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Abstract

Emerging energy-harvesting computer systems extract en-
ergy from their environment to compute, sense, and commu-
nicate with no battery or tethered power supply. Building
software for energy-harvesting devices is a challenge, be-
cause they operate only intermittently as energy is available.
Programs frequently reboot due to power loss, which can
corrupt program state and prevent forward progress. Task-
based programming models allow intermittent execution of
long-running applications, but require the programmer to
decompose code into tasks that will eventually complete be-
tween two power failures. Task decomposition is challenging
and no tools exist to aid in task decomposition.

We propose CleanCut, a tool that can check for and report
non-terminating tasks in existing code, as well as automati-
cally decompose code into efficient, terminating tasks. Clean-
Cut is based on a statistical model for energy of paths through
the program. We applied a prototype of CleanCut to four
applications, including pattern-recognition, encryption, com-
pression, and data filtering. Our experiments demonstrated
the risk of non-termination in existing code and showed that
CleanCut finds efficient task decompositions that execute
2.45x faster on average than manually placed boundaries.
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1 Introduction

Recent advances in energy-harvesting technology, and the
advent of extremely low-power computing devices has en-
abled computer systems powered entirely by energy ex-
tracted from their environment. Without a battery or teth-
ered power, these devices are the key to emerging applica-
tions, like the internet of things (IoT) and implantable or in-
gestible medical devices [1, 24]. A typical energy-harvesting
device collects energy into a small energy buffer (i.e., a ca-
pacitor), until a threshold level, at which the device begins
to run. When operating, the device consumes energy very
quickly, depleting the capacitor and powering down. These
devices operate intermittently as energy is available in the
energy buffer.

Recent work identified key progress [38] and memory con-
sistency [30, 37] challenges faced by programmers targeting
energy-harvesting systems. Other work proposed mecha-
nisms to support non-trivial intermittent applications [3, 4,
9, 10, 19, 20, 30, 38, 47]. Task-based intermittent programming
models [10, 30] ensure long-running applications execute
correctly on intermittent devices. Such a model asks the
programmer [30] or compiler [47] to decompose an appli-
cation into tasks that execute atomically. Checkpointing
volatile state and versioning non-volatile state makes tasks
restartable, but does not ensure that a task re-execution after
a power failure will have sufficient energy to complete. A
task will run to completion only if it consumes less energy
than the capacity of device’s energy storage buffer. To com-
plete tasks reliably, the device can depend only on stored
energy and not on extra energy that might be harvestable
from the environment during operation.

Task decomposition must be performed for existing task-
based systems, but it is difficult to reason about how likely a
task is to exhaust the buffered energy. An overly cautious
programmer may place more task boundaries in code than
necessary, wasting energy and imposing a time overhead.
If, the programmer uses too few boundaries, the program
may have a non-terminating path that requires more energy
than the device can buffer. A non-terminating path consumes
more energy than will ever be available, causing the task to
repeatedly restart and fail forever. Code including such a non-
terminating path represents a new type of software bug that
is unique to intermittent applications. There is currently no
system support to help find these bugs by assessing whether
a task boundary placement includes non-terminating paths,
nor for helping place task boundaries.



This work is the first to characterize power-failure-related
non-terminating path bugs in intermittent programs. We
develop CleanCut, the first system for finding non-termi-
nating paths in intermittent programs and eliminating such
paths by generating terminating task boundary assignments
automatically. CleanCut’s checker checks a task boundary
assignment and reports non-terminating paths that need re-
finement. CleanCut’s placer subdivides a program into tasks
free of non-terminating paths. CleanCut minimizes overhead
by approximately bisecting paths and preferring boundaries
unlikely to be executed frequently.
Both the checker and placer use CleanCut’s statistical

model of the energy consumption of each program path.
Following the insights in [26], we base our path model on
a lower-level model of energy of branch-free basic blocks.
CleanCut’s top-level path energy model is compatible with
both worst-case or average-case block energy models based
on profiling and analytics [17, 26], performance counters [11],
or simulation [6]. CleanCut ships with a simple average-case
profiling-based block energy model.
We implemented CleanCut’s analyses in LLVM and ap-

plied them to applications from prior work [10, 30, 31]. We
show that CleanCut’s checker identifies task boundary as-
signments with non-terminating path bugs, demonstrating
its value as a debugging tool. We show that CleanCut’s placer
produces boundary placements that are free of non-termi-
nating paths and have lower overhead than manually- or
randomly-placed boundaries. To summarize our contribu-
tions:
• We develop the CleanCut task checker that finds non-ter-
minating path bugs.

• We develop the CleanCut placer that places task bound-
aries, eliminating non-terminating paths and minimizing
boundary overhead.

• We statistically model the energy cost of program paths
with loops and I/O in terms of basic block energy.

• We evaluate CleanCut on real energy-harvesting hard-
ware and demonstrated detected non-termination bugs
and placements that outperform manual decompositions.
Section 2 reviews intermittent computing and Section 3

overviews CleanCut. Sections 4 and 5 describe CleanCut’s
Checker and Placer . The energy model is presented in Sec-
tion 6. Section 7 provides implementation details, Section 8
evaluates CleanCut, and Section 9 discusses related work.

2 Background and Motivation

Embedded computers [43] and energy-harvesting devices
(e.g., WISP5 [39]) are findingwidespread adoption. Hardware
advances have spawned research into general programming
and execution models for software on intermittently-powered
devices [3, 4, 7, 10, 20, 30, 38].

2.1 Energy-harvesting Devices

Energy-harvesting devices are embedded computing plat-
forms composed of a microcontroller and peripherals such as

sensors and radios. These devices extract their energy from
the environment, e.g. radio waves, vibration, or a thermal
gradient. Harvested energy sources are typically too weak
(by orders of magnitude) to directly power a device, requir-
ing devices to buffer energy in a capacitor. After buffering
a threshold amount of energy the device turns on and be-
gins executing software. Executing consumes energy more
quickly than it accumulates, depleting the buffer and causing
the device to power off. The active period of a device depends
on the size of its energy buffer. A typical energy-harvesting
device [39] may power cycle hundreds of times per second.

From the perspective of software, each power cycle is a re-
boot that impedes the progress of the computation. Volatile
state of the device, including its register file, stack mem-
ory, and global variables, is erased, while non-volatile mem-
ory (e.g., FRAM [43]) retains its state across failures. Recent
work [10, 30, 37, 47] observed that when volatile memory
erases and non-volatile memory persists, reboots leave pro-
gram state inconsistent. The issues with progress and con-
sistency inspired research on compiler and system support
for intermittent programming models.

2.2 Intermittent Programs and Execution Models

There are various intermittent programming and execution
models each with different correctness and performance
characteristics. The first efforts in this area focused on sched-
uling computations to complete under energy constraints [7,
41] and did not directly address intermittence. Later work
enabled long-running computations on intermittently-pow-
ered devices, relying on checkpoints of volatile state [3, 4,
20, 32, 38] and versioning of non-volatile state [10, 30] with
varying automation from the compiler [31, 47].

Task-based models [7, 10, 30, 31, 41] require programmers
tomanually decompose code into tasks by adding task bound-
aries to a program in a C-like language. The quality of a task
boundary placement dictates whether a program terminates
and determines the time and space overhead of the system.
Task-based models maintain progress at the granularity of
a task. Consequently, if any path through a task consumes
more energy than the device can buffer, program execution
will not advance past that task. Such non-terminating path
bugs cause the program to partially execute a task repeatedly,
each time failing to reach the task’s terminal boundary.
To avoid these non-termination bugs, the programmer

must reason about the energy that a task consumes along
each of its control-flow paths. A programmer may attempt
naively to avoid non-termination by inserting many bound-
aries (e.g., after every operation), but each boundary imposes
an overhead to capture a checkpoint [20, 30, 38], commit a
log [31], or store multi-versioned state [10]. Moreover, our
data in Section 8 suggest that programmers might do a poor
job of judging the energy cost of code regions.

Figure 1 shows how different static task boundary assign-
ments lead to different behavior with three variants of an













7 CleanCut Implementation

The toolchain is organized as a tree of dependent analysis
phases in GNU Make, with the checker and placer results
near the root and requisite models and profiles at intermedi-
ate and leaf nodes. Independent phases run in parallel.

7.1 Energy Measurement

CleanCut programatically controls the Energy-interference-
free Debugger (EDB) [9] connected to the capacitor on the
target device to measure energy. For each measurement,
CleanCut places two voltage watchpoints in the application
code and EDB records the capacitor voltage at the watch-
points. Energy consumed between the watchpoints depends
on the watchpoint voltage measurements, Vfrom and Vto, and
device capacity,C , as E = 1

2C(V
2
from

−V 2
to). Using EDB, Clean-

Cut directly measures full-system energy, including the en-
ergy consumed by peripherals, e.g. sensors and actuators.

Using our energy measurement setup, we measure the en-
ergy storage capacity on the device and block energy costs.
Assuming Von is the voltage when the initialization com-
pletes and the first application task begins and Voff is the
MCU’s brown-out threshold, CleanCut computes the effec-
tive capacity usingVfrom = Von andVto = Voff.Von is measured
by running the application binary with an EDB watchpoint
after power-on code.Voff is set from the MCU’s specification
(we validated thatVoff = 1.8± 0.002V for our MSP430FR5969
using an EDB watchpoint).

7.2 Block and Path Energy

To measure a block’s energy cost, CleanCut extracts assem-
bly generated by LLVM’s backend for the target architec-
ture, translates the instruction arguments to make the block
runnable outside its context, replicates it, and inserts it into
a harness binary for measurement. To make the block safe to
execute repeatedly outside of its context, CleanCut replaces
register references with a designated łscratchž register and
memory references with random addresses in a designated
range. CleanCut generates harness code with the applica-
tion’s clocking and peripheral configuration to reflect true
energy consumption. After running the harness binary on
the device for 20s and tracing watchpoints, CleanCut cal-
culates the block energy from watchpoints as described in
Section 7.1. CleanCut replicates the block being measured
in the harness, to ensure that the measured energy is above
EDB’s watchpoint measurement resolution. The block’s en-
ergy cost is the energy cost of the sequence of replicas, di-
vided by the replication factor. After a code change, CleanCut
only profiles blocks that changed.

To estimate the path energy distribution (PDF) described
in Section 6.2, an LLVM pass first traverses the CFG accord-
ing to Algorithm 2. The pass assembles an expression that
symbolically represents the path energy distribution as a

sequence of convolutions and mixtures of block distribu-
tions. To evaluate the resulting expression to a numerically-
represented probability density function (PDF), CleanCut
computes convolutions using NumPy [16] and mixtures as
an element-wise linear combination of input PDFs.

7.3 Checker and Placer

The checker computes a cumulative distribution function
(CDF) by integrating the PDF that represents path energy
using Simpson’s method in SciPy [21]. CleanCut uses the
CDF to determine a path’s failure likelihood for a given de-
vice energy capacityC by finding the probability value at the
closest index belowC in the CDF’s array representation. The
same CDF can be used to validate for a range of capacities.

We implemented the placer (Algorithm 1) in an LLVM pass
that incorporates the path energy model. The pass selects
the blocks at which to place task boundaries according to
the traversal of the CFG in Algorithm 1. The placer invokes
the DINO [30] LLVM passes to insert checkpointing and
versioning code at each boundary marker.

8 Evaluation

In this section, we evaluate CleanCut to show that the checker’s
validations are useful, the placer is flexible and its task de-
compositions efficient, and analysis time is practical for a
real developer. We applied CleanCut to real code on real
energy-harvesting hardware. We used the WISP [39] energy-
harvesting device, which has an 8MHz MSP430FR5969 MCU
with 64KB of non-volatile memory and a 47µF capacitor. We
powered the WISP wirelessly using a ThingMagic Astra-EX
RFID reader at 16 dBm. We fixed the WISP 45 cm from the
power antenna, parallel to its surface.

8.1 Benchmarks

We evaluated CleanCut on four energy-harvesting applica-
tions from prior work [10, 30]. Activity Recognition (AR) clas-
sifies 8 windows with 8 accelerometer samples each into two
activity classes based on a pre-trained model. RSA encrypts
an 11-character plaintext with a 32-bit public in non-volatile
memory. Cuckoo Filter (CF) exercises a Bloom-filter-like set
membership structure that supports deletion. CF inserts 64
pseudo-random keys and then queries for each. The Cold-
chain Equipment Monitor (CEM) records 64 temperature
readings from a sensor, LZW-compresses them, and stores
the result into non-volatile memory.

8.2 Placer Evaluation

We evaluated how well CleanCut’s placer helps to insert task
boundaries into a program to avoid non-terminating paths.
The evaluation shows that CleanCut’s decompositions are
superior to the programs’ original, manually placed bound-
aries and random placements. Our results also show that
CleanCut provides flexibility to changing hardware, while
avoiding non-terminating placements.







Table 1. Benchmark and analysis time characteristics. Total basic

block counts, maximum path count across all decompositions studied (in-

cluding random), and the maximum call depth are listed. Times are for

one-time block profiling (BB Prof), checking a decomposition (Chkr), and

finding a valid decomposition (Plcr).

App. Characteristics Analysis Time

App. BBs Paths Call Depth BB Prof.(m) Chkr. (s) Plcr. (s)

AR 187 298 5 45 30 24
RSA 197 326 5 51 57 56
CF 91 217 2 23 36 8
CEM 70 80 2 24 54 11

checker takes longer than the placer, because it computes
more detailed information for the bug report, such as the
CDF of the energy distributions for each path. The running
time of the placer increases with the number of path splits it
has to perform, which decreases with capacitor size.

9 Related Work

We present prior work that relates to CleanCut in the context
of energy-harvesting systems, intermittent executionmodels,
and energy-aware program analysis.

9.1 Energy-harvesting and Intermittent Computing

Intermittent computing originates with energy-harvesting
hardware. Energy-harvesters can extract energy from e.g.,
radio waves [15, 28, 36, 39, 42, 46], interaction [22, 35, 44], or
light [24, 27]. Fully non-volatile processor architectures [29]
support computing through power failures. Federated power
system [18] improves flexibility by partitioning energy stor-
age. Mayfly [19] improves programability by providing a
notion of time across power failures.
Early energy-ware systems [27, 41] addressed computa-

tion under energy constraints but not intermittence. Emerg-
ing energy-harvesting platforms have lead to systems for
intermittent computing. Dewdrop [7] scheduled short com-
putations to maximize throughput of important tasks and
avoid failures. Mementos [38] preserved progress in long-
running programs on intermittent devices by dynamically
checkpointing volatile state. Dynamic checkpointing was
explored further in later work [3, 4, 20, 32]. Dynamic check-
points that are inserted in advance but collected condition-
ally [3, 4, 20, 32, 38] may generate tasks that are too large
(i.e., exceed device energy capacity) or too small (i.e., over-
provision checkpoints) Ð problems that CleanCut addresses.
Checkpoints conditioned on energy level [3, 4] require check-
ing the voltage on the capacitorwith anADCor a comparator,
which consumes energy, time, and board space.

Static task systems [10, 30, 37, 47], which CleanCut targets,
keep memory consistent and allow a programmer control
over where computation resumes after a reboot. DINO [30,
37] was the first static task system to observe that check-
pointing volatile state alone is inadequate for correctness
and versioned non-volatile state. In Chain [10] application
is written as a graph of static tasks that communicate over

statically multi-versioned channels. Alpaca [31] privatizes
variables shared across tasks and atomically commits mod-
ified variables at task boundaries. Ratchet [47] combined
checkpointing and idempotent processing [12, 13] under the
assumption that all device memory is non-volatile. Similarly
to CleanCut, Ratchet statically puts boundaries into an appli-
cation to keep state in an intermittent execution consistent.
However, a task in Ratchet can end up arbitrarily long and
may exceed the energy capacity of the device. The lack of
task-sizing in Ratchet makes the work complementary to
CleanCut, which could guide Ratchet’s boundary placement.
Unlike CleanCut, Ratchet does not give the programmer con-
trol over boundary placement, which leaves the risk of a
boundary splitting an atomic operation in the application.
CleanCut is instrumental to adoption of static task systems,
since they may encounter non-termination.

9.2 Energy-aware Compilation and Modeling

Prior work has examined the feasibility of estimating energy
consumption statically [33] and proposed methods based
on constraint satisfaction, e.g. Implicit Path Enumeration
Technique, [45], symbolic representation of input-dependent
code [26], instruction statistics with one-time profiling [23].
The energy model in CleanCut, most closely follows the ap-
proach in [26] in its choice of block granularity and profiling,
but diverges in the choice to expose the full distribution
instead of a worst-case scalar.
Architecture simulators [5, 6, 25, 40] model power dissi-

pation in architectural structures. When hardware descrip-
tion source for the processor is available, core power (but
not full system power) can be obtained from application-
specific symbolic simulation at the RTL level [8]. Unlike
CleanCut, simulation is a dynamic analysis, applying to an
execution, not a program. Work on energy-aware compi-
lation for energy-harvesting systems [34] scheduled short
łone-shotž tasks to not exhaust buffered energy. CleanCut, by
contrast, is a compiler analysis for computations that span
power failures.

10 Conclusion

This work is the first to identify and address the problem of
validating and generating task decompositions of programs
written for an intermittent execution model. Our system,
CleanCut, builds a statistical model of the energy cost of
paths through a program. CleanCut’s checker uses this en-
ergy model along with a model of the energy supply of the
target device to report non-terminating paths in a program
decomposed with task boundaries. CleanCut’s placer itera-
tively generates a task decomposition for a program, insert-
ing task boundaries to prevent non-termination. Having eval-
uated our CleanCut prototype on a real energy-harvesting
device powered by radio waves, we showed that its checker
is accurate and its placer quickly identifies high performance,
valid task decompositions.
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