 σ2

1,2

σ2
1,2 σ2

2

]

.

Then, for i = 1, 2, the pair of random variables (ν1, ν2) with

ν1 = u2
1 and ν2 = u2

2 follows the bivariate folded normal

distribution with moments

ν̄i = E
[

u2
i

]

= σ2
i + µ2

i

[Cν ]1,2 = E[(ν1 − ν̄1)(ν2 − ν̄2)] = 4µ1µ2σ
2
1,2 + 2σ4

1,2

[Cν ]i,i = E
[

(νi − ν̄i)
2
]

= 2σ4
i + 4µ2

iσ
2
i .

Define the vector z = Ax + nz to contain the phased

measurements, z̄ = E[z] its mean vector, and Cz its covariance

matrix. Clearly, under Assumptions 1, the phased observations

in z are jointly Gaussian, with mean z̄ = Ax̄ and covariance

matrix Cz = ACeA
T +Cnz . We are now ready to compute

the missing quantities ȳ, Cx,y, and Cy.

1) Phased Measurement Mean ȳ: Using Lemma 4, we have

ȳm = E
[

|zm|2 + ny
]

= σ2
m + |z̄m|2 + n̄y

m, (4)

where σ2
m = [Cz]m,m. Hence, the quantity ȳ reads

ȳ = diag(Cz) + |z̄|2 + n̄y.

2) Cross-Covariance Matrix Cx,y: To compute the cross-

covariance matrix Cx,y, we will use a classical result due to

Brillinger given in [31, Lem.1] that states

Cov[ym, xn] = Cov
[

|zm|2, xn

]

=
Cov

[

|zm|2, zm
]

Var[zm]
Cov[zm, xn] .

By using Stein’s lemma [32], we have

Cov
[

|zm|2, zm
]

Var[zm]
= E[2zm] = 2z̄m.

We also have

Cov[zm, xn] = E[(zm − z̄m)(xn − x̄n)
∗]

= aT
m E[(x− x̄)(xn − x̄n)

∗] = aT
m[Ce]:,n,

where [Ce]:,n corresponds to the nth column of Ce and aT
m

to the mth row of A. Hence, we obtain

[Cy,x]m,n = 2z̄maT
m[Ce]:,n, (5)

and Cx,y = CH
y,x. In compact vector form, the cross-

covariance matrix Cx,y reads

Cx,y = 2CeA
T diag(z̄).

3) Observation Covariance Matrix Cy: The last quantity

required is the matrix Cy. We compute the following quantity:

[Cy]m,m′ = E[(ym − ȳm)(ym − ȳm)∗]

= E[(|zm|2 + ny
m − (E

[

|zm|2
]

+ n̄y
m))

× (|zm′ |2 + ny
m′ − (E

[

|zm′ |2
]

+ n̄y
m′))

∗]



= E[(|zm|2 − E
[

|zm|2
]

)(|zm′ |2 − E
[

|zm′ |2
]

)∗]

+ [Cny ]m,m′ .

Using Lemma 4, we can compute the above expression as

follows. For m = m′, we have

[Cy]m,m = 2σ4
m + 4z̄2mσ2

m,

where σ2
m = [Cz]m,m. Similarly, for m 6= m′, we have

[Cy]m,m′ = 4z̄mz̄m′σ2
mm′ + 2σ4

mm′ ,

where σ2
mm′ = [Cz]m,m′ . In summary, the observation

covariance matrix Cy is given by

Cy = (4z̄z̄T + 2Cz)⊙Cz +Cny .

APPENDIX B

PROOF OF THEOREM 2

For complex-valued signals, the so-called widely linear

minimum MSE (WL-MMSE) estimator [33], [34], which is

of the form W1y + W2y
∗, often provides superior results

compared to the standard L-MMSE estimator. In our setting,

both the WL-MMSE and L-MMSE estimators yield the same

results. Hence, for Assumptions 2, the linear estimator is simply

given by x̂ = Wy + b with W and b given in (3). As a

consequence, we only need to compute the following quantities

for complex-valued signals: ȳ, Cx,y, and Cy.

Let z = Ax+nz contain the phased measurements, z̄ = E[z]
denote its mean vector, and Cz denote its covariance matrix.

Given Assumptions 2, the phased observations in z are jointly

complex Gaussian, where we can easily compute the mean

z̄ = Ax̄ and covariance Cz = ACeA
H + Cnz . From the

covariance Cz, we can easily extract the covariance of the real

and imaginary parts of z separately as follows:

E[zRz∗R]
(a)
= E[zIz

∗
I ] = 1/2ℜ{Cz} = 1/2Cz,R (6)

E[zIz
∗
R]

(a)
= −E[zRz∗I ] = 1/2ℑ{Cz} = 1/2Cz,I . (7)

Here, (a) follows from the circular symmetry of the complex-

valued random variable x. We will use these covariances to

compute Cy later in the section. We are now ready to compute

the missing quantities ȳ, Cx,y, and Cy.

1) Phased Measurement Mean ȳ: To compute the entries

of ȳ, we have

ȳm = E
[

|zm|2 + ny
]

= E
[

|zm,R|2 + |zm,I |
2 + ny

m

]

(b)
= |z̄m,R|2 +

σ2
m,R

2
+ |z̄m,I |

2 +
σ2
m,R

2
+ n̄y

m

(c)
= |z̄m|2 + σ2

m + n̄y
m, (8)

where σ2
m,R = [Cz,R]m,m and σ2

m = [Cz]m,m. Here, (b)

follows from Lemma 4, and (c) follows from the fact that

we can conclude [Cz,R]m,m = [Cz]m,m from equations (6)

and (7). Hence, ȳ in vector form reads

ȳ = diag(Cz) + |z̄|2 + n̄y.

2) Cross-Covariance Matrix Cx,y: We next compute the

individual entries of the cross-covariance matrix

[Cx,y]n,m = E[(xn − x̄n)(ym − ȳm)∗] = E[xny
∗
m]− x̄nȳ

∗
m.

Let us first focus on the quantity E[xny
∗
m]. We have

E[xny
∗
m]

= E



xn



(

N
∑

i=1

Am,ixi + nz
m)(

N
∑

j=1

Am,jxj + nz
m)∗+ ny

m





∗



= E



xn

N
∑

i=1

Am,ixi

N
∑

j=1

A∗
m,jx

∗
j



+ x̄n[Cnz ]m,m + x̄nn̄
y
m

= x̄n

N
∑

i=1

N
∑

j=1

Am,iA
∗
m,j x̄ix̄

∗
j+ x̄n

N
∑

i=1

N
∑

j=1

Am,iA
∗
m,j [Ce]i,j

+

N
∑

i=1

Am,ix̄i

N
∑

j=1

A∗
m,j [Ce]n,j + x̄n[Cnz ]m,m + x̄nn̄

y
m. (9)

Next, using (8), we obtain

x̄nȳ
∗
m = x̄n(σ

2
n + |z̄m|2 + n̄y

m)

= x̄n([ACeA
H +Cnz ]m,m + |aH

mx̄|2 + n̄y
m)

= x̄n

N
∑

i=1

N
∑

j=1

Am,iA
∗
m,j [Ce]i,j + x̄n[Cnz ]m,m

+ x̄n

N
∑

i=1

N
∑

j=1

Am,iA
∗
m,j x̄ix̄

∗
j + x̄nn̄

y
m. (10)

Hence, from (9) and (10), we finally get

[Cx,y]n,m =

N
∑

i=1

Am,ix̄i

N
∑

j=1

A∗
m,j [Ce]n,j ,

which, in compact form, reads Cx,y = CeA
H diag(z̄).

3) Observation Covariance Matrix Cy: To obtain the entries

of the matrix Cy, we first calculate

[Cy]m,m′ = E[(ym − ȳm)(ym − ȳm)∗]

= E[(|zm|2 + ny
m − (E

[

|zm|2
]

+ n̄y
m))

× (|zm′ |2 + ny
m′ − (E

[

|zm′ |2
]

+ n̄y
m′))

∗]

= E[(|zm,R|2− E
[

|zm,R|2
]

+|zm,I |
2− E

[

|zm,I |
2
]

)

×(|zm′,R|2−E
[

|zm′,R|2
]

+|zm′,I |
2−E

[

|zm′,I |
2
]

)∗]

+ [Cny ]m,m′ .

Using the expressions in (6) and (7) together with Lemma 4,

we can compute the above expressions. For m = m′, we have

[Cy]m,m = 2
σ4
m,R

4
+ 4z̄2m,R

σ2
m,R

2
+ 2

σ4
m,R

4
+ 4z̄2m,I

σ2
m,R

2

+ 4z̄m,I z̄m,R

σ2
m,I

2
+ 2

σ4
m,I

4
+ 4z̄m,Rz̄m,I

σ2
m,I

2

+ 2
σ4
m,I

4
+ [Cny ]m,m,



where σ2
m,R = [Cz,R]m,m and σ2

m,I = [Cz,I ]m,m. From (7)

we see that σ2
m,I = 0. Hence, [Cy]m,m can be written as

[Cy]m,m = σ4
m,R + 2(z̄2m,R + z̄2m,I)σ

2
m,R + [Cny ]m,m.

Similarly, for m 6= m′ we have

[Cy]m,m′ = 4z̄m,Rz̄m′,R

σ2
mm′,R

2
+ 2

σ4
mm′,R

4

+ 4z̄m,I z̄m′,I

σ2
mm′,R

2
+ 2

σ4
mm′,R

4

− 4z̄m,Rz̄m′,I

σ2
mm′,I

2
+ 2

σ4
mm′,I

4

+ 4z̄m,I z̄m′,R

σ2
mm′,I

2
+ 2

σ4
mm′,I

4
+ [Cny ]m,m′ ,

where σ2
mm′,R = [Cz,R]m,m′ and σ2

mm′,I = [Cz,I ]m,m′ . As

a result, the observation covariance matrix Cy is given by

Cy = 2ℜ
{(

z̄z̄H
)

⊙C∗
z

}

+Cz ⊙C∗
z
+Cny .

APPENDIX C

PROOF OF LEMMA 3

The MSE of the PhaseLin estimator is given in (2). If Cy

is full rank, then x̂ = Cx,yC
−1
y

(y − ȳ) + x̄. Inserting this

PhaseLin estimator in the MSE expression leads to

MSE = E e,nz,ny

[

‖Cx,yC
−1
y

(y − ȳ) + x̄− x‖22
]

= tr (E e,nz,ny

[

Cx,yC
−1
y

(y − ȳ)(y − ȳ)HC−1
y

CH
x,y

]

)

− tr (E e,nz,ny

[

Cx,yC
−1
y

(y − ȳ)(x− x̄)H
]

)

− tr (E e,nz,ny

[

(x− x̄)(y − ȳ)HC−1
y

CH
x,y

]

)

+ tr (E e

[

(x− x̄)(x− x̄)H
]

)

= tr (Cx,yC
−1
y

CH
x,y)− tr (Cx,yC

−1
y

Cy,x)

− tr (Cx,yC
−1
y

CH
x,y) + tr (Ce)

= tr (Ce −Cx,yC
−1
y

Cy,x),

where we have used the fact that Cy,x = CH
x,y.
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