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Abstract—Probit regression was first proposed by Bliss in 1934
to study mortality rates of insects. Since then, an extensive
body of work has analyzed and used probit or related binary
regression methods (such as logistic regression) in numerous
applications and fields. This paper provides a fresh angle to
such well-established binary regression methods. Concretely, we
demonstrate that linearizing the probit model in combination with
linear estimators performs on par with state-of-the-art nonlinear
regression methods, such as posterior mean or maximum a-
posteriori estimation, for a broad range of real-world regression
problems. We derive exact, closed-form, and nonasymptotic ex-
pressions for the mean-squared error of our linearized estimators,
which clearly separates them from nonlinear regression methods
that are typically difficult to analyze. We showcase the efficacy of
our methods and results for a number of synthetic and real-world
datasets, which demonstrates that linearized binary regression
finds potential use in a variety of inference, estimation, signal
processing, and machine learning applications that deal with
binary-valued observations or measurements.

I. INTRODUCTION

This paper deals with the estimation of the N -dimensional

vector x ∈ R
N from the following measurement model:

y = sign(Dx+w). (1)

Here, the vector y ∈ {−1,+1}M contains M binary-valued

measurements, the function sign(z) operates element-wise on

its argument and outputs +1 for z ≥ 0 and −1 otherwise,

D ∈ R
M×N is a given design matrix (or matrix of covariates).

The noise vector w ∈ R
M has i.i.d. random entries. Estimation

of the vector x from the observation model in (1) is known

as binary regression. The two most common types of binary

regression are (i) probit regression [1] for which the noise

vector w follows a standard normal distribution and (ii) logistic

regression [2] for which the noise vector w follows a logistic

distribution with unit scale parameter.

Binary regression finds widespread use in a broad range

of applications and fields, including (but not limited to)

image classification [3], biomedical data analysis [4], [5],

economics [6], and signal processing [7], [8]. In most real-world

applications, one can use either probit or logistic regression,

since the noise distribution is unknown; in this paper, we

focus on probit regression for reasons that we will detail in
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Section II-A. In what follows, we will assume that the noise

vector w ∈ R
M has i.i.d. standard normal entries, and refer

to (1) as the standard probit model.

A. Relevant Prior Art

1) Estimators: The two most common estimation techniques

for the standard probit model in (1) are the posterior mean

(PM) and maximum a-posteriori (MAP) estimators. The PM

estimator computes the following conditional expectation [9]:

x̂PM = Ex[x|y] =
∫

RN xp(x|y)dx, (2)

where p(x|y) is the posterior probability of the vector x given

the observations y under the model (1). The PM estimator is

optimal in a sense that it minimizes the mean-squared error

(MSE) defined as

MSE(x̂) = Ex,w

[

‖x− x̂‖2
]

, (3)

and is, hence, also known as the nonlinear minimum mean-

squared error (MMSE) estimator. Evaluating the integral in (2)

for the probit model is difficult and hence, one typically resorts

to rather slow Monte-Carlo methods [10]. By assuming that

the vector x is multivariate Gaussian, an alternative regression

technique is the MAP estimator that solves the following convex

optimization problem [11]:

x̂MAP=arg min
x∈RN

−∑M
m=1 log(Φ(ymdT

mx)) + 1
2x

TC−1
x x. (4)

Here, Φ(x) =
∫ x

−∞(2π)−1/2e−t2/2dt is the cumulative distri-

bution function of a standard normal random variable, dT
m

is the mth row of the covariate matrix D, and Cx is the

covariance matrix of the zero-mean multivariate Gaussian

prior on the vector x. By ignoring the prior on x, one

arrives at the well-known maximum-likelihood (ML) estimator.

Compared to the PM estimator, MAP and ML estimation can be

implemented efficiently either by solving a series of re-weighted

least squares problems [12] or by using standard numerical

methods for convex problems that scale favorably to large

problem sizes [13], [14]. In contrast to such well-established

nonlinear estimators, we will investigate linear estimators that

are computationally efficient and whose performance is on par

to that of the PM, MAP, and ML estimators.

2) Analytical Results: Analytical results that characterize the

performance of estimation under the probit model are almost

exclusively for the asymptotic setting, i.e., when M and/or N



tend to infinity. More specifically, Brillinger [15] has shown

in 1982 that the conventional least-squares (LS) estimators for

scenarios in which the design matrix D has i.i.d. Gaussian

entries, delivers an estimate that is the same as that of the

PM estimator up to a constant. More recently, Brillinger’s

result has been generalized by Thrampoulidis et al. [16] to the

sparse setting, i.e., where the vector x has only a few nonzero

entries. Other related results analyze the consistency of the ML

estimator for sparse logistic regression. These results are either

asymptotic [8], [17], [18] or of probabilistic nature [19]; the

latter type of results bounds the MSE with high probability. In

contrast to all such existing analytical results, we will provide

nonasymptotic and exact expressions for the MSE that are valid

for arbitrary and deterministic design matrices D.

B. Contributions

We propose novel linear estimators of the form x̂ = Wy

for the probit model in (1), where W ∈ R
N×M are suitably-

chosen estimation matrices, and provide exact, closed-form,

and nonasymptotic expressions for the MSE of these estima-

tors. Specifically, we will develop two estimators: a linear

minimum mean-squared error (L-MMSE) estimator that aims

at minimizing the MSE in (3) and a more efficient but less

accurate least-squares (LS) estimator. Our MSE results are in

stark contrast to existing performance guarantees for the MAP

or PM estimators, for which a nonasymptotic performance

analysis is, in general, difficult. We provide inference results

on synthetic data, which suggest that the inference quality

of the proposed linear estimators is on par with state-of-

the-art nonlinear estimators, especially at low signal-to-noise

ratio (SNR), i.e., when the quantization error is lower than the

noise level. Moreover, we show using six different real-world

binary regression datasets that the proposed linear estimators

achieve competitive predictive performance to PM and MAP

estimation at comparable or even lower complexity.

II. LINEARIZED PROBIT REGRESSION

To develop and analyze linearized inference methods for

the standard probit model in (1), we will first consider the

following smoothed version of the probit model:

ȳ = fσ(Dx+w). (5)

We will then use these results to study the binary model (1).

Here, ȳ ∈ [−1,+1]M , x is zero-mean Gaussian with known

covariance Cx, the sigmoid function is defined as fσ(z) =
2Φ(z/σ)− 1 and operates element-wise on its argument, σ ∈
(0,∞) is a smoothing parameter, and the vector w is assumed

to be zero-mean Gaussian with known covariance Cw and

independent of x.1 We emphasize that as σ → 0, the sigmoid

function fσ(z) corresponds to the sign function and hence,

the model in (5) includes the probit model in (1) as a special

case. In what follows, we assume nondegenerate covariance

matrices for x and w, i.e., we assume that Cx and Cw are both

1We emphasize that these are standard model assumptions in Bayesian data
analysis (see, e.g., [20]) and in numerous real-world applications, such as
modeling user responses to test items [21].

invertible. We next introduce two new linear estimators for this

model and then, provide exact, closed-form, and nonasymptotic

expressions for the associated MSEs.

A. Linear Minimum Mean-Squared Error Estimator

Our main result is as follows.

Theorem 1. The linear minimum mean-squared error (L-

MMSE) estimate for the generalized probit model in (5) is

x̂L-MMSE = ETC−1
ȳ ȳ, (6)

where

E =
(

2
π

)1/2
diag(diag(σ2I+Cz)

−1/2)DCx, (7)

Cȳ = 2
π arcsin(diag(diag(σ2I+Cz)

−1/2)Cz

× diag(diag(σ2I+Cz)
−1/2)), (8)

and Cz = DCxD
T +Cw.

Remark 1. The reason that we focus on probit regression is

that under the standard probit model, the matrices E and Cȳ

exhibit closed-form expressions; For logistic regression, such

closed-form expressions do not exist.

Proof. The proof consists of two steps. First, we linearize the

model in (5). Then, we derive the L-MMSE estimate in (6)

for the linearized model. The two steps are as follows.

Step 1 (Linearization): Let z = Dx+w and

ȳ = fσ(z) = Fx+ e (9)

be a linearization of the generalized probit model in (5), where

F ∈ R
M×N is a linearization matrix and e ∈ R

M is a residual

error vector that contains noise and linearization artifacts. Our

goal is to perform a Bussgang-like decomposition [22], which

uses the linearization matrix F that minimizes the ℓ2-norm of

the residual error vector e averaged over the signal and noise.

Concretely, let Cz be the covariance matrix of the vector z

and consider the optimization problem

minimize
F∈RM×N

Ex,w

[

∥

∥ȳ − Fx
∥

∥

2
]

,

which has a closed-form solution that is given by F = EC−1
x

with E = Ex,w

[

ȳxT
]

. It can easily be verified that for this

particular choice of the linearization matrix F, the residual

error vector e and the signal of interest x are uncorrelated, i.e.,

we have Ex,w

[

xeT
]

= 0N×M .

We now derive a closed-form expression for the entries of

the matrix E. Since both x and w are independent and zero-

mean Gaussian, the bivariate (zm, xn) is jointly Gaussian for

each index pair {m,n}. Moreover, we have Et[|fσ(t)|] < ∞
and Et[|tfσ(t)|] < ∞ if t is a zero-mean Gaussian random

variable. Hence, we can use the following result that is due to

Brillinger [23, Lem. 1]:

[E]m,n = Ex,w[ȳmxn] =
Cov(zm, xn)

Var(zm)
Ezm [ȳmzm], (10)

where Cov(zm, xn) = dT
mcn with cn being the nth column of

Cx. Since for σ > 0 the function ȳm = fσ(zm) is absolutely



continuous2, zm is zero-mean Gaussian, and Et[f
′
σ(t)] < ∞,

we can invoke Stein’s Lemma [24], which states that

Ezm [fσ(zm)zm]

Var(zm)
= Ezm [f ′

σ(zm)] , (11)

with f ′
σ(z) =

d
dz fσ(z). Using fσ(x) = 2Φ(x/σ)− 1, we can

evaluate the right-hand side in (11) as

Ezm [f ′
σ(zm)] = 2Ezm [Φ′(zm/σ)]

= 2
σ

∫∞
−∞ N (zm/σ; 0, 1)N (zm; 0, γm)dzm

= 2
σ

σ′

√
2πγm

∫∞
−∞

1√
2πσ′

exp
(

− z2
m

2σ′2

)

dzm

=
(

2
π

)1/2 1√
σ2+γm

, (12)

where N (z;µ, σ2) denotes the probability density function of a

Gaussian distribution with mean µ and variance σ2 evaluated at

z, γm = Var(zm) = dT
mCxdm+[Cw]m,m, and σ′2 = σ2γm

σ2+γm
.

Combining (10) with (11) and (12) leads to

[E]m,n =
(

2
π

)1/2 dT
mcn√

σ2+dT
mCxdm+[Cw]m,m

,

where (7) represents the entire matrix E in compact notation.

Step 2 (L-MMSE Estimator): We have linearized the probit

model as ȳ = fσ(z) = Fx + e in (9) with F = EC−1
x . We

now estimate x from this linearization using the L-MMSE

estimator. Since the residual distortion vector e is uncorrelated

to the vector x, the L-MMSE estimator is given by

x̂L-MMSE = ETC−1
ȳ ȳ,

where Cȳ = Ex,w

[

ȳȳT
]

is the covariance matrix of the

generalized probit measurements in (5). The remaining piece

is to calculate the individual entries of this matrix.

With abuse of notation, we start by deriving the necessary

expressions for a general pair of correlated but zero-mean

Gaussian random variables (x, y) with covariance matrix C =
[Cx,x, Cx,y;Cx,y, Cy,y]. More specifically, we are interested in

computing the quantity

Ex,y[fσ(x)fσ(y)] = 4Ex,y[Φ(x/σ)Φ(y/σ)] + 1

− 2Ex[Φ(x/σ)]− 2Ey[Φ(y/σ)] .

Since

Ex[Φ(x/σ)] =
∫∞
−∞ Φ(x/σ)N (x; 0, Cx,x)dx

=
∫∞
0

(Φ(−x/σ) + Φ(x/σ))N (x; 0, Cx,x)dx = 1
2 ,

we have

Ex,y[fσ(x)fσ(y)] = 4Ex,y[Φ(x/σ)Φ(y/σ)]− 1. (13)

Hence, we only need a closed-form expression for

Ex,y[Φ(x/σ)Φ(y/σ)], which we derive using direct integration.

We rewrite this expression as follows:

Ex,y

[

Φ
(x

σ

)

Φ
( y

σ

)]

=

∫ ∞

−∞

∫ ∞

−∞
Φ
(x

σ

)

Φ
( y

σ

)

2The special case for f0(zm) can either be derived by directly evaluating
E[sign(zm)zm] in (10) or by first using Stein’s Lemma and then letting
σ → 0; both approaches yield the same result.

×N
([

x
y

]

;0,
[

Cx,x Cx,y

Cx,y Cy,y

])

dxdy

=

∫ ∞

−∞
Φ
(x

σ

)

Φ
( x

σ′

)

N (x; 0, Cx,x)dx,

where the last equality follows from [25, Sec. 3.9] with σ′ =
Cx,x

Cx,y

√

σ2 + Cy,y +
C2

x,y

Cx,x
. We now further simplify the above

expression with the following steps:

Ex,y

[

Φ
(x

σ

)

Φ
( y

σ

)]

=

∫ ∞

−∞
Φ
(x

σ

)

Φ
( x

σ′

) 1
√

2πCx,x

exp

(

− x2

2Cx,x

)

dx

=

∫ ∞

−∞
Φ

(

√

Cx,x

σ
x

)

Φ

(

√

Cx,x

σ′ x

)

N (x; 0, 1)dx.

Using the definitions σ1 = σ/
√

Cx,x and σ2 = σ′/
√

Cx,x, we

can rewrite the above expression as

Ex,y

[

Φ
(x

σ

)

Φ
( y

σ

)]

=

∫ ∞

−∞

∫ x
σ1

−∞

∫ x
σ2

−∞
N (y; 0, 1)N (z; 0, 1)dzdyN (x; 0, 1)dx.

To evaluate this expression, it is key to observe that it

corresponds to the cumulative probability density of a 3-

dimensional normal random variable with zero mean and

an identity covariance matrix on a region cut by two planes.

Imagine a cuboid with edge lengths {1, 1/σ1, 1/σ2}. Assume

Cx,y > 0 without loss of generality. The first plane has

the normal vector [1,−σ1, 0]
T , while the second plane has

the normal vector [1, 0,−σ2]
T . To find a convenient way

to evaluate this integral, we need to find an appropriate

change of coordinates. Define the first new coordinate x′

as the intersection of the two planes, along the direction

of [1, 1/σ1, 1/σ2]
T . With proper normalization, this implies

x′ = σ1σ2x+σ2y+σ1z√
σ2
1
σ2
2
+σ1

1
+σ2

2

. Then, we let the second coordinate y′

be orthogonal to x′ and also to the first plane, i.e., orthogonal

to the normal vector of the first plane, [1, 1/σ1, 1/σ2]
T . This

gives y′ =
σ2
1x+σ1y−σ2(σ

2
1+1)z√

σ2
1
+1

√
σ2
1
σ2
2
+σ1

1
+σ2

2

. The third coordinate is simply

z′ = x−σ1y√
σ2
1
+1

, taken as the normal vector to the first plane.

The unit vector in the second plane that is orthogonal to

x′ and y′ is given by v′ =
σ2
2x−σ1(σ

2
2+1)y−σ2z√

σ2
2
+1

√
σ2
1
σ2
2
+σ1

1
+σ2

2

. Since the

new coordinates form a Cartesian system and are properly

normalized, the determinant of the Jacobian is one, and the

covariance matrix of the 3-dimensional normal random variable

remains an identity matrix. We first integrate over x′ to obtain

Ex,y

[

Φ
(

x
σ

)

Φ
(

y
σ

)]

=
∫∫

C N (y′; 0, 1)N (z′; 0, 1)dy′dz′,

where we have used C to denote the space to integrate over

for the variables y′ and z′. Since C is the area between the

directions of y′ and v′ in the 2-dimensional plane, we use polar

coordinates y′ = ρ cos θ and z′ = ρ sin θ to get

Ex,y

[

Φ
(

x
σ

)

Φ
(

y
σ

)]



=
∫

π
2
+arcsin

(

1√
σ2
1
+1

√
σ2
2
+1

)

0

∫∞
0

1
2π e

− ρ2

2 ρdρdθ

= 1
4 + 1

2π arcsin

(

Cx,y√
σ2+Cx,x

√
σ2+Cy,y

)

.

Consequently, we have

Ex,y[fσ(x)fσ(y)] =
2
π arcsin

(

Cx,y√
σ2+Cx,x

√
σ2+Cy,y

)

,

which allows us, in combination with (13), to express the

desired covariance matrix Cȳ as in (8). �

For the L-MMSE estimator in Theorem 1, we can extract

the MSE in closed form:

Lemma 2. The MSE of the L-MMSE estimator in Theorem 1

is given by

MSE(x̂L-MMSE) = tr(Cx −ETC−1
ȳ E).

Proof. The proof follows from the MSE definition in (3) and

the facts that F = EC−1
x and the two vectors x and e are

uncorrelated for the L-MMSE estimator in (6). �

By letting the parameter σ → 0 in (5), we can use Theorem 1

and Lemma 2 to obtain the following corollary for the standard

probit model in (1). This result agrees with a recent result in

wireless communications [26].

Corollary 3. The L-MMSE estimate for the standard probit

model in (1) is x̂L-MMSE = ETC−1
y y, where

E =
(

2
π

)1/2
diag(diag(Cz)

−1/2)DCx,

Cy = 2
π arcsin(diag(diag(Cz)

−1/2)Cz

× diag(diag(Cz)
−1/2)),

and Cz = DCxD
T +Cw. The associated MSE is given by

MSE(x̂L-MMSE) = tr(Cx −ETC−1
y E).

B. Least Squares (LS) Estimator

The L-MMSE estimator as in (6) requires the computation

of Cȳ followed by a matrix inversion. For large-scale problems,

one can avoid the matrix inversion by first solving y = Cȳq

for q using conjugate gradients [13], followed by calculating

x̂L-MMSE = ETq. Hence, the complexity of L-MMSE estima-

tion is comparable to that of MAP estimation. Computation

of Cȳ, however, cannot be avoided entirely.

Fortunately, there exists a simpler linear estimator that

avoids computation of Cȳ altogether, which we call the least-

squares (LS) estimator. Concretely, let M ≥ N and consider

the linearization in (9), which is ȳ = fσ(z) = EC−1
x x+e. By

ignoring the residual error vector e and by assuming that the

columns of E are linearly independent, we can simply invert

the matrix EC−1
x , which yields the LS estimate

x̂LS = CxE
+ȳ, (14)

where E+ = (ETE)−1ET is the left pseudo-inverse of E.

Again, one can use conjugate gradients to implement (14).

In contrast to the L-MMSE estimator, the LS estimator does

not require knowledge of Cȳ, which makes it more efficient

yet slightly less accurate (see the experimental results section

for a comparison). As for the L-MMSE estimator, we have a

closed-form expression for the MSE of the LS estimator.

Lemma 4. Assume that E+ exists. Then, the MSE of the LS

estimator in (14) is given by

MSE(x̂LS) = tr(CxE
+Cȳ(E

+)TCx −Cx).

Proof. The proof follows from the MSE definition (3), and the

facts that E
[

ȳxT
]

= E and E+E = I. �

III. NUMERICAL RESULTS

We now experimentally demonstrate the efficacy of the

proposed linear estimators.

A. Experiments with Synthetic Data

We first compare the MSE of our estimators to that of the

nonlinear MAP and PM estimators using synthetic data.

1) Experimental Setup: We set the dimensions of x to N ∈
{5, 20} and the number of measurements to M ∈ {10, 50, 200}.

We first generate a single random matrix D of size M ×N
with i.i.d. standard normal entries, and normalize each row to

have unit ℓ2-norm. Then, we generate the entries of x from a

multivariate normal distribution with zero mean and covariance

matrix Cx = σ2
xI. The entries of the noise vector w are

i.i.d. zero-mean Gaussian with variance σ2
w. The vector y is

generated using the standard probit model in (1). We sweep

the SNR defined as SNR = σ2
x/σ

2
w by changing the noise

variance σ2
w. For the PM estimator, we use a standard Gibbs

sampling procedure [10]; we use the mean of the generated

samples over 50, 000 iterations as the PM estimate after a

burn-in phase of 20, 000 iterations. For the MAP estimator,

we use an accelerated gradient-descent procedure [14], [27] to

solve (4) up to machine precision with a maximum number

of 20, 000 iterations. We repeat all experiments for 100 trials

and report the empirical MSE.

2) Results and Discussion: Fig. 1 shows the MSE of the

L-MMSE, LS, MAP, and PM estimators. We do not show LS

for M = 10 and N = 20 as it does not exist if M < N .

We see that at low SNR (SNR ≤ 0 dB), the L-MMSE, MAP,

and PM estimators achieve a similar MSE. Hence, linearizing

the probit model does not entail a noticeable performance

degradation if the measurements are noisy. At higher SNR,

the performance of the different estimators varies. For a

small number of measurements, the performance of L-MMSE

estimation is superior to MAP estimation. For a large number

of measurements (e.g., M = 200), the MSE of L-MMSE

estimation is slightly higher than that of MAP estimation for

some SNR values. We note that the MSE performance of MAP

degrades with increasing SNR, and we observe that there is

an optimal SNR level for MAP estimation; this observation is

in line with those reported in [28] for 1-bit matrix completion

using ML-type estimators. Per design, PM estimation achieves

the lowest MSE for all configurations, but is notoriously slow.

We conclude that linearized probit regression entails a negligible





TABLE I
MEAN AND STANDARD DEVIATION OF PREDICTION QUALITY IN TERMS OF PREDICTION ACCURACY (ACC) FOR THE L-MMSE, LS, MAP, PM, AND

LOGIT-MAP ESTIMATORS ON VARIOUS REAL-WORLD DATASETS.

L-MMSE LS MAP PM Logit-MAP

Admissions 0.691± 0.036 0.691± 0.038 0.692± 0.037 0.693± 0.036 0.692± 0.040

Lowbwt 0.703± 0.070 0.707± 0.071 0.715± 0.064 0.713± 0.067 0.712± 0.070

Polypharm 0.779± 0.015 0.777± 0.016 0.780± 0.015 0.780± 0.015 0.780± 0.015

Myopia 0.882± 0.025 0.879± 0.024 0.890± 0.022 0.890± 0.023 0.890± 0.022

Uis 0.745± 0.010 0.746± 0.041 0.736± 0.041 0.737± 0.041 0.736± 0.041

SAheart 0.727± 0.042 0.726± 0.044 0.728± 0.042 0.730± 0.042 0.729± 0.042

TABLE II
PREDICTION QUALITY IN TERMS OF THE AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE (AUC) FOR THE L-MMSE, LS, MAP, PM,

AND LOGIT-MAP ESTIMATORS ON VARIOUS REAL-WORLD DATASETS.

L-MMSE LS MAP PM Logit-MAP

Admissions 0.675± 0.056 0.672± 0.054 0.674± 0.056 0.674± 0.056 0.675± 0.056

Lowbwt 0.716± 0.076 0.712± 0.081 0.716± 0.076 0.713± 0.076 0.711± 0.080

Polypharm 0.728± 0.022 0.728± 0.022 0.728± 0.022 0.728± 0.022 0.729± 0.022

Myopia 0.864± 0.038 0.862± 0.040 0.873± 0.036 0.873± 0.036 0.873± 0.035

Uis 0.632± 0.052 0.632± 0.051 0.634± 0.052 0.634± 0.051 0.633± 0.052

SAheart 0.769± 0.049 0.768± 0.049 0.770± 0.049 0.771± 0.049 0.771± 0.049

problems. Our linear estimators enable an exact, closed-form,

and nonasymptotic MSE analysis, which is in stark contrast

to existing analytical results for the MAP and PM estimators.

We hence believe that the proposed linear estimators have the

potential to be used in a variety of machine learning or statistics

applications that deal with binary-valued observations.
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