


ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

are typically computational tasks with few energy demands.
Intermittent tasks, which were studied in prior work [4, 5, 10,
14, 16, 23, 25, 27, 38], can be executed opportunistically and
interrupted almost arbitrarily. Energy-capacity-constrained
tasks require a minimum energy storage capacity in the
power system. Capacity-constrained tasks include opera-
tions that must execute atomically and cannot be interrupted
by a power failure, such as sending a radio transmission
or collecting correlated sensor data. Temporally-constrained

tasks require energy to be available on-demand. A task that
responds to an external event by transmitting a radio packet
is reactive and requires energy to transmit immediately at
the time of the event.
Capacity- and temporally-constrained tasks in the same

application may have requirements of the power system that
conflict. A hardware designer may build a power system
with a large energy buffer to support the largest capacity-
constrained task in the application. However, after depletion,
a large energy buffer has a long recharge time. During the
recharge period, the device is off and temporally-constrained
tasks will not execute reactively. Alternatively, a hardware
designer may build a power system with a small energy
buffer designed to execute temporally-constrained tasks re-
actively, avoiding long, inactive recharge periods. However,
the small buffer may store insufficient energy for a capac-
ity-constrained task. The application is not fully functional
with either power system.

Application developers must co-design application soft-
ware with power system hardware. Software can control
when and in what quantity to accumulate energy only to the
extent of configuration supported by the hardware. Inflexible
hardware may force all software tasks to use a large łworst-
casež energy buffer, violating application requirements. Power
systems of state-of-the-art energy-harvesting devices do not
support programmatic reconfiguration of energy capacity
at runtime. The limited control over charge and discharge
timing available to programmers today must be expressed
indirectly through control code that puts the device to sleep
at key points in code. Such control code expresses task’s
high-level energy requirements indirectly and imperatively
through ad hoc device-specific code.
We propose Capybara1, a high-level abstraction for spec-

ifying capacity and temporal task constraints with a co-
designed hardware/software system that executes applica-
tions according to those constraints. Capybara supports
declarative specification of tasks’ energy requirements and
eliminates the need for imperative power system control
code that entangles application logic with low level hard-
ware configuration. Capybara allows an application to mix
capacity and temporal requirements with a reconfigurable
hardware energy storage mechanism that an application can
reconfigure at run time to support different capacities. We

1Capybara: Capacitor-based energy banks as a reconfigurable array

developed two full hardware/software prototypes of Capy-
bara built into custom energy-harvesting platforms, one of
which is pictured in Figure 1. We use these prototypes to
show that Capybara enables applications to match power
system characteristics to task requirements, providing flexi-
bility, efficiency, and reactivity. Given concise declarations
of the tasks’ energy needs, Capybara ensures that capac-
ity-constrained tasks have sufficient energy to execute and
temporally-constrained tasks execute reactively. The contri-
butions of this work are:

• A hardware energy storage mechanism with capac-
ity that is reconfigurable at runtime compatible with
different capacitor types and energy harvesters.
• A declarative software interface for specifying task
energy requirements.
• A runtime system that reconfigures energy storage to
meet task energy requirements.
• Two full-system, solar-harvesting platforms: a versa-
tile sensing platform and a board-scale nano-satellite.
• An evaluation on real hardware showing that reconfig-
urability improves responsiveness and event detection
accuracy.

This paper is organized as follows: Section 2 provides back-
ground on energy-harvesting and intermittent software chal-
lenges. Section 3 is an overview of Capybara’s hardware and
software. Section 4 describes Capybara’s software interface
and runtime. Section 5 describes Capybara’s reconfigurable
power system hardware. We evaluate Capybara in two real
energy-harvesting platforms in Section 6. We discuss related
work in Section 7 and conclude in Section 8.

2 Intermittent Energy-constrained
Systems

Energy-harvesting devices collect energy from the environ-
ment, buffer a useful quantity of energy, and execute using
the buffered energy. The larger the buffer, the longer a span
of uninterrupted operation the device can support, and the
longer the time required to recharge the buffer. To not make
any assumptions about availability of incoming power, the
intermittent execution model allows the processor to be com-
pletely off while charging, turn on only once the buffer is
full, and execute until the buffer is empty. This model is more
challenging but also more practical than a non-intermittent
model that assumes that incoming power is always sufficient
to keep the processor in a (memory-retaining) sleep state
while charging the buffer.

The time the device operates before losing power depends
on the energy buffer size, not on the incoming power. A de-
vice consumes buffered energy much faster than it charges,
because harvested power is much lower than active power
consumption. The disparity between charging and consump-
tion has two consequences: charging is negligible during
operation and charge times may be orders of magnitude









ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

4 Capybara Software Support

Capybara provides a programming interface and runtime
software support to reconfigure the power system to meet
an application’s varied task energy demands. To express the
energy demands of a task, a programmer annotates the task
declaratively with the task’s energy mode. As the program
executes, the Capybara runtime library dynamically recon-
figures the power system hardware to execute tasks with
their specified energy mode. In hardware, an energy mode
corresponds to a specific configuration of Capybara’s recon-
figurable energy storage reservoir. Section 5 discusses how
energy modes are implemented in hardware.

4.1 Energy modes

In a Capybara system, an energy mode is a property of an
application task that expresses a demand of the power system
to meet a capacity constraint, a temporal constraint, or both.
Recall from Section 2 that a task with a capacity constraint
requires a specific minimum amount of energy to complete
without being interrupted by a power failure, a task with a
temporal constraint requires an operation to occur reactively,
without a long recharge delay, and a task with both types of
constraints requires a specific minimum amount of energy to
be reserved to reactively be consumed at some future point.
The programmer annotates a task with parameterized

keywords to associate the task with an energy mode. The
config (mode) annotation indicates that the task should exe-
cute with the configuration of the hardware energy storage
reservoir that corresponds to the identifier mode. As Section 5
describes, a hardware configuration concretely corresponds
to the activation and de-activation of energy banks by means
of a custom switching circuit. When a task with a config
(mode) annotation starts executing, the Capybara runtime
issues a command to the power system to configure the
reservoir to capacity that corresponds to mode. The system
then charges the newly configured energy buffer. When the
buffer is full, the task executes. The system designer is re-
sponsible for ensuring that the hardware configuration that
corresponds to mode meets the requirements of a task anno-
tated with config (mode); we discuss the process of doing
so in Section 3.
The programmer can use a config (mode) annotation to

indicate either a capacity or temporal task constraint. For a
capacity constraint, the programmer is expressing that mode
corresponds to a particular configuration of the hardware
energy store that can buffer sufficient energy to execute the
task without a power failure. For a temporal constraint, the
programmer is expressing that mode corresponds to a hard-
ware configuration that buffers sufficient energy to complete
the task, but also that minimizes recharge time for reactivity.

Figure 5 shows a high-level schematic of the mapping be-
tween hardware energy buffers and software energy modes.
The exemplified Capybara-based platform is equipped with

three hardware energy buffers connectable through switches
in several arrangements. A configuration of the switches,
which are controlled by the Capybara runtime system, cor-
responds to an energy capacity configuration. In the figure,
there are three different energy modes, each of which corre-
sponds to a different subset of hardware banks. The sense()
task in the figure requires the three units of energy pro-
vided by the capacitor arrangement inside the mode2 box as
a result of the config (mode2) annotation on the task. Be-
fore sense() can execute, the Capybara runtime requests
this arrangement from the power system. After the reservoir
charges, the device boots, and the runtime executes sense().

4.2 Responsive asynchronous bursts

Capybara allows tasks to have a capacity constraint and also
to be reactive using its support for bursts. The Capybara
API includes two additional task annotations that support
bursts: burst and preburst. A task annotated with burst

(mode) requires the specific (possibly very large) amount of
energy of the energy mode mode at a time in the future that is
unpredictable, e.g., in response to a specific sensed event. Just
before a burst task executes, the runtime system re-activates
the energy banks that implement the mode configuration
and that had been charged ahead of time (by the mechanism
explained next), and immediately begins executing the burst
in its declared mode mode. The key difference between a
burst task and a config task is that Capybara does not
need to pause to recharge before executing the burst task,
because the energy buffer had been filled ahead of time.
A programmer can use Capybara’s preburst task anno-

tation to charge a burst task’s mode ahead of time. The
programmer will annotate a task that is off of the critical
path of the burst task’s operation with the preburst an-
notation. The pause to charge to the burst task’s mode
will then occur before the preburst task, well in advance
of the time critical burst task. When execution reaches a
task annotated with preburst (bmode, emode), the Capybara
runtime takes several steps. First, Capybara configures the
hardware for the energy mode bmode and pauses until the
energy buffer for bmode is fully charged. Second, Capybara
configures the hardware for emode, de-activating the energy
buffers of bmode. A key property of Capybara is that a de-
activated mode’s energy buffers retain their stored energy,
except the energy lost to leakage. Third, Capybara pauses to
fully charge the energy buffer for emode. Fourth, after fully
charging, Capybara executes the preburst task with the
hardware configured for emode. The preburst task pays the
burst task’s recharge latency in advance when the latency
is tolerable, to save the burst task from paying its recharge
latency on-demand, when the latency is intolerable.

In Figure 5, proc() is the preburst task that charges the
energy buffers that the burst task radio_tx needs to exe-
cute. radio_tx is a burst task because it must be responsive:
when proc() detects a motion event in the data collected



A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA

by sense(), the application should send an alarm immedi-
ately. If radio_tx()were not a burst task, the system would
incur the latency of a full charge of the energy capacity re-
quired by radio_tx(), which could be tens to hundreds of
seconds, depending on incoming power and radio hardware.
With preburst, Capybara eliminates the latency between
the event detection and the alarm delivery by charging ahead
of time.

4.3 Capybara runtime implementation

We implemented Capybara’s task annotations in a runtime
software library. The runtime includes a GPIO-based inter-
face to Capybara’s power system hardware to reconfigure
energy buffers for an energy mode; we discuss the switches
and energy buffers more in Section 5. The runtime also im-
plements a non-volatile state machine to support preburst
and burst. Our Capybara runtime implementation ensures
that all operations are robust to power failures by careful
use of non-volatile memory.

5 Reconfigurable Power System Hardware

Capybara introduces a novel, reconfigurable power system
architecture with support to programmatically reconfigure
the device’s energy storage capacity and accumulate energy
for asynchronous bursts. The power system architecture
is illustrated in Figure 6(a). The hardware design consists
of two parts: (i) the power distribution circuit, and (ii) the
capacity reconfiguration circuit.

5.1 Power distribution

Capybara’s power distribution circuit accepts energy from
the harvester, charges energy buffering capacitors, and gen-
erates a usable output voltage to power the load. Our design
is versatile, because it can operate with a wide range of input
voltage and power, it is compatible with high-ESR capacitors
(e.g. small dense super-capacitors), and supports loads with
voltage requirements that may exceed the harvester voltage
output or the capacitor voltage rating. These benefits stem
from the input voltage limiter, and input and output boosters.

The voltage limiter circuit allows the harvester voltage in-
put to rise above the ratings of the components in the system,
allowing a wide dynamic range of input power conditions.
For example, the limiter allows solar panels to be connected
in series to handle dim lighting conditions, while avoiding
damagingly high voltages in bright light.
The input booster is located between the harvester and

the energy buffering capacitors and allows the device to use
weak input power from the harvester by boosting its volt-
age. Charging capacitors from a boosted voltage, instead of
the voltage from the harvester, allows using harvesters that
produce a voltage too low to operate the system. Capybara’s
particular input booster has a łcold-startž phase that substan-
tially slows charging of large capacitors at low input power.

To reduce charge time, when the harvester is producing suf-
ficient energy to charge quickly, we added an input booster

bypass optimization. The bypass circuit keeps the capacitors
disconnected from the booster output and charges them di-
rectly from the harvester (through a keeper diode), until the
booster starts and the capacitor voltage is above the cold
start threshold. We observed that the bypass optimization
reduces charge time by at least an order of magnitude.

The output booster allows Capybara to extract more stored
energy from the energy buffering capacitors than a direct
connection to the load. The booster produces stable out-
put voltage, despite decreasing capacitor voltage until the
capacitor is discharged nearly completely (down to about
10% of capacity on our devices). Output boosting is required
especially for high-density high-ESR supercapacitors to com-
pensate for the voltage droop induced by the ESR under
load. The regulated voltage of the output booster also allows
Capybara to power sensors, actuators, and radios with a high
minimum operating voltage (e.g. 2.5v gesture sensor or 2.0v
for BLE radio).

5.2 Reconfigurable energy storage circuit

Energy stored in a capacitor of capacity C that is charged
to a voltage Vtop and discharged to a voltage Vbottom is E =
1
2C (V

2
top−V

2
bottom

). To reconfigure the energy storage capacity,

the hardware must provide a mechanism for runtime control
of one or more ofVtop,Vbottom, orC . We evaluate the merits of
each mechanism by comparing the time the device needs to
cold-start from empty capacitor until boot and the hardware
complexity, cost, and durability.

The mechanisms that manipulate either voltage threshold
must monitor the voltage on the capacitor with a comparator,
either as the device charges (when controlling Vtop) or as it
discharges (when controlling Vbottom). To control Vbottom the
comparator with a resistor network built into the MCU can
be used. The built-in comparator is not an option for control-
ling Vtop, because the reference must be settable at runtime,
must persist while unpowered, and the comparator output
must be valid at voltages down to zero. Furthermore, the
monitoring overhead while the device is charging increases
the minimum incoming power necessary to charge at all.
In addition, both voltage-based mechanisms must charge
the capacitor to above the minimum for the output booster
(1.6v) before any useable energy can be accumulated. As a
result, cold start is longest for the voltage-based mechanisms.
With Vbottom control, cold-start time is longer than with Vtop,
because the capacitor must charge to the top threshold even
for a low atomicity requirement.
The shortest cold-start time is achieved by controlling C .

The smaller C is, the quicker the capacitor charges to the
minimum boostable voltage. To control C the energy stor-
age must be composed of an array of capacitors connected
through persistent switches settable at runtime. For Capybara,



ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

Figure 6. Capybara power system hardware: system architecture and capacitor bank switch replicable module.

we chose a mechanism for controlling C for its cold-start ad-
vantage and its lower power and space overhead compared to
our prototype of aVtop mechanism. We prototyped the latter
using a non-volatile digital potentiometer based on EEPROM
and found that it occupies twice the area and consumes 1.5x
the leakage current (according to component specifications).
Another advantage of controlling C is its natural wear level-
ing for capacitors with limited charge-discharge cycles (e.g.
EDLC supercapacitors). Taking inspiration from the concept
of caching, dense but fragile capacitors can be dedicated to a
bank and used only when another bank with less dense but
more robust capacitors is insufficient.
Capybara implements the mechanism for controlling C ,

with an array of capacitor banks, each of which is individ-
ually connectable to the device through programmatically-
controllable state-retaining switches (bottom-left of Figure 6(a),
marked SW). The number of banks and the energy capac-
ity of each bank is provisioned at design time, to match
the energy modes that a programmer identifies in a target
application. Section 3 discusses how to determine an appli-
cation’s energy modes. Figure 6(b) shows the switch circuit
that activates a bank. The figure includes two design variants,
łnormally-open (NO)ž (blue) in which is open by default and
łnormally-closed (NC)ž (red).

The NC and NO switch choice differ in the implicit capac-
ity reconfiguration that takes place when the input power
is lost for longer than the switch can retain its state. Once
power becomes available and the device boots, the runtime
system remains unaware of the capacity reconfiguration,
because retaining the state loss event is as problematic as
retaining the switch state, and an introspection circuit for
reading switch state would severely decrease the switch re-
tention time due to leakage. With a NO switch, the energy
storage capacity reverts to the (small) default bank, which
will charge quickly once power becomes available. However,
if the default bank is insufficient for the current task, its
first execution attempt will be wasted. Under an adversarial
input power timing, the cycle of switch state loss, incom-
plete task execution, and switch reconfiguration may repeat

indefinitely. A NC switch reverts to maximum storage capac-
ity, which takes longest to charge but guarantees successful
execution on first attempt after boot.
The switch interrupting a bank’s charge path is imple-

mented as a P-channel MOSFET (Q1) in a high-side switch
configuration. The charge on the latch capacitor (Clatch) pre-
serves the switch state while the device is not powered. To
compensate for the leakage of the latch capacitor, the re-

plenishment circuit (orange) connects the latch capacitor to
the highest voltage source in the circuit whenever the latch
capacitor is charged and the device is powered.

Software running on theMCU can control the switch using
a GPIO pin that charges or discharges the latch capacitor
through the interfacing circuit (green). The interface isolates
the latch capacitor from the MCU pins, to prevent the MCU
pin draining the latch capacitor when the MCU loses power
and the pin loses its high-impedance state.
Voltage thresholding alternative Reconfigurable energy
storage is also possible by configuring the voltage to which
capacitors are charged. We studied this design alternative by
including in our prototype a non-volatile, variable thresh-
old circuit based on a digital potentiometer and a voltage
supervisor. Our study revealed that compared to switched
capacitor banks, the threshold circuit occupies twice the area
and has 1.5x higher leakage current (according to compo-
nent specifications). The threshold design also limits device
lifetime, because the write endurance of the EEPROM poten-
tiometer is limited. In a switch design wear can be reduced
on high-density capacitors by dedicating them to a separate
bank that cycles less frequently than the small bank.

6 Evaluation

We evaluated Capybara to demonstrate that our system en-
ables energy-harvesting applications that detect a higher
share of external events and are more responsive. Our exper-
iments on three complete applications running on real hard-
ware compared execution on continuous power (Cont.) to ex-
ecution on intermittent power under a statically-provisioned
fixed energy storage capacity (Fixed) and under two vari-
ants of Capybara. Capy-R is a subset of the complete Capy-P.











A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA

addresses other challenges: programmable reconfigurabil-
ity, full capacitor charging with low harvester voltage, and
supporting load voltages that exceed capacitor ratings.

Dynamic Energy Burst Scaling (DEBS) [11] programmati-
cally configured energy bursts to minimize the total energy
required to execute a complete sequence of tasks. Using re-
configuration, Capybara satisfies atomicity constraints of
tasks, as does DEBS, but Capybara also identifies and ad-
dresses temporal constraints of tasks, including asynchro-
nous tasks, which motivate a mechanism for pre-charging
energy bursts (Section 4.2). TheDEBS reconfigurationmecha-
nism is implemented by controlling theVtop threshold, whereas
Capybara’s mechanism controls capacity C (Section 5.2).

Unlike Capybara, Ambimax [28] partitions capacitors across
sources not loads, to charge at the maximum power point
of each source. Capybara leverages maximum power point
tracking in its input booster. eShare [42] allows sensor nodes
to share energy via wires to extend network lifetime, and is
orthogonal to Capybara.
While Capybara is batteryless, some energy-harvesting

systems combine batteries and capacitors. Prometheus [17]
increases rechargeable battery lifetime by operating from a
supercapacitor when solar energy is available. Unlike Capy-
bara, Prometheus supports only a single, fixed energy buffer.
Heliomote [31] is a generic solar-harvester with a permanent
battery that informs an application of instantaneous battery
and panel voltage. ZebraNet collars [18] were one of the
earliest devices to use a solar harvester to charge a battery,
and supported peripherals with voltage requirements above
battery voltage through voltage boosters, as does Capybara.
Software-defined batteries [2] allow the OS to control charge
flowing into and out of each battery in an array and to change
the power source properties. Batteries avoid the challenges
of intermittent execution faced by Capybara, but constrain
device size, temperature range, and lifetime.
System support for intermittent computing Software

intermittent programming and execution models are com-
plimentary to the support for energy modes provided by
Capybara. Capybara’s software interface complements task-
based systems [10, 23, 25], allowing the programmer to ex-
press atomic operations as tasks and annotate tasks with
energy requirements. Dynamic checkpointing approaches
are less amenable to use with Capybara because checkpoints
occur arbitrarily, on energy changes (Hibernus [4, 5], Ide-
tic [27], QuickRecall [16]), at backedges [32], idempotent
regions [38], or when detected by custom hardware [14].
Programming language and system support for en-

ergy management Energy-aware programming systems
allow energymanagement. However, it is difficult using exist-
ing languages to express burst and temporal energy require-
ments, which is central to Capybara’s design. In Eon [36],
task are associated with abstract energy states and executed
when the system is in the corresponding state. Unlike Eon,
Capybara actively changes energy modes by reconfiguring

energy capacity, rather than adapting to device changes. En-
ergy Types [9] attribute energy to application phases via
a type system. ENT [7] introduces dynamic types that re-
solve to cause different behavior based on device energy state.
Type-systems use energymodes to prevent high-energy code
from running while the device is in a low-energy state. In
contrast, Capybara uses modes for versatile reconfigurability,
reactiveness, and efficiency.

The LAB abstraction [20] lets the programmer declare the
required quality of sensing data and leaves it to the system to
activate sensors to provide the required data at the minimum
energy cost. By forgoing such high-level application-specific
abstractions in its software interface, Capybara supports low-
level general-purpose embedded programming. An emerg-
ing class of application-level power-reduction techniques is
based on decreasing the workload through approximation
in response to changes in the available energy [3, 15, 19, 34].
These systems rely on a mechanism for estimating available
energy at runtime, which is an open problem for an energy-
harvester that will likely require additional hardware and
software. OS-level power management that keeps unused
resources in sleep states [22] is complimentary to Capybara.
Methods for estimating worst-case energy consumption of
software tasks [8, 21] apply for provisioning capacity for
Capybara banks given an application.

8 Conclusion

Energy-harvesting platforms free applications from batteries,
which are large, heavy, and fragile. To handle environmen-
tal triggers responsively, application tasks place capacity
and temporal constraints on a device’s power system. We
observed that a system with a fixed-capacity energy buffer
cannot satisfy both capacity and temporal constraints, due to
the inverse relationship between capacity and charge time.
Capybara is the first system with a software interface

for expressing task energy requirements as energy modes,
a hardware mechanism for reconfiguring energy storage
capacity and pre-charging capacitors for on-demand energy
bursts, and a runtime system that supports reconfiguration.
Our evaluation of Capybara in a solar energy harvesting
device showed that reconfigurability improves application
responsiveness and event detection accuracy. Future work
should automate energy capacity estimation for application
tasks and find an allocation of capacitors to banks for a set
of task energy requirements.

9 Acknowledgments

Thanks to the anonymous ASPLOS 2018 reviewers for their
valuable feedback. This work was funded by gifts from Dis-
ney Research and Google, by NSF grant CNS-1526342 and
NSF CAREER Award CCF-1751029.



ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

References
[1] Michael P. Andersen, Gabe Fierro, and David E. Culler. System de-

sign for a synergistic, low power mote/BLE embedded platform. In

Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE

International Conference on, pages 1ś12. IEEE, 2016.

[2] Anirudh Badam, Evangelia Skiani, Ranveer Chandra, Jon Dutra, An-

thony Ferrese, Steve Hodges, Pan Hu, Julia Meinershagen, Thomas

Moscibroda, and Bodhi Priyantha. Software defined batteries. pages

215ś229. ACM Press, 2015.

[3] Woongki Baek and Trishul M. Chilimbi. Green: a framework for

supporting energy-conscious programming using controlled approx-

imation. In ACM Sigplan Notices, volume 45, pages 198ś209. ACM,

2010.

[4] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez

Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and

Luca Benini. Hibernus++: a self-calibrating and adaptive system

for transiently-powered embedded devices. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 35(12):1968ś

1980, 2016.

[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-

Hashimi, Davide Brunelli, and Luca Benini. Hibernus: Sustaining

computation during intermittent supply for energy-harvesting sys-

tems. IEEE Embedded Systems Letters, 7(1):15ś18, 2015.

[6] Naveed Anwar Bhatti and Luca Mottola. HarvOS: efficient code instru-

mentation for transiently-powered embedded sensing. pages 209ś219.

ACM Press, 2017.

[7] Anthony Canino and Yu David Liu. Proactive and adaptive energy-

aware programming with mixed typechecking. pages 217ś232. ACM

Press, 2017.

[8] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John

Sartori. Determining Application-specific Peak Power and Energy

Requirements for Ultra-low Power Processors. pages 3ś16. ACM Press,

2017.

[9] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David

Liu. Energy types. InACM SIGPLANNotices, volume 47, pages 831ś850.

ACM, 2012.

[10] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable

intermittent programs. In Proceedings of the 2016 ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 514ś530. ACM, 2016.

[11] Andres Gomez, Lukas Sigrist, Thomas Schalch, Luca Benini, and Lothar

Thiele. Efficient, long-term logging of rich data sensors using tran-

sient sensor nodes. ACM Trans. Embed. Comput. Syst., 17(1):4:1ś4:23,

September 2017.

[12] Josiah Hester, Sarah Lord, RyanHalter, David Kotz, Jacob Sorber, Travis

Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner, Bhargav Golla,

Kevin Storer, Steven Hearndon, and Kevin Freeman. Amulet: An

Energy-Efficient, Multi-Application Wearable Platform. pages 216ś

229. ACM Press, 2016.

[13] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Tragedy of the

coulombs: Federating energy storage for tiny, intermittently-powered

sensors. In Proceedings of the 13th ACM Conference on Embedded

Networked Sensor Systems, pages 5ś16. ACM, 2015.

[14] Matthew Hicks. Clank: Architectural Support for Intermittent Com-

putation. pages 228ś240. ACM Press, 2017.

[15] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,

Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive

power-aware computing. In ACM SIGPLAN Notices, volume 46, pages

199ś212. ACM, 2011.

[16] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Quick-

recall: A low overhead hw/sw approach for enabling computations

across power cycles in transiently powered computers. In VLSI Design

and 2014 13th International Conference on Embedded Systems, 2014 27th

International Conference on, pages 330ś335. IEEE, 2014.

[17] Xiaofan Jiang, Joseph Polastre, and David Culler. Perpetual environ-

mentally powered sensor networks. In Proceedings of the 4th interna-

tional symposium on Information processing in sensor networks, page 65.

IEEE Press, 2005.

[18] Philo Juang, Hidekazu Oki, YongWang, Margaret Martonosi, Li Shiuan

Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife

tracking: Design tradeoffs and early experiences with zebranet. In

ACM Sigplan Notices, volume 37, pages 96ś107. ACM, 2002.

[19] Melanie Kambadur and Martha A. Kim. NRG-loops: adjusting power

from within applications. pages 206ś215. ACM Press, 2016.

[20] Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKin-

ley, Todd Mytkowicz, and Ryder Ziola. The latency, accuracy, and

battery (LAB) abstraction: programmer productivity and energy effi-

ciency for continuous mobile context sensing. pages 661ś676. ACM

Press, 2013.

[21] Steve Kerrison and Kerstin Eder. Energy Modeling of Software for a

Hardware Multithreaded Embedded Microprocessor. ACM Transac-

tions on Embedded Computing Systems, 14(3):1ś25, April 2015.

[22] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin

Whitehouse, AlecWoo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,

and others. TinyOS: An operating system for sensor networks. Ambient

intelligence, 35:115ś148, 2005.

[23] Brandon Lucia and Benjamin Ransford. A simpler, safer programming

and execution model for intermittent systems. In ACM SIGPLAN

Notices, volume 50, pages 575ś585. ACM, 2015.

[24] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,

Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan

Narayanan. Architecture exploration for ambient energy harvesting

nonvolatile processors. In High Performance Computer Architecture

(HPCA), 2015 IEEE 21st International Symposium on, pages 526ś537.

IEEE, 2015.

[25] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermit-

tent execution without checkpoints. In Proceedings of the 2017 ACM

SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications. ACM, 2017.

[26] Robert Margolies, Peter Kinget, Ioannis Kymissis, Gil Zussman, Maria

Gorlatova, John Sarik, Gerald Stanje, Jianxun Zhu, Paul Miller, Marcin

Szczodrak, Baradwaj Vigraham, and Luca Carloni. Energy-Harvesting

Active Networked Tags (EnHANTs): Prototyping and Experimentation.

ACM Transactions on Sensor Networks, 11(4):1ś27, November 2015.

[27] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. Ide-

tic: A high-level synthesis approach for enabling long computations

on transiently-powered asics. In Pervasive Computing and Communi-

cations (PerCom), 2013 IEEE International Conference on, pages 216ś224.

IEEE, 2013.

[28] Chulsung Park and Pai H. Chou. Ambimax: Autonomous energy

harvesting platform for multi-supply wireless sensor nodes. In Sensor

and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd

Annual IEEE Communications Society on, volume 1, pages 168ś177.

IEEE, 2006.

[29] Chulsung Park, Jinfeng Liu, and Pai H. Chou. Eco: an ultra-compact

low-power wireless sensor node for real-time motion monitoring. In

Proceedings of the 4th international symposium on Information process-

ing in sensor networks, page 54. IEEE Press, 2005.

[30] Powercast Corporation. P2110B 915MHz RF Powerharvester Receiver.

http://www.powercastco.com/products/powerharvester-receivers/,

2017.

[31] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and

Mani Srivastava. Design considerations for solar energy harvesting

wireless embedded systems. In Proceedings of the 4th international

symposium on Information processing in sensor networks, page 64. IEEE

Press, 2005.

[32] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System

support for long-running computation on rfid-scale devices. Acm

Sigplan Notices, 47(4):159ś170, 2012.



A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA

[33] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V

Mamishev, and Joshua R Smith. Design of an rfid-based battery-free

programmable sensing platform. IEEE Transactions on Instrumentation

and Measurement, 57(11):2608ś2615, 2008.

[34] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-

gasam, Luis Ceze, and Dan Grossman. EnerJ: Approximate data types

for safe and general low-power computation. InACM SIGPLANNotices,

volume 46, pages 164ś174. ACM, 2011.

[35] Faisal Karim Shaikh and Sherali Zeadally. Energy harvesting in wire-

less sensor networks: A comprehensive review. Renewable and Sus-

tainable Energy Reviews, 55:1041ś1054, March 2016.

[36] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-

nan, Mark D Corner, and Emery D Berger. Eon: a language and runtime

system for perpetual systems. In Proceedings of the 5th international

conference on Embedded networked sensor systems, pages 161ś174. ACM,

2007.

[37] Phillip Stanley-Marbell and Diana Marculescu. An 0.9x1.2, low power,

energy-harvesting system with custom multi-channel communication

interface. In Proceedings of the conference on Design, automation and

test in Europe, pages 15ś20. EDA Consortium, 2007.

[38] Joel Van Der Woude and Matthew Hicks. Intermittent computation

without hardware support or programmer intervention. In Proceedings

of OSDI’16: 12th USENIX Symposium on Operating Systems Design and

Implementation, page 17, 2016.

[39] Lohit Yerva, Brad Campbell, Apoorva Bansal, Thomas Schmid, and

Prabal Dutta. Grafting energy-harvesting leaves onto the sensornet

tree. In Proceedings of the 11th international conference on Information

Processing in Sensor Networks, pages 197ś208. ACM, 2012.

[40] Zac Manchester. KickSat. http://zacinaction.github.io/kicksat/, 2015.

[41] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.

Moo: A batteryless computational rfid and sensing platform. Depart-

ment of Computer Science, University of Massachusetts Amherst., Tech.

Rep, 2011.

[42] Ting Zhu, Yu Gu, Tian He, and Zhi-Li Zhang. eShare: a capacitor-

driven energy storage and sharing network for long-term operation. In

Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems, pages 239ś252. ACM, 2010.


