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Abstract

Recent progress of on-chip spectroscopic systems enables a
new set of highly-stable frequency references (i.e. clocks) with
low cost, power and volume. It is based on the rotational
spectrum of gaseous molecules in sub-THz regime, a physical
mechanism alternative to that in traditional atomic clocks. This
scheme also enables fast start-up operation and robustness
against mechanical vibration and external electromagnetic
fields. This paper demonstrates the first chip-scale molecular
clock in 65nm CMOS which probes the 231.061GHz spectral
line of Carbonyl Sulfide ('*0'2C32S). The clock consumes only
66mW DC power and has a measured Allan deviation of
3.8x107'° with an averaging time of =10%.

Introduction

Stable frequency references are critical for equipment used
in navigation, communication and sensing. The widely adopted
mechanical-resonance oscillators, such as crystal oscillator and
MEMS oscillator, suffer from long-term frequency drifts due
to external disturbances (vibration, temperature change, etc.)
and aging. By optically probing the invariant electron
transition of atoms, an atomic clock significantly improves the
long-term stability. Chip-scale atomic clock (CSAC) further
achieves clock miniaturization using coherent population
trapping (CPT) [1, 2], but has exceedingly high cost and hence
limited applications. Here, we show that sub-THz rotational
spectral lines of gaseous molecules are a promising set of
timebase for portable clocks. Compared to cesium (Cs) atomic
clocks, our selected OCS molecular spectral line does not
require the slow and power-consuming heaters for alkali
evaporation, and is by nature less sensitive to external
electromagnetic fields (e.g. Zeeman-shift coefficient is
98ppt/Gauss for OCS at 231.060983GHz and 150ppb/Gauss
for Cs at 9.1926GHz). Thus, lower power, instantaneous start-
up and better long-term stability are enabled. Its absolute
linewidth 100~1000x% larger than that in CSACs also leads to a
high clock loop bandwidth of ~100 kHz, providing error
corrections under rapid mechanical vibration. More
importantly, this scheme, combined with recent progress in on-
chip THz spectrometers [3], allows for clock implementation
on low-cost silicon chips without any electro-optical assembly
needed in atomic clocks. In this paper, we report the first
molecular clock using a 65nm CMOS technology.

Architecture of Molecular Clock
The CMOS molecular clock is illustrated in Fig. 1. A rotational
spectral line of OCS near f;=231.060983GHz is chosen. The
OCS gas with 5-Pascal pressure is held inside a WR4.3
waveguide gas cell, the length (L=140mm) of which is
optimized for maximum spectroscopic signal-to-noise ratio
(SNR) [4]. Fig. 1 also presents the measured spectral profile
with a quality factor of 0=2.6x10°. The Tx probing signal
(fc=231.061GHz) is FSK-modulated (modulation frequency
Jfw=16kHz and frequency deviation 4/~1MHz) and detected by
a square-law detector in Rx. The intensity of two sidebands of
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the FSK signal is shaped by the absorption line profile, and any
frequency offset (fc - fy) leads to absorption imbalance and
causes envelope fluctuation (at f,) of the detector output. A
feedback error voltage is then generated, which indicates the
sign and magnitude of the frequency offset. After amplification
and low-pass filtering, it is fed into a voltage-controlled crystal
oscillator (VCXO) in the Tx to establish a dynamic frequency
compensation for its 80-MHz output.

Probing Signal Generation and Detection on CMOS

Fig. 2 shows the Tx including a 224~242GHz fractional-N
phase-locked loop (PLL). The sub-THz signal is extracted
from a frequency quadrupler chain, which utilizes the
nonlinearity of MOSFETs driven by a 57.8GHz harmonic
oscillator. A 40-bit MASH 1-1-1 A-X modulator enables ppt—
level frequency tuning resolution. The FSK modulation is
performed by periodically changing the control word of the A-
¥ modulator. The f, and 4f of FSK are selectable with a
resolution of 3-bit. Fig. 3 gives the schematic of the Rx. A
NMOS transistor biased at sub-threshold is utilized as a square-
law power detector. A low-noise folded-cascode op-amp
further amplifies the baseband signal. Finally, the error signal
is detected by an on-chip lock-in detector, which is referenced
to fu. To couple the probing signal from/into the chips, a pair
of custom-designed chip-to-waveguide transitions using quartz
probes is implemented. The loop filter is off-chip for post-
fabrication adjustments of loop parameters.

Measurement Results
The measured loss of the gas cell is 7.3dB (Fig. 5 (left)). Fig. 5
(right) presents the output spectrum (no FSK) of the Tx at
231.061GHz. The output power including the loss of chip-to-
waveguide transition (~10dB) is -20.2dBm (Fig. 6). This
power level avoids spectral broadening due to saturation [4].
The measured phase noise is -68.4dBc/Hz with a frequency
offset of IMHz. The measured noise equivalent power (NEP)
of the Rx, including the transition loss, is 501pW/Hz*> at
fw=16kHz (Fig. 6). Fig. 7 shows the packaged CMOS
molecular clock as well as the dispersion curve (Vemor versus
fe-fo) measured by the FSK signal (in an open loop) with a SNR
of 53dB. The molecular clock is locked onto the zero-crossing
point of the curve. Fig. 8 (left) presents the measured instan-
taneous frequencies of the closed-loop clock and the free-
running VCXO over 4000s. The measured stability (quantified
by Allan deviation [5]) reaches 2.4x107 for ==1s and 3.8x10-1°
for ==10%s. The suppression factor of VCXO frequency drift is
~10x% through the molecular-clock regulation, and is expected
to be higher under large ambient-temperature change. Shown
in Table I, the CMOS clock achieves high stability
(comparable to that in [1]), faster response (thanks to the much
larger absolute linewidth), start-up speed, and significantly
simplified construction. Currently, the drift of our prototype is
mainly due to the OCS gas leakage of the set up (0.1Pascal/hr),
which can be improved with a hermetic package. This, along
with improved chip-waveguide transition design with reduced
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loss (i.e. ~10x higher SNR), will lead to a predicted stability
below 107! (==107s) (Fig. 8). The chip consumes 66mW power
and the waveguide gas cell has a volume of 5.6cm’.
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Fig. 3. Schematic of the clock Rx with THz and lock-in detectors. The power of off-chip heater, laser, and other components is not included.
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