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ABSTRACT

An approximate method is developed for finding and analysing the main instability modes of a tropical

cyclone whose basic state is obtained from a cloud resolving numerical simulation. The method is based on a

linearised model of the perturbation dynamics that distinctly incorporates the overturning secondary

circulation of the vortex, spatially inhomogeneous eddy diffusivities, and diabatic forcing associated with

disturbances of moist convection. Although a general formula is provided for the latter, only

parameterisations of diabatic forcing proportional to the local vertical velocity perturbation and modulated

by local cloudiness of the basic state are implemented herein. The instability analysis is primarily illustrated

for a mature tropical cyclone representative of a category 4 hurricane. For eddy diffusivities consistent with

the fairly conventional configuration of the simulation that generates the basic state, perturbation growth is

dominated by a low azimuthal wavenumber instability having greatest asymmetric kinetic energy density in

the lower tropospheric region of the inner core of the vortex. The characteristics of the instability mode are

inadequately explained by nondivergent 2D dynamics. Moreover, the growth rate and modal structure are

sensitive to reasonable variations of the diabatic forcing. A second instability analysis is conducted for a

mature tropical cyclone generated under conditions of much weaker horizontal diffusion. In this case, the

linear model predicts a relatively fast high-wavenumber instability that is insensitive to the parameterisation

of diabatic forcing. The prediction is in very good quantitative agreement with a previously published

analysis of how the instability develops in a cloud resolving model on the way to creating mesovortices

slightly inward of the central part of the eyewall.
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1. Introduction

Satellite and radar images of mature tropical cyclones

commonly reveal deformed eyewalls and mesovortices

along the periphery of the eye. There has been longstand-

ing interest in understanding how such features develop

and whether the process appreciably affects the temporal

trend of vortex intensity. One plausible explanation for

the emergence of prominent waves and mesovortices

involves an instability of the local circular shear flow.

Although such an explanation is prevalent in the

literature, there has been limited progress in advancing

an instability theory for realistically modelled trop-

ical cyclones.

Basic insights have been gained through the study of

idealised two-dimensional (2D) models. Such models

show that a vorticity annulus similar to that on the

inward edge of an eyewall is usually unstable. The onset

of perturbation growth may involve the mutual amplifi-

cation of counter-propagating vortex Rossby waves or a

destabilising wave-critical layer interaction. Depending

on specifics, the instability may generate robust arrays

of mesovortices or engender transient turbulence that

thoroughly redistributes inner core vorticity into a cen-

tralised monopole (Schubert et al., 1999; Kossin and

Schubert, 2001). The latter transformation may appre-

ciably deepen the central pressure deficit while diminish-

ing the maximum azimuthally averaged wind speed

(ibid). Adding simplified parameterisations of diabatic

forcing (moist convection) to a nondivergent 2D model

or a shallow-water system generally modifies the devel-

opment of an instability and the coinciding change of

vortex intensity. Details depend on the parameterisation,

and published results on the topic (Rozoff et al., 2009;

Hendricks et al., 2014; Lahaye and Zeitlin, 2016) await

rigorous comparison to more realistic theories and

numerical simulations.�Corresponding author. e-mail: schecter@nwra.com
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Additional insights have been gained from the study of

three-dimensional (3D) stratified vortices whose basic

states do not possess secondary circulations. The domin-

ant modes of instability often resemble their 2D counter-

parts but differ in quantitative details [Nolan and

Montgomery, 2002 (NM02)]. The qualitative similarities

can extend beyond wave growth to nonlinear mesovortex

formation and potential vorticity mixing (Hendricks and

Schubert, 2010). On the other hand, adding vertical struc-

ture to the vortex introduces the possibility of baroclinic

instability (Kwon and Frank, 2005). Moreover, instability

mechanisms involving the interactions of vortex Rossby

waves and inertia-gravity waves become potentially rele-

vant in the parameter regime of a major hurricane

(Schecter and Montgomery, 2003, 2004; Hodyss and

Nolan, 2008; Menelaou et al., 2016; Schecter and

Menelaou, 2017).

The final step toward a realistic perturbation theory is

to generalise a 3D model to incorporate moisture and

secondary circulation into the basic state of the vortex.

The inclusion of cloud coverage alone has the effect of

substantially reducing static stability (Durran and

Klemp, 1982). In principle, such reduction can alter the

structure and growth rate of the linear eigenmode asso-

ciated with an instability (Schecter and Montgomery,

2007 (SM07); Menelaou et al., 2016). The importance of

the secondary circulation to the prevailing mechanism

of perturbation growth is presently unclear. Although

secondary circulations are known to significantly

influence the inner core instabilities of tornado-like

vortices (Rotunno, 1978; Gall, 1983; Walko and

Gall, 1984; Nolan, 2013), tropical cyclones are distinct

atmospheric systems.

Needless to say, cloud coverage in a mature tropical

cyclone is largely linked to the secondary circulation.

Therefore, including one without the other in a model

could yield misleading results. Naylor and Schecter (2014)

(NS14) recently examined the consequences of having

both. They found only subtle differences between perturb-

ation growth in realistically simulated (moist convective)

tropical cyclones and the instabilities of analogous dry

(nonconvective) vortices. However, there is no firm rea-

son to believe that the results of NS14 are general. A

more extensive investigation is necessary.

NM02 contains the underpinnings of an appropriate

linear model for investigating perturbation dynamics in a

moist convective tropical cyclone. The NM02 model

accommodates the incorporation of an adequately

resolved boundary layer and the complete overturning

secondary circulation of the basic state, but does not

close the book on the thermodynamics. Proper param-

eterisation of the perturbation to diabatic forcing as a

function of the prognostic fluid variables is necessary for

a realistic instability analysis and remains an open issue.

A separate challenge pertinent to analysing instabilities is

to move beyond the conventional but questionable simpli-

fication of using constant eddy diffusivities.

Section 2 of this paper presents a somewhat distinct

linear model of the perturbation dynamics that includes

tuneable formulas for diabatic forcing and subgrid turbu-

lent transport with inhomogeneous eddy diffusivities. The

parameterisation of diabatic forcing does not provide a

definitive closure of the thermodynamic equation, but

facilitates assessment of how an instability mode might

change with plausible variation in the treatment of cloud

processes. Section 3 outlines a numerical method for find-

ing the main instability modes of a tropical cyclone and

the second-order response of symmetric fields to the

growth of an asymmetric mode. Section 4 describes the

basic state of a mature tropical cyclone generated by an

axisymmetric model with explicit cloud microphysics.

Section 5 analyzes the 3D instability of the aforemen-

tioned system and illustrates sensitivities to the represen-

tations of diabatic forcing and subgrid turbulence in the

perturbation equations. Results of the analysis are com-

pared to those of an ostensibly analogous 2D (baro-

tropic) model. Section 6 presents an additional instability

analysis for one of the tropical cyclones examined in

NS14. The adequacy of the analysis is evaluated by direct

comparison to the initial stage of perturbation growth

simulated (in NS14) with a three-dimensional cloud

resolving model. Section 7 summarises our main findings.

The appendices provide some technical details excluded

from the main text.

2. The perturbation equations

The present study is based on a compressible nonhydro-

static model of a tropical cyclone. The equations of

motion are expressed in a cylindrical coordinate system

whose central axis corresponds to that of the vortex.

The radial, azimuthal and vertical coordinates are

respectively denoted by r, u and z. As usual, time is

denoted by t. The prognostic fluid variables are the

radial velocity u, the azimuthal velocity v, the vertical

velocity w, the density potential temperature hq and the

total density q. Tendency equations for the mixing ratios

of water vapour and hydrometeors are not explicitly

considered. The influence of cloud processes on the

perturbation dynamics is parameterized as explained in

Section 2.2.

2.1. Basic formulation of the model

The nonlinear equations of motion governing the tropical

cyclone are given by
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otu ¼ �v � ruþ v2

r
þ fv�cpdhqorPþDu (1a)

otv ¼ �v � rv� uv

r
�fu�cpdhqouP=rþDv (1b)

otw ¼ �v � rw�g�cpdhqozPþDw (1c)

othq ¼ �v � rhq þ Sh þDh (1d)

otq ¼ �div vqð Þ þ Sq; (1e)

in which v is the three-dimensional velocity vector, f is

the (constant) Coriolis parameter, g is the gravitational

acceleration, and cpd is the specific heat of dry air at con-

stant pressure. The Exner function satisfies the relation

P � p

pa

� �

Rd
cpd ¼ Rdhqq

pa

� �

Rd
cvd

; (1f)

in which p is total pressure, pa � 105 hPa, Rd is the gas

constant of dry air, and cvd is the specific heat of dry air

at constant volume. Each Da represents a tendency (of

field-a) induced by surface fluxes and unresolved turbu-

lence within the vortex. Sh represents the tendency of hq

induced by cloud processes, radiative transfer and dissipa-

tive heating. Sq is the density tendency attributable to

mass changes of water content. Standard notations have

been used for the gradient operator r � r̂or þ ûr�1
ou þ

ẑoz and the divergence divðhÞ � r�1
orðrhrÞ þ r�1

ouhu þ
ozhz of the vector field h � ðhr; hu; hzÞ. The symbol ox is

used interchangeably with o

ox
in this paper to denote a

partial derivative with respect to any variable x.

A generic field F may be written as follows:

F � Fbðr; zÞ þ F 0ðr;u; z; tÞ, in which the subscript b

denotes the component associated with a suitably defined

basic state of the vortex. The preceding decomposition

may be applied to both the fluid variables fu; v;w;
hq; q;Pg and the forcing functions fDu;Dv;Dw;

Dh;Sh;Sqg in the nonlinear model [Equations (1a)–(1f)].

The result is a perturbation equation for each prognostic

fluid variable of the form

otF
0 ¼ LF þNLF þ BF ; (2)

in which LF consists of terms linear in F 0 and all other

perturbation fields, NLF represents nonlinear terms of

higher order in the perturbation amplitude, and BF

accounts for residual terms involving only basic state var-

iables along with –g in the vertical velocity equation.

Ideally, the basic state is chosen to be sufficiently close to

equilibrium that the magnitude of BF is no greater than

second-order in the perturbation amplitude. Neglecting

the relatively small terms BF and NLF reduces the

dynamics to otF
0 �LF .

The azimuthal symmetry of the basic state facilitates

an azimuthal Fourier decomposition of the reduced

system. Letting F 0 ¼P1
n¼�1 Fnðr; z; tÞeinu for all F yields

oun

ot
¼ � oubun

or
�inXbun�wb

oun

oz
þ nbvn�

oub

oz
wn

�cpd
oPb

or
hqn�lhqb

o

or

Pb

hqb
hqn þ

Pb

qb
qn

� �

þ ~Dun

(3a)

ovn

ot
¼ �gbun�ub

ovn

or
� ubvn

r
�inXbvn�wb

ovn

oz
� ovb

oz
wn

� inl

r
Pbhqn þ

Pbhqb

qb
qn

� �

þ ~Dvn

(3b)

own

ot
¼ � owb

or
un�ub

own

or
�inXbwn�

owbwn

oz
þ ~g

hqba
hqn

�lhqb
o

oz

Pb

hqb
hqn þ

Pb

qb
qn

� �

þ ~Dwn

(3c)

ohqn

ot
¼ � ohqb

or
un�

ohqb

oz
wn�ub

ohqn

or

�inXbhqn�wb

ohqn

oz
þ Shn þ ~Dhn

(3d)

oqn
ot

¼ � 1

r

orqbun

or
� inqbvn

r
� oqbwn

oz
� 1

r

orubqn
or

�inXbqn�
owbqn
oz

þ ~Sqn;
(3e)

in which Xb � vb=r; nb � 2Xb þ f , gb � orðrvbÞ=rþ f ,

~gðr; zÞ � �cpdhqbaozPb and l � cpdRd=cvd . To stay within

the realm of standard practice, the arbitrary function hqba

is equated to hqbðrB; zÞ, in which rB is the outer boundary

radius of the model. To prevent artificial trapping of

radiated waves in a finite domain, we have let ~Dun �
Dun�cun and likewise for all other ~D-functions. Similarly,

we have let ~Sqn � Sqn�cqn. In the preceding definitions,

the terms proportional to cðr; zÞ represent sponge-damp-

ing near rB and near the upper vertical boundary of the

model. By design, the positive function c is negligible

inside the tropical cyclone. To simplify matters, the

parameterisations utilised for this study restrict Dan and

San (for all applicable a) to be linear functions of the

wavenumber-n components of the prognostic fluid varia-

bles. It follows that Equations (3a)–(3e) constitute an

autonomous linear system. Note that the reality condition

F�n ¼ F�
n eliminates the need to explicitly solve for the

negative-n Fourier components. Here and elsewhere,

the superscript ‘�’ denotes the complex conjugate of the

dressed variable.

The feedback of an asymmetric linear perturbation on

the mean vortex is essentially a second-order ‘eddy for-

cing’ of the symmetric (n¼ 0) fluid variables. The full

nonlinear equation of motion for a symmetric perturb-

ation field (F0) is schematically given by

oF0

ot
¼ LF

0 þNLAF þNLSF þ BF ; (4)

in which LF
0 is the right-hand side of the linear equation

for F0 [see Equations (3a)–(3e)], and the leading order

contribution to NLAF (NLSF ) is quadratic in the asym-

metric (symmetric) component of the perturbation. The
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primary quadratic part of the asymmetry term is conveni-

ently written as follows:

NLAF � �2
X

1

m¼1

NLAF
m: (5a)

The summands are given specifically by

NLAu
m ¼ R

�

um
ou�m
or

þ wm

ou�m
oz

� vmv
�
m

r
þ cpdhqm

o �P�
m

or

þcpdhqb
o!

or

�

þmI

�

vmu
�
m

r

�

; (5b)

NLAv
m ¼ R um

ov�m
or

þ wm

ov�m
oz

þ umv
�
m

r

� �

þmI
cpdhqm �P�

m

r

� �

;

(5c)

N LAw
m ¼ R um

ow�
m

or
þ wm

ow�
m

oz
þ cpdhqm

o �P�
m

oz
þ cpdhqb

o!

oz

� �

þ mI
vmw

�
m

r

� �

; (5d)

NLAh
m ¼ R um

oh�qm
or

þ wm

oh�qm
oz

� �

þmI
vmh

�
qm

r

� �

; (5e)

NLAq
m ¼ R

1

r

orqmu
�
m

or
þ oqmw

�
m

oz

� �

; (5f)

in which �Pm � RdPb½ðhqm=hqbÞ þ ðqm=qbÞ�=cvd is the linear

approximation ofPm in terms of prognostic fluid variables,

and ! � 1
2
ðo2P
oh2q

Þbjhqmj2 þ 1
2
ðo2P
oq2

Þbjqmj2 þ ð o
2P

ohqoq
Þbhqmq�m. The

operators R and I in Equations (5b)–(5f) respectively yield

the real and imaginary parts of their operands. If every F0 is

initially subdominant to the asymmetric perturbation,

NLSF will be negligible for an extended period of time.

Forthcoming analysis of wave-mean flow interaction will

set both NLSF and BF to zero in Equation (4). The latter

approximation goes beyond that made in the reduced linear

model for symmetric perturbations [(3a)–(3e) with n¼ 0] by

assuming that BF is much smaller than a second-order cor-

rection to the dynamics.

2.2. Parameterisation of the influence of moisture

The definition of our chosen thermodynamic variable

[hq � p=ðqRdPÞ] implies that

Sh ¼ _sd þ
cvd _qv

eþ qv
� cpd _qt

1þ qt

� �

hq

cpd
; (6)

in which e � Rd=Rv, Rv is the gas constant of water

vapour, sd ¼ cpd lnT�Rd ln pd is the specific entropy of

dry air, T is absolute temperature, pd ¼ p=½1þ qv=e� is

the partial pressure of dry air, qv (qt) is the mixing

ratio of water vapour (total water content), and the

overdot represents a material derivative minus any ten-

dency directly connected to small-scale turbulence. To

facilitate discussion hereafter, Sh will be referred to as

diabatic forcing. Equation (6) indicates that Sh involves

more than a term proportional to the dry-air heating

rate. Nevertheless, in cloudy regions of a tropical cyc-

lone, the reasonable assumption that _sd is of order

jLv=s _qv=Tj suggests that _sd will largely control the sign

of the sum in parentheses. Here, the symbol Lv=s has

been used to denote the latent heat of vapourisation/

sublimation.

To devise a parameterisation for S0
h, one might first

consider an idealised cloudy vortex governed by reversible

moist-adiabatic thermodynamics with ice-only or liquid-

only condensate. The diabatic forcing in such a system

satisfies an equation of the form Sh ¼ v _p, in which _p is

the material derivative of pressure p [SM07]. The coeffi-

cient of proportionality is given by

v ¼ H qt�qv�ð Þ
ohsq

op

 !

sm;qt

þH qv��qtð Þ
ohuq

op

 !

sm;qt

; (7)

in which qv� is the saturation vapour mixing ratio with

respect to ice or liquid. The step function H(x) is formally

defined to equal unity (zero) when x is positive (negative).

The subscripts on the partial derivatives with respect to

pressure indicate that the specific moist-entropy (sm) and

total water mixing ratio (qt) are held constant. The sym-

bol hsq (huq) represents the functional form of hq in terms

of p, sm and qt under the assumption that the air is satu-

rated (unsaturated) and qv equals qv� (qt). Appendix A

provides practical formulas for both partial derivatives

that appear in Equation (7).

In the preceding reversible moist-adiabatic vortex

model, the perturbation to diabatic forcing can be written

as follows:

S0
h ¼ vb _p

0 þ v0 _pb þ v0 _p0: (8)

The rightmost term in Equation (8) involving the product of

two perturbation fields presumably has minimal effect on

the weak disturbances of interest (see SM07 for caveats).

Furthermore, the middle term would be negligible in a

cloudy vortex whose basic state had no secondary circula-

tion. Keeping only the first term in Equation (8), assuming

_p0 ��qbgw
0, and letting ~vb � �qbgvb=ozhqb would yield

S0
h ¼ ~vbozhqbw

0

! Shn ¼ ~vbozhqbwn:
(9a)

There is no firm reason to believe that a parameterisation

of the diabatic forcing anomaly based on Equation (9a)

would be quantitatively accurate for realistic tropical cyclo-

nes that have pronounced secondary circulations with pre-

cipitating clouds of both liquid and solid hydrometeors. On

the other hand, for the class of parameterisations propor-

tional to w0, Equation (9a) provides a reasonable starting

point for a process of systematic adjustment toward a
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decent fit with experimental data. Sensitivity of results will

be assessed by using the more flexible formula

Shn ¼ ev~vbozhqbwn (9b)

and letting ev vary between 0 and 1.1. For the majority

of calculations in this paper, vb will be evaluated assum-

ing ice/liquid condensate above/below the freezing level in

the troposphere. The reader is referred to Appendix A

for details on how vb is extracted from a numerically

simulated tropical cyclone, and for further commentary

on the relation S0
h / w0.

A more general linearised parameterisation of the per-

turbation to Sh may have the form

S0
h r;u; z; tð Þ ¼

X

F;j

ð ð ð

d~rd~ud~z~rGF
j ~r; ~u;~z; r;u; zð ÞL̂F

j F 0 ~r; ~u;~z; tð Þ
� �

;

(10)

in which F denotes a prognostic fluid variable, L̂
F

j is the

jth member of a generic set of linear operators (including

differential operators) acting on F 0;GF
j is an integration

kernel paired with that operator, and the volume integral

is taken over the entire domain of the system. Equation

(9a) can be obtained from (10) by letting L̂
w

1 ½w0� ¼ w0,
Gw

1 ¼ ~vbð~r;~zÞozhqbð~r;~zÞdðr�~rÞdðu�~uÞdðz�~zÞ=~r, and GF
j ¼

0 for F 6¼ w or j 6¼ 1. As usual, the symbol d has been

used to represent the Dirac distribution. Note that

Equation (10) is somewhat restrictive; neither the inte-

grals nor kernels involve time. On the other hand,

Equation (10) includes parameterisations that relate the

perturbation of diabatic forcing at a point ðr;u; zÞ in the

free troposphere to the perturbation of vertical velocity at

a point ½rcðr;u; zÞ;ucðr;u; zÞ; zc� at the top of the bound-

ary layer (z¼ zc). A simple example that maintains the

dynamical independence of the azimuthal Fourier trans-

forms of the perturbation fields (in linear theory) might

have an integration kernel of the form

Gw
1 ¼ C r; zð Þd rc r; zð Þ�~r

� �

d �uc r; zð Þ þ u�~u
� �

d zc�~zð Þ=~r
(11)

paired with the operator L̂
w

1 ½w0� ¼ w0, while GF
j ¼ 0 for all

other combinations of F and j. Note that we have let

uc ¼ �uc þ u. Exploration of the preceding type of param-

eterisation will be deferred to future study.

One potential deficiency of the foregoing parameter-

isations [Equation (9b); Equation (11)] is their neglect of

any direct response of moist convection to small

enhancements or reductions of surface enthalpy fluxes

coinciding with surface wind speed perturbations. Such

a response could be incorporated into Equation (10),

but the importance of such inclusion to mature tropical

cyclone instabilities is presently unclear. Note also that

the parameterisation used for this study [Equation (9b)]

is not designed for high frequency perturbations

exemplified by ordinary acoustic oscillations. It so hap-

pens that such rapidly oscillating modes have either sub-

dominant or negative growth rates in our applications of

the linear model. Purists might reasonably argue that

the fast modes should be filtered out of the dynamical

system for consistency. However, filtering out the acous-

tic modes alone is somewhat complicated and seems to

have negligible effect on the main tropical cyclone

instabilities that are investigated in this paper

(Appendix B).

2.3. Parameterisation of small-scale turbulence

The influence of small-scale turbulence on the velocity

perturbation is parameterized with a linear eddy viscosity

scheme that incorporates a modification of the oceanic

surface drag. The velocity tendencies associated with tur-

bulence can be expressed as follows:

D0
u ¼

2

r

o

or
rKm

h

ou0

or

� �

þ Km
h

r2
o
2u0

ou2
� 2Km

h u
0

r2

� 3Km
h

r2
ov0

ou
þ Km

h

r

o
2v0

orou
þ osrz

oz
;

(12a)

D0
v ¼

1

r

o

or
rKm

h

ov0

or

� �

þ 2Km
h

r2
o
2v0

ou2
þ 1

r2
o

or
rKm

h

ou0

ou

� �

þ 2Km
h

r2
ou0

ou
þ Km

h

o

or

v0

r

� �

� 1

r

o

or
Km

h v
0� 	

þ osuz

oz
;

(12b)

D0
w ¼ 1

r

o

or
rKm

v

ow0

or

� �

þ Km
v

r2
o
2w0

ou2
þ 1

r

o

or
rKm

v

ou0

oz

� �

þKm
v

r

o
2v0

ozou
þ 2

o

oz
Km

h

ow0

oz

� �

;

(12c)

in which the momentum eddy diffusivities (Km
h and Km

v )

are assumed to be functions of only r and z. Azimuthal

and temporal dependencies of the diffusivities are

neglected for simplicity. The rz and uz components of the

stress tensor appearing in Equations (12a) and (12b) are

given by

srz ¼
Km

v

ou0

oz
þ ow0

or

� �

z> 0

Cd juj½ �bu0 þ
oCd juj
ojuj

� �

b

u2bu
0 þ ubvbv

0

jujb
z ¼ 0;

8

>

>

>

>

<

>

>

>

>

:

(13a)

suz ¼
Km

v

ov0

oz
þ 1

r

ow0

ou

� �

z> 0

Cd juj½ �bv0 þ
oCd juj
ojuj

� �

b

ubvbu
0 þ v2bv

0

jujb
z ¼ 0;

8

>

>

>

<

>

>

>

:

(13b)

in which juj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

. Unless stated otherwise, the drag

coefficient is given by

INSTABILITIES OF TROPICAL CYCLONES 5



Cd ¼
Cd0 juj<U0

Cd0 þ
Cd1�Cd0

U1 �U0

juj �U0ð Þ U0 � juj<U1

Cd1 juj 	 U1;

8

>

>

<

>

>

:

(13c)

in which U0 ¼ 5 m s�1, U1 ¼ 25 m s�1 and Cd1 	 Cd0.

Note that the velocity fields in all formulas pertaining to

the surface stress [Equations (13a)–(13b) at z¼ 0;

Equation (13c)] are evaluated at the lowest active grid

level above the ocean in our numerical version of the lin-

ear model. Specifications of Km
h ;K

m
v , Cd0 and Cd1 are

forthcoming.

Several remarks are in order regarding the preceding

representation of turbulent transport in the velocity equa-

tions. To begin with, Equations (12a)–(12c) above the

surface are equivalent to a parameterisation of the form

D0
i ¼

X

3

j¼1

o

oxj
Km

ij

ov0j
oxi

þ ov0i
oxj

 !" #

; (14)

in which D0
i is the tendency associated with turbulence in

the prognostic equation for the ith component of the vel-

ocity perturbation (v0i) in a Cartesian coordinate system

ðx1; x2; x3Þ in which x3 � z. Specifically, it is assumed

that Km
ij ¼ Km

h for i; j 2 f1; 2g;Km
33 ¼ Km

h , and Km
3j ¼ Km

j3 ¼
Km

v for j 6¼ 3. Bear in mind that such a parameterisation

does not follow from direct linearisation of a typical non-

linear model. Direct linearisation would produce add-

itional terms accounting for perturbative variations of the

eddy diffusivities. Note also that the usual density factors

have been neglected. Despite such imperfections,

Equations (12a)–(12c) are believed to provide a reason-

able framework for estimating how inhomogeneous

anisotropic turbulent viscosity should influence the per-

turbation dynamics.

Moving on to the thermodynamic equation, the effect

of small-scale turbulence on h0q is parameterized by

D0
h ¼

1

r

o

or
rKh

h

oh0q
or

� �

þ Kh
h

r2

o
2h0q
ou2

þ o

oz
Kh

v

oh0q
oz

� �

; (15)

in which Kh
h=v depends only on r and z. For simplicity,

the perturbation to the surface flux of hq is set to zero

(see Section 2.5). The loose application of a simple diffu-

sion scheme to the density potential temperature perturb-

ation is deemed adequate for the present study. It is

provisionally assumed that any subtle imprecision in for-

mally representing D0
h by Equation (15) does not affect

an instability analysis more than moderate variation of

the ek parameter defined below.

Several remaining formulas are required to complete

the turbulence parameterisation in the linear system. To

begin with, the momentum eddy diffusivities are given by

Km
h=v ¼ max ekK

m
h=v;sm;K

m
h=v;min

� 	

; (16)

in which ‘max’ returns the greater of its two arguments at

each point in the r-z plane. The variables Km
h;smðr; zÞ and

Km
v;smðr; zÞ in Equation (16) are obtained directly from the

simulation (sm) that generates the tropical cyclone under

consideration. In particular, they correspond to the hori-

zontal and vertical momentum eddy diffusivities averaged

over u (if the simulation is 3D) and over the time period

that is used to define the basic state. The multiplier ek is

allowed to deviate from unity for sensitivity tests. The

constants Km
h;min and Km

v;min are lower limits of the diffu-

sivities to be specified in due course. The previously

unspecified parameters associated with the drag coeffi-

cient are given by Cd0 ¼ 0:001ek and Cd1 ¼ 0:0024ek for

the primary instability analysis in Section 5 of this paper.

The preceding formulas permit consistency with the simu-

lation that generates the basic state when ek ¼ 1 (see

Section 4). For further consistency, the thermal eddy dif-

fusivities are given by Kh
h=v ¼ Km

h=v, so that the Prandtl

number is unity throughout the domain of the lin-

ear model.

2.4. Additional simplifications

Perturbations to radiative transfer and dissipative heating

are neglected in forthcoming sections of this paper. The

potential impact of radiation on the development of

instabilities has been examined to some extent by adding

Newtonian relaxation of the form

Sr
hn ¼ �hqn=sr (17)

to the perturbation of diabatic forcing in several sensi-

tivity tests. The dominant instabilities considered

herein normally have shorter time scales than a typical

12-h value of the radiative adjustment time sr.

Accordingly, Sr
hn is normally found to have negligible

consequence.

The perturbation to Sq in the mass continuity equation

is difficult to properly model without explicit moisture

equations. The present study simply lets

Sqn ! 0 (18)

under the provisional assumption that it is of minor con-

sequence to the main instabilities of a tropical cyclone.

Equation (18) reduces ~Sqn to the artificial damping term

activated near the upper and outer boundaries of the

domain of the dynamical system.

2.5. Boundary conditions

The linear model employs a standard set of boundary

conditions for a fluid in a rigid cylindrical enclosure. At

r¼ 0,
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un ¼ �ivndn1;
vn 1�dn1ð Þ þ orvndn1 ¼ 0;
wn 1�dn0ð Þ þ orwndn0 ¼ 0;
hqn 1�dn0ð Þ þ orhqndn0 ¼ 0;

(19)

in which dnm equals 1 for n¼m and is otherwise 0. At the

outer boundary radius rB, un¼ 0, orðvn=rÞ ¼ 0, and orFn ¼
0 for Fn 2 fwn; hqng. At the surface and upper boundary

(z¼ 0 and zB), wn¼ 0 and ozFn ¼ 0 for Fn 2 fun; vn; hqng.
Consistent boundary conditions for qn are implicit in the

linear model. Note that all constraints imposed on the

perturbation fields at r¼ rB and z¼ zB are incidental

when sponge damping is activated. Note further that the

free-slip conditions ðozun ¼ ozvn ¼ 0Þ at z¼ 0 are replaced

with the surface drag parameterisation when Cd > 0. As a

final remark, the velocity fields of the basic state are

assumed to satisfy ub ¼ vb ¼ 0 at r¼ 0, ub¼ 0 at r¼ rB,

and wb¼ 0 at z¼ 0 and zB.

3. Instability modes

3.1. General theory

Let xn denote the state vector of the linearised system,

with each element representing the value of one of the

prognostic perturbation fields (un, vn, wn, hqn, or qn) at a

specific point in the r-z plane. In practice, each field Fn is

represented on a grid with NrF points in r and NzF points

in z. It follows that xn has a total of Nt �
P

F NrFNzF ele-

ments, in which the sum is over all 5 prognostic variables.

The preceding discretization transforms the continuous

linear model [Equations (3a)–(3e)] into a system of the

form

dxn

dt
¼ Mnxn; (20)

in which Mn is an Nt 
Nt non-Hermitian matrix of com-

plex coefficients.

The eigenmodes of the discretized linear system are sol-

utions to Equation (20) of the form

xn ¼ akXke
kt; (21)

in which Xk is the time-independent complex eigenvector

associated with the complex eigenfrequency k � kR þ ikI ,

and ak is an arbitrary complex amplitude. Substituting

Equation (21) into Equation (20) and switching the left

and right sides yields

MnXk ¼ kXk: (22)

Under ordinary circumstances, there are Nt independent

solutions to Equation (22) composing a complete eigen-

basis of the wavenumber-n linear system. It follows that

the solution to a generic initial value problem can be

written

xn ¼
X

k

akXke
kt; (23a)

in which

ak � hXL
k ;xn t ¼ 0ð Þi
hXL

k ;Xki
; (23b)

hy; xi �
X

Nt

i¼1

y�ixi; and (23c)

M†
nX

L
k � k�XL

k : (23d)

The symbol xi (y�i) in Equation (23c) denotes the ith

element of x (y�). The symbol M†
n in Equation (23d) rep-

resents the conjugate transpose of the matrix Mn. The

eigenmode associated with the greatest positive value of

kR will eventually dominate the right-hand side of

Equation (23a). Should there exist no eigenmodes with

positive kR, transient or sustained algebraic growth of

the perturbation may still occur (Smith and Rosenbluth,

1990; Nolan and Farrell, 1999; Antkowiak and

Brancher, 2004). Examination of such nonexponential

growth in the linear model at hand is deferred to

future study.

So as not to be lost in abstraction, it is worth remark-

ing that the physical perturbation corresponding to a

complex eigenmode is usually given by 2R½akXke
inuþkt�.

In other words, if akXk � ðunk; vnk;wnk; hnk;qnkÞ, the phys-

ical perturbation has the form u0 ¼ 2junkðr; zÞj cos fnuþ
kI tþ arg½unkðr; zÞ�gekRt and likewise for all other fields.

The coefficient 2 is replaced by 1 if n¼ 0 and both k and

akXk are real.

Suppose that the system is initially perturbed with a

single asymmetric (n 6¼ 0) eigenmode. Consideration of

Equation (4) suggests that the discretized symmetric com-

ponent of the disturbance will be governed by

dx0

dt
�M0x0 ¼ bke

2kRt; (24a)

in which bk / jakj2 is the time-independent part of a forc-

ing vector obtained by evaluating the right-hand side of

Equation (5a) with the eigenmode solution xm ¼ akXke
kt

for m¼ n and xm ¼ 0 otherwise. In addition to neglecting

NLSF and BF , the foregoing simplification of Equation

(4) assumes that all asymmetric modes initialised to zero

remain subdominant over the time period of interest.

Equation (24a) is readily solved by the method of

Laplace transforms and the calculus of residues after

expanding both sides in the eigenvectors fXmg of M0. The

result for x0 ¼ 0 at t¼ 0 is given below:

x0 ¼
X

m

am

m� 2kR
Xme

mt þ
X

m

am

2kR � m
Xme

2kRt; (24b)

in which
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am �
hXL

m ; bki
hXL

m ;Xmi
: (24c)

The second term on the right-hand side of Equation

(24b) will eventually dominate if mR < 2kR for all eigenfre-

quencies fmg of the linear symmetric system. The second

term is merely the particular solution to Equation (24a)

given by x0 ¼ Xpe
2kRt, in which

2kR �M0ð ÞXp ¼ bk: (24d)

The particular solution is considered herein to be the

intrinsic response of the mean vortex to an asymmetric

instability mode. It is reasonable to consider the intrinsic

response to be an essential part of the mode itself.

3.2. Computation of the main instability modes

Each fluid variable in the linearised model is discretized

on a rectangular grid in the r-z plane with nonuniform

spacing in both coordinates, as in earlier studies such as

NM02. Finer resolution generally exists near the surface

and within the core of the tropical cyclone. The discre-

tized representations of vn, hqn and qn share the same

grid. The representation of un (wn) is radially (vertically)

staggered with respect to vn. The basic state variables and

eddy diffusivities are defined on all of the staggered grids.

Boundary values are not explicitly stored but are incorpo-

rated into computations where necessary.

The following simple formulas are normally used for

finite differencing and linear interpolation of a generic

field Fn:

oFn

o‘

�

�

�

�

‘0
¼ Fþ

n �F�
n

d‘� þ d‘þ
; (25a)

Fn ‘0ð Þ ¼ d‘�Fþ
n þ d‘þF�

n

d‘� þ d‘þ
; (25b)

in which ‘ represents either r or z, ‘0 denotes ‘ at the evalu-

ation point, d‘6 is the distance from ‘0 to the nearest stag-

gered grid point in the positive (þ) or negative (�)

direction, and F6n is the value of Fn at ‘6 � ‘06d‘6. For

example, if ‘ represents r (z) and ‘0 is on the v-grid, then F6n
and ‘6 are on the u-grid (w-grid). Formulas for second-

order derivatives and bilinear interpolations are generally

obtained through repeated applications of Equations (25a)

and (25b). Implementation of more accurate discretization

techniques will be explored at a future time.

The computation of the complete eigenbasis of a finely-

structured tropical cyclone is usually too expensive to

achieve with confidence of correct results. Although Mn is

sparse and has a storage requirement proportional to Nt,

the eigenbasis fXkg has a storage requirement proportional

to N2
t . The consequent demand on memory becomes diffi-

cult to handle for grids comparable to those used in modern

tropical cyclone simulations. Furthermore, the time

required to compute a complete eigenbasis on a modern

simulation grid is excessive. Grids of lower resolution

should be avoided, because they are prone to introduce

spurious eigenmodes with dominant growth rates.

Moreover, grids of higher resolution are desirable to check

for convergence of the numerics.

The present study employs a less ambitious approach

that begins by extracting the dominant eigenmode from a

solution of the initial value problem. The discretized lin-

ear model [Equation (20)] is set up on a dense mesh [see

Section 5.1] and integrated forward in time with a 4th-

order Runge-Kutta algorithm. The initialisation involves

assigning small random values to the real and imaginary

parts of hqn at each grid point; all other fields contained

in xn are initialised to zero. It is provisionally assumed

that the preceding disturbance excites the main instability

modes of a tropical cyclone and eventually evolves into a

state dominated by the most unstable member of the

group. The real and imaginary parts of the eigenfre-

quency k of the most unstable eigenmode are readily

obtained from the late time series of a selected element of

xn. The right-hand eigenvector Xk is very well approxi-

mated by the late spatial structure of xn. The validity of

the mode is generally cross-checked against the output of

a standard sparse-matrix eigensolver (eigs) packed into

Scientific Python (SciPy). Validation is efficiently com-

pleted by searching exclusively for the eigenmode of Mn

with k closest to that obtained from the initial value

problem. The SciPy eigensolver is also used to find the

corresponding left-hand eigenvector XL
k . Because the

restricted searches are fast, they are usually repeated on a

grid with twice the original resolution (in both r and z) to

slightly improve the accuracy of presented results.

Suppose that the eigenfrequencies fkðaÞg are ordered

such that k
ð1Þ
R > k

ð2Þ
R >k

ð3Þ
R . . . In principle, if all eigenmo-

des with a<b are known, a minor variant of the fore-

going procedure can be repeated to obtain eigenmode b.

The variant involves filtering out all eigenmodes with

a< b from the initial condition of the state vector that is

integrated forward in time; that is, letting

xn t ¼ 0ð Þ ¼ Y�
X

a< b

hXL

k að Þ ;Yi
hXL

k að Þ ;Xk að Þi
Xk að Þ ; (26)

in which Y is an arbitrary vector. One may reasonably

assume that the time asymptotic solution of xn will be

dominated by the eigenmode labelled b. All eigenmodes

of interest can thus be found iteratively. Note that the

unfiltered initialisation vector Y need not be random after

the first iteration; the approach taken here is to let Y

equal the end-state of xn from the preceding time integra-

tion used to find the eigenmode labelled b�1.
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4. The basic state of a mature tropical cyclone

The primary basic state considered herein corresponds to

a mature tropical cyclone simulated with Cloud Model 1

(CM1-r19.4) in an energy-conserving axisymmetric

mode of operation [Bryan and Fritsch, 2002; Bryan and

Rotunno, 2009 (BR09)]. The model is configured with a

variant of the two-moment Morrison microphysics par-

ameterisation (Morrison et al., 2005, 2009), having grau-

pel as the large icy-hydrometeor category and a constant

cloud-droplet concentration of 100 cm–3. Radiative trans-

fer is not explicitly calculated, but potential temperature

(h) is relaxed toward its ambient value on a 12-h time

scale with a rate not to exceed 2K d–1 in magnitude. The

influence of subgrid-turbulence above the surface is repre-

sented by an anisotropic Smagorinsky-type scheme resem-

bling that described in BR09. The nominal mixing

lengths are given by CM1-formulas tailored for tropical

cyclones in an axisymmetric framework or on grids that

are deemed insufficiently dense for a standard large-eddy-

simulation scheme. The horizontal mixing length

increases from 100m to 1 km as the underlying surface

pressure decreases from 1015 to 900 hPa. The vertical

mixing length increases asymptotically to 100m with

increasing z. The resulting eddy diffusivities will be dis-

cussed in due course. Heating associated with frictional

dissipation is activated. Surface fluxes are parameterized

with bulk-aerodynamic formulas. The drag coefficient

conforms to Equation (13c) with Cd0 ¼ 0:001 and

Cd1 ¼ 0:0024, based roughly on the findings of Fairall

et al. (2003) and Donelan et al. (2004). The enthalpy

exchange coefficient is given by Ce ¼ 0:0012 based on

Drennan et al. (2007).

Fig. 1. Selected fields associated with the basic state. (a) The azimuthal velocity vb (colour), density potential temperature hqb (solid

black contours; K) and Exner function Pb (solid white contours). (b) A measure of gradient imbalance [Dgb defined by Eq. (27)]. (c) The

potential vorticity distribution. (d) The relative vertical vorticity distribution. (e) The radial vorticity (contours) and azimuthal vorticity

(colour) distributions. The solid yellow and dashed white curves in (b)–(e) correspond to the principal AM isoline, which is commonly

shown for spatial reference in the contour plots of this paper. Note that vbm is located where the radius of the isoline is minimised.
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The computational domain extends radially to rB ¼
1061:25 km and vertically to zB ¼ 29:5 km. Free-slip

boundary conditions are imposed at the upper and outer

boundaries, but they are largely incidental. Rayleigh

damping is activated above z¼ 25 km and within 100 km

of rB. Such damping not only minimises the reflection of

upward and outward propagating waves, but also pre-

vents the circulation of the tropical cyclone from expand-

ing to the outer wall. The spatial resolution is fairly

typical for modern tropical cyclone simulations. The

radial grid spacing is 250m for r � 87:5 km, and grad-

ually stretches to 10 km as r approaches the boundary

radius rB. The vertical grid spacing increases from 50 to

500m between the sea-surface and z¼ 5.5 km, whereupon

it remains uniform up to zB.

The mature tropical cyclone is generated with a stand-

ard spinup procedure on the oceanic f-plane. The model

is initialised with a surface-concentrated mesoscale cyc-

lone in gradient-wind and hydrostatic balance as in

NS14. The ambient atmosphere is initialised with the

Dunion (2011) moist tropical sounding. The sea-surface

temperature Ts is 27
�
C, and the Coriolis parameter f is

5
 10�5 s�1. After approximately 7 days of intensifica-

tion, the maximum azimuthal velocity of the tropical cyc-

lone remains steady over an extended period of time. The

basic state variables ðub; vb;wb; hqb; qb;Pb;vbÞ and princi-

pal eddy diffusivities ðKm
h;sm;K

m
v;smÞ appearing in the linear

model are obtained by averaging 25 consecutive hourly

snapshots starting 2 days into the aforementioned period

of steady intensity.

Figure 1a shows that the basic state of the tropical cyc-

lone exhibits typical warm-core baroclinic structure

throughout most (but not all) of the troposphere. The

absolute maximum azimuthal wind speed (vbm) of 84.9m

s�1 is located 36 km from the centre of the vortex and

nearly 1 km above the surface. The maximum azimuthal

wind speed of 61.2m s�1 at the lowest grid level

(z¼ 25m) is indicative of a category-4 hurricane. It is

worth remarking that the primary circulation does not

robustly satisfy gradient balance (Fig. 1b). The fractional

error defined by

Dgb � v2b=rþ fvb�cpdhqborPb

cpdhqborPb

; (27)

is most pronounced (66%) in the vicinity of vbm.

Figure 1c shows that throughout the lower and middle

troposphere, the potential vorticity distribution is gener-

ally peaked off centre within the area bounded by the

principal angular momentum (AM � rvþ fr2=2) isoline.

Here, the potential vorticity is defined by PV � fa � rh=q,

in which fa � f ẑ þr
 v is the absolute vorticity vector.

The principal AM isoline is defined so as to pass through

vbm. By analogy to the behaviour of dry vortices in gradi-

ent and hydrostatic balance, the radially nonmonotonic

variation of PV suggests that the tropical cyclone is sus-

ceptible to vortex Rossby wave instability mechanisms

(see Montgomery and Shapiro, 1995). The pocket of nega-

tive PV extending up to 6 km above sea level slightly out-

ward of the principal AM isoline suggests that (neglecting

viscous dissipation) the vortex may also be susceptible to

inertial instability mechanisms in the lower-to-middle

tropospheric region of its core (see Eliassen, 1951).

Figure 1d demonstrates that the distribution of relative

vertical vorticity (fzb) in the lower and middle tropo-

sphere basically resembles that of PV. The most notable

deviation is seen where the PV distribution is thermally

enhanced at the top of the boundary layer in the eye of

the storm. Note that the primary circulation also pos-

sesses appreciable radial vorticity associated with its verti-

cal shear (Fig. 1e). Evidently, the radial vorticity achieves

magnitudes greater than fzb near the surface.
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Fig. 2. The secondary circulation of the basic state. (a)

Magnitude (colour) and streamlines of the velocity field (ub, wb)

in the r-z plane. The streamlines are shaded white or black if the

magnitude of the local velocity vector is respectively less than or

greater than 5 m s�1. The dashed black curve is the principal AM

isoline. (b) Magnified view of the secondary circulation in (a) in

the lower troposphere.
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Figure 2 illustrates the secondary circulation of the

basic state. The maximum wind speed (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2b þ w2
b

q

¼ 31 m

s�1) of the surface inflow is relatively strong but not

much greater than typical observations pertaining to

major hurricanes (Zhang et al., 2011). The inflow inten-

sity is greatest slightly outward of the corner flow region,

where the streamlines rapidly turn upward into the eye-

wall cloud. Note that the azimuthal vorticity associated

with the secondary circulation in the vicinity of the cor-

ner flow (Fig. 1e) is comparable in magnitude to the peak

vertical and radial vorticities associated with the primary

circulation. Note also that the streamline associated with

the deep updraft and outflow passing through the loca-

tion of vbm is virtually congruent with the principal AM

isoline. Such a condition is to be expected for a nearly

equilibrated axisymmetric vortex. As usual, the secondary

circulation in the eye is dominated by weak subsidence.

The streamlines are somewhat less coherent at larger radii

between the surface inflow and upper tropospheric out-

flow. Concerns that such incoherence may indicate a sig-

nificant departure from equilibrium are alleviated by

noting that the regional wind speeds are minute com-

pared to peak values.

Figure 3 illustrates the moist-thermodynamic structure

of the basic state. Contours of saturated pseudoadiabatic

entropy (sp�) are shown superimposed on the relative

humidity distribution. Relative humidity is calculated

with respect to liquid water if the absolute temperature

satisfies T >T0 � 273:15 K, but is otherwise calculated

with respect to ice. It should come as no surprise that the

eyewall and outflow regions are predominantly saturated

or slightly supersaturated. The dashed black-and-white

contours correspond to sp� for liquid-only condensate

(Bryan, 2008). It is seen that the angular momentum and

liquid-only sp� contours passing through the location of

vbm are congruent as they ascend along the eyewall up to

the freezing level. At higher altitudes, the angular momen-

tum contour appears to stay closer to the dotted-blue sp�
contour calculated under the assumption of ice-only con-

densate (Hakim, 2011). The preceding observations sug-

gest that the eyewall updraft region is in a state of

approximate slantwise convective neutrality with respect

to appropriately defined pseudoadiabatic thermodynam-

ics. Such a state of affairs is consistent with the classical

steady state theory expounded by Emanuel (1986).

The cloud structure of the basic state is important to

the linear model insofar as it determines the proportional-

ity between S0
h and w0 in the local parameterisation of

diabatic processes given by Equation (9b). When the

aforementioned parameterisation is activated, there are

two terms proportional to wn on the right-hand side of

Equation (3d) that may be unified as follows:

� ohqb

oz
wn þ Shn ! � hqb

g
~N

2
wn; (28a)

in which

~N
2 � 1� ev~vbð Þ g

hqb

ohqb

oz
: (28b)

A typical value of ev~vb between zero and one reduces ~N
2

and thereby diminishes the negative/positive Eulerian

change in hq associated with a perturbative updraft/down-

draft. While not precisely the conventionally defined

moist static stability, ~N
2
has a similar significance. Figure

4 compares the distribution of ~N
2
in the approximate dry

limit (ev ¼ 0) to the moist variant with ev ¼ 1. It is seen

that incorporating the cloud coverage of the basic state

reduces ~N
2
up to an order of magnitude in the eyewall

updraft. Significant reduction is also found over much of

the depicted area within and underneath the upper out-

flow of the tropical cyclone. By contrast, ~N
2

exhibits

minimal change in the virtually cloud-free region of the

eye situated above the boundary layer.

As explained earlier, the eddy diffusivities used by the

linear model are linked to those regulating the basic state.

Figure 5 shows the eddy diffusivities that are defined by

Equation (16) with ek ¼ 1. Choosing ek ¼ 1 lets Km
h=v ¼

Km
h=v;sm throughout much of the inner core. The maximum

values are somewhat large but have orders of magnitude

consistent with those inferred from observations (Zhang

and Montgomery, 2012; Rogers et al., 2013). To reduce the

potential for spurious or uninteresting small-scale instabil-

ities where the eddy diffusivities in the CM1 simulation are

<20

40
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Fig. 3. The moist-thermodynamic structure of the basic state,

illustrated primarily by the distributions of relative humidity

(shading) and sp� for liquid-only condensate (dashed black-and-

white contours; J kg�1 K–1). The dotted blue curve is a selected

contour of sp� computed under the assumption of ice-only

condensate. The red curve is the principal AM isoline. The cyan

curve traces the freezing/melting level across the vortex.
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exceptionally small, the lower limits Km
h;min ¼ 200 m2 s�1

and Km
v;min ¼ 20 m2 s�1 are imposed on the distributions.

5. Linear instability analysis of a mature
tropical cyclone

The present section of this article examines the instability

of the tropical cyclone described in Section 4. The pri-

mary objective is to elucidate the dependence of the dom-

inant instability mode on the parameterisation of the

perturbation of diabatic forcing. Sensitivity to the param-

eterisation of small-scale turbulence is also addressed.

The analysis concludes with an assessment of the rele-

vance of 2D instability theory.

A few preliminary remarks are warranted. Henceforth,

the meaning of F 0 is subtly changed from the exact differ-

ence F�Fb to the first-order perturbation of the generic

field F obtained from the linear model [Equations

(3a)–(3e); Equation (20)]. The new meaning of F 0 applies

to both figures and text. Moreover, the amplitudes of dis-

played instability modes are invariably chosen to render

the maximum value of v0 (2jvnj) equal to one-tenth of vbm.

The preceding convention amounts to letting

jakj ¼ 0:1vbm=j2Vke
kRts j, in which Vk is the azimuthal vel-

ocity element of Xk with the greatest magnitude, and ts is

the time of the snapshot. In some cases, the second-order

change to the mean vortex (x0) that will have attended

the creation of such a state from a weaker disturbance by

way of Equation (24a) is found to have winds moderately

stronger than v0 in certain areas of the flow. Such a result

indicates that the arbitrarily chosen mode amplitude is

slightly beyond the threshold for the quantitative accur-

acy of Equation (24a). Choosing a smaller amplitude for

rigorous compliance with the assumptions of our theoret-

ical framework would not change forthcoming depictions

of the spatial structure of x0 or the dependent kinetic

energy perturbation dKE defined later.

Finally, although the physics parameterisations are var-

ied, the domain size and peripheral sponge-layer of the linear

model used to find the instability modes do not change from

one calculation to the next. As in the CM1 simulation used

to generate the basic state, the invariant domain of the linear

model extends radially to rB ¼ 1061:25 km and vertically

to zB ¼ 29:5 km. The sponge damping coefficient is given

by c ¼ f2þ tanh½ðr�rcÞ=drc� þ tanh½ðz�zcÞ=dzc�g=2sc, in

which rc ¼ 961:25 km, drc ¼ zc ¼ 25 km, dzc ¼ 0:75 km

and sc ¼ 300 s. Further computational details are provided

in due course.

5.1. Sensitivity to the parameterisation of

diabatic forcing

The dominant instability of the tropical cyclone under

consideration is sensitive to the degree of diabatic forcing

allowed in the linear model. The sensitivity is illustrated

below by adjusting ev in Equation (9b) for Shn while

keeping turbulent transport consistently parameterized

with ek ¼ 1. A value of the diabatic forcing parameter

(ev) in the neighbourhood of unity has some basic cred-

ibility (Section 2.2) but may not coincide with the best

representation of reality. A smaller value between 0 and 1

seems plausible if, say, the eyewall were to become non-

uniformly saturated around an azimuthal circuit. Values

of ev very close to 0 or appreciably greater than 1 seem

difficult to justify on physical grounds, but are of theoret-

ical interest.
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The present method for computing the primary

instability modes of the vortex follows the general pro-

cedure outlined in Section 3.2. The most unstable eigen-

mode (MUM) for a given ev and azimuthal wavenumber

n is provisionally equated to that which dominates a per-

turbation within 1 day of initialising the linear model

[Equations (3a)–(3e)] with random noise in h0q. The abso-

lute MUM (AMUM) is defined to be that which pos-

sesses the largest growth rate for all n in the closed

interval between 0 and 8. The time integration is con-

ducted on a grid (set of staggered grids) with double the

resolution of the CM1 simulation that generated the basic

state. The aforementioned grid is denoted G2 and holds

Nt ¼ 733; 184 values of the prognostic perturbation fields.

All MUMs are confirmed to be solutions of the eigenpro-

blem on a second grid (G4) with quadruple the resolution

of the CM1 grid (G1). All eigenfrequencies and eigen-

functions shown in Section 5 of this paper are taken from

the G4 solutions. For those interested, Appendix C dis-

cusses convergence of numerical results with increas-

ing resolution.

Extensive computations reveal that the AMUM corre-

sponds to n¼ 2 for ev 2 f0; 0:5; 1g. Despite its common

dominance, the n¼ 2 MUM varies considerably with the

allowed degree of diabatic forcing measured by ev. Figure

6 shows the variation of the complex eigenfrequency k.

The growth rate (kR) gradually decays with increasing ev

until apparently vanishing at 0.9. By contrast, the oscilla-

tion frequency (kI) changes little. The preceding behav-

iour is similar to that reported by SM07 for the n¼ 3

MUM of a cloudy vortex resembling a category-3 hurri-

cane with no mean secondary circulation. On the other

hand, increasing ev from 0.9 to 1 introduces a new mode

of instability that oscillates slower and grows faster than

any of its predecessors. Further amplification of ev to 1.1

substantially increases both kR and jkI j. One might rea-

sonably speculate that high sensitivity to variation of ev

in the neighbourhood of unity is related to approximate

slantwise convective neutrality with respect to pseudoa-

diabatic thermodynamics in the eyewall (Fig. 3).

Figure 7 shows the basic inner-core structure of the

n¼ 2 MUM for values of the diabatic forcing parameter

below (ev ¼ 0:5) and above (ev ¼ 1) the apparent stability

point. The left column shows selected views of the asym-

metric velocity perturbation. The middle column illus-

trates the thermal structure of each mode in terms of h0q
and P0. The right column shows the distributions of dia-

batic forcing. The velocity perturbations of the two

modes are qualitatively similar near the surface but

clearly differ aloft. Whereas the pressure perturbations

seem only subtly distinct, disparities in h0q are pro-

nounced. Marked distinctions in the perturbations of the

secondary circulation and potential temperature in the

middle and upper troposphere coincide with substantial

differences in S0
h. Not only does S0

h have a greater ampli-

tude in the MUM corresponding to ev ¼ 1, but the two

spatial patterns diverge considerably above 4 km in the

eyewall updraft region of the vortex.

Figure 8 elaborates on the inner-core structure of each

MUM. The left column shows the intensity of the vertical

vorticity perturbation f0z, as measured by its maximum

solid contours: K (m2 s 1)

Fig. 5. Horizontal (colour) and vertical (solid contours)

momentum eddy diffusivities in the middle-to-lower tropospheric

core of the simulated tropical cyclone. The dashed curve is the

principal AM isoline.
Fig. 6. Complex eigenfrequency k of the n¼ 2 MUM of the

simulated tropical cyclone of Section 4 versus the diabatic forcing

parameter ev. The real (blue) and imaginary (red) parts of the

eigenfrequency are normalised to their respective values

(kR� ¼ 7:89
 10�5 s�1 and kI� ¼ �1:30
 10�3 s�1) obtained for

ev ¼ 1. The absence of a discernible instability precludes the

plotting of data for ev ¼ 0:9. Note that the positive ratio kI=kI�
represents a nondimensional magnitude of the oscillation

frequency; the actual value of kI is negative. All results depicted

here and in Figs. 7–12 are for systems in which turbulent

transport is parameterized with ek ¼ 1.
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value over u. In each MUM, the intensity peaks of f0z
roughly coincide with a subset of regions where the radial

gradient of basic state potential vorticity is locally

enhanced (see Fig. 1c). The amplitudes of the peaks differ

considerably between the two modes, especially in the

middle-to-upper troposphere. The middle column depicts

the maximum magnitude of the horizontal vorticity per-

turbation f0h along an azimuthal circuit. In both MUMs,

jf0hj broadly exceeds the vertical vorticity perturbation. As

before, differences between the two MUMs are mainly

seen in the amplitudes of various peaks of the plotted

field. The right column shows the circuit-maximum of the

horizontal divergence, defined by r0 � ½orðru0Þ þ ouv
0�=r.

In both MUMs, r0 is broadly smaller than the vertical

vorticity perturbation near the surface, but is far from

negligible. In the middle tropospheric region of the eye-

wall cloud, the amplitudes of r0 and f0z are comparable to

each other. The MUM corresponding to ev ¼ 1 is distin-

guished by having a middle tropospheric peak of r0 that
slightly exceeds the inner core maximum of f0z.

Figure 9 illustrates for each MUM how the azimuthal

phase velocity minus the local angular velocity of the pri-

mary circulation (cu � �kI=n � Xb) varies over the core

of the tropical cyclone. The dashed green curves repre-

senting the zero contours of cu correspond to where the

mode corotates with the mean flow. Negative/positive val-

ues of cu indicate locally retrograde/prograde wave

propagation in the azimuthal direction. The superimposed

vertical vorticity distribution (solid black contours) of

the MUM corresponding to ev ¼ 1 is concentrated in the

region of retrograde propagation. On the other hand, the

MUM with weaker diabatic forcing has a middle-to-

upper tropospheric swath of intense f0z that extends well

into the region of prograde propagation. In both cases,

the magnitude of the intrinsic frequency of the mode

(ncu) is less than the nominal inertial frequency (
ffiffiffiffiffiffiffiffiffiffi

gbnb
p

)

where the vorticity anomalies are peaked. While notable,

such local slowness does not necessarily indicate that

traditional asymmetric balance theory (Shapiro and

Montgomery, 1993) would provide an accurate descrip-

tion of the wave dynamics. Bear in mind that the issue is

complicated by the moist secondary circulation and the

vertical shear in vb. Moreover, even small deviations from

balanced dynamics are potentially important to the

instability mechanism.

Moving outward to where r exceeds 100 km, the

MUMs acquire intrinsic frequencies that broadly satisfy

gbnb � ðncuÞ2 � ~N
2
(not shown). The preceding condi-

tion suggests that the intrinsic frequency lies comfortably

within the regime of inertia-gravity waves. Consistent

with such waves, one finds that jfznj � jrnj beyond the

core of the vortex, barring sporadic pockets of violation.

The right panels in Fig. 10 convey the basic structure of

the outer waves as represented by w0 in the two MUMs

under consideration. Although both modes are normal-

ised to have the same inner core maximum value of v0,
the outer waves have appreciably stronger vertical veloc-

ities for the case in which ev ¼ 0:5. Whether such a dis-

tinction is relevant to the mechanism of modal growth is

a question left for future analysis. In theory, seemingly

weak inertia-gravity wave radiation may contribute sig-

nificantly to the prevailing low-n instability of an intense

tropical cyclone (Menelaou et al., 2016; Schecter and

Menelaou, 2017). However, the author is unaware of any

existing method for assessing the importance of inertia-
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Fig. 9. (a) Intrinsic frequency ncu of the n¼ 2 MUM

normalised to the nominal inertial frequency
ffiffiffiffiffiffiffiffiffiffi

gbnb
p

for the case

in which ev ¼ 0:5. The dashed green contours show where the

intrinsic frequency is zero. The white area marked with an

asterisk coincides with a region where gbnb < 0 and the

normalisation frequency is imaginary. The solid black contours of

the amplitude (maximum over u) of f
0
z are shown for reference.

(b) As in (a) but for ev ¼ 1.
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gravity wave emission to the growth of a multifaceted

instability mode of a convective vortex with the geomet-

rical complexity of a realistic hurricane.

Figures 11a,d show changes to the mean flow that

attend the growth of each instability mode from an

asymptotically small disturbance. The symmetric compo-

nent of the perturbation is given by x0 ¼ Xpe
2kRts , with

Xp given by Equation (24d). The growth of either

instability mode modestly reduces the u-averaged azi-

muthal wind speed at the initial location of maximal

intensity while accelerating the cyclonic rotation of the

inner eye, at least in the lower troposphere. The middle

tropospheric patterns of symmetric azimuthal acceleration

and deceleration are clearly dissimilar inward of the prin-

cipal AM isoline. Moreover, the MUM affected by

weaker diabatic forcing (ev ¼ 0:5) induces greater positive

and negative azimuthal accelerations of the mean flow in

the upper-outer part of the eyewall updraft. The perturb-

ation of the symmetric secondary circulation ðu0;w0) that

emerges during the growth of either instability mode

notably includes a band of eddies along the eyewall

updraft. The bands associated with the two MUMs are

distinguishable in part by having opposite rotational ten-

dencies at various locations.

Figures 11b,e show the perturbation of kinetic energy

density dKE associated with the growth of each MUM.

To second-order in the asymmetric mode amplitude,

dKE � q

2
u2 þ v2 þ w2ð Þ� qb

2
u2b þ v2b þ w2

b

� 


¼ qb ubu0 þ vbv0 þ wbw0ð Þ þ qb junj2 þ jvnj2 þ jwnj2
� 


þ q0
2

u2b þ v2b þ w2
b

� 


þ 2R ubun þ vbvn þ wbwnð Þq�n
� �

;

(29)

in which the overline denotes an azimuthal average. It

has been verified that the bottom line in the second

equality involving the density perturbation is negligible

(not shown). Moreover, it is seen that the distribution of

dKE — here divided by KEb � qbðu2b þ v2b þ w2
bÞ=2 —is

similar to that of v0 regardless of whether ev is 0.5 or 1.
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Fig. 10. (a, b) Slices of the vertical velocity perturbation of the n¼ 2 MUM in (a) the inner core and (b) the outer region of the vortex

for the case in which ev ¼ 0:5. The dotted black contours in (a) correspond to w0 ¼ 0. The solid (dashed) white contours in (b)

correspond to w0 ¼ 7 (�7) cm s�1. Note that the units of the colorbar labels differ between (a) and (b). (c, d) As in (a, b) but for

ev ¼ 1. In all plots, the dashed black contour corresponds to the principal AM isoline. The azimuth of the top (bottom) row of the

figure is equivalent to that of Fig. 7a (7d).
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The contribution to dKE from the asymmetric fields is

well approximated by the following positive definite meas-

ure of local wave intensity: KEn � qbðjunj2 þ jvnj2 þ jwnj2Þ.
Figures 11c,f show the spatial distributions of KEn for the

two MUMs under present consideration. Both MUMs

have their greatest values of KEn near the surface, inward

of the radius of maximum wind, in the vicinity of where the

vertical vorticity of the basic state (fzb) has a pronounced

maximum. The middle-to-upper tropospheric peaks of KEn

are found in distinct locations. Above the surface perturb-

ation, the distribution of KEn corresponding to ev ¼ 0:5

has relatively strong peaks outward of the central part of

the eyewall. The instability mode that results from allowing

greater diabatic forcing (ev ¼ 1) has its principal middle

tropospheric maximum of KEn well within the eye-

wall updraft.

Differences between the MUMs are also evident in

various terms that formally contribute to the growth rate

of KEn. Equations (3a)–(3c) imply that

oKEn

ot
¼ PCþ SCþ BNCþAFXþ PFXþ TRB; (30a)

in which

PC � �2qbr
oXb

or
R unv

�
n

� �

�2qb
ovb

oz
R wnv

�
n

� �

; (30b)

SC � �2qb
oub

or
junj2�2qb

ub

r
jvnj2�2qb

owb

oz
jwnj2

�2qb
oub

oz
þ owb

or

� �

R unw
�
n½ �;

(30c)

BNC � 2qb~g

hqba
R wnh

�
qn

� ��2cpdqb
oPb

or
R unh

�
qn

� �

; (30d)

AFX � � 1

r

o rubKEnð Þ
or

� o wbKEnð Þ
oz

þKEn

qb

1

r

o rqbubð Þ
or

þ o qbwbð Þ
oz

� �

;

(30e)

PFX � � 2cpd

r

o rqbhqbR un �P
�
n

h in o

or
�2cpd

o qbhqbR wn
�P

�
n

h in o

oz

þ2cpdR
1

r

o rqbhqbun
� 	

or
þ inqbhqbvn

r
þ
o qbhqbwn

� 	

oz

� �

�P
�
n

� �

;

(30f)

TRB � 2qbR un ~D
�
un þ vn ~D

�
vn þ wn

~D
�
wn

h i

: (30g)

The term labelled PC combines tendencies proportional

to the radial and vertical shear of the primary circulation

Fig. 11. (a) The symmetric velocity perturbation that attends the growth of the n¼ 2 MUM for the case in which ev ¼ 0:5. Colours

depict v0 whereas vectors depict (u0, w0). (b) The perturbation of kinetic energy density associated with the n¼ 2 MUM and the

attendant symmetric modification of the vortex for the case in which ev ¼ 0:5. The perturbation is expressed as a positive or negative

percentage of the local kinetic energy density of the basic state. The dotted black contours correspond to dKE ¼ 0. (c) The distribution

of KEn associated with the n¼ 2 MUM for the case in which ev ¼ 0:5. The white and black contours correspond to

KEn ¼ ½0:6; 3:2; 6:3; 13; 19� J m�3. (d)–(f) As in (a)–(c) but for ev ¼ 1. The yellow or red curve in each plot is the principal AM isoline.

The thick black or blue line drawn from the location of vbm to the surface [in all plots but (b) and (e)] shows where vb is maximised with

respect to variation of r in the boundary layer. The thin black curves in (a) and (d) trace the edges of the unperturbed eyewall updraft,

where wb is 2.5% of its maximum positive value.

INSTABILITIES OF TROPICAL CYCLONES 17



of the basic state. SC combines tendencies proportional

to ub and the spatial derivatives of the velocity fields of

the secondary circulation. BNC is linked to the vertical

and radial buoyancy accelerations. AFX primarily repre-

sents the convergence of the advective flux of KEn. The

included correction is attributable to the small but non-

zero divergence of the momentum density of the basic

state. PFX primarily represents the convergence of the

flux vector associated with forcing by the perturbation of

the pressure-gradient. The included correction is attribut-

able to the small but nonzero divergence of the approxi-

mate momentum perturbation weighted by hqb. TRB is

associated with turbulent momentum transport and (to a

lesser extent) sponge-damping near the upper and outer

edges of the computational domain. It is worth pointing

out that substantial cancellations of the tendency terms

often result in a local value of otKEn ¼ 2kRKEn that is

much smaller than its individual parts.

Figure 12 illustrates how the value of the diabatic forc-

ing parameter (ev) affects the volume-integrals of the KEn

tendency terms pertaining to the n¼ 2 MUM of the trop-

ical cyclone. The volume integrals are over the entire

domain of the linear model. The results are similar for all

ev � 0:75. The integral of PC provides the greatest posi-

tive contribution to the sum. The component of PC asso-

ciated with the radial shear of the basic state is

dominant. The integral of SC is smaller than that of PC,

but often greater than the integral of all terms combined.

The integrals of both BNC and TRB are negative and

substantial. On the other hand, the integrals of AFX,

PFX and their displayed sum are negligible. The budget

corresponding to ev ¼ 1 has several distinctive features.

The difference between the PC and SC integrals is appre-

ciably reduced. Moreover, the BNC integral is positive.

Of lesser significance, the combined integral of AFX and

PFX is discernibly negative owing mostly to the correct-

ive component of PFX. Increasing ev to 1.1 moves the

strongest peaks of the asymmetric kinetic energy density

from the surface to the middle troposphere (not shown).

The attendant structural change coincides with notable

modifications to the global KEn-budget. For example, the

vertical shear component of the PC integral becomes

dominant. Moreover, the integral of BNC becomes nearly

equal to that of PC.

5.2. Sensitivity to the parameterisation of

turbulent transport

The MUM associated with arbitrary n generally varies

with the parameterisation of small-scale turbulence.

Sensitivity to the intensity of turbulent transport is illus-

trated herein by reducing the value of ek defined in

Section 2.3. The minimum value of ek to be considered

will be 0.0625, which is slightly below the limit of 0.07

(0.08) that guarantees Km
h (Km

v ) will uniformly equal the

value specified for Km
h;min (Km

v;min) in Section 4.

Figure 13 shows how reducing ek affects the complex

eigenfrequencies of the MUM and the second most

unstable eigenmode (SMUM) of linear systems with n¼ 2

and ev 2 f0:5; 1g. Results are shown for ek ¼ 1, 0.25 and

0.0625. As before, the MUM is provisionally equated to the

prevailing instability mode that emerges during a time inte-

gration of the linear model initialised with a random distri-

bution of h0q on G2. The SMUM is provisionally equated to

the prevailing instability mode of a continued integration

that filters out the MUM [see Equation (26)]. Both modes

are verified to solve the eigenproblem on G4. The displayed

data are obtained from the G4 eigensolutions.

Consider first the group of linear systems that allow a

medium degree of diabatic forcing (ev ¼ 0:5). Section 5.1

thoroughly described the dominant MUM when ek ¼ 1.

The corresponding SMUM has a lower oscillation fre-

quency and is structurally distinct in having KEn concen-

trated in the middle troposphere (not shown). Reducing

Fig. 12. Domain integrals of the individual contributions to otKEn [Equations (30b)–(30g)] and their sum for the n¼ 2 MUM with

(left to right) ev ¼ 0 to 1.1. The value of each integral is normalised to that of otKEn. The contributions from AFX and PFX are

combined into APFX. The PC contribution is decomposed into the radial shear component proportional to orXb (r, dark red) and the

vertical shear component proportional to ozvb (v, light red). The TRB contribution is decomposed into the primary part attributable to

turbulent dissipation (dark cyan) and the much smaller part attributable to sponge damping (light cyan cap).
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ek introduces a faster instability that overtakes both of

the aforementioned eigenmodes. The greater growth rate

(kR) of the new MUM coincides with a greater oscillation

frequency (jkI j). The new MUM is also structurally dis-

tinct in having KEn largely confined to a shallow layer

near the surface (Fig. 14a). Moreover, the global KEn

budget is distinguished from that of the original MUM

by having a greater vertical shear component of PC, and

a minimal contribution from SC (Fig. 14b).

Consider next the set of linear systems that allow rela-

tively strong diabatic forcing (ev ¼ 1). As before, the

reader may consult Section 5.1 for a thorough description

of the dominant MUM when ek ¼ 1. The corresponding

SMUM is similar to that of the equally diffusive system

with ev ¼ 0:5. Reducing ek to 0.25 modestly accelerates

the instability associated with the original MUM and

leads to the appearance of a new SMUM with nearly the

same growth rate. Reducing ek to 0.0625 switches the

ordering of the preceding instability modes without

changing their top-tier status. The new mode is distin-

guished by having a greater oscillation frequency and a

dissimilar distribution of KEn above the boundary layer

(Fig. 14c). Moreover, the global KEn budget of the new

mode is distinguished by having a greater vertical shear

component of PC, and a negative contribution from

BNC (Fig. 14d).

It is worth remarking that decreasing the eddy diffusiv-

ity often magnifies the importance of higher wavenumber

MUMs. For example, reducing ek to 0.25 in a system

with ev ¼ 1 allows an n¼ 3 MUM (Figs. 14e,f) to chal-

lenge its n¼ 2 counterpart for dominance among instabil-

ity modes with substantial KEn near the surface. While

the former oscillates approximately 1.6 times faster than

the latter, both MUMs have growth rates of 1:1

10�4 s�1.

5.3. Relationship to 2D instability theory

It is common practice to explain the instability of the pri-

mary circulation of a tropical cyclone in the context of a

two-dimensional nondivergent barotropic model (see

Appendix D). The foregoing analysis casts doubt on the

general adequacy of such an approach. That is to say, the

preceding results suggest that the three-dimensionality of

the tropical cyclone under present consideration has a

major impact on the prevailing mode of instability. The

evidence includes MUMs with substantial horizontal vor-

ticity and divergence. The evidence also includes major

contributions from SC and/or the vertical shear compo-

nent of PC to the volume integrated time-derivative of

asymmetric kinetic energy (KEn).

Further insight is gained by directly comparing 2D and

3D instability theory. The 2D analysis requires reduction

of the basic state to a circular shear-flow characterised by

a 1D vertical vorticity profile fbðrÞ. Because the asym-

metric kinetic energy density of the instability usually has

greatest amplitude in the lower troposphere, fb will be

extracted from the qb-weighted vertical average of fzbðr; zÞ
(Fig. 1d) between the sea-surface and z¼ 2 km. The kine-

matic viscosity K2d will be varied between 0 and

4000m2s–1. The upper limit is roughly 1.4 times the peak

value of Km
h in the 3D model when ek ¼ 1 (Fig. 5).

The nonmonotonic radial variation of fb facilitates a

variety of algebraic and exponential instabilities. An alge-

braic instability is expected to dominate the n¼ 1 compo-

nent of an arbitrary disturbance (Smith and Rosenbluth,

1990). The exponentially growing eigenmodes associated

with greater azimuthal wavenumbers are readily obtained

from a complete numerical solution to the eigenproblem

on a stretched radial grid comparable to that of G2. For

Fig. 13. Variation of the complex eigenfrequency k of the n¼ 2

MUM and SMUMwith the small-scale turbulence parameter ek for

systems with (top) ev ¼ 0:5 and (bottom) ev ¼ 1. The real (blue)

and imaginary (red) parts of each eigenfrequency are normalised

to their respective values (kR� ¼ 7:89
 10�5 s�1 and kI� ¼
�1:30
 10�3 s�1) obtained for theMUMwhen ev ¼ ek ¼ 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 14. (a) Spatial distribution of otKEn ¼ 2kRKEn for the n¼ 2 MUM with ev ¼ 0:5 and ek ¼ 0:0625. The white and black

contours correspond to otKEn ¼ ½0:1; 0:5; 1:0; 2:0; 4:0� 10�3 W m�3. (b) Domain integrals of the individual contributions to otKEn for

the n¼ 2 MUM with ev ¼ 0:5 and ek ¼ 0:0625. (c, d) As in (a, b) but for ev ¼ 1 and ek ¼ 0:0625. (e, f) As in (a, b) but for the n¼ 3

MUM with ev ¼ 1 and ek ¼ 0:25. The red curves in (a, c, e) correspond to the principal AM isoline; the dashed green curves show

where cu ¼ 0; the blue lines show where vb is maximised with respect to variation of r in the boundary layer. The plots in (b, d, f) are

completely analogous to those in Fig. 12.
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K2d ¼ 0, the AMUM corresponds to n¼ 3, but all

MUMs with 2 � n � 5 have growth rates within 8% of

the maximum (Fig. 15a). Increasing K2d toward 4000m2

s�1 diminishes the growth rate of each MUM with

greater effect at larger n; ultimately, the exponential insta-

bilities are confined to azimuthal wavenumbers 2 and 3.

The preservation of n¼ 3 dominance (or shared domin-

ance) with increasing viscosity appears to be at odds with

the 3D model. For ek ¼ 1 and ev 2 f0; 0:5; 1g, the wave-

number-3 instability modes of the 3D model were found

to be subdominant.

Figures 15b,c show how the complex eigenfrequencies

of the two most unstable n¼ 2 eigenmodes vary with K2d .

The two modes are distinguished by their virtually invari-

ant oscillation frequencies that differ roughly by a factor

of 2. Decreasing the viscosity from its maximal value is

seen to unleash the instability of the high-frequency mode,

such that it transitions from SMUM to MUM status as

K2d drops below 2500m2s–1. Despite the reordering of

growth rates, neither the low-frequency mode (Fig. 16a)

nor the high-frequency mode (Fig. 16b) radically changes

structure with variation of K2d over the interval under

consideration. Except for moderate radial smoothing of

the vorticity wavefunction, the unshown modifications

linked to greater viscosity are difficult to discern with a

casual glance.

To some extent, the low-frequency mode of the 2D sys-

tem that prevails under conditions of high viscosity

resembles the lower tropospheric section of a typical 3D

MUM that dominates under moderate diabatic forcing

when turbulent transport is parameterized with ek ¼ 1.

Figure 16c (16e) depicts the lower tropospheric structure

of the 3D MUM corresponding to ev ¼ 0:5 (1). As in the

low-frequency mode of the 2D system, the strongest per-

turbation eddies are centred on the outer edge of the

main vorticity annulus. In similar agreement, the promin-

ent inner and outer waves of f0z are close to being diamet-

rically out of phase at azimuths where the amplitudes are

peaked. On the other hand, seemingly subtle differences

cannot be ignored. To begin with, the radii at which the

2D and 3D modes corotate with the circular shear flow

(shown by the dashed green circles) do not coincide. In

principle, even a slight displacement of a corotation

radius can substantially affect the impact of locally

enhanced (potential) vorticity stirring on the growth of

an instability mode. The nature of any delicate imbalance

of various growth and decay mechanisms may also be

sensitive to small variations in the relative amplitudes and

phases of the primary inner and outer vorticity waves.

Moreover, the horizontal velocity perturbations associ-

ated with the depicted 3D instability modes have nonne-

gligible divergence. Figures 16d,f illustrate the divergent

(irrotational) components of the modal flow fields

obtained from a standard Helmholtz decomposition as

explained in Appendix E. The maximum divergent wind

speed for ev ¼ 0:5 (1) is an appreciable 16% (27%) of the

maximum nondivergent wind speed.

It is notable that (for n¼ 2) the low-frequency instabil-

ity modes of both the 2D system and the 3D systems

studied in Section 5.2 are superceded by higher frequency

modes as viscosity tends toward zero. The low-viscosity

3D MUM corresponding to ev ¼ 0:5 and ek ¼ 0:0625

(Fig. 14a) is fairly similar to its 2D counterpart (Fig.

16b). To begin with, the 3D MUM is confined to a shal-

low layer near the surface. Moreover, unshown analysis

of the horizontal flow in the lower troposphere

K2d

0 m2/s

2 x 103

4 x 103

0.0

0.5

1.0

1.5

2.0

2.5

3.0

n=2

low-freq mode

high-freq mode

2d (10
3 m2/s)

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

n=2

low-freq mode

high-freq mode

(a)

(b)

(c)

Fig. 15. (a) Azimuthal wavenumber (n) dependence of the

growth rate of the 2D MUM for several values of K2d, as

indicated in the legend. Computed MUMs with growth rates of

order 10�6 s�1 or less (at high n and appreciable K2d) are

excluded from the plot, because they are considered virtually

neutral and have questionable accuracy. (b) K2d dependencies of

the growth rates of the two most unstable 2D eigenmodes

associated with an n¼ 2 perturbation. (c) As in (b) but for the

oscillation frequencies. The extended blue ticks on the vertical

axes of (b) and (c) mark the growth rate and oscillation

frequency of the n¼ 2 MUM of the 3D system with ev ¼ 0:5 and

ek ¼ 1; the red ticks are the same but for ev ¼ ek ¼ 1.
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Fig. 16. (a) Vertical vorticity (red and blue), streamlines (black) and corotation circles (dashed green) of the low-frequency mode of

the 2D system with K2d ¼ 103 m2 s�1. The streamline thickness is directly proportional to the local magnitude of the horizontal velocity

perturbation u0. (b) As in (a) but for the high-frequency mode. (c) As in (a) but for vertically averaged fields associated with the MUM

of the 3D system with ev ¼ 0:5 and ek ¼ 1; the averaging is over a 2 km layer adjacent to the sea-surface. (d) As in (c) but with the

streamlines corresponding to the irrotational component of u0. (e, f) As in (c, d) but for ev ¼ ek ¼ 1; note that segments of the

corotation circle can be found at the corners of both plots. In all subfigures, the axis labels x and y denote horizontal Cartesian

coordinates measured from the center of the vortex.
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demonstrates that the strongest perturbation eddies are

centred on the inner edge of the main vorticity annulus,

and that a corotation radius lies in between the primary

inner and outer vorticity waves. In good agreement with

a key assumption of the 2D model, the maximum magni-

tude of the divergent component of the lower tropo-

spheric velocity perturbation (averaged over a 2-km layer

adjacent to the sea-surface) is merely 6% of the maximum

nondivergent wind speed. On the other hand, the 2D

model does not provide an entirely accurate picture of

the low viscosity perturbation dynamics. The oscillation

frequency of the 3D MUM is 0.8 times that of the 2D

MUM, and the growth rate is 0.4 (0.6) times that pre-

dicted by the 2D model with K2d ¼ 0 (1000m2s–1).

Greater facilitation of diabatic forcing (ev ¼ 1) at low vis-

cosity (ek ¼ 0:0625) leads to much greater disparity

between the 3D and 2D MUMs. The 3D MUM (Fig.

14c) exhibits complex vertical structure deep into the free

troposphere, and the perturbation fields near the surface

have more features in common with the low-frequency

SMUM of the 2D model (Fig. 16a). Consistently, the

oscillation frequency of the 3D MUM is 0.5 times that of

the 2D MUM.

6. Comparison of linear instability theory
to NS14

Reducing the general uncertainty of linear instability the-

ory will require refinement of the physics parameterisa-

tions. Such refinement will require a comprehensive

comparison of theory to state-of-the-art cloud resolving

numerical simulations. While a comprehensive refinement

effort is beyond the scope of this paper, a comparison of

our linear model to the results of one of our earlier simu-

lations is easy and worth reporting.

The simulation considered for illustrative purposes cor-

responds to the three-dimensional moist experiment of

NS14 distinguished from others by the following ratio of

surface-exchange coefficients: Ce=Cd � 0:3. The experi-

ment examined the evolution of a random perturbation

of an initially axisymmetric category-2 hurricane in CM1.

The disturbance followed an initial pattern of develop-

ment similar to that found in all simulations of the study,

including those with larger values of Ce=Cd and stronger

vortices. Specifically, the perturbation spurred asymmetric

wave growth energetically concentrated near the surface,

and the wave growth engendered a ring of five well-

defined mesovortices (Figs. 3 and 6 of NS14). The physics

parameterisations utilised in the experiment differed from

those described in Section 4 in several notable ways. To

begin with, the microphysics parameterisation excluded

ice. So as to keep the ratio of surface-exchange coeffi-

cients constant over the entire ocean, the drag coefficient

was held fixed (along with Ce) at Cd ¼ 0:005. Perhaps of

greatest significance, K
m=h
h was an order of magnitude

smaller in the vicinity of maximum wind speed. The

reader may consult NS14 for further details.

For better compatibility with the model configuration

of NS14, the physics parameterisations used presently in

computing the linear instability modes differ somewhat

from those used previously. Diabatic forcing is given by

2D theory

3D theory

CM1 sim

2D theory

3D theory

CM1 sim

(a)

(b)

Fig. 17. Comparison between the prevailing instability modes

of a tropical cyclone simulated with CM1 and two theoretical

predictions. (a) Growth rate versus azimuthal wavenumber n as

determined by (circles) 2D instability theory, (diamonds) 3D

instability theory, and (squares) the pertinent 3D CM1 simulation

of NS14. (b) As in (a) but for the oscillation frequency. The error

bars are explained in the main text.
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Equation (9b), but ~vb is calculated under the assumption

of liquid-only condensate. The drag coefficient is simpli-

fied to Cd ¼ 0:005ek. The variables Km
h;sm and Km

v;sm in

Equation (16) are obtained as before, but from the simu-

lation used to generate the basic state of the NS14 vortex.

Typical values of both Km
h;sm and Km

v;sm are between 100

and 200m2 s�1 where the pertinent instability modes are

concentrated. The lower limits of the eddy diffusivities

are given by Km
h;min ¼ 100 m2 s�1 and Km

v;min ¼ 40 m2 s�1.

Figure 17 compares wave growth in the CM1 simula-

tion to that predicted by linear instability theory. The

squares show (a) the growth rates and (b) the oscillation

frequencies of the primary Fourier components of the

asymmetric radial velocity field (du � u��u) in the simula-

tion. The measurements are made by a straightforward

procedure. To begin with, du is vertically averaged over

the interval 0< z< 1:0 km and expanded into a discrete

Fourier series with respect to the azimuthal coordinate u.

The wavenumber-n Fourier coefficient of the vertically

averaged field is denoted dunðr; tÞ. Time series of the amp-

litude and phase of dun (for all n between 1 and 8) are

obtained from three probes placed 10-km apart on a

radial line segment that is centred roughly at the radius

of maximum wind. Each time series is taken over the

interval 0 � t � 90 min. Data during the initial adjust-

ment period and near the end of the interval (when

incipient mesovortices take form) are generally discarded.

The growth rate is obtained from an exponential curve fit

to the amplitude data, whereas the oscillation frequency

is obtained from a linear regression of the phase data

(over 1 oscillation period). The plotted growth rates and

oscillation frequencies correspond to their respective

means among the three probe measurements; each error

bar covers the full range of probe values. The preceding

measurements are sensibly associated with the complex

eigenfrequencies of MUMs provided that a single grow-

ing wave dominates dun. Such a condition appears to be

satisfied quite well for 4 � n � 7. The greater error bars

shown for n¼ 3 and n¼ 8 indicate that the probe signals

are not as clean. Because the time series for n¼ 1 and

n¼ 2 do not closely resemble those of a single growing

wave, they are excluded from the plots.

The diamonds in Fig. 17 show the growth rates and

oscillation frequencies of the 3D MUMs predicted by the

linear model for the tropical cyclone simulated in NS14.

The MUMs were first identified as perturbations domi-

nating solutions of the initial value problem with ev ¼
ek ¼ 1 on a grid ~G2 with double the resolution of that

used in NS14. The diamonds are centred on values of kR

and kI obtained by recomputing the eigenmodes on a grid

~G4 with double the resolution of ~G2. Further sensitivity

to grid spacing was examined by repeating the computa-

tions on the original NS14 grid. Sensitivity to the

parameterisations of diabatic forcing and small-scale tur-

bulence were separately examined by reducing ev to 0

and ek to 0.0625 on ~G2 and ~G4. The error bar on each

diamond covers the full range of values for kR or kI

obtained from all configurations of the linear model; the

smallness of the error bars indicates robust results. Note

that the plotted eigenfrequencies are confined to n

between 2 and 8, which correspond to eigenmodes ener-

getically concentrated near the surface (not shown); a

slower growing middle-tropospheric MUM associated

with n¼ 1 is excluded from present consideration.

Figure 17 clearly demonstrates that the eigenfrequen-

cies of the theoretical and simulated 3D MUMs are in

good agreement where the latter are inferred from the

cleanest monochromatic signals (4 � n � 7). On the other

hand, both the growth rates and oscillation frequencies

are smaller than those of the MUMs associated with an

analogous 2D vortex (circles). The 2D vortex under con-

sideration is modelled after the primary circulation of the

NS14 tropical cyclone averaged in z over a layer of thick-

ness d adjacent to the surface. The plotted 2D data points

correspond to the means taken from 6 configurations in

which d 2 f1; 2; 3g km and K2d 2 f0; 103g m2s–1. As

usual, the error bars extend from the minimum to max-

imum values of the data set for each n.

In this particular case study, the insensitivity of 3D lin-

ear instability theory to the degree of diabatic forcing

allowed in the model is consistent with the concentration

of modal wave activity inward of the eyewall cloud

(NS14). Insensitivity to the reduction of ek seems reason-

able given the short e-folding times of the MUMs (15-

20min) relative to the minimum applicable time scale for

turbulent diffusion, sk � minðl2h=Kh; l
2
v=KvÞ, in which lh=v

is the horizontal/vertical lengthscale relevant to the mode

and Kh=v is the horizontal/vertical eddy diffusivity. Taking

Kh=v � 200 m2s–1 and lh=v 	 103 m yields sk 	 83 min.

7. Conclusion

This paper has proposed a method to account for dia-

batic forcing and inhomogeneous eddy diffusivities in pre-

dicting and analysing the dominant instability modes of

numerically simulated tropical cyclones. Excluding expli-

cit moisture equations from the linearised model necessi-

tated a partly intuitive parameterisation of the diabatic

forcing S0
h. The parameterisation considered herein set S0

h

proportional to w0 with the modulating coefficient

ev~vbozhqb dependent on the local moist thermodynamic

conditions of the basic state. A more general parameter-

isation scheme [Equation (10)] was presented for future

consideration.

The instability analysis was illustrated for a mature

tropical cyclone representative of a category 4 hurricane.
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The basic state was generated by an axisymmetric numer-

ical simulation with two-moment cloud microphysics and

typical settings for the parameterisation of subgrid turbu-

lence. Initial consideration was given to linear systems

having vertical and horizontal eddy diffusivities compar-

able to those regulating the basic state. With the diabatic

forcing parameter ev set to a value between 0 and 1, per-

turbation growth was commonly dominated by a slowly

growing n¼ 2 eigenmode with deep structure but maximal

intensity (KEn) in the lower tropospheric region of the

inner core. The complex eigenfrequency, spatial structure

and energetics of the n¼ 2 MUM were sensitive to vari-

ation of ev. Increasing ev from 0 to 0.9 gradually stabi-

lised the mode. Further amplification of ev to 1

introduced a new MUM distinguished in part by having

a larger growth rate than any of its predecessors, and by

having a slightly positive buoyancy-related contribution

to the production of integrated KEn.

Reducing the eddy diffusivities with ev fixed at either

0.5 or 1 generally changed the nature of the n¼ 2 instabil-

ity. For ev ¼ 0:5, the original MUM was ultimately

replaced by a faster surface-concentrated instability mode

whose growth of KEn involved a much smaller fractional

contribution from the term directly linked to the second-

ary circulation. For ev ¼ 1, the original MUM was

replaced by a faster instability mode whose growth of

KEn distinctly involved a negative contribution from the

buoyancy term and a relatively large positive contribution

from the tendency associated with the vertical shear of

the primary circulation.

Sensitivity of the foregoing analysis to the parameter-

isations of diabatic forcing and turbulent transport attests

to the importance of details in predicting and understand-

ing tropical cyclone instabilities. Improving the predictive

skill of the linear model will require reducing the present

degree of uncertainty in the aforementioned parameterisa-

tions. Refinements of S0
h and D0

a will come through a

combination of theoretical advancements and testing of

the linear model against perturbation growth found in

state-of-the-art cloud resolving models.

An initial test of our linear model produced encourag-

ing results. The instability analysis showed very good

quantitative agreement with the perturbation growth that

leads to mesovortex formation slightly inward of the eye-

wall cloud in a previously conducted CM1 simulation

with relatively low diffusivity (NS14). Such agreement

helped validate the dynamical core of the linear model.

On the other hand, questions regarding the parameterisa-

tion schemes were left unresolved. The instability was the-

oretically too fast for reasonable variants of turbulent

transport to have an appreciable effect on its early devel-

opment. Moreover, the perturbation seemed largely

detached from moist processes (NS14). Accordingly, the

instability predicted by the linear model showed little sen-

sitivity to switching ev between 0 and 1.
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Appendix A. Notes on S0
h

The parameterisation of diabatic forcing given by

Equation (9b) requires formulas for the partial pressure

derivatives of huq and hsq appearing in the definition of v

[Equation (7)]. SM07 derives the following formulas for

the special case of a system with liquid-only condensate:

ohuq

op

 !

sm;qt

¼�TRd

cpdp

pa
p

� �Rd=cpd 1þqt=e

1þqt
1� 1þqt=e

1þqtcpv=cpd

 !

;

(A1a)

ohsq

op
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sm;qt
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�TRd

cpdp

pa
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cpd
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RvcpdT 2

2

6

6

6

4

3

7

7

7

5

;

(A1b)

in which cpv is the isobaric specific heat of water vapour,

LvðT Þ is the latent heat of vapourisation, and cl is the

specific heat of liquid water. For a system with ice-only

condensate, the same two equations apply with the

following modifications to the saturated air formula: the

latent heat of sublimation Ls replaces Lv, and the specific

heat of ice ci replaces cl. As in the main text, the variable

qv�ðp;T Þ represents the vapour mixing ratio at saturation

with respect to either liquid or ice, depending on the

allowed condensate.

As in reality, the simulated tropical cyclone providing

the basic state of Section 4 is complicated by having 3

phases of moisture. To keep the working estimate of S0
h

relatively simple, the definition of v that assumes liquid-

only (ice-only) condensate is used where T >T0 (T <T0),

in which T0 � 273:15 K. The temporal averaging of v

that produces vb (see Section 4) helps smooth

discontinuities at cloud edges and the freezing level. Of

further note, the value of qt substituted into the definition

of v arbitrarily excludes contributions from relatively fast

falling hydrometeors such as rain, graupel and snow. The

very subtle change to the distribution of ~N
2
[Equation

(28b)] resulting from such exclusion is minimal compared

to the effect of adjusting ev as in Section 5.1 of the

main text.

Section 2.2 indirectly suggested that the condition

v0 _pb � vb _p
0 would help justify the assumed

proportionality between S0
h and w0 �� _p0=qbg, at least in a

system governed by reversible moist-adiabatic

thermodynamics. Upon considering the lowest order

terms in a multivariable Taylor expansion of v0, one may

formulate a stronger version of the preceding inequality

for single-wavenumber perturbations as follows:

C � ov

op

� �

b

jpnj _pb
vbj _pnj

;
ov

oT

� �

b

jTnj _pb
vbj _pnj

;
ov

oqt

� �

b

jqtnj _pb
vbj _pnj

" #

mx

� 1;

(A2)

in which ½. . .�mx denotes the maximum order of

magnitude among the bracketed items. Violation of

inequality (A2) evaluated with the basic state and

perturbation fields of our linear model would cast doubt

on the adequacy of having formulated S0
h as a linear

function solely of w0. The forthcoming evaluation will

take perturbation amplitudes from the n¼ 2 MUM of the

linear system with ev ¼ ek ¼ 1, as displayed in Section

5.1. A conservative estimate will be used for the order-of-

magnitude of jqtnj that is not explicitly provided by the

linear model.

The following analysis is restricted to the interior

region of the eyewall updraft, defined to be where

wb 	 2:6 m s�1. In this saturated region of the tropical

cyclone, v ¼ ðophsqÞsm;qt . The partial derivatives of v at

ðp; T ; qtÞ ¼ ðpb; Tb; qtbÞ are accurately obtained from basic

finite differencing without the need to derive lengthy

analytical formulas. The pressure variables appearing in

(A2) are given by

pn ¼ hqn

hqb
þ qn

qb

� �

cpd
cvd

pb; (A3a)

_pn ¼ otpn þ uborpn þ inXbpn þ wbozpn þ unorpb þ wnozpb;

(A3b)

_pb ¼ uborpb þ wbozpb: (A3c)

Linearising the relation T ¼ ð1þ qtÞPhq=½1þ qv�ðp; T Þ=e�
for air that remains precisely saturated— and using
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standard formulas (Emanuel, 1994) for the partial

derivatives of qv� —yields

Tn¼
Tb

1þLbqv�b=RdTb

Rd

cpd
þqv�b

e

� �

pn
pb

þhqn

hqb
þ qtn
1þqtb

" #

!jTnj 
 jjp
pn
pb

þjh
hqn

hqb
j;jhjqtnj
1þqtb

" #

mx

;

(A4)

in which jh�Tb=ð1þLbqv�b=RdTbÞ, jp�jh½ðRd=cpdÞþ
ðqv�b=eÞ�, qv�b¼qv�ðpb;TbÞ and Lb is either LvðTbÞ or Ls if Tb

is greater or less than T0. For simplicity, let us suppose that

jqtnj
eqqtb; (A5)

in which eq is tentatively set to 0.5, so as to equal 10

times the maximum of jvnj=vbm.
Two estimates of C have been calculated. C1 (C2) is

obtained by evaluating all 5 variables in each bracketed

item of (A2) with their maximum (average) absolute

values in the interior region of the eyewall. The

marginally reassuring results are C1 ¼ 0:3 and C2 ¼ 0:2;

smaller values are obtained as eq ! 0.

Appendix B. Acoustic filtering

It is common practice to use an anelastic approximation

of the equations of motion when acoustic waves are

deemed unimportant to the instabilities of interest

(NM02; Hodyss and Nolan, 2008). The effect of acoustic

filtering is considered herein by implementing the

following approximation of Equation (3e):

inqbvn
r

¼ � 1

r

orqbun
or

� oqbwn

oz
: (B1)

Details of the implementation are provided below.

Recall from Section 3 that the unfiltered linearised

equations of motion can be written dxn=dt ¼ Mnxn, in which

xn is a vector representation of all prognostic perturbation

fields at all grid points. Let yFn denote the subvector of xn

representing field Fn. The acoustically filtered system consists

of three prognostic equations of the form

dyFn
dt

¼
X

~F 2 u;v;w;hq ;qf g
MF ~F

n y
~F
n ; (B2a)

in which F 2 fu;w; hqg and MF ~F
n is the submatrix of Mn

accounting for the tendency of yFn directly dependent on

y
~F
n . The equations for the perturbations of azimuthal

velocity and density are diagnostic. The azimuthal

velocity equation is given by

yvn ¼
X

~F 2 u;wf g
V

~F
n y

~F
n ; (B2b)

in which Vu
n and Vw

n are the coefficient matrices relating

yvn to yun and ywn according to the discretization of

Equation (B1). The density equation is given by

Mvq
n �

X

F2 u;wf g
VF

nM
Fq
n

" #

yqn

¼ �
X

F2 u;w;hqf g
MvF

n yFn �
X

F2 u;wf g
Mvv

n VF
n y

F
n

þ
X

F2 u;wf g
~F 2 u;w;hqf g

VF
nM

F ~F
n y

~F
n þ

X

F2 u;wf g
~F 2 u;wf g

VF
nM

Fv
n V

~F
n y

~F
n :

(B2c)

The preceding formula for yqn is obtained by substituting

(B2b) and (B2a) for F 2 fu; wg into the prognostic

azimuthal velocity equation of the unfiltered system.

Note that the foregoing acoustically filtered model

applies only for n 	 1, owing to a derivation from

equations where vn and qn are multiplicatively coupled to

n. An alternative formulation valid for n 	 0 would seem

possible by (say) switching the roles of wn and vn as

prognostic and diagnostic variables.

As suggested earlier, acoustic filtering is expected to

have minimal consequence on the primary inner core

instability of a tropical cyclone. Consider the tropical

cyclone of Section 4. The unfiltered n¼ 2 MUM is

described in Section 5 for various combinations of ev and

ek in the linear model. The acoustically filtered MUM is

here found (on G2) by initialising Equations (B2a)–(B2c)

with yun; y
w
n and y

hq
n of the unfiltered MUM and

integrating forward in time over several e-folding periods.

Under ordinary circumstances, the perturbation is quickly

dominated by the filtered MUM. Figure B1 verifies that

Fig. B1. Scatter plot of the complex eigenfrequencies of the

n¼ 2 MUM in linear systems with (pink) and without (black)

acoustic filtering. Different symbol shapes correspond to different

combinations of ev and ek as shown in the legend in the lower

left corner of the graph.
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the complex eigenfrequencies of the filtered and unfiltered

instability modes hardly differ, regardless of the selected

parameters regulating the strengths of diabatic forcing

and turbulent transport.

Appendix C. Sensitivity of MUMs to the
computational grid

In Section 5, a MUM was provisionally equated to the

eigenmode that dominates a perturbation within 1 day of

initialising the linear model [Equation (20)] with random

noise on a grid (G2) having double the resolution— in

both r and z —of the CM1 grid used to generate the

basic state (G1). The MUMs of G1 are readily found by

a similar procedure. Figure C1 displays the complex

eigenfrequencies associated with the MUMs of both G1

(blue) and G2 (green) for 0<n< 8 when the linear model

is parameterized with ev ¼ ek ¼ 1. Note that no

discernible instabilities could be seen for n¼ 0 or n¼ 8.

Also shown are solutions to the eigenproblem on a grid

(G4, red) with quadruple the resolution of G1. Each G4

data point is obtained from an algorithm that seeks a

solution for the complex eigenfrequency (k) closest to

that of the G2 MUM.

The system under present consideration exhibits a

somewhat complicated sensitivity to grid spacing. The

n¼ 1 mode is virtually invariant with increasing

resolution. The oscillation frequency (kI) of the n¼ 2

mode is also robust, but the growth rate on G1 exceeds

that on G4 by 29%. The values of kR (for n¼ 2) on G2

and G4 are deemed closer to the continuum limit based

on their modest 2% difference. All of the modes on G1

that are shown for 1 � n � 4 have maximal KEn near the

surface. Whereas the properties of the modes with n¼ 1

and n¼ 2 are fairly insensitive to increasing resolution,

the n¼ 3 and 4 modes on G1 are fragile and superceded

by middle tropospheric instabilities on G2 and G4. All of

the dominant instabilities at higher wavenumbers have

maximal KEn in the middle troposphere. It is notable

that increasing the resolution for cases in which n exceeds

5 markedly accelerates the instabilities. Moreover, the

resolution required to establish less than 10% uncertainty

in kR at high-n appears to be greater than that of G4.

Appendix D. The 2D eigenproblem

The equations of motion governing a nondivergent 2D

vortex with kinematic viscosity K2d are given below:

otfþ u � rhf ¼ K2dr2
hf; (D1a)

u ¼ ẑ 
rhw; (D1b)

r2
hw ¼ f; (D1c)

in which f is the vertical vorticity (the subscript z is

unnecessary and dropped in this appendix) associated

with the horizontal velocity field u, w is the

streamfunction, and rh is the horizontal gradient

operator. Nonzero viscosity will cause the gradual

diffusion of an arbitrary axisymmetric state that is

characterised by the vorticity distribution fbðrÞ. A

linearised model for asymmetric perturbation growth is

justifiable if axisymmetric diffusion occurs much more

slowly than the instability. Extension of the linearised

model to values of K2d where axisymmetric diffusion and

asymmetric perturbation growth have commensurate time

scales is technically improper, but is deemed reasonable

for the purpose of illustrating modal sensitivity to the

magnitude of viscosity.

The asymmetric (n 	 1) eigenmodes of an

axisymmetric vortex are perturbations of the form

f0 ¼ ZðrÞeinuþkt þ c:c:, in which c:c: denotes the complex

conjugate of the preceding term. Substituting the

eigenmode solution into the linearised equations of

motion derived from Equations (D1a)–(D1c) yields

ik�nXbð ÞZ þ n

r

dfb
dr

W�iK2dr2
nZ ¼ 0; (D2a)

in which XbðrÞ is the angular velocity corresponding to

Fig. C1. Scatter plot of the complex eigenfrequencies of the

MUMs of the tropical cyclone of Section 4 as determined by the

3D linear model with ev ¼ ek ¼ 1. The number associated with

each data point denotes the value of the azimuthal wavenumber

(n) of the MUM. Data is included for computations on G1

(small blue), G2 (medium green) and G4 (large red). Dark (light)

symbols indicate modes with KEn maximised in the lower

(middle) troposphere. Note that the G4 data correspond to

eigenfrequencies nearest to those of the G2 MUMs, but the

associated modes were not verified to dominate time-asymptotic

perturbations on G4.
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fb, r2
nW ¼ Z;r2

n � orr þ r�1or�n2=r2, and orr � oror. A

formal solution for the wavefunction of w0 consistent

with regularity at the origin and u0 ¼ 0 at r¼ rB is

W rð Þ ¼ � 1

2n

ðrB

0

d~r~r
r<
r>

� �n

1� r>

rB

� �2n
" #

Z ~rð Þ; (D2b)

in which r< (r> ) is the lesser (greater) of ~r and r

(Schecter et al., 2000). The second outer boundary

condition orðv0=rÞ ¼ 0 combined with u0 ¼ 0 amounts to

Z ¼ 2r�1dW=dr at r¼ rB. Substituting (D2b) into both

(D2a) and the preceding outer boundary condition

eliminates W from the eigenproblem. Subsequent

discretization of the radial coordinate yields a standard

matrix eigenproblem of the form Mx ¼ kx, in which x is

a vector containing the values of Z on each grid point.

The 2D results of Section 5.3 and 6 correspond to

solutions of the preceding eigenproblem; the outer

boundary condition on v0 is obviated for computations in

which K2d ¼ 0. Selected results were successfully cross-

checked against independent solutions of the 3D model

set up with a thin barotropic vortex sandwiched in

between rigid free-slip walls at z¼ 0 and 0.5 km.

Appendix E. The Helmholtz decomposition

The Fourier transform of the horizontal velocity

perturbation associated with a 3D instability mode can

be decomposed into the following sum of irrotational

(superscript-/) and nondivergent (superscript-w)

components:

un

vn

� �

¼ u/n þ uwn
v/n þ vwn

� �

(E1a)

in which

u/n
v/n

� �

¼ or/n

in/n=r

� �

;
uw
n

vwn

� �

¼ �inwn=r
orwn

� �

; (E1b)

and

r2
n

/n

wn

� �

¼ rn

fzn

� �

: (E1c)

The boundary conditions at the origin are regularity of the

velocity potential /n and streamfunction wn; the

implemented boundary conditions at rB consistent with

un¼ 0 are or/n ¼ 0 and wn ¼ 0. The velocity fields

depicted in Figs. 16d,f correspond to u0/ ¼ u0�u0w, in which

u0 ¼ ðun; vnÞeinu þ c:c: and u0/=w ¼ ðu/=w
n ; v/=wn Þeinu þ c:c:
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