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Abstract

The Rasch model is widely used for item re-

sponse analysis in applications ranging from

recommender systems to psychology, education,

and finance. While a number of estimators have

been proposed for the Rasch model over the

last decades, the available analytical performance

guarantees are mostly asymptotic. This paper pro-

vides a framework that relies on a novel linear

minimum mean-squared error (L-MMSE) estima-

tor which enables an exact, nonasymptotic, and

closed-form analysis of the parameter estimation

error under the Rasch model. The proposed frame-

work provides guidelines on the number of items

and responses required to attain low estimation

errors in tests or surveys. We furthermore demon-

strate its efficacy on a number of real-world col-

laborative filtering datasets, which reveals that

the proposed L-MMSE estimator performs on par

with state-of-the-art nonlinear estimators in terms

of predictive performance.

1. Introduction

This paper presents a novel framework that enables an ex-

act, nonasymptotic, and closed-form analysis of the param-

eter estimation error under the Rasch model. The Rasch

model was proposed in 1960 for modeling the responses

of students/users to test/survey items (Rasch, 1960), and

has enjoyed great success in applications including (but

not limited to) psychometrics (van der Linden & Hamble-

ton, 2013), educational tests (Lan et al., 2016), crowdsourc-

ing (Whitehill et al., 2009), public health (Cappelleri et al.,

2014), and even market and financial research (Schellhorn

& Sharma, 2013; Brzezińska, 2016). Mathematically, the

(dichotomous) Rasch model, also known as the 1PL item
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response theory (IRT) model (Lord, 1980), is given by

p(Yu,i = 1) = Φ(au − di), (1)

where Yu,i ∈ {−1,+1} denotes the response of user u to

item i, where +1 stands for a correct response and −1 stands

for an incorrect response. The parameters au ∈ R model the

scalar abilities of users u = 1, . . . , U and the parameters

di ∈ R model the scalar difficulties of items i = 1, . . . , Q.

The function Φ(x) =
∫ x

−∞ N (t; 0, 1)dt, often referred to

as the inverse probit link function1, is the cumulative dis-

tribution function of a standard normal random variable,

where N (t; 0, 1) denotes the probability density function of

a standard normal random variable evaluated at t.

The literature describes a range of parameter estimation

methods under the Rasch model and related IRT models;

see (Baker & Kim, 2004) for an overview. However, existing

analytical results for the associated parameter estimation

error are limited; see (Tsutakawa & Johnson, 1990) for an

example. The majority of existing results have been pro-

posed in the psychometrics and educational measurement

literature; see, e.g., (Carroll et al., 2006) for a survey. The

proposed analysis tools rely, for example, on multiple im-

putation (Yang et al., 2012) or Markov chain Monte Carlo

(MCMC) techniques (Patz & Junker, 1999), and are thus

not analytical. Hence, their accuracy strongly depends on

the available data.

Other analysis tools use the Fisher information matrix

(Zhang et al., 2011; Yang et al., 2012) to obtain lower

bounds on the estimation error. Such methods are of asymp-

totic nature, i.e., they yield accurate results only when the

number of users and items tend to infinity. For real-world

settings with limited data, these bounds are typically loose;

As an example, in computerized adaptive testing (CAT)

(Chang & Ying, 2009), a user enters the system and starts

responding to items. The system maintains an estimate of

their ability parameter, and adaptively selects the next-best

item to assign to the user that is most informative of the

ability estimate. Calculating the informativeness of each

item requires an analysis of the uncertainty in the ability

1While some publications assume the inverse logit link func-
tion, i.e., the sigmoid Φ(x) = 1

1+e−x , in most real-world applica-

tions the choice of the link function has no significant performance
impact. In what follows, we will focus on the inverse probit link
function for reasons that will be discussed in Section 3.
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estimate. Initially, after the user has only responded to a few

items, these asymptotic methods lead to highly inaccurate

analyses, which may lead to poor item selections.

Another family of analysis tools relies on concentration

inequalities and yield probabilistic bounds, i.e., bounds that

hold with high probability (Bunea, 2008; Filippi et al., 2010).

Such results are often impractical in real-world applications.

However, an exact analysis of the estimation error of the

Rasch model is critical to ensure the a certain degree of

reliability of assessment scores in tests (Thompson, 2002).

1.1. Contributions

We propose a novel framework for the Rasch model that

enables an exact, nonasymptotic, and closed-form analysis

of the parameter estimation error. To this end, we general-

ize a recently-proposed linear estimator for binary regres-

sion (Lan et al., 2018) to the Rasch model, which enables

us to derive a sharp upper bound on the mean squared error

(MSE) of model parameter estimates. Our analytical results

are in stark contrast to existing analytical results which ei-

ther provide loose lower bounds or are asymptotic in nature,

rendering them impractical in real-world applications.

To demonstrate the efficacy of our framework, we provide

experimental results on both synthetic and real-world data.

First, using synthetic data, we show that our upper bound

on the MSE is (often significantly) tighter than the Fisher

information-based lower bound, especially when the prob-

lem size is small and when the data is noisy. Therefore, our

framework enables a more accurate analysis of the estima-

tion error in real-world settings. Second, using real-world

student question response and user movie rating datasets, we

show that our linear estimator achieves competitive predic-

tive performance to more sophisticated, nonlinear estimators

for which sharp performance guarantees are unavailable.

2. Rasch Model and Probit Regression

The Rasch model in (1) can be written in equivalent matrix-

vector form as follows (Hoff, 2009):

y = sign(Dx+w). (2)

Here, the UQ-dimensional vector y ∈ {−1,+1}UQ con-

tains all user responses to all items, the Rasch model ma-

trix D = [1Q ⊗ IU×U , IQ×Q ⊗1U ] is constructed with the

Kronecker product operator ⊗, identity matrices I, all-ones

vectors 1, and the vector xT = [aT ,−dT ] to be estimated

consists of the user abilities a ∈ R
U and item difficulties

d ∈ R
Q. The “noise” vector w contains i.i.d. standard nor-

mal random variables. In this equivalent form, parameter

estimation under the Rasch model can be casted as a pro-

bit regression problem (Bliss, 1935), for which numerous

estimators have been proposed in the past.

2.1. Estimators for Probit Regression

The two most prominent estimators for probit regression are

the posterior mean (PM) estimator, given by

x̂PM = Ex[x|y] =
∫
RN xp(x|y)dx, (3)

and the maximum a-posteriori (MAP) estimator, given by

x̂MAP = arg min
x∈RN

−∑M
m=1 log(Φ(ymdT

mx)) + 1
2x

TC−1
x x.

Here, p(x|y) denotes the posterior probability of the vec-

tor x given the observations y under the model (2), dT
m

denotes the mth row of the matrix of covariates D, and Cx

denotes the covariance matrix of the multivariate Gaussian

prior on x. A special case of the MAP estimator is the well-

known maximum likelihood (ML) estimator, which does

not impose a prior distribution on x.

The PM estimator is optimal in terms of minimizing the

MSE of the estimated parameters, which is defined as

MSE(x̂) = Ex,w

[
‖x− x̂‖2

]
. (4)

However, there are no simple methods to evaluate the ex-

pectation in (3) under the probit model. Thus, one typically

resorts to Markov chain Monte Carlo (MCMC) methods

(Albert & Chib, 1993) to perform PM estimation, which can

be computationally intensive. In contrast to the PM estima-

tor, MAP and ML estimation is generally less complex since

it can be implemented using standard convex optimization

algorithms (Nocedal & Wright, 2006; Hastie et al., 2010;

Goldstein et al., 2014). On the flipside, MAP and ML esti-

mation is not optimal in terms of minimizing the MSE in (4).

In contrast to such well-established, nonlinear estimators,

we build our framework on the family of linear estimators

recently proposed in (Lan et al., 2018). There, a linear mini-

mum MSE (L-MMSE) estimator was proposed for a certain

class of probit regression problems. This L-MMSE estima-

tor was found to perform on par with the PM estimator and

outperforms the MAP estimator in terms of the MSE for

certain settings, while enabling an exact and nonasymptotic

analysis of the MSE.

2.2. Analytical Performance Guarantees

In the statistical estimation literature, there exists numerous

analytical results characterizing the estimation errors for

binary regression problems in the asymptotic setting. For

example, (Brillinger, 1982) shows that least squares esti-

mation is particularly effective when the design matrix D

has i.i.d. Gaussian entries and the number of observations

approaches infinity; in this case, its performance was shown

to differ from that of the PM estimator only by a constant

factor. Recently, (Thrampoulidis et al., 2015) provides a

related analysis in the case that the parameter vector x is
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sparse. Another family of probabilistic results relies on

the asymptotic normality property of ML estimators, ei-

ther in the standard (dense) setting (Gourieroux & Monfort,

1981; Fahrmeir & Kaufmann, 1985) or the sparse setting

(Bunea, 2008; Bach, 2010; Ravikumar et al., 2010; Plan

& Vershynin, 2013), providing bounds on the MSE with

high probability. Since numerous real-world applications,

such as the Rasch model, rely on deterministic, structured

matrices and have small problem dimensions, existing ana-

lytical performance bounds are often loose; see Section 4

for experiments that support this claim.

3. Main Results

Our main result is as follows; the proof is given in Ap-

pendix A.

Theorem 1. Assume that x ∼ N (x̄,Cx) with mean vec-

tor x̄ and positive definite covariance matrix Cx, and as-

sume that the vector w contains i.i.d. standard normal ran-

dom variables. Consider the general probit regression model

y = sign(Dx+m+w), (5)

where D is a given matrix of covariates and m is a given

bias vector. Then, the L-MMSE estimate is given by

x̂L-MMSE = ETC−1
y y + b,

where we use the following quantities:

E=2diag(N (c; 0,1)⊙diag(Cz)
− 1

2 )DCx

c = z̄⊙ diag(Cz)
−1/2

z̄ = Dx̄+m

Cz = DCxD
T + I

Cy = 2(Φ2(c1
T ,1cT ;R) + Φ2(−c1T ,−1cT ;R))

− 1M×M − ȳȳT

R = diag(diag(Cz)
−1/2)Czdiag(diag(Cz)

−1/2)

ȳ=Φ(c)− Φ(−c)

b= x̄−ETC−1
y ȳ.

Here, Φ2(x, y, ρ) denotes the cumulative density of a two-

dimensional zero-mean Gaussian distribution with covari-

ance matrix [1 ρ; ρ 1] with ρ ∈ [0, 1), defined as

Φ2(x, y; ρ) =

∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
e
− s2−2ρst+t2

2(1−ρ2) dtds

and is applied element-wise on matrices. Furthermore, the

associated estimation MSE is given by

MSE(x̂L-MMSE) = tr(Cx −ETC−1
y E).

We note that the linear estimator developed in (Lan et al.,

2018, Thm. 1) is a special case of our result with x̄ = 0 and

m = 0. As we will show below, including both of these

terms will be essential for our analysis.

Remark 1. We exclusively focus on probit regression since

the matrices E and Cy exhibit tractable expressions under

this model. We are unaware of any closed-form expressions

for these quantities in the logistic regression case.

As an immediate consequence of the fact that the PM esti-

mator minimizes the MSE, we can use Theorem 1 to obtain

the following upper bound on the MSE of the PM estimator.

Corollary 2. The MSE of the PM estimator is upper-

bounded as follows:

MSE(xPM) ≤ MSE(x̂L-MMSE). (6)

As we will demonstrate in Section 4, this upper bound on

the MSE turns out to be surprisingly sharp for a broad range

of parameters and problem settings.

We now specialize Theorem 1 for the Rasch model and

use Corollary 2 to analyze the associated MSE. We divide

our results into two cases: (i) both the user abilities and

item difficulties are unknown and (ii) one of the two sets of

parameters is known and the other is unknown. Due to sym-

metry in the Rasch model, we will present our results with

unknown/known item difficulties while the user abilities are

unknown and to be estimated; a corresponding analysis on

the estimation error of item parameters follows immediately.

3.1. First Case: Unknown Item Parameters

We now analyze the case in which both the user abilities

and item difficulties are unknown and need to be estimated.

In practice, this scenario is relevant if a new set of items are

deployed with little or no prior knowledge on their difficulty

parameters. We assume that there is no missing data, i.e.,

we observe all user responses to all items.2 In the psycho-

metrics literature (see, e.g., (Linacre, 1999)), one typically

assumes that the entries of the ability a and difficulty vec-

tors d are i.i.d. zero-mean Gaussian with variance σ2
a and

σ2
d, respectively, i.e., au ∼ N (0, σ2

a) and di ∼ N (0, σ2
d),

which can be included in our model assumptions. Thus, we

can leverage the special structure of the Rasch model, since

it corresponds to a special case of the generic probit regres-

sion model in (5) with D = [1Q ⊗ IU×U , IQ×Q ⊗1U ] and

m = 0. We have the following result on the MSE of the

L-MMSE estimator; the proof is given in Appendix B.

Theorem 3. Assume that σ2
a = σ2

d = σ2
x and the covari-

ance matrix of x is Cx = σ2
xI(U+Q)×(U+Q). Let

s =
2

π
arcsin

(
σ2
x

2σ2
x + 1

)
.

2Our analysis can readily be generalized to missing data; the
results, however, depend on the missing data pattern.
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Then, the MSE of the L-MMSE estimator of user abilities

under the Rasch model is given by

MSEa = Ex,w

[
(au − âu)

2
]
=

σ2
x

(
1− 2

π

σ2
x

2σ2
x + 1

sQ(Q+ U − 3) + 1

(s(Q− 2) + 1)(s(Q+ U − 2) + 1)

)
.

(7)

To the best of our knowledge, Theorem 3 is the first exact,

nonasymptotic, and closed-form analysis of the MSE of a

parameter estimation method for the Rasch model. From (7),

we see that if σ2
x is held constant, then the relationship

between MSEa and the numbers of users (U ) and items (Q)

is given by the ratio of two second-order polynomials. If

the signal-to-noise ratio (SNR) is low (or, equivalently, the

data is noisy), i.e., σ2
x ≪ σ2

n, then we have
σ2
x

2σ2
x+1 ≈ 0

and hence, s = 2
π arcsin(

σ2
x

2σ2
x+1 ) ≈ 0. In this case, we

have MSEa ≈ σ2
x, i.e., increasing the number of users/items

does not affect the accuracy of the ability and difficulty

parameters of users and items; this behavior is as expected.

When U,Q → ∞, the MSE satisfies

MSEa → σ2
x

(
1− σ2

x

2σ2
x + 1

arcsin−1

(
σ2
x

2σ2
x + 1

))
, (8)

which is a non-negative quantity. This result implies that

the L-MMSE estimator has a residual MSE even as the

number of users/items grows large. More specifically, since

x ≤ arcsin(x) for x ∈ [0, 1], this residual error approaches

σ2
x(1 − 3

π ) at high values of SNR. We note, however, this

result does not imply that the L-MMSE estimator is not

consistent under the Rasch model, since the number of pa-

rameters to be estimated (U +Q) grows with the number of

the observations (UQ) instead of remaining constant.

Remark 2. The above MSE analysis is data-independent,

in contrast to error estimates that rely on the responses y

(which is, for example, the case for method in (Carroll et al.,

2006)). This fact implies that our result provides an error

estimate before observing y. Thus, Theorem 3 provides

guidelines on how many items to include and how many

users to recruit for a study, given a desired MSE level on

the user ability and item difficulty parameter estimates.

3.2. Second Case: Known Item Difficulties

We now analyze the case in which the user abilities are

unknown and need to be estimated; the item difficulties (d)

are given. In practice, this scenario is relevant if a large

number of users previously responded to a set of items so

that a good estimate of the item difficulties is available. Let a

denote the scalar ability parameter of an user. Then, their

responses to items are modeled as

p(y = 1) = Φ(1Qa− d).

The following result follows from Theorem 1 by setting

x = a, x̄ = x̄, Cx = σ2
x, D = 1Q, and m = −d.

Corollary 4. Assume that a ∼ N (x̄, σ2
x). Then, the L-

MMSE estimate of user ability is given by

â = eTC−1
y y + b,

where

e=2
σ2
x√

σ2
x + 1

N (c; 0, 1)

c = z̄⊙ diag(Cz)
−1/2

z̄ = x̄1Q − d

Cz = σ2
x1Q×Q + I

ȳ = Φ(c)− Φ(−c)

Cy = 2(Φ2(c1
T,1cT ,R) + Φ2(−c1T ,−1cT ,R))

− 1M×M − ȳȳT

R = diag(diag(Cz)
−1/2)Czdiag(diag(Cz)

−1/2.

The MSE of the user ability estimate is given by MSE(â) =
σ2
x − eTC−1

y e.

4. Numerical Results

We now experimentally demonstrate the efficacy of the pro-

posed framework. First, we use synthetically generated data

to numerically compare our L-MMSE-based upper bound

on the MSE of the PM estimator to the widely-used lower

bound based on Fisher information (Zhang et al., 2011;

Yang et al., 2012). We then use several real-world collabora-

tive filtering datasets to show that the L-MMSE estimator

achieves comparable predictive performance to that of the

PM and MAP estimators.

4.1. Experiments with Synthetic Data

We start with synthetic data to demonstrate the exact and

nonasymptotic nature of our analytical MSE expressions.

4.1.1. FIRST CASE: UNKNOWN ITEM PARAMETERS

Experimental Setup We vary the number of users

U ∈ {20, 50, 100} and the number of items Q ∈
{20, 50, 100, 200}. We generate the user ability and item

difficulty parameters from zero-mean Gaussian distributions

with variance σ2
x = σ2

a = σ2
d. We vary σ2

x so that the signal-

to-noise ratio (SNR) corresponds to {−10, 0, 10} decibels

(dB). We then randomly generate the response from each

user to each item, Yu,i, according to (1). We repeat these

experiments for 1, 000 random instances of user and item

parameters and responses, and report the averaged results.

We compute the L-MMSE-based upper bound on the MSE

of the PM estimator using Theorem 1 and the Fisher
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Table 1. Mean and standard deviation of the prediction accuracy (ACC) for the L-MMSE, MAP, PM, and Logit-MAP estimators.

L-MMSE MAP PM Logit-MAP

MT 0.795± 0.016 0.796± 0.015 0.796± 0.016 0.794± 0.015
SS 0.860± 0.007 0.859± 0.007 0.859± 0.007 0.859± 0.010
edX 0.932± 0.001 0.934± 0.002 0.935± 0.002 0.934± 0.002
ML 0.715± 0.004 0.713± 0.004 0.713± 0.004 0.714± 0.004

Table 2. Area under the receiver operating characteristic curve (AUC) of the L-MMSE, MAP, PM, and Logit-MAP estimators.

L-MMSE MAP PM Logit-MAP

MT 0.840± 0.016 0.843± 0.015 0.843± 0.015 0.842± 0.015
SS 0.800± 0.014 0.803± 0.013 0.803± 0.013 0.802± 0.013
edX 0.900± 0.004 0.909± 0.004 0.909± 0.004 0.909± 0.004

ML 0.755± 0.005 0.756± 0.004 0.756± 0.004 0.756± 0.004

tic, or loose. As a result, we have shown that the nonasymp-

totic, L-MMSE-based upper bound on the parameter esti-

mation error of the PM estimator under the Rasch model

can be tighter than the common Fisher information-based

asymptotic lower bound, especially in practical settings. An

avenue of future work is to apply our analysis to models

that are more sophisticated than the Rasch model, e.g., the

latent factor model in (Lan et al., 2014).

A. Proof of Theorem 4

Let z = Dx+m+w. Thus, z ∼ N (Dx̄+m,DCxD
T +

I) := N (z̄,Cz). The L-MMSE estimator for x has the

general form of x̂L-MMSE = Wy + b, where W = EC−1
y

and b = x̄−Wȳ, with

Cy=E
[
(y−ȳ)(y−ȳ)T

]
=E

[
yyT

]
−ȳȳT :=C̃y−ȳȳT

and

E = E
[
(y − ȳ)(x− x̄)T

]
=E

[
yxT

]
−ȳx̄T :=Ẽ−ȳx̄T .

We need to evaluate three quantities, ȳ, C̃y, and Ẽ.

We start with ȳ. Its ith entry is given by

ȳi =

∫ ∞

−∞
sign(zi)N (zi; z̄i, [Cz]i,i)dzi

=−
∫ 0

−∞
N (zi; z̄i, [Cz]i,i)dzi+

∫ ∞

0

N (zi; z̄i, [Cz]i,i)dzi

= Φ

(
z̄i√
[Cz]i,i

)
− Φ

(
− z̄i√

[Cz]i,i

)
.

Next, we calculate C̃y. Its (i, j)th entry is given by

[C̃y]i,j =

∫ ∞

−∞

∫ ∞

−∞
sign(zi) sign(zj)N

([
zi
zj

]
;

[
z̄i
z̄j

]
,
[ [Cz]i,i [Cz]i,j
[Cz]j,i [Cz]j,j

])
dzjdzi

(a)
=

∫ ∞

−∞

∫ ∞

−∞
sign

(
zi + z̄i√
[Cz]i,i

)
sign

(
zj + z̄j√
[Cz]j,j

)

N
([

zi
zj

]
;0,
[ 1 ρ

ρ 1

])
dzjdzi

=

∫ − z̄i√
[Cz]i,i

−∞

∫ −
z̄j√

[Cz]j,j

−∞
N
([

zi
zj

]
;0,
[ 1 ρ

ρ 1

])
dzjdzi

︸ ︷︷ ︸
v1

+

∫ ∞

− z̄i√
[Cz]i,i

∫ ∞

−
z̄j√

[Cz]j,j

N
([

zi
zj

]
;0,
[
1 ρ

ρ 1

])
dzjdzi

︸ ︷︷ ︸
v2

−
∫ − z̄i√

[Cz]i,i

−∞

∫ ∞

−
z̄j√

[Cz]j,j

N
([

zi
zj

]
;0,
[ 1 ρ

ρ 1

])
dzjdzi

︸ ︷︷ ︸
v3

−
∫ ∞

− z̄i√
[Cz]i,i

∫ −
z̄j√

[Cz]j,j

−∞
N
([

zi
zj

]
;0,
[ 1 ρ

ρ 1

])
dzjdzi

︸ ︷︷ ︸
v4

(b)
= 2(v1 + v2)− 1

= 2

(
Φ2

(
z̄i√
[Cz]i,i

,
z̄j√
[Cz]j,j

, ρ

)

+Φ2

(
− z̄i√

[Cz]i,i
,− z̄j√

[Cz]j,j
, ρ

))
− 1,

where we have used (a) change of variable zi−z̄i√
[Cz]i,i

→ zi

and (b) the fact that v1+v2+v3+v4 = 1. The computation

of Ẽ follows from that in (Lan et al., 2018) and is omitted.

B. Proof of Theorem 3

Recall that the expression for the MSE is tr(Cx −
ETC−1

y E), the critical part is to evaluate ETC−1
y E. We

begin by evaluating C−1
y . For the Rasch model, we have
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D = [1Q ⊗ IU×U , IQ×Q ⊗1U ]. Therefore, since Cx =
σ2
xIU+Q, we have

Cz = DCxD
T + IUQ×UQ = σ2

xDDT + IUQ×UQ

= σ2
x[1Q ⊗ IU×U IQ×Q ⊗1U ]

[
1T
Q ⊗ IU×U

IQ×Q ⊗1T
U

]

+ IUQ×UQ

= σ2
x(1Q×Q ⊗ IU×U + IQ×Q ⊗1U×U ) + IUQ×UQ,

where 1U×U denotes an all-one matrix with size U × U .

Therefore, we see that the UQ× UQ matrix Cz consists of

three parts: (i) Q copies of the all-ones matrix σ2
x1U×U in

its diagonal U ×U blocks, (ii) copies of the matrix σ2
xIU×U

in every other off-diagonal U×U block, plus (iii) a diagonal

matrix IUQ×UQ. Therefore, its diagonal elements are 2σ2
x +

1 and its non-zero off-diagonal elements are σ2
x.

As detailed in (Lan et al., 2018, (7)), one can show that

Cy =
2

π
arcsin(diag(diag(Cz)

−1/2)Cz

× diag(diag(Cz)
−1/2)),

we have that the term inside the arcsin function has the

same structure as Cz, with diagonal entries of 1 and non-

zero off-diagonal entries as
σ2
x

2σ2
x+1 . Therefore, Cy also has

the same structure, with diagonal entries of 1 and non-zero

off-diagonal entries as

s =
2

π
arcsin

(
σ2
x

2σ2
x + 1

)
.

Since C−1
y satisfies CyC

−1
y = IUQ×UQ, it is easy to see

that the entries of C−1
y only contain three distinct values

(denoted by a, b, and c), and consists of two parts: (i) Q

copies of a U × U matrix with a on its diagonal, b every-

where else, in its diagonal blocks, and (ii) copies of a U ×U

matrix with c on its diagonal, d everywhere else, in its other

blocks. We next compute a, b, c, and d.

The first column of C−1
y is given by

[a, b11×U−1, c, d11×U−1, c, d11×U−1, . . .]
T .

Since its inner product with the first row of Cy is one (since

CyC
−1
y = IUQ×UQ), we get

a+ (U − 1)sb+ (Q− 1)sc = 1.

Similarly, its inner products with the second, (U + 1)− th,

and (U + 2)-th rows are all zero; this gives

sa+ ((U − 2)s+ 1)b+ (Q− 1)sd = 0,

sa+ ((Q− 2)s+ 1)c+ (U − 1)sd = 0,

sb+ sc+ ((U +Q− 4)s+ 1)d = 0.

Solving the linear system given by these four equations

results in

a=
(3U2+3Q2−U2Q−UQ2+8UQ−15U−15Q+20)s3

r

+
(−U2 −Q2 − 3UQ+ 11U + 11Q− 22)s2

r

+
(−2U − 2Q+ 8)s− 1

r

b=
(UQ+Q2 − 3U − 5Q+ 8)s3+(U + 2Q− 6)s2+s

r

c=
(UQ+ U2 − 5U − 3Q+ 8)s3+(2U +Q− 6)s2+s

r

d=
−(U +Q− 4)s3 − 2s2

r
, (9)

where

r=(2s−1)((U−2)s+1)((Q−2)s+1)((Q+U−2)s+1).

Now, let A be the N ×N matrix with c on its diagonal and

d everywhere else, B denote the matrix with a − c on its

diagonal and b− d everywhere else, we can write C−1
y as

C−1
y = 1Q×Q ⊗A+ IQ×Q ⊗B. (10)

Our second task is to evaluate E. Since

E =

√
2

π
diag(diag(Cz)

−1/2)DCx =

√
2

π

σ2
x√

2σ2
x + 1

D

=
σ2
x√

2σ2
x + 1

[1Q ⊗ IU×U IQ×Q ⊗1U ],

we have

ETC−1
y E =

2

π

σ4
x

2σ2
x + 1

[
1T
Q ⊗ IU×U

IQ×Q ⊗1T
U

]

× (1Q×Q ⊗A+ IQ×Q ⊗B)[1Q ⊗ IU×U IQ×Q ⊗1U ]

=
2

π

σ4
x

2σ2
x + 1

Q(QA+B),

where we have used (X⊗Y)(U⊗V) = (XU)⊗(YV).

Therefore, the value of entry (1, 1) in ETC−1
y E, i.e., the

MSE of the user ability parameter estimates, is given by

2

π

σ4
x

2σ2
x + 1

Q(a+ (Q− 1)c) =

σ2
x

(
1− 2

π

σ2
x

2σ2
x + 1

sQ(Q+ U − 3) + 1

(s(Q− 2) + 1)(s(Q+ U − 2) + 1)

)
,

where we have used (9), thus completing the proof.
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