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Abstract—Compressive Sensing (CS) has been widely used in
the Internet of Things (IoT) to achieve efficient information
collection. However, existing works have mainly focused on
utilizing CS to lower the sampling rate or reduce the number of
transmissions, without explicitly accounting for the heterogeneity
of energy consumption in IoT environments, resulting from the
different locations of IoT sensor nodes. In this paper, capitalizing
on the heterogeneity of energy consumption in the IoT, we
propose a CS-based prejudiced random sensing strategy (PRSS)
to achieve a desirable tradeoff between the overall energy
consumption and the sensing accuracy. Specifically, each sensor
node participates in sensing via distributed random access based
on an assigned sensing probability, which is determined by its
energy consumption in sending the sensed data, data collision
rate and its contribution to recovery accuracy. We employ the
statistical restricted isometry property (StRIP) as a practical
indicator of the recovery accuracy and derive a sufficiently good
recovery error bound based on it. Then, we devise a novel
convex optimization framework to find the most energy-efficient
sensing probability assignment strategy with accuracy guarantee.
We evaluate PRSS using real-world sea surface temperature
(SST) data trace, and results demonstrate that it can significantly
reduce energy consumption and prolong network lifetime for the
same sensing accuracy compared with benchmark algorithms.

Index Terms—Internet of Things, Wireless Sensor Networks,
Heterogeneity, Compressive Sensing, Statistical Restricted Isom-
etry Property, Sensing Probability.

I. INTRODUCTION

ITH the development of wireless communications and
Wthe intellectualization of sensing devices, the Internet
of Things (IoT) has drawn significant attention from both
industry and academia [1] [2]. The IoT has found extensive
applications in many domains, e.g. environmental monitoring,
health-care, smart cities and homes [3] [4] [5]. Information
collection is the fundamental operation that underpins various
IoT applications. Wireless sensor networks (WSNs), as one
of the key technologies of the perception layer of the IoT,
have been playing a critical role in information collection [6]
[7]1 [8] [9] [10]. Typically, a WSN consists of a fusion center
(FC) and a number of distributed sensor nodes. The sensor
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nodes are required to periodically report their sensed data
to the FC, where the information aggregation and extraction
tasks are performed. For most WSNs, the network lifetime
is determined by the limited energy supply in sensor nodes
due to the difficulty in replacing or recharging the batteries.
Therefore, achieving energy-efficient information collection
becomes one of the dominating issues in WSNs and the IoT.

In the past few years, there have been considerable research
interests in improving the energy efficiency of information
collection in WSNs and the IoT. Approaches to maximize
energy efficiency can be divided into two broad categories.
One concentrates on the energy efficiency of protocols, such
as topology control [11], sleep scheduling [12] and mobile
data collection [13]. The other aims at reducing the amount
of data transmission via in-network processing, such as data
aggregation. The recently emerged compressive sensing (CS)
[14] [15] theory provides a new avenue for promoting energy
efficiency in WSNs and the IoT, as it promises perfect recovery
of sparse signals using only a small number of random
measurements [16]. The spatial correlation of sensor readings
in the IoT results in an inherent sparsity of data under a proper
transform basis, which lays the foundation for the extensive
applications of CS techniques in the IoT.

There are a large number of prior works on investigating
how CS can be used to achieve energy-efficient information
collection in WSNs and the IoT, e.g., [6], [17], [18], [19], [20],
[21], [22], [23], [24], [25]. A CS-based information acquisition
framework is proposed for the IoT in [6], which involves the
whole process of information collection, including compressed
sampling, transmission and accurate reconstruction. The work
in [17] [18] presents a comprehensive analysis on the effects
of acquiring, processing and communicating CS measurements
on network energy efficiency, showing that CS achieves higher
energy efficiency in comparison to conventional approaches.
In [19], a hybrid CS technique is integrated into clustered
WSNs. Based on traditional intra-cluster transmission and CS-
based inter-cluster transmission schemes, an analytical model
is proposed in order to find the optimal size of clusters that
could lead to minimum number of transmissions. Similarly,
in [20], a cluster-based compressive sensing data collection
algorithm is proposed, where the block diagonal matrices are
used as the CS measurement matrices. In [21], adaptive CS
is applied to the process of information collection in WSNs
by iteratively computing projections in order to maximize the
amount of information gain per energy expenditure. In [22],
a novel CS-based random sampling scheme is proposed. By
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leveraging a sampler rate indicator feedback scheme, it adjusts
the sampling rate to maintain an acceptable reconstruction
performance while minimizing the number of samples, by
jointly considering the causality of sampling, hardware limita-
tions and the tradeoff between the randomization scheme and
computational complexity. In [23], a decentralized networking
scheme that combines the concepts of random access and CS
is proposed to achieve energy and bandwidth efficiency in
underwater WSNs. The concept of sufficient sensing proba-
bility is employed to account for the packet loss caused by
collisions. The work in [24] develops a novel data gathering
scheme based on matrix completion, which takes advantage
of the low-rank feature rather than sparsity of sensing data. In
[25], based on the compressibility of physical phenomena and
the inherent resource heterogeneity in WSNs, a nonuniform
compressive sensing (NCS) method is proposed, which is
shown to achieve comparable signal approximation accuracy
at significantly reduced energy consumption. All these works
have mainly focused on utilizing CS to reduce the number of
sensor measurements that are sampled and transmitted in the
network. In practical IoT environments, however, as different
IoT sensor nodes transmit their sensed data to the FC over dif-
ferent communication distances, there exists significant energy
consumption heterogeneity. This kind of heterogeneity should
be integrated into the design of sparse sensing techniques to
achieve an energy consumption balance among different IoT
sensor nodes, contributing to more energy-efficient informa-
tion collection in the IoT.

In this paper, we consider a two-dimensional WSN that
measures a physical phenomenon (e.g. temperature, humidity),
over a geographical region during a certain time period, for
geographical and environmental monitoring purposes. The
design objective of this WSN is to obtain a sufficiently
accurate approximation of the data field with as little energy
expenditure as possible. However, achieving this is challeng-
ing. As the need for high sensing accuracy and the desire
to reduce energy consumption are two conflicting issues, it
is intractable to find a balance between them. For example,
uniform random sensing only considers sensing accuracy and
is agnostic to the energy consumption heterogeneity in the
IoT, resulting in insufficient energy efficiency. While greedy
sensing always chooses the subset of sensor nodes with lower
energy consumption to participate in sensing and thus often
lacks a sufficiently widespread coverage of the entire data
field, resulting in poor sensing accuracy. By exploiting the
energy consumption heterogeneity in the IoT in the design of
sparse sensing techniques, we propose a CS-based prejudiced
random sensing strategy (PRSS) to achieve a desirable tradeoff
between a minimized energy consumption and a satisfactory
sensing accuracy. In PRSS, each sensor node performs sam-
pling and random medium access based on an assigned sensing
probability, which is determined by its energy consumption in
sending the sensed data to the FC, packet collision rate and
its contribution to recovery accuracy.

One technical challenge in PRSS lies in how to predict
the recovery accuracy after determining the subset of sensor
nodes that participate in sensing. In this paper, instead of using
traditional metrics in CS, we employ the statistical restricted

isometry property (StRIP) [26], a probabilistic version of the
restricted isometry property (RIP), as a practical indicator
of the recovery accuracy, as it is easy to calculate. After
deriving a sufficiently good recovery error bound based on the
StRIP, we devise a novel convex optimization framework to
find the most energy-efficient sensing probability assignment
strategy with accuracy guarantee. We evaluate the performance
of PRSS using real-world SST data trace. Experimental results
demonstrate that PRSS can achieve significant energy savings
and prolongation of network lifetime for the same sensing
accuracy compared to benchmark algorithms.

The main contributions of this paper can be summarized as
follows:

o We exploit the heterogeneity of energy consumption in
the IoT in the design of sparse sensing techniques. In
particular, we propose a CS-based prejudiced random
sensing strategy, where each sensor node participates in
sensing randomly based on an assigned sensing probabil-
ity, to achieve a desirable tradeoff between a minimized
energy consumption and a superior sensing accuracy.

« By employing the StRIP as a practical indicator of the
recovery accuracy, we derive a recovery error bound,
which can be demonstrated to be tight in practical net-
work settings.

« We devise a novel convex optimization framework to find
the most energy-efficient sensing probability assignment
strategy with accuracy guarantee.

The remainder of the paper is organized as follows: In
Section II, the network model is introduced, and the overall
sparse sensing process is formulated. Section III presents the
heterogeneity of energy consumption in the IoT and elaborates
the implementation details of PRSS. Section IV provides
performance assessment of our scheme and comparisons of
energy consumption and network lifetime with benchmark
algorithms. Finally, some concluding remarks are provided in
Section V.

II. NETWORK MODEL AND PROBLEM FORMULATION
A. Network Model

As shown in Fig. 1, in the network model considered
here, we assume that N sensor nodes have been distributed
uniformly at random in a rectangular sensing area, to measure
the temporal-spatial field of some physical phenomena (e.g.,
temperature, humidity, pressure, etc.). An FC is also deployed
to collect data samples from sensor nodes and then perform
field reconstruction. In this paper, two common positions for
the FC are considered: the FC is located at the center of and
outside the sensing area'.

In this paper, we consider a frame-based sensing process.
At the beginning of each frame, sensor nodes perform mea-
surements about the physical field. Then, the generated sensor
measurements are transmitted to the FC. At the end of the
frame, the FC reconstructs the signal field based on the data
packets received during that frame. Once the reconstruction

Note that in the following sections, we use FC1 and FC2 to represent that
the FC locates at the center of and outside the sensing area, respectively.
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Fig. 1: Network model: N sensor nodes distributed in a
rectangular sensing area with two common FC locations.

is accomplished, the current frame is discarded and the next
frame starts. The frame length T is assumed to be less than
the coherence time T,,; of the physical phenomenon, which
ensures that the data field remains almost unchanged within
each frame.

Thanks to the spatial correlation of the field, sensor readings
are inherently sparse under a proper transform basis, which
suggests that only a random subset of sensor nodes need
to participate in sensing. Therefore, within each frame, two
strategies are used for energy saving: 1) during data collection,
sparse sensing is adopted in which only a random subset of
sensor nodes sample the field and transmit their samples to
the FC, and 2) during reconstruction, CS-based sparse signal
recovery is performed at the FC to recover the signal field. In
order to eliminate the need for downlink transmission from
the FC, the random sensor selection is implemented in a
decentralized way based on the concept of sensing probability
[23]. Specifically, at the beginning of each frame, each sensor
node makes a decision about whether it will take part in
sensing according to an assigned sensing probability, which is
determined by its energy consumption in sending the sensed
data to the FC and its contribution to recovery accuracy.
The sensing probability assignment strategy among all sensor
nodes is optimized to realize the most energy-efficient sensing
with accuracy guarantee. Since the process of random sensor
selection is decentralized, it is impractical to schedule the
medium access of different sensor nodes in a deterministic
or cooperative manner. Thus, we employ a simple random
access approach instead. Note that in random access, packets
from different sensor nodes are subject to collisions when they
arrive at the FC in an overlapped time.

B. Problem Formulation

In a specific frame, assume that each sensor node in the
network acquires a measurement from the physical field. The
sensor measurement, together with the sensor node’s location
tag, is organized into a data packet of L bits, which is
then modulated and transmitted to the FC. Upon receiving
a certain number of data packets, the FC demodulates the
signal and extracts the measurement information from which
it reconstructs the entire signal field.

The measurements of all N sensor nodes in the current
frame can be grouped into a data vector x = [z1, X2, ..., T N]T,
where x; is the measurement of the ¢-th sensor node. It
has been shown in [27] [28] [29] [30] that most physical
phenomena have a sparse (compressible) representation in
some transform basis, e.g. Fourier, DCT, wavelets etc. In this
paper, it is assumed that the vector of Fourier coefficients of x
is sparse. Formally, if we denote by ¥ the Fourier transform
basis, we have x = Ws, and s is a sparse vector, which
contains only a small number of non-zero coefficients.

With each sensor node assigned a sensing probability, only
a random subset of them participate in sensing in each frame,
which can be modeled as an active compressive random sub-
sampling process in the spatial domain. Assume that M,
sensor nodes turn out to participate in sensing, the generated
sensor measurements can be grouped into an M,-dimensional
vector y,, and it can be obtained by

ys = QSX (1)

where @, is an M, x N random selection matrix modeling
the process of random sensor selection. @, is constructed by
randomly selecting M, rows from the /N-dimensional identity
matrix. As the sensing probability assigned to each sensor
node is determined by its energy consumption in transmitting
the sensor measurement to the FC and its contribution to
recovery accuracy, the sensing probability assignment strat-
egy tends to be heterogeneous. Therefore, unlike traditional
uniform random sensing, the structure of ®, here presents
some degree of nonuniformity. Therefore, Eq. (1) can be
reformulated as

s =P, Us 2)

Once the process of random sensor selection is complet-
ed, M, sensor nodes need to access the shared channel to
communicate their measurements to the FC. As stated earlier,
there is a probability of packet collisions, and the colliding
packets are simply discarded by the FC. Similarly, we model
the packet collisions as a passive compressive random sub-
sampling process. If we denote the correctly received sensor
measurements at the FC by a vector y, we have

y=®,y; =P, P,¥s = As 3)

where ®,. is an M x Mg random selection matrix modeling
random access, and A = ®,.P, ¥ is the equivalent sensing
matrix.

Taking the sensing noise into consideration, we have

y=As+e (G))

where |||, < & represents the sensing noise induced by the
limitations in the sensing device.

Given the measurement vector y, the random selection
matrices ®,, ®,., and the Fourier transform basis W, recon-
struction of the data field x can be realized by solving the
following constrained /;-norm based minimization problem

ly — Asll, <¢ )

which can be solved using an efficient solver such as basis
pursuit de-noising (BPDN) or various greedy algorithms (e.g.
orthogonal matching pursuit, OMP) [31] [32].

min_||sf;
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III. DETAILS OF PRSS

Exploiting the heterogeneity of energy consumption in the
IoT in the design of sparse sensing techniques, we propose the
prejudiced random sensing strategy (PRSS), which can achieve
significantly reduced energy consumption and elongated net-
work lifetime for the same sensing accuracy. In this section,
we elaborate the detailed design considerations of PRSS. First,
we present the heterogeneity of energy consumption in the IoT.
Then we discuss the packet reception model during the random
sensor selection and random access process. After that, we
analyze the tradeoff between energy consumption and recovery
accuracy and derive a sufficiently good recovery error bound.
Ultimately, we formulate a convex optimization problem to
find the most energy-efficient sensing probability assignment
strategy with accuracy guarantee.

A. Heterogeneity of Energy Consumption

In this paper, we assume that the energy cost for sensing and
computation is negligible, which are fairly typical assumptions
in WSNs [17]. The overall energy consumption is dominated
by radio communications in transmitting and receiving da-
ta packets, and it is directly related to the communication
distance from the sender node to the destination. In our
application scenario, a large number of sensor nodes are
deployed to measure the physical field and transmit their
measurements to the FC, and each of them has a different
communication distance. Using the energy consumption model
introduced in [33], the energy consumption F; in sending L
bits of data from the sensor node ¢ to the FC is calculated as

Ei = EOL + EampLdin (6)

where E) is the energy consumed in the transceiver circuitry at
the transmitter, €y, is the energy consumed by the transmitter
antenna for transmitting one meter, d; is the communication
distance from sensor node ¢ to the FC, and n is the path
loss exponent. We show the energy consumption maps of
the sensing area for the two common FC locations under the
following example set of system parameters: The length and
width of the sensing area are L, = 1280m and L, = 1280m,
respectively. Each transmitted packet contains L = 400 bits of
data, Ey = 50 nJ/bit, n is set to 3.5 in this paper to account
for the multi-path effect instead of using a free space model
which chooses n = 2, and g4, = 100 pJ/bit/m*. Fig. 2
shows the two energy consumption maps of the rectangular
sensing area. As we can observe from the figures, for both FC
locations, sensor nodes deployed at different locations in the
sensing area consume drastically different amount of energy
when sending a data packet to the FC.

B. From Sensing Probability to Reception Rate

To save energy, each sensor node participates in sensing
based on an independent Bernoulli distribution, where the
sensing probabilities p = [p1, pa, ...,pN]T O0<p; <1, i=
1,2,...,N) are determined by the tradeoff between energy
consumption and recovery accuracy, as elaborated in Section
III.C. Assume that the available network bandwidth is B
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Fig. 2: The energy consumption maps of the rectangular
sensing area for the two common FC locations.

and each sensor node transmits at a bit-rate equal to the
bandwidth, so the packet duration is T}, = L/B. When the

average sensing probability of all nodes is p = % gj Dis
the average number of nodes that participate in sensiilzlé is
M, = g: p; = pN. Being assigned a sensing probability
pi, the al\?elrage packet generation rate for node ¢ is given by

Ai = 7%%. Thus the aggregate arrival rate of data packets
P
N g: Pi N
at the FC is A = Y \; = =~ = ==5-. Due to random

= T—T, T-T,"

access, packet collisions will happen. In order to determine
the probability of collision, as in [23], we assume that the
packet arrival process resembles a Poisson process and model
the probability of no collision as the probability that no packet
arrives in an interval of length 27}, which is given by

NpTp
Prob {no collision} = e~ r = ¢ >T 7 (7

Therefore, the probability that a data packet from sensor node
1 is successfully received at the FC within a frame length T



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, APRIL 2018

200 ‘
—N=512
- - N=1024, _ ____
150 | e —. ]
. So
4 \\
4 ~
4 \~
’ ~ o
s1000 ) 1
7
1
1
1
50 « 1
1
1
1
[/
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

p

Fig. 3: The average number of correctly received sensor
measurements )M versus the average sensing probability p with
parameters N = 512 or N = 1024, T' = 180 s, L = 400 bits
and B = 2 kbps.

is given by

NpTp

@i = p; - Prob{no collision} = p; - e 2T T (8)

Stacking ¢; of all sensor nodes, we have q = [q1, ¢2, -.., qN]T,
and the average reception rate among all nodes is denoted by
_oNpTp

N
q= % > qi=pe T Tr.Let M denote the average number

i=1
of correctly received data Jgackets at the FC during each frame,
pTp

then M = gN = pNei2ﬁ.

For example, assume N = 512 (or N = 1024), T'= 180 s,
L = 400 bits and B = 2 kbps, the average number of correctly
received sensor measurements M versus the average sensing
probability p is shown in Fig. 3. As we can observe from
the figure, the number of received sensor measurements M
increases monotonically with p when p is small. However, as a
larger average sensing probability p means a higher probability
of packet collisions, after a certain critical point, M remains
stable (when N = 512) or even descend (when N = 1024).

C. Predicting the Recovery Accuracy Based on the StRIP

A key step in our PRSS is to judiciously decide on p
by simultaneously taking into account the heterogeneity of
energy consumption, packet collisions in random access and
recovery accuracy. There are two commonly used strategies
to determine p. One is uniform random sensing, where all
sensor nodes are treated equally. Specifically, each sensor node
is assigned an identical sensing probability, i.e. p;, = p, ¢ =
1, ..., N. Uniform random sensing is widely used in traditional
sparse sensing techniques due to its simplicity and robustness
in practice. However, it is agnostic to the heterogeneity of
energy consumption in WSNs, and hence does not achieve
maximum energy saving. The other is greedy sensing that
selects one sensor node after another, always picking the node
which consumes the least energy in transmitting the sensor
measurement to the FC. In other words, p; = 1 if E; is

among the M, lowest, otherwise p; = 0. The problem of
greedy sensing is that it excessively prioritizes the subset of
sensor nodes with smaller energy consumption (closer to the
FC), so it often loses a sufficiently wide-spread and balanced
coverage of the entire data field, resulting in poor recovery
accuracy. As a result, there is a need to find the best possible
tradeoff between these two approaches.

To address the tradeoff problem between recovery accuracy
and the overall energy consumption, we need to quantitatively
analyze these two factors. Given a network topology and
an energy consumption model, we can obtain the energy
consumption map of the network without difficulty. Thus,
the energy consumption of a particular sensing strategy is
easy to calculate. However, it is intractable to numerically
determine the exact recovery accuracy, as the ground truth
of the data field is usually unavailable. Even though some
metrics of sensing matrix (e.g. the RIP) have been proposed
to prove theoretical recovery accuracy guarantees, they are
impractical in our application scenario. The reasons are two
fold: 1) Verifying the RIP of a sensing matrix is NP-hard
and computationally intensive; 2) They only provide a loose
lower bound on the recovery accuracy, resulting in a waste of
resources. To sum up, we need to find a practical metric of
the sensing matrix that can predict recovery accuracy in an
efficient manner.

In this paper, rather than the sophisticated RIP, the statistical
RIP (StRIP) which is proposed in [26] is employed as a
practical indicator for quantifying recovery accuracy. As a
probabilistic version of the RIP, the StRIP is much easier to
be verified and can still provide a sufficiently good recovery
accuracy guarantee. There are three basic conditions which
can be used to verify whether an M x N matrix ® satisfies
the StRIP [26], i.e.,

1) (St1) The rows of ® are orthogonal, and all row sums
are zero.

2) (St2) The columns of ® form a group under pointwise
multiplication.

3) (St3) Bounded column sum: for j = 2,3,..., N

M 2
> i

=1

< M*T €))

where 7 satisfies 0 < 1 < 1 and ¢; ; is the i-th row and j-th
column element of ®.

In our application scenario, the sensing matrix A is con-
structed by randomly selecting M rows from the N x N Fouri-
er basis matrix ¥. In order to verify whether A satisfies the
StRIP, we need to check the three basic conditions mentioned
above. It is straightforward to show that conditions Stl and St2
are satisfied. Thus, the condition St3 is of critical significance.
For clarity, we first define a term called Maximum Column Sum
(MCS) based on St3. For any sensing matrix A, its MCS is
defined as ,

(10)

M
E aij
i=1

where a;; is the i-th row and j-th column element of A.

p(A) = jmax
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Based on the main results of StRIP in [26], we obtain
the following lemma, which bridges the MCS and the RIP
condition.

LEMMA 1. Statistical RIP
For a structured sensing matrix A = ®,.P,W of size M x N
as in (3), suppose that there exists % < n <1 such that

p(A) < M>0. (11

Then, for all k-sparse vectors s € RN where k < 1 +

1/n
(N—=1)e if M > (ckli#) for some constant c, then
the inequalities
2
2
< (L+2) sl

(1—2)lls|* < (12)

1
——As
vM
hold with probability exceeding 1 — § (with respect to all k-
sparse vectors uniformly drawn from the space RY ), with § =

_le (e n/v 1)2mn 1 .
4e 33% . In other words, \/—MA satisfies RIP of
order k, with isometry constant .

According to Lemma 1, when § becomes smaller, there
will be a higher probability for ﬁA to satisfy RIP. Under
the fixed signal sparsity k, a larger n produces a smaller §,
which requires a smaller MCS 1 (A). This indicates that a
sensing matrix with a smaller MCS satisfies RIP with a higher
probability.

Note that our structured sensing matrix A encompasses
two random selection matrices due to random sampling and
random access, while existing work considers one random
matrix only, such as Theorem 1 in [34]. Expanding the
literature, we provide the following Theorem 1 on the error
performance of the recovery scheme in (5).

THEOREM 1. Recovery Error Bound

Consider the signal sampling and reconstruction scheme in
(3)-(5), where x = Ws is a sparse (compressible) signal in the
Fourier transform domain and & is the bounded noise level.
For any Yk < Tl\é, there exists ¢ > 0 such that if u(A) <
min {01, 09,03}, then the following inequality

Cié

vVMN

holds with probability exceeding 0.99, where X is the recovered
data field, C} is a constant which is only dependent on the

3 _

RIP constant, 01 = M 2, OT = M?2-logn(16cklog N) gy o3 =
_ _N 1 )2

22 lo8n [30676]@( )]

I — %[l <

13)

N 4k+3

Remark: As stated in Theorem 1, as long as p(A) is
sufficiently small, the recovery error is upper bounded with an
overwhelming probability. Therefore, MCS can be employed
as an indicator of the recovery accuracy. More importantly,
MCS of a sensing matrix is easy to calculate and Theorem 1
can be verified efficiently. Note that the recovery error bound
is sufficiently tight in our application scenario of large-scale
WSNs. Specifically, in (13), ¢ is the bounded noise level,
which is a constant after determining the sensing devices
and is usually small under the request of high recovery
accuracy. Thus, the recovery error bound is dependent on

: Ck . .
the coefficient TN When the restricted isometry constant

0.02 ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 1
Average sensing probability p

Fig. 4: \/% versus the average sensing probability p.

4k = i, C =~ 10.47 [16], the value of \/% is usually small
for a WSN with hundreds to thousands of sensor nodes. For
example, assume N = 512, T' = 180 s, L = 400 bits and
B =2 kb.ps, . \/% versus the average sensing probability p
is shown in Fig. 4.

As noted ip the flgure, under a reas9nable P, \/% is
small. In particular, if we set p > 0.2 in order to achieve
an acceptable sensing accuracy, then ij —~ < 0.05. Therefore,
we can say that the recovery error bound provided in Theorem
1 is sufficiently tight in our application scenario of large-scale
WSNs and the requirement of high sensing accuracy. The

complete proof of Theorem 1 is presented in the Appendix.

D. Optimal Sensing Probability Assignment Strategy

According to Theorem 1, we can always find a constant «
such that when p (A) < a, a given level of recovery accuracy
is met with high probability. Since A depends on the sensor
selection matrix, we may identify a number of candidate
subsets of sensor nodes to participate in sensing, such that each
candidate subset results in sufficiently accurate recovery of the
data field at the FC. Therefore, the next important step is to
pick out the most energy-efficient subset from those candidate
subsets. Given the energy consumption map of all sensor nodes
E = [Ey,Es, ..., EN]", where F; is defined by the energy
consumption model in (6), this process can be formulated as
the following optimization problem

min ETp

s.t. ’ (14)

where p 1is the average sensing probability, q =
T . .

[q1, 92, ...,qn]" is the reception rate vector of all sensor nodes,

1 = [1,1,...,1]T, M is the average number of correctly
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received collision-free data packets at the FC, and W (3, j) is
the j-th column vector of the Fourier basis matrix W.

Note that the objective function in (14) indicates the total
energy consumption to be minimized, the third constraint in
(14) ensures the number of correctly received sensor mea-
surements for signal recovery at the FC, and the fourth one
is the MCS constraint for recovery performance guarantee.
Considering the contradiction relation between a lower energy
consumption and a smaller MCS, the number of received
measurements M is employed as a proxy to pursue a balance
between them. Here p; encodes whether the ¢-th sensor node is
selected to participate in sensing. When the number of sensor
nodes N and the average sensing probability p are small,
global optimization techniques, such as the branch-and-bound
method, can be used to solve (14). However, this problem has
been shown to be NP-hard and it incurs exponentially growing
computational complexity in the network size N, which is
inapplicable to our application scenario of large-scale WSNss.
To address this issue, a widely used heuristic approach for
solving the original 0-1 programming problem with a low
computational complexity is to modify the binary constraints
p; € {0,1} into 0 < p; < 1, and then solve the resulting
relaxed linear programming problem, which leads to

min ETp

s.t. ’ 5)

This problem is different from (14) in that p; can be fractional.
Note that this relaxation operation has been demonstrated
to be rational and feasible in [35] and has found extensive
applications such as antenna selection in multi-antenna wire-
less communication systems [36]. More importantly, it can be
solved efficiently, for example, using interior-point methods.
It typically requires a few tens of iterations, and each iteration
can be carried out with a complexity of O(N?3) operations.
The solution to (15) is a sensing probability assignment
strategy, which means that sensor node 7 participates in sensing
with a probability of p;. This implies that the subset of
sensor nodes that actually take part in sensing in each frame
is a random event. Therefore, the optimization result only
manifests that the expected energy consumption is minimized
while the expected MCS is bounded. Although this is not
an absolute performance guarantee, the recovery error is still
upper-bounded with a high probability and the expected energy
consumption reflects the average performance of a given
sensing probability assignment strategy.
Remark: A critical parameter in the convex optimization
formulation is «, which reflects the value of MCS. The
value of a has a direct impact on the optimized sensing
probability assignment strategy. The larger value of o we
choose, the more greedily the corresponding sensing proba-
bility assignment strategy behaves (assigning higher sensing

probabilities to sensor nodes closer to the FC). In an extreme
case, it becomes equivalent to the greedy sensing scheme.
Conversely, the smaller the value of «, the fairer the sensing
probability assignment strategy becomes among all sensor
nodes, which promises better recovery accuracy. Note that
when o becomes smaller than a certain threshold, each sensor
node will be assigned an identical sensing probability (uniform
random sensing). Therefore, we can control the behavior of the
optimized sensing probability assignment strategy by adjusting
the value of «. It is worth noting that the value of a should not
exceed an upper limit value az; for a given average sensing
probability p, i.e., o < ap, with ay denoting the expected
MCS of greedy sensing, to ensure that a comparable recovery
accuracy is achieved with respect to uniform random sensing.
On the other side, if the value of « is chosen too small (note
that a > 0 is a necessity to make the problem feasible), all
sensor nodes will take the same probability to sense, which is
equivalent to uniform random sensing and violates the desire
to promote energy efficiency. Thus, we request that o > «..

Given an average sensing probability p, if we could find
a proper value of a from the interval [of, ], the sensing
probability assignment strategy produced by the above convex
optimization problem can satisfy the two requirements: 1) the
recovery error bound provided by it is better or equal to that
of uniform random sensing according to Theorem 1; 2) the
expected energy consumption of p is the lowest among all
sensing probability assignment strategies in the solution space
of the convex optimization problem.

To illustrate how to choose a good value for o, we need
to present the tradeoff curves of recovery accuracy versus
energy consumption based on the two energy consumption
maps in Fig. 2. Note that the data set used here and in the
experiments in Section IV is the SST data trace provided by
the Jet Propulsion Laboratory, California Institute of Tech-
nology, which is accessible at https://ourocean.jpl.nasa.gov/.
We assume that totally 1024 sensor nodes are deployed at
a 32 x 32 equally spaced grid to measure the SST field
in the 1280 x 1280 m?2 rectangular sensing area, and the
measurements generated by 256 randomly selected sensors
are used as the ground truth, i.e. N = 256. For clarity,
we first define the two performance metrics. We employ
the normalized mean squared error NMSE as the accuracy
metric. Suppose X is the recovered data field, NMSE is
defined as follows

a2
l[x — XI5

NMSE =

2 b

[l

then the recovery accuracy is calculated as 1 — NMSFE. Fur-
thermore, the energy consumption of the network is measured
by the energy consumption ratio, which is calculated as the
proportion of the total energy consumption owing to those
nodes that actually participate in sensing over the total energy
consumption if all nodes participate, i.e.

Zsensing i E;
Zall [ Ez

The results are in Fig. 5. We insert an arrow in each
curve to indicate the variation of « from ay to ap. As

Energy Consumption Ratio =
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Fig. 5: The impact of the parameter « on the tradeoff between
recovery accuracy and energy consumption when the average

sensing probability p is set to 0.4.

we can observe from the figure, when o« = «f (at the
beginning), PRSS bears a similar behavior to uniform random
sensing, and it approximates greedy sensing when o grows
to ay. In particular, when the FC locates at the center of
the sensing area, with the growth of « initially, the energy
consumption ratio declines while the recovery accuracy stays
at the same level. However, when « becomes larger than 33,
the recovery accuracy sharply drops. When the FC locates
outside the sensing area, the recovery accuracy declines when
« grows larger than 8. Apparently, it is desired to identify the
threshold value, which is the most appropriate choice for the
parameter « in the convex optimization problem, such that
we can obtain the most energy-efficient sensing probability
assignment strategy with accuracy guarantee. Note that we
can utilize historical data to tune the parameters.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
PRSS using real-world SST data trace, and make a comparison
with two benchmark algorithms, i.e. uniform random sensing
and greedy sensing.

A. Experimental Settings

In environmental monitoring application scenarios of the
IoT, a satisfactory sensing quality (reflected by recovery accu-
racy) is an essential requirement. Furthermore, the network
lifetime is also of crucial importance since recharging or
replacing batteries of sensor nodes is difficult in practical IoT
deployments. Therefore, a figure of merit for network per-
formance is the energy expenditure per successfully delivered
bit of information. In this paper, we consider two performance
metrics. One is the average energy consumption of the network
needed to sense a physical field at the given accuracy level,
and the other is network lifetime. Conventionally, network
lifetime is defined as the time duration elapsed from the
network operation starts until the first node (or the last node)
in the network depletes its energy (dies) [33]. However, this
simple definition is inapplicable to our problem. In light of a
sensor network based on CS, the network lifetime should be
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Fig. 6: The average NMSE and average energy consumption
ratio versus average sensing probability p.
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Fig. 7. The comparison of energy consumption ratio among
the three schemes under different accuracy levels.

defined as the time interval from the beginning till the time
beyond which successful recovery is no longer available. For
simplicity, we investigate the number of nodes whose lifetimes
surpass a given threshold value which varies from 100 to 1000
frames.

B. Energy Consumption and Network Lifetime Comparisons

Before presenting the energy consumption and network
lifetime comparison results, we first seek to determine a proper
average sensing probability p, which meets the given accuracy
level with the least energy consumption. Taking the uniform
random sensing scheme as an example, the average NMSE
and the average energy consumption ratio versus the average
sensing probability p is shown in Fig. 6. As noted in the figure,
as p increases, NMSE first drops sharply and then remains
relatively stable, while the average energy consumption ratio
rises linearly in p. Therefore, in order to save energy, we
should choose the smallest value of p conditioned that the
given accuracy level is satisfied.

To assess the energy consumption of PRSS, we compare
it with the two benchmark algorithms for the two common
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FC locations. Fig. 7 presents the energy consumption ratio
of the three schemes under three different accuracy levels
(NMSE = 10%/5%/2.5%, representing adequate/ high/
excellent recovery accuracy).

Since uniform random sensing is agnostic to the hetero-
geneity of energy consumption in the network, it yields the
same energy consumption ratio for the two different FC
locations. By contrast, PRSS and greedy sensing determine
the subset of participating sensors based on the energy con-
sumption dispersion, so the results are different for the two
FC locations. As we can observe from Fig. 7, wherever the
FC locates, PRSS outperforms both uniform random sensing
and greedy sensing under all accuracy levels. Specifically,
when the FC locates at the center of the sensing area, PRSS
consumes 67.4% and 75.9% less energy than uniform random
sensing and greedy sensing under the 90% accuracy level.
At NMSE = 5%, PRSS saves 35.6% and 54.3% energy
compared to the two benchmark algorithms, respectively. The
energy saving of PRSS shrinks at the excellent accuracy
level (NMSE = 2.5%), since it requires a large number
of sensor nodes to participate in sensing. Nevertheless, the
energy consumption ratio is still 16.1% and 23.7% lower
than uniform and greedy baselines, respectively. When the
FC locates outside the sensing area, the energy consumption
ratio of PRSS rises slightly, and the gap between PRSS and
uniform random sensing narrows. Besides, greedy sensing
presents a much higher energy consumption ratio under all
accuracy levels. This is because the energy consumption map

increases monotonically from one side of the region to the
other, resulting in a stronger spatial correlation. As a result, the
recovery accuracy decreases earlier when a grows, as shown
in Fig. 5.

As network lifetime is important for environmental mon-
itoring applications of the IoT, we now make a comparison
about it among the three sensing approaches. As an alternative,
we investigate the number of sensor nodes whose lifetimes
reach a given threshold value. We assume that the initial
energy of each sensor node is 25 KJ (energy provided by
two AA batteries [37]) and that the lifetimes of sensor nodes
are measured in frames, and in each frame the FC conducts
one field reconstruction based on the received sensor measure-
ments. A sensor node is considered dead when it is no longer
able to complete one data transmission. Leveraging the energy
consumption model in (6), we obtain the results in Fig. 8 and
Fig. 9 for the two FC locations.

The results are self-explanatory. Specifically, when the FC
locates at the center of the sensing area, PRSS provides the
overwhelming majority of sensor nodes with elongated life-
times. For example, at NMSE = 10%, there are 241 sensor
nodes (note that N = 256) which sustain a lifetime of more
than 1000 frames when using PRSS. However, the numbers
become 150 and 191 when using uniform random sensing
and greedy sensing, respectively. When a high accuracy is
required (NMSE = 5%), the number of sensor nodes whose
lifetimes are longer than 1000 frames is 187, 82, 114 in PRSS,
uniform random sensing and greedy sensing respectively. At
the excellent accuracy level (NMSE = 2.5%), there are still
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Fig. 10: The SST field is sensed employing PRSS with p =
0.28, T=180s and T}, = 0.2 s.

90 sensors which stay alive for more than 1000 frames in
PRSS, while there are only 64 and 68 sensors survive this
long in uniform random sensing and greedy sensing. Because
the sensor nodes have a longer average lifetime, we can say
that PRSS sustains a prolonged network lifetime compared to
the two benchmark algorithms. Consistent results are observed
from Fig. 9 when the FC locates outside the sensing area.
Regardless of the required accuracy level, there is a larger
number of sensor nodes which have a relatively long lifetime
in PRSS than in uniform random sensing and greedy sensing.

C. One Example of Field Reconstruction

To visually illustrate the field reconstruction process, we uti-
lize PRSS to sense an SST data field collected on January 7th,
2017 UTC at latitudes [—63.1050°, —61.6050°] and longitudes
[—140.0050°, —132.5050°], which is shown in Fig. 10(a).
This data field is inherently sparse in the Fourier domain.
Assume an average sensing probability p = 0.28, a desired
frame length T° = 180 s, a packet duration 7}, = 0.2 s, and
suppose the FC locates at the center of the sensing region.
Following the implementation procedures in Section III, each
sensor node ¢ is assigned a sensing probability p; based on the

solution to the convex optimization problem in (15). Then, the
reconstructed SST field is shown in Fig. 10(b). Note that in this
network design, the parameter « is chosen 85 to achieve the
most energy-efficient field sensing with accuracy guarantee.
As a result, 95% recovery accuracy is achieved consuming
47.5% and 42.1% less energy compared to the two benchmark
algorithms.

V. CONCLUSION

In this paper, by exploiting the heterogeneity of energy
consumption in the IoT in the design of sparse sensing
techniques, we propose a CS-based prejudiced random sens-
ing strategy (PRSS), where each sensor node participates in
sensing via random medium access based on an assigned
sensing probability, to achieve a desirable tradeoff between
energy consumption and sensing accuracy. Specifically, we
employ the StRIP as a practical indicator of the recovery
accuracy and derive a sufficiently good recovery error bound
based on it. Then, we devise a novel convex optimization
framework to find the most energy-efficient sensing probability
assignment strategy with accuracy guarantee. Performance
evaluation using real-world SST data trace demonstrates that
PRSS can achieve significant energy saving and elongation of
network lifetime in the IoT compared to the two benchmark
algorithms.

APPENDIX
PROOF OF THEOREM 1

Given p(A) < M2, we let Ogp =
I TR CER VGRS 74 1
4e 32k and g4y = 7. Assume that all
the constraints in Theorem 1 are satisfied. In particular:
1) To satisfy 7 > L, we have 11 (A) < M3.
1/n
2) To satisfty M > ckloa# , we have n >
log,, (16cklog N), then i (A) < M?~1oga (16cklog N)
. lear G+ /(N D]PMT
3) To satisfy dy = 4e 32k
have 1 > log,, {3067 6k<m> ], then 1 (A) <
22 logar [3067.6k(#k1+3)2] ‘

Under the constraint of k < 16, we have 4k < 1+(N — 1) eqs.

According to Lemma 1, the sensing matrix —MA satisfies
RIP of order 4k with probability more than 0.99 and the
restricted isometry constant is 45 = i. Then according to
Theorem 1 in [34], we have

C 2
Is — 812 < (\/]%s) ,

which is equivalent to

(5-9)"(s—9) < (C’%)
“\WVM)
Note that the Fourier basis matrix ¥ satisfies UH¥ =

+Inwn, where Iy, is the N-dimensional identity matrix.
Then we have

N(s—8)" oW (s —35) < (%6)2,

< 0.01, we
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i.e.

which can be reformulated as

Nx - %2 < (C’“s)
2 = \/M .

. . A~ Ch
Therefore, the inequality ||x — X||, < 7§ holds.
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