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ABSTRACT
An approximate method is developed for finding and analysing the main instability modes of a tropical
cyclone whose basic state is obtained from a cloud resolving numerical simulation. The method is based on a
linearised model of the perturbation dynamics that distinctly incorporates the overturning secondary
circulation of the vortex, spatially inhomogeneous eddy diffusivities, and diabatic forcing associated with
disturbances of moist convection. Although a general formula is provided for the latter, only
parameterisations of diabatic forcing proportional to the local vertical velocity perturbation and modulated
by local cloudiness of the basic state are implemented herein. The instability analysis is primarily illustrated
for a mature tropical cyclone representative of a category 4 hurricane. For eddy diffusivities consistent with
the fairly conventional configuration of the simulation that generates the basic state, perturbation growth is
dominated by a low azimuthal wavenumber instability having greatest asymmetric kinetic energy density in
the lower tropospheric region of the inner core of the vortex. The characteristics of the instability mode are
inadequately explained by nondivergent 2D dynamics. Moreover, the growth rate and modal structure are
sensitive to reasonable variations of the diabatic forcing. A second instability analysis is conducted for a
mature tropical cyclone generated under conditions of much weaker horizontal diffusion. In this case, the
linear model predicts a relatively fast high-wavenumber instability that is insensitive to the parameterisation
of diabatic forcing. The prediction is in very good quantitative agreement with a previously published
analysis of how the instability develops in a cloud resolving model on the way to creating mesovortices

slightly inward of the central part of the eyewall.

Keywords: tropical cyclones, instabilities, numerical modeling

1. Introduction

Satellite and radar images of mature tropical cyclones
commonly reveal deformed eyewalls and mesovortices
along the periphery of the eye. There has been longstand-
ing interest in understanding how such features develop
and whether the process appreciably affects the temporal
trend of vortex intensity. One plausible explanation for
the emergence of prominent waves and mesovortices
involves an instability of the local circular shear flow.
Although such an explanation is prevalent in the
literature, there has been limited progress in advancing
an instability theory for realistically modelled trop-
ical cyclones.

Basic insights have been gained through the study of
idealised two-dimensional (2D) models. Such models
show that a vorticity annulus similar to that on the
inward edge of an eyewall is usually unstable. The onset
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of perturbation growth may involve the mutual amplifi-
cation of counter-propagating vortex Rossby waves or a
destabilising wave-critical layer interaction. Depending
on specifics, the instability may generate robust arrays
of mesovortices or engender transient turbulence that
thoroughly redistributes inner core vorticity into a cen-
tralised monopole (Schubert et al., 1999; Kossin and
Schubert, 2001). The latter transformation may appre-
ciably deepen the central pressure deficit while diminish-
ing the maximum azimuthally averaged wind speed
(ibid). Adding simplified parameterisations of diabatic
forcing (moist convection) to a nondivergent 2D model
or a shallow-water system generally modifies the devel-
opment of an instability and the coinciding change of
vortex intensity. Details depend on the parameterisation,
and published results on the topic (Rozoff et al., 2009;
Hendricks et al., 2014; Lahaye and Zeitlin, 2016) await
rigorous comparison to more realistic theories and
numerical simulations.
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Additional insights have been gained from the study of
three-dimensional (3D) stratified vortices whose basic
states do not possess secondary circulations. The domin-
ant modes of instability often resemble their 2D counter-
parts but differ in quantitative details [Nolan and
Montgomery, 2002 (NMO02)]. The qualitative similarities
can extend beyond wave growth to nonlinear mesovortex
formation and potential vorticity mixing (Hendricks and
Schubert, 2010). On the other hand, adding vertical struc-
ture to the vortex introduces the possibility of baroclinic
instability (Kwon and Frank, 2005). Moreover, instability
mechanisms involving the interactions of vortex Rossby
waves and inertia-gravity waves become potentially rele-
vant in the parameter regime of a major hurricane
(Schecter and Montgomery, 2003, 2004; Hodyss and
Nolan, 2008; Menelaou et al., 2016; Schecter and
Menelaou, 2017).

The final step toward a realistic perturbation theory is
to generalise a 3D model to incorporate moisture and
secondary circulation into the basic state of the vortex.
The inclusion of cloud coverage alone has the effect of
substantially reducing static stability (Durran and
Klemp, 1982). In principle, such reduction can alter the
structure and growth rate of the linear eigenmode asso-
ciated with an instability (Schecter and Montgomery,
2007 (SMO07); Menelaou et al., 2016). The importance of
the secondary circulation to the prevailing mechanism
of perturbation growth is presently unclear. Although
secondary circulations are known to significantly
influence the inner core instabilities of tornado-like
vortices (Rotunno, 1978; Gall, 1983; Walko and
Gall, 1984; Nolan, 2013), tropical cyclones are distinct
atmospheric systems.

Needless to say, cloud coverage in a mature tropical
cyclone is largely linked to the secondary circulation.
Therefore, including one without the other in a model
could yield misleading results. Naylor and Schecter (2014)
(NS14) recently examined the consequences of having
both. They found only subtle differences between perturb-
ation growth in realistically simulated (moist convective)
tropical cyclones and the instabilities of analogous dry
(nonconvective) vortices. However, there is no firm rea-
son to believe that the results of NSI4 are general. A
more extensive investigation is necessary.

NMO2 contains the underpinnings of an appropriate
linear model for investigating perturbation dynamics in a
moist convective tropical cyclone. The NMO02 model
accommodates the incorporation of an adequately
resolved boundary layer and the complete overturning
secondary circulation of the basic state, but does not
close the book on the thermodynamics. Proper param-
eterisation of the perturbation to diabatic forcing as a
function of the prognostic fluid variables is necessary for

a realistic instability analysis and remains an open issue.
A separate challenge pertinent to analysing instabilities is
to move beyond the conventional but questionable simpli-
fication of using constant eddy diffusivities.

Section 2 of this paper presents a somewhat distinct
linear model of the perturbation dynamics that includes
tuneable formulas for diabatic forcing and subgrid turbu-
lent transport with inhomogeneous eddy diffusivities. The
parameterisation of diabatic forcing does not provide a
definitive closure of the thermodynamic equation, but
facilitates assessment of how an instability mode might
change with plausible variation in the treatment of cloud
processes. Section 3 outlines a numerical method for find-
ing the main instability modes of a tropical cyclone and
the second-order response of symmetric fields to the
growth of an asymmetric mode. Section 4 describes the
basic state of a mature tropical cyclone generated by an
axisymmetric model with explicit cloud microphysics.
Section 5 analyzes the 3D instability of the aforemen-
tioned system and illustrates sensitivities to the represen-
tations of diabatic forcing and subgrid turbulence in the
perturbation equations. Results of the analysis are com-
pared to those of an ostensibly analogous 2D (baro-
tropic) model. Section 6 presents an additional instability
analysis for one of the tropical cyclones examined in
NS14. The adequacy of the analysis is evaluated by direct
comparison to the initial stage of perturbation growth
simulated (in NS14) with a three-dimensional cloud
resolving model. Section 7 summarises our main findings.
The appendices provide some technical details excluded
from the main text.

2. The perturbation equations

The present study is based on a compressible nonhydro-
static model of a tropical cyclone. The equations of
motion are expressed in a cylindrical coordinate system
whose central axis corresponds to that of the vortex.
The radial, azimuthal and vertical coordinates are
respectively denoted by r, @ and z. As usual, time is
denoted by ¢. The prognostic fluid variables are the
radial velocity u, the azimuthal velocity v, the vertical
velocity w, the density potential temperature 0, and the
total density p. Tendency equations for the mixing ratios
of water vapour and hydrometeors are not explicitly
considered. The influence of cloud processes on the
perturbation dynamics is parameterized as explained in
Section 2.2.

2.1. Basic formulation of the model

The nonlinear equations of motion governing the tropical
cyclone are given by
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2
Ou=—v-Vu+ v7 + fv—c,49,0,I1 + D, (1a)
S v ? —fi—pq0,00T1/r + D, (1b)
Ow = —v-Vw—g—cpq0,0.-I1 + D,, (1c)

0,0, = —v- V0, + Sy + Dy (1d)

0;p = —div(vp) + Sp, (le)

in which v is the three-dimensional velocity vector, f is
the (constant) Coriolis parameter, g is the gravitational
acceleration, and c,, is the specific heat of dry air at con-
stant pressure. The Exner function satisfies the relation

Ry Ry
= (ﬁ) = (—R"e”p)""’, (1
P Pa

in which p is total pressure, p, = 10° hPa, R, is the gas
constant of dry air, and ¢, is the specific heat of dry air
at constant volume. Each D, represents a tendency (of
field-o) induced by surface fluxes and unresolved turbu-
lence within the vortex. Sp represents the tendency of 0,
induced by cloud processes, radiative transfer and dissipa-
tive heating. S, is the density tendency attributable to
mass changes of water content. Standard notations have
been used for the gradient operator V = 79, + ¢r~'9, +
20, and the divergence div(h) =r'0,(rh) + 1 '0phe +
0:h. of the vector field h = (A, hy,h-). The symbol 0, is

2

used interchangeably with -

in this paper to denote a
partial derivative with respect to any variable x.

A generic field F may be written as follows:
F=Fy(r,z)+ F'(r,9,z,t), in which the subscript b
denotes the component associated with a suitably defined
basic state of the vortex. The preceding decomposition
may be applied to both the fluid variables {u,v,w,
0p,p,I1} and the forcing functions {D,,D,,D,,
Dy, Sy, Sp} in the nonlinear model [Equations (la)-(1f)].
The result is a perturbation equation for each prognostic

fluid variable of the form
oF =LF+NLF + B, )

in which £F consists of terms linear in F’ and all other
perturbation fields, N'£” represents nonlinear terms of
higher order in the perturbation amplitude, and BF
accounts for residual terms involving only basic state var-
iables along with —g in the vertical velocity equation.
Ideally, the basic state is chosen to be sufficiently close to
equilibrium that the magnitude of BY is no greater than
second-order in the perturbation amplitude. Neglecting
the relatively small terms BY and NLT reduces the
dynamics to 0,F’ ~LF.

The azimuthal symmetry of the basic state facilitates
an azimuthal Fourier decomposition of the reduced
system. Letting F' = >°° _ F,(r,z,1)e"® for all F yields

n=—00

Ouy = _ Qutpity —inQpu, —wp Gl + Epvn % Wy,
ot r Z 0z 3
oy, 0Myy " 7. (3a)
—Cpd —x T ~. |n —— Pn Ui
pd —5 Opr HYpp or [0, pn o) Py n
v U, —U, OV _ Up¥n inQpv,—w, v _ v w
6t‘ NplUn 117_[66 bVn b oz 3 n
_ {nbepn 4 bb p,,} + Dy,
r Py
(3b)
a n a 2 6 )VI . a y)‘l g
Wn —ﬂun—ubl—mewn— Wb"n + £ Opn
ot or or 0z Opba 3
0 a{nbe +pr]+i) o
L pb oz pr pn o) n wn
00, 00 00 00,
B e e Ty
t r 20 Z ) r (3d)
_ingbepn_wba—;n + Son + Don
Op, __ L10rpyun _inpyvn Oppwn  10rupp,
ot r _or r 0z r or (3e)
—inQyp,,— Mo P +S
bPn oz pns

in which Q,=w/r,& =20 +f, M, =0,0w)/r+f,
8(r,z) = —¢paOppa0:I1p and p = ¢,qRy/cyq. To stay within
the realm of standard practice, the arbitrary function 0,
is equated to 6,,(rp,z), in which rp is the outer boundary
radius of the model. To prevent artificial trapping of
radiated waves in a finite domain, we have let D, =
D,,—vyu, and likewise for all other D-functions. Similarly,
we have let S“pn = Spn—vp,. In the preceding definitions,
the terms proportional to y(r,z) represent sponge-damp-
ing near rp and near the upper vertical boundary of the
model. By design, the positive function y is negligible
inside the tropical cyclone. To simplify matters, the
parameterisations utilised for this study restrict D,, and
Sqn (for all applicable «) to be linear functions of the
wavenumber-n components of the prognostic fluid varia-
bles. It follows that Equations (3a)-(3e) constitute an
autonomous linear system. Note that the reality condition
F_, = F} eliminates the need to explicitly solve for the
negative-n Fourier components. Here and -elsewhere,
the superscript ‘¢’ denotes the complex conjugate of the
dressed variable.

The feedback of an asymmetric linear perturbation on
the mean vortex is essentially a second-order ‘eddy for-
cing’ of the symmetric (n=0) fluid variables. The full
nonlinear equation of motion for a symmetric perturb-
ation field (Fp) is schematically given by

%:£§+NEAF+N£SF+BF, 4)

in which £0F is the right-hand side of the linear equation
for Fy [see Equations (3a)-(3e)], and the leading order
contribution to N'LA" (NLSF) is quadratic in the asym-
metric (symmetric) component of the perturbation. The
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primary quadratic part of the asymmetry term is conveni-
ently written as follows:

NLA = 25 NLAL. (5a)
m=1

The summands are given specifically by

T

u au;; au:/l va:(n m
NEA =R [um or + Wi oz — + deepm F
oY Vinlly,
‘I‘deepba] +m3[7} ) (Sb)
v oy oV UV, ~|cpa® f[;‘n
NLA), = {um o ™ W, 3 +T] +m3 {pd%},
(5¢)
w ow?, ow?, oIt oY
N LAY =R [um o + Wy, % + CpaOpm —2 » 2+ CpaBpp > }
+m3 {%} (5d)
00” 00" V0
NLA = { U~ Wy pm} +m3 {&] . (5e)
" or 0z r
NLA =R [1 orp,,u, "y 6pmwfn} 50
or oz |’

in which I1,, = RyI15[(0pm/0ps) + (P,/Ps)]/Cva is the linear
approximation of I1,,, in terms of prognostic fluid variables,
and Y=1 (aazez) |epm‘ +3 ( ) |pm| + (a%ilgp)bep’"p;r The
operators R and J in Equatlons (5b)—(5f) respectively yield
the real and imaginary parts of their operands. If every Fj is
initially subdominant to the asymmetric perturbation,

NLST will be negligible for an extended period of time.
Forthcoming analysis of wave-mean flow interaction will
set both A£S” and B to zero in Equation (4). The latter
approximation goes beyond that made in the reduced linear
model for symmetric perturbations [(3a)—(3e) with n = 0] by
assuming that B is much smaller than a second-order cor-
rection to the dynamics.

2.2. Parameterisation of the influence of moisture

The definition of our chosen thermodynamic variable
[0, = p/(pR4IT)] implies that

SO _ ( 5+ ddv. qul

_ szlq't ) & (6)
€+ ¢y od |

1+q;

in which e = R;/R,, R, is the gas constant of water
vapour, sq = ¢pqIn T—R;1Inp, is the specific entropy of
dry air, T is absolute temperature, p; = p/[l + ¢,/€] is
the partial pressure of dry air, ¢, (¢, is the mixing
ratio of water vapour (total water content), and the
overdot represents a material derivative minus any ten-
dency directly connected to small-scale turbulence. To

facilitate discussion hereafter, Sy will be referred to as
diabatic forcing. Equation (6) indicates that Sy involves
more than a term proportional to the dry-air heating
rate. Nevertheless, in cloudy regions of a tropical cyc-
lone, the reasonable assumption that §; is of order
|Ly/sq,/T| suggests that §; will largely control the sign
of the sum in parentheses. Here, the symbol L, has
been used to denote the latent heat of vapourisation/
sublimation.

To devise a parameterisation for S}, one might first
consider an idealised cloudy vortex governed by reversible
moist-adiabatic thermodynamics with ice-only or liquid-
only condensate. The diabatic forcing in such a system
satisfies an equation of the form Sy = yp, in which p is
the material derivative of pressure p [SMO07]. The coeffi-
cient of proportionality is given by

o6 o0
X =H(q—qw) 5 + H(qv—q1) @p ;o (D
Smqt Smsqt

in which ¢,, is the saturation vapour mixing ratio with
respect to ice or liquid. The step function H(x) is formally
defined to equal unity (zero) when Xx is positive (negative).
The subscripts on the partial derivatives with respect to
pressure indicate that the specific moist-entropy (s,,) and
total water mixing ratio (¢,) are held constant. The sym-
bol 6, (6)) represents the functional form of 0, in terms
of p, s,, and ¢, under the assumption that the air is satu-
rated (unsaturated) and ¢, equals ¢,. (¢,). Appendix A
provides practical formulas for both partial derivatives
that appear in Equation (7).

In the preceding reversible moist-adiabatic vortex
model, the perturbation to diabatic forcing can be written
as follows:

Sy = b+ A Dy + AP ®)
The rightmost term in Equation (8) involving the product of
two perturbation fields presumably has minimal effect on
the weak disturbances of interest (see SMO07 for caveats).
Furthermore, the middle term would be negligible in a
cloudy vortex whose basic state had no secondary circula-
tion. Keeping only the first term in Equation (8), assuming
p'~—ppgw, and letting ¥, = —p,g,/0-0,5 would yield

So = %p0:0pp1W'

! 9
—  Son = Xbazepbww a)

There is no firm reason to believe that a parameterisation
of the diabatic forcing anomaly based on Equation (9a)
would be quantitatively accurate for realistic tropical cyclo-
nes that have pronounced secondary circulations with pre-
cipitating clouds of both liquid and solid hydrometeors. On
the other hand, for the class of parameterisations propor-
tional to w', Equation (9a) provides a reasonable starting
point for a process of systematic adjustment toward a
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decent fit with experimental data. Sensitivity of results will
be assessed by using the more flexible formula

Son = €,X,0-0p5wy (9b)

and letting €, vary between 0 and 1.1. For the majority
of calculations in this paper, y;, will be evaluated assum-
ing ice/liquid condensate above/below the freezing level in
the troposphere. The reader is referred to Appendix A
for details on how y, is extracted from a numerically
simulated tropical cyclone, and for further commentary
on the relation Sj oc w'.

A more general linearised parameterisation of the per-
turbation to Sy may have the form

Sp(r,@,2,1) = ZJJJd?d(pdﬁGjF(ﬂ ?,z;

Fyj

r,Q, Z)LIF [F(7,¢,%,1)],
(10)

in which F denotes a prognostic fluid variable, sz is the
j™ member of a generic set of linear operators (including
differential operators) acting on F’, G]F is an integration
kernel paired with that operator, and the volume integral
is taken over the entire domain of the system. Equation
(9a) can be obtained from (10) by letting i,;v[w’] =w,
G} = (7, 2)0.005 (7, 2)3(r—F)3(0—§)3(=) /7. and GF =
0 for F#w or j# 1. As usual, the symbol ¢ has been
used to represent the Dirac distribution. Note that
Equation (10) is somewhat restrictive; neither the inte-
grals nor kernels involve time. On the other hand,
Equation (10) includes parameterisations that relate the
perturbation of diabatic forcing at a point (r, ¢, z) in the
free troposphere to the perturbation of vertical velocity at
a point [r.(r,0,2), ¢.(r, 9,2),z.] at the top of the bound-
ary layer (z=z.). A simple example that maintains the
dynamical independence of the azimuthal Fourier trans-
forms of the perturbation fields (in linear theory) might
have an integration kernel of the form

Gy = C(r,2)8[re(r,2)—F|3[®.(r,2) + ¢—]d(z.—2) /T
an

paired with the operator L [w/] = w/, while G =0 for all
other combinations of F and j. Note that we have let
¢, = ¢, + ¢. Exploration of the preceding type of param-
eterisation will be deferred to future study.

One potential deficiency of the foregoing parameter-
isations [Equation (9b); Equation (11)] is their neglect of
any direct response of moist convection to small
enhancements or reductions of surface enthalpy fluxes
coinciding with surface wind speed perturbations. Such
a response could be incorporated into Equation (10),
but the importance of such inclusion to mature tropical
cyclone instabilities is presently unclear. Note also that
the parameterisation used for this study [Equation (9b)]
is not designed for high frequency perturbations

exemplified by ordinary acoustic oscillations. It so hap-
pens that such rapidly oscillating modes have either sub-
dominant or negative growth rates in our applications of
the linear model. Purists might reasonably argue that
the fast modes should be filtered out of the dynamical
system for consistency. However, filtering out the acous-
tic modes alone is somewhat complicated and seems to
have negligible effect on the main tropical cyclone
instabilities that are investigated in this paper
(Appendix B).

2.3. Parameterisation of small-scale turbulence

The influence of small-scale turbulence on the velocity
perturbation is parameterized with a linear eddy viscosity
scheme that incorporates a modification of the oceanic
surface drag. The velocity tendencies associated with tur-
bulence can be expressed as follows:

28 (er au) LK Xu 2K
“ R or or r2 02 2 (12a)
731(7,”6_1) Km 62 / a‘frz
2 0¢ r ordg 0z’
10 o'\ 2Kty 109 du
D =-—|rK k-
g rar( "a)+ 2 3 TRy ( a<p)
2K ou o (Vv 10 0T
Kn— = K Pz
r? a(p+ h 6r<r) rar( )+ oz’
(12b)
y m A2,/ /
D, _laa <K§"?)+K—§Z—W2+1§ (r V%—”)
r r 2 0 ror z (12¢)

K" o a( 6w)
+7626(p+264 Kiaz)

in which the momentum eddy diffusivities (K;" and K!")
are assumed to be functions of only r and z. Azimuthal
and temporal dependencies of the diffusivities are
neglected for simplicity. The rz and ¢z components of the
stress tensor appearing in Equations (12a) and (12b) are

given by
[0 ow
K (67 + 6_1) z>0
Tz =
6Cd|u|} uiu’ + upvpV
Cylul], o’ + |: =0,
[ ‘ Hb a|u| |u|b
(13a)
a0V 10w
KV <a + - ; a(p) z> 0
Toz = 2.
Cd|uq upvp' + vy
Cylul], v + |: =0,
[ ‘ Hb 6|ll| ‘ulb
(13b)

in which |u| = vu? 4 v2. Unless stated otherwise, the drag
coefficient is given by
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CdO c c |ll‘< Uy
Ci= 14 Ca +H(|‘l|— Uo) Up <<l (130)
11— Uo
Ca lu > Uy,

in which Uy =5 m s™', Uy =25 m s and Cy > Cp.
Note that the velocity fields in all formulas pertaining to
the surface stress [Equations (13a)-(13b) at z=0;
Equation (13c)] are evaluated at the lowest active grid
level above the ocean in our numerical version of the lin-
ear model. Specifications of K", K}", C4q and C, are
forthcoming.

Several remarks are in order regarding the preceding
representation of turbulent transport in the velocity equa-
tions. To begin with, Equations (12a)-(12c) above the
surface are equivalent to a parameterisation of the form

3 /
0 o oy,
D = K| L4+ 14
i ;ax/ |: uy (axl+ax/>:|7 ( )

in which D] is the tendency associated with turbulence in
the prognostic equation for the ith component of the vel-
ocity perturbation (v}) in a Cartesian coordinate system
(x1,x2,x3) in which x3 =z. Specifically, it is assumed
that K = K" for i,j € {1,2}, K%} = K], and Ky =Kj =
K" for j # 3. Bear in mind that such a parameterisation
does not follow from direct linearisation of a typical non-
linear model. Direct linearisation would produce add-
itional terms accounting for perturbative variations of the
eddy diffusivities. Note also that the usual density factors
have been neglected. Despite such imperfections,
Equations (12a)-(12c) are believed to provide a reason-
able framework for estimating how inhomogeneous
anisotropic turbulent viscosity should influence the per-
turbation dynamics.

Moving on to the thermodynamic equation, the effect
of small-scale turbulence on 9’p is parameterized by

o0’ K900 o0’
Dé:%%(m,‘ja—:)+ 5% O () s

2 og? Az \" dz

in which K,?/V depends only on r and z. For simplicity,
the perturbation to the surface flux of 0, is set to zero
(see Section 2.5). The loose application of a simple diffu-
sion scheme to the density potential temperature perturb-
ation is deemed adequate for the present study. It is
provisionally assumed that any subtle imprecision in for-
mally representing Dj by Equation (15) does not affect
an instability analysis more than moderate variation of
the €, parameter defined below.

Several remaining formulas are required to complete
the turbulence parameterisation in the linear system. To
begin with, the momentum eddy diffusivities are given by

Z}v,min>7 (16)

m m
1<h/v - max<€kKh/vAsm’

in which ‘max’ returns the greater of its two arguments at
each point in the r-z plane. The variables K}’ (r,z) and

K}, (r, 2) in Equation (16) are obtained directly from the
simulation (sm) that generates the tropical cyclone under
consideration. In particular, they correspond to the hori-
zontal and vertical momentum eddy diffusivities averaged
over ¢ (if the simulation is 3D) and over the time period
that is used to define the basic state. The multiplier €, is
allowed to deviate from unity for sensitivity tests. The
constants K} . and K’ . are lower limits of the diffu-
sivities to be specified' in due course. The previously
unspecified parameters associated with the drag coeffi-
cient are given by Cy = 0.001le; and Cy = 0.0024¢; for
the primary instability analysis in Section 5 of this paper.
The preceding formulas permit consistency with the simu-
lation that generates the basic state when €, =1 (see
Section 4). For further consistency, the thermal eddy dif-
fusivities are given by K,?/V :K,’f/v, so that the Prandtl
number is unity throughout the domain of the lin-
ear model.

2.4. Additional simplifications

Perturbations to radiative transfer and dissipative heating
are neglected in forthcoming sections of this paper. The
potential impact of radiation on the development of
instabilities has been examined to some extent by adding
Newtonian relaxation of the form

6,, = 7epn/Tr (17)

to the perturbation of diabatic forcing in several sensi-
tivity tests. The dominant instabilities considered
herein normally have shorter time scales than a typical
12-h  value of the radiative adjustment time <,.
Accordingly, Sj, is normally found to have negligible
consequence.

The perturbation to S, in the mass continuity equation
is difficult to properly model without explicit moisture
equations. The present study simply lets

Spn —0 (18)

under the provisional assumption that it is of minor con-
sequence to the main instabilities of a tropical cyclone.
Equation (18) reduces Sp,, to the artificial damping term
activated near the upper and outer boundaries of the
domain of the dynamical system.

2.5. Boundary conditions

The linear model employs a standard set of boundary
conditions for a fluid in a rigid cylindrical enclosure. At
r=0,
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Up = 7ivn6n1»
vﬂ(l_Snl) + Grvnénl = 07
Wi (1—=8,0) + 0, wydy0 = 0, 19)

6pn(l_SnO) + arepnsno = 07

in which J,,,, equals 1 for n=m and is otherwise 0. At the
outer boundary radius rp, u, =0, 8,(v,/r) =0, and 0,F, =
0 for F, € {w,,0,,}. At the surface and upper boundary
(z=0 and zp), w,=0 and 0.F, =0 for F, € {uy, vu, 0pn}.
Consistent boundary conditions for p,, are implicit in the
linear model. Note that all constraints imposed on the
perturbation fields at r=rp and z=zp are incidental
when sponge damping is activated. Note further that the
free-slip conditions (0.4, = 0.v, = 0) at z=0 are replaced
with the surface drag parameterisation when C;>0. As a
final remark, the velocity fields of the basic state are
assumed to satisfy u, = v, =0 at r=0, ;=0 at r=rp,
and w,=0 at z=0 and z.

3. Instability modes
3.1. General theory

Let x, denote the state vector of the linearised system,
with each element representing the value of one of the
prognostic perturbation fields (u,, v,, Wy, 0,,, or p,) at a
specific point in the r-z plane. In practice, each field F, is
represented on a grid with N,z points in » and N.r points
in z. It follows that x,, has a total of N; = > N,z N.p ele-
ments, in which the sum is over all 5 prognostic variables.
The preceding discretization transforms the continuous
linear model [Equations (3a)-(3e)] into a system of the
form

dx,
dt

= Mnxm (20)

in which M,, is an N, x N, non-Hermitian matrix of com-
plex coefficients.

The eigenmodes of the discretized linear system are sol-
utions to Equation (20) of the form

x, = ) X5, @D

in which X is the time-independent complex eigenvector
associated with the complex eigenfrequency A = Ag + A/,
and a; is an arbitrary complex amplitude. Substituting
Equation (21) into Equation (20) and switching the left
and right sides yields

M, X, = 2X;. (22)

Under ordinary circumstances, there are N, independent
solutions to Equation (22) composing a complete eigen-
basis of the wavenumber-z linear system. It follows that
the solution to a generic initial value problem can be
written

Xp = Zakxkem7 (233)
A
in which
XE x,(t=0
b = XXt =0) (23b)
<X}\7X7x>
N, o
(y,x) =) _y"x',and (23¢)
i=1
MiXE = axE (23d)

The symbol x’ (3*) in Equation (23c) denotes the i
element of x (y*). The symbol MZ in Equation (23d) rep-
resents the conjugate transpose of the matrix M,,. The
eigenmode associated with the greatest positive value of
Ar will eventually dominate the right-hand side of
Equation (23a). Should there exist no eigenmodes with
positive Ag, transient or sustained algebraic growth of
the perturbation may still occur (Smith and Rosenbluth,
1990; Nolan and Farrell, 1999; Antkowiak and
Brancher, 2004). Examination of such nonexponential
growth in the linear model at hand is deferred to
future study.

So as not to be lost in abstraction, it is worth remark-
ing that the physical perturbation corresponding to a
complex eigenmode is usually given by 2R[a; X;e" M.
In other words, if @ X = (U, Virs Wirs Ons Pry.)» the phys-
ical perturbation has the form u' = 2|u, (r,z)| cos {no +
At + arglu, (r, z)]}e*** and likewise for all other fields.
The coefficient 2 is replaced by 1 if =0 and both /1 and
a4, X, are real.

Suppose that the system is initially perturbed with a
single asymmetric (n # 0) eigenmode. Consideration of
Equation (4) suggests that the discretized symmetric com-
ponent of the disturbance will be governed by

% —Moxq = B, e,
in which B, o |ay|* is the time-independent part of a forc-
ing vector obtained by evaluating the right-hand side of
Equation (5a) with the eigenmode solution x,, = a; Xje*
for m=n and x,, = 0 otherwise. In addition to neglecting
NLSF and B, the foregoing simplification of Equation
(4) assumes that all asymmetric modes initialised to zero
remain subdominant over the time period of interest.
Equation (24a) is readily solved by the method of
Laplace transforms and the calculus of residues after
expanding both sides in the eigenvectors {X,} of My. The
result for xo = 0 at =0 is given below:

o o2
_ v X Vit v X 2hpt
X0 Zv—ZXR ve +ZV:27\.R—V e

v

(24a)

(24b)

in which
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<X£‘7ﬁn>

(X7 Xy)

Oly (24¢)
The second term on the right-hand side of Equation
(24b) will eventually dominate if vg <2\ for all eigenfre-
quencies {v} of the linear symmetric system. The second
term is merely the particular solution to Equation (24a)
given by xo = X,¢?*#’, in which

(20g — Mp)X, = B,. (24d)

The particular solution is considered herein to be the
intrinsic response of the mean vortex to an asymmetric
instability mode. It is reasonable to consider the intrinsic
response to be an essential part of the mode itself.

3.2. Computation of the main instability modes

Each fluid variable in the linearised model is discretized
on a rectangular grid in the r-z plane with nonuniform
spacing in both coordinates, as in earlier studies such as
NMO2. Finer resolution generally exists near the surface
and within the core of the tropical cyclone. The discre-
tized representations of v,, 0,, and p, share the same
grid. The representation of u, (w,) is radially (vertically)
staggered with respect to v,. The basic state variables and
eddy diffusivities are defined on all of the staggered grids.
Boundary values are not explicitly stored but are incorpo-
rated into computations where necessary.

The following simple formulas are normally used for
finite differencing and linear interpolation of a generic
field F,:

OF, Fr—F-
L) R 25
o |o 50 ot (252)
SUFF + 30" F;
F() =L Ln O By (25b)

3+t
in which ¢ represents either r or z, ¢° denotes ¢ at the evalu-
ation point, 8¢~ is the distance from ¢’ to the nearest stag-
gered grid point in the positive (4) or negative (—)
direction, and F is the value of F, at /* = (°+3¢*. For
example, if £ represents 7 (z) and £° is on the v-grid, then F.*
and ¢* are on the u-grid (w-grid). Formulas for second-
order derivatives and bilinear interpolations are generally
obtained through repeated applications of Equations (25a)
and (25b). Implementation of more accurate discretization
techniques will be explored at a future time.

The computation of the complete eigenbasis of a finely-
structured tropical cyclone is usually too expensive to
achieve with confidence of correct results. Although M,, is
sparse and has a storage requirement proportional to N,,
the eigenbasis {X; } has a storage requirement proportional
to N2. The consequent demand on memory becomes diffi-
cult to handle for grids comparable to those used in modern

tropical cyclone simulations. Furthermore, the time
required to compute a complete eigenbasis on a modern
simulation grid is excessive. Grids of lower resolution
should be avoided, because they are prone to introduce
spurious eigenmodes with dominant growth rates.
Moreover, grids of higher resolution are desirable to check
for convergence of the numerics.

The present study employs a less ambitious approach
that begins by extracting the dominant eigenmode from a
solution of the initial value problem. The discretized lin-
ear model [Equation (20)] is set up on a dense mesh [see
Section 5.1] and integrated forward in time with a 4th-
order Runge-Kutta algorithm. The initialisation involves
assigning small random values to the real and imaginary
parts of 0,, at each grid point; all other fields contained
in X, are initialised to zero. It is provisionally assumed
that the preceding disturbance excites the main instability
modes of a tropical cyclone and eventually evolves into a
state dominated by the most unstable member of the
group. The real and imaginary parts of the eigenfre-
quency A of the most unstable eigenmode are readily
obtained from the late time series of a selected element of
x,. The right-hand eigenvector X is very well approxi-
mated by the late spatial structure of x,. The validity of
the mode is generally cross-checked against the output of
a standard sparse-matrix eigensolver (eigs) packed into
Scientific Python (SciPy). Validation is efficiently com-
pleted by searching exclusively for the eigenmode of M,
with 4 closest to that obtained from the initial value
problem. The SciPy eigensolver is also used to find the
corresponding left-hand eigenvector X;. Because the
restricted searches are fast, they are usually repeated on a
grid with twice the original resolution (in both r and z) to
slightly improve the accuracy of presented results.

Suppose that the eigenfrequencies {X(“)} are ordered
such that Xg) > Xg) > XS? ... In principle, if all eigenmo-
des with a < are known, a minor variant of the fore-
going procedure can be repeated to obtain eigenmode f.
The variant involves filtering out all eigenmodes with
o< B from the initial condition of the state vector that is
integrated forward in time; that is, letting

<XL(7> ’ Y>
Xn(l = O) =Y-— xix () (26)
Z:ﬁ <X£(a) ) X)J*)) *

in which Y is an arbitrary vector. One may reasonably
assume that the time asymptotic solution of x, will be
dominated by the eigenmode labelled f. All eigenmodes
of interest can thus be found iteratively. Note that the
unfiltered initialisation vector Y need not be random after
the first iteration; the approach taken here is to let Y
equal the end-state of x,, from the preceding time integra-
tion used to find the eigenmode labelled f—1.
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Selected fields associated with the basic state. (a) The azimuthal velocity v, (colour), density potential temperature 0y, (solid

black contours; K) and Exner function IT,, (solid white contours). (b) A measure of gradient imbalance [Ag, defined by Eq. (27)]. (c) The
potential vorticity distribution. (d) The relative vertical vorticity distribution. (¢) The radial vorticity (contours) and azimuthal vorticity
(colour) distributions. The solid yellow and dashed white curves in (b)—(e) correspond to the principal AM isoline, which is commonly
shown for spatial reference in the contour plots of this paper. Note that vy, is located where the radius of the isoline is minimised.

4. The basic state of a mature tropical cyclone

The primary basic state considered herein corresponds to
a mature tropical cyclone simulated with Cloud Model 1
(CM1-r19.4) an energy-conserving axisymmetric
mode of operation [Bryan and Fritsch, 2002; Bryan and
Rotunno, 2009 (BR09)]. The model is configured with a
variant of the two-moment Morrison microphysics par-
ameterisation (Morrison et al., 2005, 2009), having grau-
pel as the large icy-hydrometeor category and a constant
cloud-droplet concentration of 100cm™>. Radiative trans-
fer is not explicitly calculated, but potential temperature
(0) is relaxed toward its ambient value on a 12-h time
scale with a rate not to exceed 2K d™' in magnitude. The
influence of subgrid-turbulence above the surface is repre-
sented by an anisotropic Smagorinsky-type scheme resem-
bling that described in BR09. The nominal mixing

in

lengths are given by CMI1-formulas tailored for tropical
cyclones in an axisymmetric framework or on grids that
are deemed insufficiently dense for a standard large-eddy-
simulation scheme. The horizontal length
increases from 100m to 1km as the underlying surface
pressure decreases from 1015 to 900hPa. The vertical
mixing length increases asymptotically to 100m with
increasing z. The resulting eddy diffusivities will be dis-
cussed in due course. Heating associated with frictional
dissipation is activated. Surface fluxes are parameterized
with bulk-aerodynamic formulas. The drag coefficient
conforms to Equation (13c) with Cy =0.001 and
Cy1 = 0.0024, based roughly on the findings of Fairall
et al. (2003) and Donelan et al. (2004). The enthalpy
exchange coefficient is given by C, =0.0012 based on
Drennan et al. (2007).

mixing
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Fig. 2. The secondary circulation of the basic state. (a)
Magnitude (colour) and streamlines of the velocity field (i, wp)
in the r-z plane. The streamlines are shaded white or black if the
magnitude of the local velocity vector is respectively less than or
greater than 5 m s~'. The dashed black curve is the principal AM
isoline. (b) Magnified view of the secondary circulation in (a) in
the lower troposphere.

The computational domain extends radially to rz =
1061.25 km and vertically to zp =29.5 km. Free-slip
boundary conditions are imposed at the upper and outer
boundaries, but they are largely incidental. Rayleigh
damping is activated above z=25km and within 100 km
of rp. Such damping not only minimises the reflection of
upward and outward propagating waves, but also pre-
vents the circulation of the tropical cyclone from expand-
ing to the outer wall. The spatial resolution is fairly
typical for modern tropical cyclone simulations. The
radial grid spacing is 250 m for r < 87.5 km, and grad-
ually stretches to 10km as r approaches the boundary
radius rp. The vertical grid spacing increases from 50 to
500 m between the sea-surface and z=15.5km, whereupon
it remains uniform up to zp.

The mature tropical cyclone is generated with a stand-
ard spinup procedure on the oceanic f-plane. The model
is initialised with a surface-concentrated mesoscale cyc-
lone in gradient-wind and hydrostatic balance as in
NS14. The ambient atmosphere is initialised with the

Dunion (2011) moist tropical sounding. The sea-surface
temperature T, is 27 C, and the Coriolis parameter f is
5% 107 s7'. After approximately 7days of intensifica-
tion, the maximum azimuthal velocity of the tropical cyc-
lone remains steady over an extended period of time. The
basic state variables (us, vy, Wp, 0pp, Py, I, x,) and princi-
pal eddy diffusivities (K}, K,
model are obtained by éveraging 25 consecutive hourly

) appearing in the linear

snapshots starting 2 days into the aforementioned period
of steady intensity.

Figure 1a shows that the basic state of the tropical cyc-
lone exhibits typical warm-core baroclinic structure
throughout most (but not all) of the troposphere. The
absolute maximum azimuthal wind speed (vp,,) of 84.9m
s~ is located 36km from the centre of the vortex and
nearly 1km above the surface. The maximum azimuthal
wind speed of 612m s~! at the lowest grid level
(z=25m) is indicative of a category-4 hurricane. It is
worth remarking that the primary circulation does not
robustly satisfy gradient balance (Fig. 1b). The fractional

error defined by

N V,27/I' +fvb7cpd9pb6,l'[b

Ay = , 27
e pa0pp0, 11, @n

is most pronounced (66%) in the vicinity of v,,,.

Figure 1c shows that throughout the lower and middle
troposphere, the potential vorticity distribution is gener-
ally peaked off centre within the area bounded by the
principal angular momentum (AM = rv + fi?/2) isoline.
Here, the potential vorticity is defined by PV =¢, - V0/p,
in which {, =fZ + V x v is the absolute vorticity vector.
The principal AM isoline is defined so as to pass through
Vpm- By analogy to the behaviour of dry vortices in gradi-
ent and hydrostatic balance, the radially nonmonotonic
variation of PV suggests that the tropical cyclone is sus-
ceptible to vortex Rossby wave instability mechanisms
(see Montgomery and Shapiro, 1995). The pocket of nega-
tive PV extending up to 6 km above sea level slightly out-
ward of the principal AM isoline suggests that (neglecting
viscous dissipation) the vortex may also be susceptible to
inertial instability mechanisms in the lower-to-middle
tropospheric region of its core (see Eliassen, 1951).

Figure 1d demonstrates that the distribution of relative
vertical vorticity ({.,) in the lower and middle tropo-
sphere basically resembles that of PV. The most notable
deviation is seen where the PV distribution is thermally
enhanced at the top of the boundary layer in the eye of
the storm. Note that the primary circulation also pos-
sesses appreciable radial vorticity associated with its verti-
cal shear (Fig. le). Evidently, the radial vorticity achieves
magnitudes greater than (., near the surface.
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Fig. 3. The moist-thermodynamic structure of the basic state,
illustrated primarily by the distributions of relative humidity
(shading) and s, for liquid-only condensate (dashed black-and-
white contours; J kg~' K™!). The dotted blue curve is a selected
contour of s, computed under the assumption of ice-only
condensate. The red curve is the principal AM isoline. The cyan
curve traces the freezing/melting level across the vortex.

Figure 2 illustrates the secondary circulation of the

basic state. The maximum wind speed (y/u? +w? =31 m
s7') of the surface inflow is relatively strong but not
much greater than typical observations pertaining to
major hurricanes (Zhang et al., 2011). The inflow inten-
sity is greatest slightly outward of the corner flow region,
where the streamlines rapidly turn upward into the eye-
wall cloud. Note that the azimuthal vorticity associated
with the secondary circulation in the vicinity of the cor-
ner flow (Fig. le) is comparable in magnitude to the peak
vertical and radial vorticities associated with the primary
circulation. Note also that the streamline associated with
the deep updraft and outflow passing through the loca-
tion of v, is virtually congruent with the principal AM
isoline. Such a condition is to be expected for a nearly
equilibrated axisymmetric vortex. As usual, the secondary
circulation in the eye is dominated by weak subsidence.
The streamlines are somewhat less coherent at larger radii
between the surface inflow and upper tropospheric out-
flow. Concerns that such incoherence may indicate a sig-
nificant departure from equilibrium are alleviated by
noting that the regional wind speeds are minute com-
pared to peak values.

Figure 3 illustrates the moist-thermodynamic structure
of the basic state. Contours of saturated pseudoadiabatic
entropy (sp,«) are shown superimposed on the relative
humidity distribution. Relative humidity is calculated
with respect to liquid water if the absolute temperature
satisfies 7> T, = 273.15 K, but is otherwise calculated
with respect to ice. It should come as no surprise that the
eyewall and outflow regions are predominantly saturated

or slightly supersaturated. The dashed black-and-white
contours correspond to s, for liquid-only condensate
(Bryan, 2008). It is seen that the angular momentum and
liquid-only s,, contours passing through the location of
Vpm are congruent as they ascend along the eyewall up to
the freezing level. At higher altitudes, the angular momen-
tum contour appears to stay closer to the dotted-blue s,
contour calculated under the assumption of ice-only con-
densate (Hakim, 2011). The preceding observations sug-
gest that the eyewall updraft region is in a state of
approximate slantwise convective neutrality with respect
to appropriately defined pseudoadiabatic thermodynam-
ics. Such a state of affairs is consistent with the classical
steady state theory expounded by Emanuel (1986).

The cloud structure of the basic state is important to
the linear model insofar as it determines the proportional-
ity between Sj, and w’ in the local parameterisation of
diabatic processes given by Equation (9b). When the
aforementioned parameterisation is activated, there are
two terms proportional to w, on the right-hand side of
Equation (3d) that may be unified as follows:

— ae—pbwn + Sop — —%NZW,“ (28a)
oz g
in which
~2 g 00 b
N =(1- ‘-xXb)e a; (28b)

A typical value of e, Y, between zero and one reduces N
and thereby diminishes the negative/positive Eulerian
change in 0, associated with a perturbative updraft/down-
draft. While not precisely the conventionally defined
moist static stability, N ® has a similar significance. Figure
4 compares the distribution of N ®in the approximate dry
limit (e, = 0) to the moist variant with e, = 1. It is seen
that 1nc0rp0rat1ng the cloud coverage of the basic state
reduces N up to an order of magnitude in the eyewall
updraft. Significant reduction is also found over much of
the depicted area within and underneath the upper out-
flow of the tropical cyclone. By contrast, N° exhibits
minimal change in the virtually cloud-free region of the
eye situated above the boundary layer.

As explained earlier, the eddy diffusivities used by the
linear model are linked to those regulating the basic state.
Figure 5 shows the eddy diffusivities that are defined by
Equation (16) with €; = 1. Choosing €, =1 lets Kh/l
K,’I”/1 «n throughout much of the inner core. The maximum
values are somewhat large but have orders of magnitude
consistent with those inferred from observations (Zhang
and Montgomery, 2012; Rogers et al., 2013). To reduce the
potential for spurious or uninteresting small-scale instabil-
ities where the eddy diffusivities in the CM1 simulation are
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exceptionally small, the lower limits Kj' ., = 200 m”s~!
and K

2 1 . : . .
min = 20 m” ™" are imposed on the distributions.

5. Linear instability analysis of a mature
tropical cyclone

The present section of this article examines the instability
of the tropical cyclone described in Section 4. The pri-
mary objective is to elucidate the dependence of the dom-
inant instability mode on the parameterisation of the
perturbation of diabatic forcing. Sensitivity to the param-
eterisation of small-scale turbulence is also addressed.
The analysis concludes with an assessment of the rele-
vance of 2D instability theory.

A few preliminary remarks are warranted. Henceforth,
the meaning of F’ is subtly changed from the exact differ-
ence F—F; to the first-order perturbation of the generic
field F obtained from the linear model [Equations
(3a)—(3e); Equation (20)]. The new meaning of F’ applies
to both figures and text. Moreover, the amplitudes of dis-
played instability modes are invariably chosen to render
the maximum value of v' (2|v,|) equal to one-tenth of vy,
The preceding convention amounts to letting
|ar| = 0.1vp,,/|2V>2€M%|, in which V3, is the azimuthal vel-
ocity element of X, with the greatest magnitude, and ¢, is
the time of the snapshot. In some cases, the second-order
change to the mean vortex (xo) that will have attended
the creation of such a state from a weaker disturbance by
way of Equation (24a) is found to have winds moderately
stronger than V' in certain areas of the flow. Such a result
indicates that the arbitrarily chosen mode amplitude is
slightly beyond the threshold for the quantitative accur-
acy of Equation (24a). Choosing a smaller amplitude for

(b) 16

z (km)

125

Distributions of N° for (a) ¢, =0 and (b) €, = 1. The dashed white curves in (a) and (b) correspond to the principal

rigorous compliance with the assumptions of our theoret-
ical framework would not change forthcoming depictions
of the spatial structure of xo or the dependent kinetic
energy perturbation 6KE defined later.

Finally, although the physics parameterisations are var-
ied, the domain size and peripheral sponge-layer of the linear
model used to find the instability modes do not change from
one calculation to the next. As in the CM1 simulation used
to generate the basic state, the invariant domain of the linear
model extends radially to rp = 1061.25 km and vertically
to zp = 29.5 km. The sponge damping coefficient is given
by vy = {2+ tanh[(r—r,)/0r,] + tanh[(z—z,)/8z,]}/27,, in
which r, = 961.25 km, &r, =z, =25 km, &z, =0.75 km
and t, = 300 s. Further computational details are provided
in due course.

5.1. Sensitivity to the parameterisation of
diabatic forcing

The dominant instability of the tropical cyclone under
consideration is sensitive to the degree of diabatic forcing
allowed in the linear model. The sensitivity is illustrated
below by adjusting €, in Equation (9b) for Sp, while
keeping turbulent transport consistently parameterized
with €, = 1. A value of the diabatic forcing parameter
(e,) in the neighbourhood of unity has some basic cred-
ibility (Section 2.2) but may not coincide with the best
representation of reality. A smaller value between 0 and 1
seems plausible if, say, the eyewall were to become non-
uniformly saturated around an azimuthal circuit. Values
of €, very close to 0 or appreciably greater than 1 seem
difficult to justify on physical grounds, but are of theoret-
ical interest.
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Fig. 5.
momentum eddy diffusivities in the middle-to-lower tropospheric
core of the simulated tropical cyclone. The dashed curve is the
principal AM isoline.

Horizontal (colour) and vertical (solid contours)

The present method for computing the primary
instability modes of the vortex follows the general pro-
cedure outlined in Section 3.2. The most unstable eigen-
mode (MUM) for a given €, and azimuthal wavenumber
n is provisionally equated to that which dominates a per-
turbation within 1day of initialising the linear model
[Equations (3a)—(3e)] with random noise in 9/9. The abso-
lute MUM (AMUM) is defined to be that which pos-
sesses the largest growth rate for all » in the closed
interval between 0 and 8. The time integration is con-
ducted on a grid (set of staggered grids) with double the
resolution of the CM1 simulation that generated the basic
state. The aforementioned grid is denoted G2 and holds
N; = 733,184 values of the prognostic perturbation fields.
All MUMSs are confirmed to be solutions of the eigenpro-
blem on a second grid (G4) with quadruple the resolution
of the CM1 grid (Gl1). All eigenfrequencies and eigen-
functions shown in Section 5 of this paper are taken from
the G4 solutions. For those interested, Appendix C dis-
cusses convergence of numerical results with increas-
ing resolution.

Extensive computations reveal that the AMUM corre-
sponds to n=2 for ¢, € {0,0.5,1}. Despite its common
dominance, the n=2 MUM varies considerably with the
allowed degree of diabatic forcing measured by e,. Figure
6 shows the variation of the complex eigenfrequency /.
The growth rate (4g) gradually decays with increasing e,
until apparently vanishing at 0.9. By contrast, the oscilla-
tion frequency (4;) changes little. The preceding behav-
iour is similar to that reported by SMO07 for the n=3
MUM of a cloudy vortex resembling a category-3 hurri-
cane with no mean secondary circulation. On the other
hand, increasing €, from 0.9 to 1 introduces a new mode
of instability that oscillates slower and grows faster than
any of its predecessors. Further amplification of €, to 1.1

2.50 1 mmm growth rate: Ag/Ag-
2.25- mmm frequency: A/A;«

2.004 =2 MUM

stable

Fig. 6. Complex eigenfrequency 4 of the n=2 MUM of the
simulated tropical cyclone of Section 4 versus the diabatic forcing
parameter €,. The real (blue) and imaginary (red) parts of the
eigenfrequency are normalised to their respective values
(re =7.89x 107 57! and Az, = —1.30 x 107> s™!) obtained for
€, = 1. The absence of a discernible instability precludes the
plotting of data for e, = 0.9. Note that the positive ratio A;/Az.
represents magnitude
frequency; the actual value of /; is negative. All results depicted
here and in Figs. 7-12 are for systems in which turbulent
transport is parameterized with €, = 1.

a nondimensional of the oscillation

substantially increases both iz and |A;|. One might rea-
sonably speculate that high sensitivity to variation of e,
in the neighbourhood of unity is related to approximate
slantwise convective neutrality with respect to pseudoa-
diabatic thermodynamics in the eyewall (Fig. 3).

Figure 7 shows the basic inner-core structure of the
n=2 MUM for values of the diabatic forcing parameter
below (e, = 0.5) and above (e, = 1) the apparent stability
point. The left column shows selected views of the asym-
metric velocity perturbation. The middle column illus-
trates the thermal structure of each mode in terms of 9;
and IT. The right column shows the distributions of dia-
batic forcing. The velocity perturbations of the two
modes are qualitatively similar near the surface but
clearly differ aloft. Whereas the pressure perturbations
seem only subtly distinct, disparities in 9; are pro-
nounced. Marked distinctions in the perturbations of the
secondary circulation and potential temperature in the
middle and upper troposphere coincide with substantial
differences in Sj. Not only does S have a greater ampli-
tude in the MUM corresponding to €, = 1, but the two
spatial patterns diverge considerably above 4km in the
eyewall updraft region of the vortex.

Figure 8 elaborates on the inner-core structure of each
MUM. The left column shows the intensity of the vertical
vorticity perturbation {,, as measured by its maximum
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Fig. 7. (a)(c) Basic inner-core structure of the n=2 MUM for €, =0.5. (a) Vertical slices of the velocity perturbations in the
azimuthal direction (colour) and in the r-z plane (vectors). (b) Vertical slices of the perturbations of density potential temperature
(colour) and the Exner function (contours). (c) Vertical slice of the perturbation to diabatic forcing (colour) and contours of its
maximum value along an azimuthal circuit. (d)~(f) As in (a)~(c) but for e, = 1. The yellow curve in each plot is the principal AM
isoline. The slices in (a, b, d, e) are at an azimuth where ¢/ is maximised. The colour slices in (c) and (f) are at an azimuth where 59
is maximised.

(a) max=6.3 10351 (C) max=1.7 10~ s’
12 12
— 1 —_
€ 0 € 25
2 =3
~ N
8 7 205
8 Y8 n
7 -
|
6 3 152
6 = 6 =
4 o 2
< 1.0
4 X 4 3
£ €
2 0.5
2 2
0 0.0
0 0
20 30 40 50 60 r(km) 80 20 30 40 r(km) 80 200 30 40 50 60 r(km) 80
(d) max=3.1103s1 (e) max=38.0 103 5! (f) max=3.4 103 s1
12 12 12
€ 25 ¢ 10 € 2.5
2 2 2
N ~ N
205 8 7 2.0 &
8 [P} 2 8 W
™ | m
| o |
159 6 = 153
6 =~ 6 = 6 =
Y & ®
10 & 4 = 1.0 o
4 s 4 X 4 s
€ £ €
0.5 2 0.5
2 2 2
0.0 0 0.0
0 0 0
200 30 40 50 60 r(km) 80 20 30 40 50 60 r(km) 80 200 30 40 50 60 r(km) 80

Fig. 8. (a)~(c) Maximum values over ¢ (max,) of (a) the vertical vorticity perturbation, (b) the magnitude of the horizontal vorticity
perturbation, and (c) the divergence of the horizontal velocity perturbation of the n=2 MUM for €, = 0.5. (d)~(f) As in (a)~(c) but for
€, = 1. The yellow curve in each plot is the principal AM isoline.



INSTABILITIES OF TROPICAL CYCLONES 15

(a) solid contours: max(}) (1073 s71)

Nb&b

ncy/

-0.5

20 30 40 50 60

(b) solid contours: maxe({}) (1073 s71)

12 1 N ‘ =1
\
£
N 0.5
8 .
WG
Kol
N 0 )
61 =
o 9
A <
44 S
-0.5
2 .
0 __ - =-1
20 30 40 50 60 r(km) 80
Fig. 9. (a) Intrinsic frequency nc, of the n=2 MUM

normalised to the nominal inertial frequency m for the case
in which €, =0.5. The dashed green contours show where the
intrinsic frequency is zero. The white area marked with an
asterisk coincides with a region where m,&, <0 and the
normalisation frequency is imaginary. The solid black contours of
the amplitude (maximum over ¢) of C; are shown for reference.
(b) As in (a) but for e, = 1.

value over @. In each MUM, the intensity peaks of
roughly coincide with a subset of regions where the radial
gradient of basic state potential vorticity is locally
enhanced (see Fig. 1c). The amplitudes of the peaks differ
considerably between the two modes, especially in the
middle-to-upper troposphere. The middle column depicts
the maximum magnitude of the horizontal vorticity per-
turbation ¢}, along an azimuthal circuit. In both MUMs,
|&;,| broadly exceeds the vertical vorticity perturbation. As
before, differences between the two MUMSs are mainly
seen in the amplitudes of various peaks of the plotted
field. The right column shows the circuit-maximum of the

horizontal divergence, defined by o’ = [0,(ru/) + 0yV']/r.
In both MUMs, o is broadly smaller than the vertical
vorticity perturbation near the surface, but is far from
negligible. In the middle tropospheric region of the eye-
wall cloud, the amplitudes of ¢’ and . are comparable to
each other. The MUM corresponding to €, =1 is distin-
guished by having a middle tropospheric peak of o’ that
slightly exceeds the inner core maximum of (.

Figure 9 illustrates for each MUM how the azimuthal
phase velocity minus the local angular velocity of the pri-
mary circulation (c¢y = —A;/n — €;) varies over the core
of the tropical cyclone. The dashed green curves repre-
senting the zero contours of ¢, correspond to where the
mode corotates with the mean flow. Negative/positive val-
ues of ¢, indicate locally retrograde/prograde wave
propagation in the azimuthal direction. The superimposed
vertical vorticity distribution (solid black contours) of
the MUM corresponding to €, = 1 is concentrated in the
region of retrograde propagation. On the other hand, the
MUM with weaker diabatic forcing has a middle-to-
upper tropospheric swath of intense {_ that extends well
into the region of prograde propagation. In both cases,
the magnitude of the intrinsic frequency of the mode
(ncy) is less than the nominal inertial frequency (1/1,&,)
where the vorticity anomalies are peaked. While notable,
such local slowness does not necessarily indicate that
traditional asymmetric balance theory (Shapiro and
Montgomery, 1993) would provide an accurate descrip-
tion of the wave dynamics. Bear in mind that the issue is
complicated by the moist secondary circulation and the
vertical shear in v,. Moreover, even small deviations from
balanced dynamics are potentially important to the
instability mechanism.

Moving outward to where r exceeds 100km, the
MUMs acquire intrinsic frequencies that broadly satisfy
N, < (nc‘p)2 <N (not shown). The preceding condi-
tion suggests that the intrinsic frequency lies comfortably
within the regime of inertia-gravity waves. Consistent
with such waves, one finds that |(_,| < |o,| beyond the
core of the vortex, barring sporadic pockets of violation.
The right panels in Fig. 10 convey the basic structure of
the outer waves as represented by w' in the two MUMs
under consideration. Although both modes are normal-
ised to have the same inner core maximum value of Vv,
the outer waves have appreciably stronger vertical veloc-
ities for the case in which €, = 0.5. Whether such a dis-
tinction is relevant to the mechanism of modal growth is
a question left for future analysis. In theory, seemingly
weak inertia-gravity wave radiation may contribute sig-
nificantly to the prevailing low-n instability of an intense
tropical cyclone (Menelaou et al., 2016; Schecter and
Menelaou, 2017). However, the author is unaware of any
existing method for assessing the importance of inertia-
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(a, b) Slices of the vertical velocity perturbation of the n=2 MUM in (a) the inner core and (b) the outer region of the vortex

for the case in which €, = 0.5. The dotted black contours in (a) correspond to w’ = 0. The solid (dashed) white contours in (b)
correspond to w’ =7 (—=7) cm s~'. Note that the units of the colorbar labels differ between (a) and (b). (c, d) As in (a, b) but for
€, = 1. In all plots, the dashed black contour corresponds to the principal AM isoline. The azimuth of the top (bottom) row of the

figure is equivalent to that of Fig. 7a (7d).

gravity wave emission to the growth of a multifaceted
instability mode of a convective vortex with the geomet-
rical complexity of a realistic hurricane.

Figures 1la,d show changes to the mean flow that
attend the growth of each instability mode from an
asymptotically small disturbance. The symmetric compo-
nent of the perturbation is given by x¢ = X,e?*%, with
X, given by Equation (24d). The growth of either
instability mode modestly reduces the ¢-averaged azi-
muthal wind speed at the initial location of maximal
intensity while accelerating the cyclonic rotation of the
inner eye, at least in the lower troposphere. The middle
tropospheric patterns of symmetric azimuthal acceleration
and deceleration are clearly dissimilar inward of the prin-
cipal AM isoline. Moreover, the MUM affected by
weaker diabatic forcing (e, = 0.5) induces greater positive
and negative azimuthal accelerations of the mean flow in
the upper-outer part of the eyewall updraft. The perturb-
ation of the symmetric secondary circulation (ug, wy) that
emerges during the growth of either instability mode

notably includes a band of eddies along the eyewall
updraft. The bands associated with the two MUMs are
distinguishable in part by having opposite rotational ten-
dencies at various locations.

Figures 11b,e show the perturbation of kinetic energy
density 6KE associated with the growth of each MUM.
To second-order in the asymmetric mode amplitude,

O0KE = g(u2 + 92 +w?)— F;b (ub + vb + Wb)
= pp(uptty + vpvo + wpwo) + py (|u,,| + |v,,| + [wy| )
—|—% (ub +vi+ wb) + 2R [ (uptty + Vo vn + wowu)p; ]

(29

in which the overline denotes an azimuthal average. It
has been verified that the bottom line in the second
equality involving the density perturbation is negligible
(not shown). Moreover, it is seen that the distribution of
SKE — here divided by KE, = p(u + v +w?)/2 —is
similar to that of v, regardless of whether €, is 0.5 or 1.
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Fig. 11.  (a) The symmetric velocity perturbation that attends the growth of the n=2 MUM for the case in which ¢, = 0.5. Colours

depict vy whereas vectors depict (ug, wg). (b) The perturbation of kinetic energy density associated with the n=2 MUM and the
attendant symmetric modification of the vortex for the case in which €, = 0.5. The perturbation is expressed as a positive or negative
percentage of the local kinetic energy density of the basic state. The dotted black contours correspond to SKE = 0. (c) The distribution
of KE, associated with the n=2 MUM for the case in which €, =0.5. The white and black contours correspond to
KE, =[0.6,3.2,6.3,13,19] J m~>. (d)~(f) As in (a)-(c) but for €, = 1. The yellow or red curve in each plot is the principal AM isoline.
The thick black or blue line drawn from the location of v, to the surface [in all plots but (b) and (e)] shows where v, is maximised with
respect to variation of r in the boundary layer. The thin black curves in (a) and (d) trace the edges of the unperturbed eyewall updraft,

where wy, is 2.5% of its maximum positive value.

The contribution to SKE from the asymmetric fields is
well approximated by the following positive definite meas-
ure of local wave intensity: KE, = py(|u,]* + [va]* + [wa]?).
Figures 11c,f show the spatial distributions of KE, for the
two MUMs under present consideration. Both MUMs
have their greatest values of KE, near the surface, inward
of the radius of maximum wind, in the vicinity of where the
vertical vorticity of the basic state ({.;) has a pronounced
maximum. The middle-to-upper tropospheric peaks of KE,
are found in distinct locations. Above the surface perturb-
ation, the distribution of KE, corresponding to €, =0.5
has relatively strong peaks outward of the central part of
the eyewall. The instability mode that results from allowing
greater diabatic forcing (e, = 1) has its principal middle
tropospheric maximum of KE, well within the eye-
wall updraft.

Differences between the MUMs are also evident in
various terms that formally contribute to the growth rate
of KE,. Equations (3a)-(3c) imply that

O0KE,

a7 PC + SC + BNC + AFX + PFX + TRB,

(30a)

in which
GQ;, « th *
PC = prbrﬁ‘R [uavy] —2p, E‘R[wnvn], (30b)
Oup, Up, owy, 2
SC = =2py — [un|"=2py —[Val"=2pp —— Wl
or r 0z
(30c)
i <%+%>m dg”
Pe\az " or [ 2]
_ 2pbg * anb *
BNC = epba R [W’nepn] —Zdepb VER [unepn] N (30d)
AFX = _ 10(ruyKE,) 8(w,KE,) KE, P@(l‘pl,ub) 6(;),,wb)}7
r or 0z pp Lr Or 0z
(30e)
_ 264 6{rpb9pb‘ﬁ [unf[;] } a{pbephm {wnﬁﬂ }
PFX = - —20p
r or 0z
+2cpﬂ€{ Pa(rp,,ep,,u,,) . inpoBorv , 3(Pr0) } HK}
r or r 0z
(301)
TRB = 20, 1, D}, + v, D), + w,D},|. (30g)

The term labelled PC combines tendencies proportional
to the radial and vertical shear of the primary circulation
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Domain integrals of the individual contributions to 0;KE, [Equations (30b)-(30g)] and their sum for the n=2 MUM with

(left to right) €, =0 to 1.1. The value of each integral is normalised to that of O;KE,. The contributions from AFX and PFX are
combined into APFX. The PC contribution is decomposed into the radial shear component proportional to 0,€;, (r, dark red) and the
vertical shear component proportional to 0,v, (v, light red). The TRB contribution is decomposed into the primary part attributable to
turbulent dissipation (dark cyan) and the much smaller part attributable to sponge damping (light cyan cap).

of the basic state. SC combines tendencies proportional
to u, and the spatial derivatives of the velocity fields of
the secondary circulation. BNC is linked to the vertical
and radial buoyancy accelerations. AFX primarily repre-
sents the convergence of the advective flux of KE,. The
included correction is attributable to the small but non-
zero divergence of the momentum density of the basic
state. PFX primarily represents the convergence of the
flux vector associated with forcing by the perturbation of
the pressure-gradient. The included correction is attribut-
able to the small but nonzero divergence of the approxi-
mate momentum perturbation weighted by 0,,. TRB is
associated with turbulent momentum transport and (to a
lesser extent) sponge-damping near the upper and outer
edges of the computational domain. It is worth pointing
out that substantial cancellations of the tendency terms
often result in a local value of 0,KE, = 2AxKE,, that is
much smaller than its individual parts.

Figure 12 illustrates how the value of the diabatic forc-
ing parameter (e,) affects the volume-integrals of the KE,
tendency terms pertaining to the n=2 MUM of the trop-
ical cyclone. The volume integrals are over the entire
domain of the linear model. The results are similar for all
€, <0.75. The integral of PC provides the greatest posi-
tive contribution to the sum. The component of PC asso-
ciated with the radial shear of the basic state is
dominant. The integral of SC is smaller than that of PC,
but often greater than the integral of all terms combined.
The integrals of both BNC and TRB are negative and
substantial. On the other hand, the integrals of AFX,
PFX and their displayed sum are negligible. The budget
corresponding to €, =1 has several distinctive features.
The difference between the PC and SC integrals is appre-
ciably reduced. Moreover, the BNC integral is positive.
Of lesser significance, the combined integral of AFX and
PFX is discernibly negative owing mostly to the correct-
ive component of PFX. Increasing €, to 1.1 moves the

strongest peaks of the asymmetric kinetic energy density
from the surface to the middle troposphere (not shown).
The attendant structural change coincides with notable
modifications to the global KE,-budget. For example, the
vertical shear component of the PC integral becomes
dominant. Moreover, the integral of BNC becomes nearly
equal to that of PC.

5.2. Sensitivity to the parameterisation of
turbulent transport

The MUM associated with arbitrary n generally varies
with the parameterisation of small-scale turbulence.
Sensitivity to the intensity of turbulent transport is illus-
trated herein by reducing the value of €, defined in
Section 2.3. The minimum value of €, to be considered
will be 0.0625, which is slightly below the limit of 0.07
(0.08) that guarantees K" (K!") will uniformly equal the
value specified for K i (K7 ;) in Section 4.

Figure 13 shows how reducing € affects the complex
eigenfrequencies of the MUM and the second most
unstable eigenmode (SMUM) of linear systems with n=2
and €, € {0.5,1}. Results are shown for ¢, =1, 0.25 and
0.0625. As before, the MUM is provisionally equated to the
prevailing instability mode that emerges during a time inte-
gration of the linear model initialised with a random distri-
bution of 9:3 on G2. The SMUM is provisionally equated to
the prevailing instability mode of a continued integration
that filters out the MUM [see Equation (26)]. Both modes
are verified to solve the eigenproblem on G4. The displayed
data are obtained from the G4 eigensolutions.

Consider first the group of linear systems that allow a
medium degree of diabatic forcing (e, = 0.5). Section 5.1
thoroughly described the dominant MUM when €, = 1.
The corresponding SMUM has a lower oscillation fre-
quency and is structurally distinct in having KE, concen-
trated in the middle troposphere (not shown). Reducing
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Fig. 13.  Variation of the complex eigenfrequency A of the n=2
MUM and SMUM with the small-scale turbulence parameter €, for
systems with (top) €, = 0.5 and (bottom) €, = 1. The real (blue)
and imaginary (red) parts of each eigenfrequency are normalised
to their respective values (Ap, =7.89x 107> s7' and Ap =
—1.30 x 107> s™") obtained for the MUM when €, = ¢, = 1.

€, introduces a faster instability that overtakes both of
the aforementioned eigenmodes. The greater growth rate
(Ar) of the new MUM coincides with a greater oscillation
frequency (JA;]). The new MUM is also structurally dis-
tinct in having KE, largely confined to a shallow layer
near the surface (Fig. 14a). Moreover, the global KE,
budget is distinguished from that of the original MUM
by having a greater vertical shear component of PC, and
a minimal contribution from SC (Fig. 14b).

Consider next the set of linear systems that allow rela-
tively strong diabatic forcing (e, =1). As before, the
reader may consult Section 5.1 for a thorough description
of the dominant MUM when €, = 1. The corresponding
SMUM is similar to that of the equally diffusive system
with €, = 0.5. Reducing €, to 0.25 modestly accelerates
the instability associated with the original MUM and
leads to the appearance of a new SMUM with nearly the

same growth rate. Reducing €; to 0.0625 switches the
ordering of the preceding instability modes without
changing their top-tier status. The new mode is distin-
guished by having a greater oscillation frequency and a
dissimilar distribution of KE, above the boundary layer
(Fig. 14c). Moreover, the global KE, budget of the new
mode is distinguished by having a greater vertical shear
component of PC, and a negative contribution from
BNC (Fig. 14d).

It is worth remarking that decreasing the eddy diffusiv-
ity often magnifies the importance of higher wavenumber
MUMs. For example, reducing €, to 0.25 in a system
with ¢, =1 allows an n=3 MUM (Figs. 14e.f) to chal-
lenge its n =2 counterpart for dominance among instabil-
ity modes with substantial KE, near the surface. While
the former oscillates approximately 1.6 times faster than
the latter, both MUMs have growth rates of 1.1 x
1074571,

5.3. Relationship to 2D instability theory

It is common practice to explain the instability of the pri-
mary circulation of a tropical cyclone in the context of a
two-dimensional nondivergent barotropic model (see
Appendix D). The foregoing analysis casts doubt on the
general adequacy of such an approach. That is to say, the
preceding results suggest that the three-dimensionality of
the tropical cyclone under present consideration has a
major impact on the prevailing mode of instability. The
evidence includes MUMs with substantial horizontal vor-
ticity and divergence. The evidence also includes major
contributions from SC and/or the vertical shear compo-
nent of PC to the volume integrated time-derivative of
asymmetric kinetic energy (KE,).

Further insight is gained by directly comparing 2D and
3D instability theory. The 2D analysis requires reduction
of the basic state to a circular shear-flow characterised by
a 1D vertical vorticity profile {,(r). Because the asym-
metric kinetic energy density of the instability usually has
greatest amplitude in the lower troposphere, {, will be
extracted from the p,-weighted vertical average of {_(r,z)
(Fig. 1d) between the sea-surface and z=2km. The kine-
matic viscosity Kp; will be varied between 0 and
4000 m?s!. The upper limit is roughly 1.4 times the peak
value of Kj" in the 3D model when €; = 1 (Fig. 5).

The nonmonotonic radial variation of (, facilitates a
variety of algebraic and exponential instabilities. An alge-
braic instability is expected to dominate the =1 compo-
nent of an arbitrary disturbance (Smith and Rosenbluth,
1990). The exponentially growing eigenmodes associated
with greater azimuthal wavenumbers are readily obtained
from a complete numerical solution to the eigenproblem
on a stretched radial grid comparable to that of G2. For
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Fig. 14. (a) Spatial distribution of &,KE, =2AzKE, for the n=2 MUM with €, = 0.5 and €, = 0.0625. The white and black
contours correspond to &, KE,, =[0.1,0.5,1.0,2.0,4.0] 1073 Wm™. (b) Domain integrals of the individual contributions to o,KE,, for
the n=2 MUM with €, = 0.5 and ¢; = 0.0625. (c, d) As in (a, b) but for ¢, =1 and ¢, = 0.0625. (e, f) As in (a, b) but for the n=3
MUM with €, =1 and e, = 0.25. The red curves in (a, ¢, e) correspond to the principal AM isoline; the dashed green curves show
where ¢, = 0; the blue lines show where v, is maximised with respect to variation of r in the boundary layer. The plots in (b, d, f) are

completely analogous to those in Fig. 12.
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Fig. 15 (a) Azimuthal wavenumber (1) dependence of the
growth rate of the 2D MUM for several values of Kj4, as
indicated in the legend. Computed MUMSs with growth rates of
order 107 s™' or less (at high n and appreciable K;) are
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neutral and have questionable accuracy. (b) K,; dependencies of
the growth rates of the two most unstable 2D eigenmodes
associated with an n=2 perturbation. (c) As in (b) but for the
oscillation frequencies. The extended blue ticks on the vertical
axes of (b) and (c¢) mark the growth rate and oscillation
frequency of the n=2 MUM of the 3D system with €, = 0.5 and
€, = 1; the red ticks are the same but for e, = ¢, = 1.

Ky; =0, the AMUM corresponds to n=3, but all
MUMs with 2 <n <5 have growth rates within 8% of
the maximum (Fig. 15a). Increasing Kby toward 4000 m?
s~! diminishes the growth rate of each MUM with
greater effect at larger n; ultimately, the exponential insta-
bilities are confined to azimuthal wavenumbers 2 and 3.
The preservation of n=3 dominance (or shared domin-
ance) with increasing viscosity appears to be at odds with
the 3D model. For ¢, =1 and ¢, € {0,0.5,1}, the wave-
number-3 instability modes of the 3D model were found
to be subdominant.

Figures 15b,c show how the complex eigenfrequencies
of the two most unstable n=2 eigenmodes vary with K.

The two modes are distinguished by their virtually invari-
ant oscillation frequencies that differ roughly by a factor
of 2. Decreasing the viscosity from its maximal value is
seen to unleash the instability of the high-frequency mode,
such that it transitions from SMUM to MUM status as
K>q drops below 2500m?s~!. Despite the reordering of
growth rates, neither the low-frequency mode (Fig. 16a)
nor the high-frequency mode (Fig. 16b) radically changes
structure with variation of K,; over the interval under
consideration. Except for moderate radial smoothing of
the vorticity wavefunction, the unshown modifications
linked to greater viscosity are difficult to discern with a
casual glance.

To some extent, the low-frequency mode of the 2D sys-
tem that prevails under conditions of high viscosity
resembles the lower tropospheric section of a typical 3D
MUM that dominates under moderate diabatic forcing
when turbulent transport is parameterized with €, = 1.
Figure 16¢ (16e) depicts the lower tropospheric structure
of the 3D MUM corresponding to €, = 0.5 (1). As in the
low-frequency mode of the 2D system, the strongest per-
turbation eddies are centred on the outer edge of the
main vorticity annulus. In similar agreement, the promin-
ent inner and outer waves of {_ are close to being diamet-
rically out of phase at azimuths where the amplitudes are
peaked. On the other hand, seemingly subtle differences
cannot be ignored. To begin with, the radii at which the
2D and 3D modes corotate with the circular shear flow
(shown by the dashed green circles) do not coincide. In
principle, even a slight displacement of a corotation
radius can substantially affect the impact of locally
enhanced (potential) vorticity stirring on the growth of
an instability mode. The nature of any delicate imbalance
of various growth and decay mechanisms may also be
sensitive to small variations in the relative amplitudes and
phases of the primary inner and outer vorticity waves.
Moreover, the horizontal velocity perturbations associ-
ated with the depicted 3D instability modes have nonne-
gligible divergence. Figures 16d,f illustrate the divergent
(irrotational) components of the modal flow fields
obtained from a standard Helmholtz decomposition as
explained in Appendix E. The maximum divergent wind
speed for €, = 0.5 (1) is an appreciable 16% (27%) of the
maximum nondivergent wind speed.

It is notable that (for n=2) the low-frequency instabil-
ity modes of both the 2D system and the 3D systems
studied in Section 5.2 are superceded by higher frequency
modes as viscosity tends toward zero. The low-viscosity
3D MUM corresponding to €, =0.5 and € = 0.0625
(Fig. 14a) is fairly similar to its 2D counterpart (Fig.
16b). To begin with, the 3D MUM is confined to a shal-
low layer near the surface. Moreover, unshown analysis

of the horizontal flow in the lower troposphere
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Fig. 16.
the 2D system with K,; = 10’ m
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(a) Vertical vorticity (red and blue), streamlines (black) and corotation circles (dashed green) of the low-frequency mode of
2 57!, The streamline thickness is directly proportional to the local magnitude of the horizontal velocity
perturbation w'. (b) As in (a) but for the high-frequency mode. (c) As in (a) but for vertically averaged fields associated with the MUM
of the 3D system with €, = 0.5 and ¢, = 1; the averaging is over a 2km layer adjacent to the sea-surface. (d) As in (c) but with the
streamlines corresponding to the irrotational component of w'. (e, f) As in (¢, d) but for €, =€, =1; note that segments of the
corotation circle can be found at the corners of both plots. In all subfigures, the axis labels x and y denote horizontal Cartesian

coordinates measured from the center of the vortex.
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Fig. 17. Comparison between the prevailing instability modes

of a tropical cyclone simulated with CM1 and two theoretical
predictions. (a) Growth rate versus azimuthal wavenumber n as
determined by (circles) 2D instability theory, (diamonds) 3D
instability theory, and (squares) the pertinent 3D CM1 simulation
of NS14. (b) As in (a) but for the oscillation frequency. The error
bars are explained in the main text.

demonstrates that the strongest perturbation eddies are
centred on the inner edge of the main vorticity annulus,
and that a corotation radius lies in between the primary
inner and outer vorticity waves. In good agreement with
a key assumption of the 2D model, the maximum magni-
tude of the divergent component of the lower tropo-
spheric velocity perturbation (averaged over a 2-km layer
adjacent to the sea-surface) is merely 6% of the maximum

nondivergent wind speed. On the other hand, the 2D
model does not provide an entirely accurate picture of
the low viscosity perturbation dynamics. The oscillation
frequency of the 3D MUM is 0.8 times that of the 2D
MUM, and the growth rate is 0.4 (0.6) times that pre-
dicted by the 2D model with Koy =0 (1000m>s™).
Greater facilitation of diabatic forcing (e, = 1) at low vis-
cosity (er = 0.0625) leads to much greater disparity
between the 3D and 2D MUMs. The 3D MUM (Fig.
14c) exhibits complex vertical structure deep into the free
troposphere, and the perturbation fields near the surface
have more features in common with the low-frequency
SMUM of the 2D model (Fig. 16a). Consistently, the
oscillation frequency of the 3D MUM is 0.5 times that of
the 2D MUM.

6. Comparison of linear instability theory
to NS14

Reducing the general uncertainty of linear instability the-
ory will require refinement of the physics parameterisa-
Such refinement will require a comprehensive
comparison of theory to state-of-the-art cloud resolving
numerical simulations. While a comprehensive refinement
effort is beyond the scope of this paper, a comparison of
our linear model to the results of one of our earlier simu-
lations is easy and worth reporting.

The simulation considered for illustrative purposes cor-
responds to the three-dimensional moist experiment of
NS14 distinguished from others by the following ratio of
surface-exchange coefficients: C,/C;~0.3. The experi-
ment examined the evolution of a random perturbation
of an initially axisymmetric category-2 hurricane in CM1.
The disturbance followed an initial pattern of develop-
ment similar to that found in all simulations of the study,
including those with larger values of C,/C,; and stronger
vortices. Specifically, the perturbation spurred asymmetric
wave growth energetically concentrated near the surface,
and the wave growth engendered a ring of five well-
defined mesovortices (Figs. 3 and 6 of NS14). The physics
parameterisations utilised in the experiment differed from
those described in Section 4 in several notable ways. To
begin with, the microphysics parameterisation excluded
ice. So as to keep the ratio of surface-exchange coeftfi-
cients constant over the entire ocean, the drag coefficient
was held fixed (along with C,) at C; = 0.005. Perhaps of
greatest significance, K,T/ % was an order of magnitude
smaller in the vicinity of maximum wind speed. The
reader may consult NS14 for further details.

For better compatibility with the model configuration
of NS14, the physics parameterisations used presently in
computing the linear instability modes differ somewhat
from those used previously. Diabatic forcing is given by

tions.
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Equation (9b), but y, is calculated under the assumption
of liquid-only condensate. The drag coefficient is simpli-
fied to C; =0.005¢,. The variables K}~ and KJ{, in
Equation (16) are obtained as before, but from the simu-
lation used to generate the basic state of the NS14 vortex.
Typical values of both K and K[, are between 100
and 200m? s~! where the pertinent instability modes are
concentrated. The lower limits of the eddy diffusivities
are given by K} . = 100 m? s~ ! and K i =40 m? sl

Figure 17 compares wave growth in the CM1 simula-
tion to that predicted by linear instability theory. The
squares show (a) the growth rates and (b) the oscillation
frequencies of the primary Fourier components of the
asymmetric radial velocity field (du = u—u) in the simula-
tion. The measurements are made by a straightforward
procedure. To begin with, Ju is vertically averaged over
the interval 0 <z< 1.0 km and expanded into a discrete
Fourier series with respect to the azimuthal coordinate .
The wavenumber-n Fourier coefficient of the vertically
averaged field is denoted du,(r, 7). Time series of the amp-
litude and phase of du, (for all n between 1 and 8) are
obtained from three probes placed 10-km apart on a
radial line segment that is centred roughly at the radius
of maximum wind. Each time series is taken over the
interval 0 < ¢ <90 min. Data during the initial adjust-
ment period and near the end of the interval (when
incipient mesovortices take form) are generally discarded.
The growth rate is obtained from an exponential curve fit
to the amplitude data, whereas the oscillation frequency
is obtained from a linear regression of the phase data
(over 1 oscillation period). The plotted growth rates and
oscillation frequencies correspond to their respective
means among the three probe measurements; each error
bar covers the full range of probe values. The preceding
measurements are sensibly associated with the complex
eigenfrequencies of MUMs provided that a single grow-
ing wave dominates du,. Such a condition appears to be
satisfied quite well for 4 < n < 7. The greater error bars
shown for n=3 and n=38 indicate that the probe signals
are not as clean. Because the time series for n=1 and
n=2 do not closely resemble those of a single growing
wave, they are excluded from the plots.

The diamonds in Fig. 17 show the growth rates and
oscillation frequencies of the 3D MUMs predicted by the
linear model for the tropical cyclone simulated in NS14.
The MUMs were first identified as perturbations domi-
nating solutions of the initial value problem with €, =
er =1 on a grid G2 with double the resolution of that
used in NS14. The diamonds are centred on values of Az
and /; obtained by recomputing the eigenmodes on a grid
G4 with double the resolution of G2. Further sensitivity
to grid spacing was examined by repeating the computa-
tions on the original NS14 grid. Sensitivity to the

parameterisations of diabatic forcing and small-scale tur-
bulence were separately examined by reducing €, to 0
and €, to 0.0625 on G2 and G4. The error bar on each
diamond covers the full range of values for Ap or A
obtained from all configurations of the linear model; the
smallness of the error bars indicates robust results. Note
that the plotted eigenfrequencies are confined to n
between 2 and 8, which correspond to eigenmodes ener-
getically concentrated near the surface (not shown); a
slower growing middle-tropospheric MUM associated
with n=1 is excluded from present consideration.

Figure 17 clearly demonstrates that the eigenfrequen-
cies of the theoretical and simulated 3D MUMs are in
good agreement where the latter are inferred from the
cleanest monochromatic signals (4 < #n < 7). On the other
hand, both the growth rates and oscillation frequencies
are smaller than those of the MUMSs associated with an
analogous 2D vortex (circles). The 2D vortex under con-
sideration is modelled after the primary circulation of the
NS14 tropical cyclone averaged in z over a layer of thick-
ness d adjacent to the surface. The plotted 2D data points
correspond to the means taken from 6 configurations in
which d € {1,2,3} km and Ky, € {0,10°} m’s ' As
usual, the error bars extend from the minimum to max-
imum values of the data set for each n.

In this particular case study, the insensitivity of 3D lin-
ear instability theory to the degree of diabatic forcing
allowed in the model is consistent with the concentration
of modal wave activity inward of the eyewall cloud
(NS14). Insensitivity to the reduction of €; seems reason-
able given the short e-folding times of the MUMs (15-
20 min) relative to the minimum applicable time scale for
turbulent diffusion, t = min(/7/K;,/2/K,), in which I,/
is the horizontal/vertical lengthscale relevant to the mode
and K}/, is the horizontal/vertical eddy diffusivity. Taking
K, <200 m*s™" and J,;, > 10° m yields 7 > 83 min.

7. Conclusion

This paper has proposed a method to account for dia-
batic forcing and inhomogeneous eddy diffusivities in pre-
dicting and analysing the dominant instability modes of
numerically simulated tropical cyclones. Excluding expli-
cit moisture equations from the linearised model necessi-
tated a partly intuitive parameterisation of the diabatic
forcing Sj. The parameterisation considered herein set Sj
proportional to w with the modulating coefficient
€,%50-0,, dependent on the local moist thermodynamic
conditions of the basic state. A more general parameter-
isation scheme [Equation (10)] was presented for future
consideration.

The instability analysis was illustrated for a mature
tropical cyclone representative of a category 4 hurricane.
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The basic state was generated by an axisymmetric numer-
ical simulation with two-moment cloud microphysics and
typical settings for the parameterisation of subgrid turbu-
lence. Initial consideration was given to linear systems
having vertical and horizontal eddy diffusivities compar-
able to those regulating the basic state. With the diabatic
forcing parameter €, set to a value between 0 and 1, per-
turbation growth was commonly dominated by a slowly
growing n =2 eigenmode with deep structure but maximal
intensity (KE,) in the lower tropospheric region of the
inner core. The complex eigenfrequency, spatial structure
and energetics of the n=2 MUM were sensitive to vari-
ation of €,. Increasing ¢, from 0 to 0.9 gradually stabi-
lised the mode. Further amplification of €, to 1
introduced a new MUM distinguished in part by having
a larger growth rate than any of its predecessors, and by
having a slightly positive buoyancy-related contribution
to the production of integrated KE,.

Reducing the eddy diffusivities with e, fixed at either
0.5 or 1 generally changed the nature of the n=2 instabil-
ity. For €, =0.5, the original MUM was ultimately
replaced by a faster surface-concentrated instability mode
whose growth of KE, involved a much smaller fractional
contribution from the term directly linked to the second-
ary circulation. For e, =1, the original MUM was
replaced by a faster instability mode whose growth of
KE, distinctly involved a negative contribution from the
buoyancy term and a relatively large positive contribution
from the tendency associated with the vertical shear of
the primary circulation.

Sensitivity of the foregoing analysis to the parameter-
isations of diabatic forcing and turbulent transport attests
to the importance of details in predicting and understand-
ing tropical cyclone instabilities. Improving the predictive
skill of the linear model will require reducing the present
degree of uncertainty in the aforementioned parameterisa-
tions. Refinements of S and D/ will come through a
combination of theoretical advancements and testing of
the linear model against perturbation growth found in
state-of-the-art cloud resolving models.

An initial test of our linear model produced encourag-
ing results. The instability analysis showed very good
quantitative agreement with the perturbation growth that
leads to mesovortex formation slightly inward of the eye-
wall cloud in a previously conducted CMI1 simulation
with relatively low diffusivity (NS14). Such agreement
helped validate the dynamical core of the linear model.
On the other hand, questions regarding the parameterisa-
tion schemes were left unresolved. The instability was the-
oretically too fast for reasonable variants of turbulent
transport to have an appreciable effect on its early devel-
opment. Moreover, the perturbation seemed largely
detached from moist processes (NS14). Accordingly, the

instability predicted by the linear model showed little sen-
sitivity to switching €, between 0 and 1.
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Appendix A. Notes on S

The parameterisation of diabatic forcing given by
Equation (9b) requires formulas for the partial pressure
derivatives of 6 and 0] appearing in the definition of
[Equation (7)]. SMO7 derives the following formulas for
the special case of a system with liquid-only condensate:
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in which ¢, is the isobaric specific heat of water vapour,
L,(T) is the latent heat of vapourisation, and ¢; is the
specific heat of liquid water. For a system with ice-only
condensate, the same two equations apply with the
following modifications to the saturated air formula: the
latent heat of sublimation L; replaces L,, and the specific
heat of ice ¢; replaces ¢;. As in the main text, the variable
qv«(p,T) represents the vapour mixing ratio at saturation
with respect to either liquid or ice, depending on the
allowed condensate.

As in reality, the simulated tropical cyclone providing
the basic state of Section 4 is complicated by having 3

phases of moisture. To keep the working estimate of Sj
relatively simple, the definition of y that assumes liquid-
only (ice-only) condensate is used where 7' > Ty (T < Tp),
in which Ty =273.15 K. The temporal averaging of yx
that produces y, (see Section 4) helps smooth
discontinuities at cloud edges and the freezing level. Of
further note, the value of ¢, substituted into the definition
of y arbitrarily excludes contributions from relatively fast
falling hydrometeors such as rain, graupel and snow. The
very subtle change to the distribution of N g [Equation
(28b)] resulting from such exclusion is minimal compared
to the effect of adjusting e, as in Section 5.1 of the
main text.

Section 2.2 indirectly suggested that the condition
vpy, < ypp’  would  help  justify  the
proportionality between Sy and w' ~ —p’/p,g, at least in a
system  governed by
thermodynamics.
terms in a multivariable Taylor expansion of y’, one may
formulate a stronger version of the preceding inequality
for single-wavenumber perturbations as follows:

= (a_x) ‘pn'?b7 (a_X) ‘El!pb7 (a_x) |qm!pb < 17
ap bxblpn‘ or bxb|pn‘ aqt bxb|pn| mx

(A2)

assumed

reversible  moist-adiabatic

Upon considering the lowest order

in which [...],,
magnitude among the bracketed items. Violation of
inequality (A2) evaluated with the basic state and
perturbation fields of our linear model would cast doubt
on the adequacy of having formulated S as a linear
function solely of w'. The forthcoming evaluation will
take perturbation amplitudes from the n=2 MUM of the
linear system with €, =€, =1, as displayed in Section
5.1. A conservative estimate will be used for the order-of-
magnitude of |g,| that is not explicitly provided by the
linear model.

The following analysis is restricted to the interior
region of the eyewall updraft, defined to be where
wy, > 2.6 m s~ !, In this saturated region of the tropical
cyclone, y = (9,0;), ,- The partial derivatives of y at
(p,T,q) = (pv, Ty, qu) are accurately obtained from basic
finite differencing without the need to derive lengthy
analytical formulas. The pressure variables appearing in
(A2) are given by

0 )\ €
P = ( p"’+&) L,
epb Py /) Cud
pn = atpn, + ubarpn + inprn, + wbazp'n, + Unarpb + wn,azpbv

(A3b)
(A3c)

denotes the maximum order of

(A3a)

Dy = UpOrpp + W0 y.

Linearising the relation 7' = (1 + ¢,)110,/[1+ ¢ (p,T)/€]
for air that remains precisely saturated— and using
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standard formulas (Emanuel,
derivatives of ¢, —yields

1994) for the partial

T — Tb & Quxb Iﬁ epn + Gin
" 1+ quw*b / RdT'b Cpd € Dy epb I+ qtv
A4)
Dn epn Ko |CIm ‘
—|Th| ~ ||« 7+Ke ) )
| ’ﬂ| | Ppb epb ‘ 1 +qt,b .

in which xg= Tb/(l + LbQU*b/RdTb), Ky, =Kg [(Rd/cpd)—l-
(QU*b/e)L Gusb = Qux (pvab) and Lb is either LU(TI)) or Ls if Tb
is greater or less than 7). For simplicity, let us suppose that

‘Qf,n"“eq%bv (AS)

in which €, is tentatively set to 0.5, so as to equal 10
times the maximum of |v,|/Vpn,.

Two estimates of I" have been calculated. I’y (I';) is
obtained by evaluating all 5 variables in each bracketed
item of (A2) with their maximum (average) absolute
in the interior region of the eyewall. The
marginally reassuring results are I'y = 0.3 and I, =0.2;
smaller values are obtained as €, — 0.

values

Appendix B. Acoustic filtering

It is common practice to use an anelastic approximation
of the equations of motion when acoustic waves are
deemed unimportant to the instabilities of interest
(NMO02; Hodyss and Nolan, 2008). The effect of acoustic
filtering is considered herein by implementing the

following approximation of Equation (3e):
inpyuy, 10rp,u, Opywy
=—- — . Bl
r r or 0z (B)

Details of the implementation are provided below.

Recall from Section 3 that the unfiltered linearised
equations of motion can be written dx,,/dt = M,,X,, in which
X, is a vector representation of all prognostic perturbation
fields at all grid points. Let yZ denote the subvector of x,
representing field F,. The acoustically filtered system consists
of three prognostic equations of the form

a, _ FEyr (B2a)

in which F € {u,w,0,} and MfF is the submatrix of M,
accounting for the tendency of yZ directly dependent on
yf . The equations for the perturbations of azimuthal
velocity and density are diagnostic.
velocity equation is given by
vo= > Vivh,
Fefuwy

The azimuthal

(B2b)

in which V), and V;’ are the coefficient matrices relating
y, to yr and yy according to the discretization of
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Iu) 010 T
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0.061@ 1 1
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Fig. Bl. Scatter plot of the complex eigenfrequencies of the

n=2 MUM in linear systems with (pink) and without (black)
acoustic filtering. Different symbol shapes correspond to different
combinations of €, and €, as shown in the legend in the lower
left corner of the graph.

Equation (B1). The density equation is given by

{Mi’f— 3 VSMSP} ¥

Fefuw}
F F oy F o F
=o 2 M X MV (g
Fe{u,w,ep} Fe{uw}
FNAFF F FngFoyF oF
+ Z Vn,Mn Yn + Z VnMnLVn Yo -
Fe{uw} Fe{uw}
Fefuwbp} Fef{uw)

The preceding formula for y? is obtained by substituting
(B2b) and (B2a) for F € {u,w} into the prognostic
azimuthal velocity equation of the unfiltered system.
Note that the foregoing acoustically filtered model
applies only for n >1, owing to a derivation from
equations where v, and p,, are multiplicatively coupled to
n. An alternative formulation valid for n > 0 would seem
possible by (say) switching the roles of w, and v, as
prognostic and diagnostic variables.

As suggested earlier, acoustic filtering is expected to
have minimal consequence on the primary inner core
instability of a tropical cyclone. Consider the tropical
cyclone of Section 4. The unfiltered n=2 MUM is
described in Section 5 for various combinations of €, and
€, in the linear model. The acoustically filtered MUM is
here found (on G2) by initialising Equations (B2a)-(B2c)
with y¢ yY and y?,," of the unfiltered MUM and
integrating forward in time over several e-folding periods.
Under ordinary circumstances, the perturbation is quickly
dominated by the filtered MUM. Figure Bl verifies that
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the complex eigenfrequencies of the filtered and unfiltered
instability modes hardly differ, regardless of the selected
parameters regulating the strengths of diabatic forcing
and turbulent transport.

Appendix C. Sensitivity of MUM S to the
computational grid

In Section 5, a MUM was provisionally equated to the
eigenmode that dominates a perturbation within 1day of
initialising the linear model [Equation (20)] with random
noise on a grid (G2) having double the resolution— in
both r and z —of the CM1 grid used to generate the
basic state (G1). The MUMs of Gl are readily found by
a similar procedure. Figure Cl displays the complex
eigenfrequencies associated with the MUMs of both Gl
(blue) and G2 (green) for 0 <n <8 when the linear model
is parameterized with Note that no
discernible instabilities could be seen for n=0 or n=3_.
Also shown are solutions to the eigenproblem on a grid
(G4, red) with quadruple the resolution of G1. Each G4
data point is obtained from an algorithm that seeks a
solution for the complex eigenfrequency (1) closest to
that of the G2 MUM.

€ =€, = L.
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A (1073 s7Y)

Fig. Cl. Scatter plot of the complex eigenfrequencies of the
MUMs of the tropical cyclone of Section 4 as determined by the
3D linear model with €, =€, = 1. The number associated with
each data point denotes the value of the azimuthal wavenumber
(n) of the MUM. Data is included for computations on Gl
(small blue), G2 (medium green) and G4 (large red). Dark (light)
symbols indicate modes with KE, maximised in the lower
(middle) troposphere. Note that the G4 data correspond to
eigenfrequencies nearest to those of the G2 MUMs, but the
associated modes were not verified to dominate time-asymptotic
perturbations on G4.

The system under present consideration exhibits a
somewhat complicated sensitivity to grid spacing. The
mode is invariant with increasing
resolution. The oscillation frequency (4;) of the n=2

n=1 virtually
mode is also robust, but the growth rate on G1 exceeds
that on G4 by 29%. The values of 1z (for n=2) on G2
and G4 are deemed closer to the continuum limit based
on their modest 2% difference. All of the modes on Gl
that are shown for 1 < n < 4 have maximal KE, near the
surface. Whereas the properties of the modes with n=1
and n=2 are fairly insensitive to increasing resolution,
the n=3 and 4 modes on G1 are fragile and superceded
by middle tropospheric instabilities on G2 and G4. All of
the dominant instabilities at higher wavenumbers have
maximal KE, in the middle troposphere. It is notable
that increasing the resolution for cases in which n exceeds
5 markedly accelerates the instabilities. Moreover, the
resolution required to establish less than 10% uncertainty
in Ag at high-n appears to be greater than that of G4.

Appendix D. The 2D eigenproblem

The equations of motion governing a nondivergent 2D
vortex with kinematic viscosity K,; are given below:

L +u- Vil = KyVig, (Dla)
u=2x Vv, (D1b)
Vay = ¢, (Dlc)

in which { is the vertical vorticity (the subscript z is
unnecessary and dropped in this appendix) associated

with the horizontal velocity field w,  is the
streamfunction, and V), is the horizontal gradient
operator. Nonzero viscosity will cause the gradual

diffusion of an arbitrary axisymmetric state that is
characterised by the vorticity distribution (y(r). A
linearised model for asymmetric perturbation growth is
justifiable if axisymmetric diffusion occurs much more
slowly than the instability. Extension of the linearised
model to values of K3; where axisymmetric diffusion and
asymmetric perturbation growth have commensurate time
scales is technically improper, but is deemed reasonable
for the purpose of illustrating modal sensitivity to the
magnitude of viscosity.

The asymmetric (n>1) eigenmodes of an
axisymmetric vortex are perturbations of the form
¢ = Z(r)e™*+* L c.c., in which c.c. denotes the complex
conjugate of the preceding term. Substituting the
eigenmode solution into the linearised equations of

motion derived from Equations (Dla)-(Dlc) yields
d
(ih—n)Z + "%\V—z’f(mviz =0,

Tar

(D2a)

in which Q,(r) is the angular velocity corresponding to
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& V2Y = Z,V2 =0, +1r710,—n?/r?, and 9,, =0,0,. A
formal solution for the wavefunction of \/ consistent
with regularity at the origin and ' =0 at r=rp is

vy = [ (2) [ _ (;_;)2”] 20,

in which r~ (r.) is the lesser (greater) of 7 and r
(Schecter et al.,, 2000). The second outer boundary
condition 0,(v'/r) =0 combined with v’ =0 amounts to
Z =2r~'d¥/dr at r=rp. Substituting (D2b) into both
(D2a) and the preceding outer boundary condition
eliminates W from the eigenproblem. Subsequent
discretization of the radial coordinate yields a standard
matrix eigenproblem of the form Mx = Ax, in which x is

(D2b)

a vector containing the values of Z on each grid point.
The 2D results of Section 5.3 and 6 correspond to
solutions of the preceding eigenproblem; the outer
boundary condition on ¢’ is obviated for computations in
which K>; = 0. Selected results were successfully cross-
checked against independent solutions of the 3D model
set up with a thin barotropic vortex sandwiched in
between rigid free-slip walls at z=0 and 0.5 km.

Appendix E. The Helmholtz decomposition

The Fourier transform of the horizontal velocity
perturbation associated with a 3D instability mode can

be decomposed into the following sum of irrotational

(superscript-¢)  and  nondivergent  (superscript-i)
components:
Up | _ u%’ + ug ]
|:vn:| - |:U$+’Uij (Eld)
in which
uﬂz = 67(1)" ug _ _inlljn/r
L}‘,E} N L‘n%/r b [ =] s |0 ED
and
Vi ¢”:|:[G”]. Elc
! |:\|j” t.:zn ( )

The boundary conditions at the origin are regularity of the
velocity potential ¢, and streamfunction ,; the
implemented boundary conditions at rp consistent with
u,=0 are 0,¢,=0 and Y, =0. The velocity fields
depicted in Figs. 16d,f correspond to w'® = u'—u'Y, in which
v = (uy, v,)em + c.e. and WV = (ud/V, v®V)eme +cc.
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