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a b s t r a c t 

With the development of Internet of Things (IoT), heterogeneous sensory data appears everywhere in our 

lives. Unlike traditional sensory data, heterogeneous sensory data often involves variety modalities of data 

in one set, so that it is called as the multi-modal sensory data in this paper. The appearance of such data 

making it possible to monitor more complicated objects and improve monitoring accuracy. However, due 

to lack of integration model for multi-modal sensory data, most of the existing sensory data management 

algorithms only consider single modal sensory data, resulting in insufficient utilization of sensory data. 

Thus, we propose a model for integrating the heterogeneous sensory data generated in a IoT system based 

on Hidden Markov Process in the paper. The distributed algorithm for constructing such a model is then 

presented. The integration model can be applied to many applications, while we take the cooperative 

event detection as an example for illustration. The extensive theoretical analysis and experimental results 

show that all the proposed algorithms are efficient and effective . 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid development of sensing techniques, embody

ystems and cross-technology communication [1–3] , various sen-

ors are always involved in a IoT system or even in a single de-

ice. For example, the current smart phones are equipped with

everal different sensors, such as accelerometer, digital compass,

yroscope, GPS, microphone and camera [4] . An intelligent traffic

onitoring system could involve many flow monitoring sensors,

uch as electronic eyes, GPS devices and intelligent traffic lights.

 smart home application always contains the RFIDs for locating

ome objects, the sensors for sampling the temperature, humidity,

ight intensity, air flow and so on in the environment, the smart

racelet for obtaining the healthy information of monitoring peo-

le, the cameras and acoustic sensors for catching the abnormal

nformations and guaranteeing the safety of house etc . 

Unlike the traditional sensor networks, the sensory data sam-

led by the current IoT system not only have big volume [5,6] but

lso involved diverse modalities. In the aforementioned exam-

le, a crowdsourcing task running in a smart phone may use

he accelerometer, microphone and camera to collect sensory data

imultaneously, while the sensory data sampled by them are vec-
∗ Corresponding author. 
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or data, audio data and video data, respectively. Similarly, an in-

elligent traffic system also generates scalar data, vector data and

ideo data simultaneously. Meanwhile, in a forest ecology moni-

oring system, temperature and humidity are presented as scalar

ata, wind velocity and direction are presented as vector data, and

ictures of plants and videos of animals are presented as multime-

ia data. Furthermore, in a smart home application, the dataset in-

ludes the scalar data such as temperature, humidity .etc , the vec-

or data, such as the movement information of monitoring persons,

nd the multimedia data, such as the data sampled by the camera

nd acoustic sensors. We notice that the data set generated by the

bove IoT systems refer to multiple modalities, and we call such

eterogeneous data set as multi-modal sensory data set . 

The appearance of such multi-modal sensory data provide

bundant information and great opportunities to reveal the mys-

erious physical world, and it also brings many benefits for current

oT system. Firstly, the multi-modal sensory data supply plenty

f semantics information comparing with the traditional sensory

ata. Since each modality of sensory data give some new informa-

ion about the monitoring objects, and thus, the multi-modal sen-

ory data breaks the limitation of the single-modal sensory data,

nd make it possible for multi-preceptive observation and analy-

is. Secondly, more complexity objects could be monitored by cur-

ent IoT system with the help of multi-modal sensory data. Obvi-

usly, more detailed and comprehensive information are required

https://doi.org/10.1016/j.comnet.2018.11.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.11.032&domain=pdf
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when the monitoring objects are complex, and the multi-modal

sensory data set meets such requirements since it provides abun-

dant semantics information. Thirdly, the multi-modal sensory data

improve the utilization of system and shorten the latency of dis-

covering the abnormal information. Since the sensory data of dif-

ferent modalities are related with each other, the system utiliza-

tion rate will be further promoted if we sufficiently take advan-

tage of such relationship. Meanwhile, the abnormal event could be

detected in time with the help of different modalities of sensory

data, so that it will save lots of time for event detection. 

Based on the above discussion, the multi-modal sensory data

are quite useful for current IoT system, and they will be ubiquitous

for us since the monitoring objects of current IoT systems become

more and more complex. However, it also brings many challenges

on how to manage and make maximum utilization of these data.

Although there are a great number of distributed sensory data

management algorithms in traditional sensor networks, including

data acquisition algorithms [7] , data collection algorithm [8] , data

mining and modeling algorithms [9,10] , data transmission schedul-

ing algorithms [11,12] , and query processing algorithms [13,14] .etc ,

but most of them are only suitable for dealing with scalar data and

cannot process more complicated data. Some of the works, such as

[15–17] , investigate how to deal with multimedia data in WSNs,

but they only consider one modality of sensory data and cannot

deal with multi-modal sensory data. Besides, the multi-modal sen-

sory data are also quite different from the traditional heteroge-

neous data that have been studied because most of them, as dis-

cussed in [18–20] , only consider the data with different structures,

while they still share the same modality. 

To the best of our knowledge, we are the first one to con-

sider the problem of dealing with the multi-modal sensory data.

Then, the first problem is coming: can we process sensory data

one modality by one modality separately without fusing them to-

gether? Unfortunately, the answer is no. Since most of the current

monitored objects become more complicated than they used to

be, one or two modalities of sensory data cannot describe them

accurately. For example, to discover the variation of forest ecol-

ogy, temperature, humidity, wind velocity and direction, video and

image data should be managed simultaneously. To recognize hu-

man activities by smart phones, the sensory data sampled by the

accelerometer, digital compass, gyroscope, GPS, microphone and

camera should all be taken into account. Moreover, fusing compu-

tation on the multi-modal sensory data also improves the obser-

vation accuracy. For example, in a fire monitoring system, it will

catch the threat of fire as early as possible if temperature, light,

video and audio data are considered together. 

Due to the above reasons, a group of fusing computation al-

gorithms on multi-modal sensory data are desired for current IoT

systems. However, it is quite challenging to simultaneously deal

with even two modalities of sensory data as their representations

are quite diverse. To make the fusing computations to be possible,

a model of integrating the multi-modal sensory data is highly ex-

pected. 

In this paper, we construct such a model according to the Hid-

den Markov Process [21] . The model firstly projects each sensory

data stream collected by a sensor node into a sequence of states.

Thus, the fusing computations can be executed on states instead of

on the raw sensory data. To the best of our knowledge, it is the

first model to consider the problem of how to integrate the multi-

modal sensory data in IoT systems. Such a model projection pro-

cess makes the fusing computation on multi-model sensory data

to be possible and can be applied to many applications. For exam-

ple, discovering the relationship between different models of sen-

sory data, backtracking the reason of certain phenomenons, mining

the pattern of frequent observations, detecting the events cooper-

atively, etc . Furthermore, this model can provide insights for the
ensor deployment strategy to cover the events, the system control

ethod to avoid disasters, etc , thus, it is valuable for the current

oT systems. 

Finally, the cooperative event detection is taken as an example

o show how to use our model to support the fusing computations

n multi-modal sensory data because the event detection is one of

ost important operations in IoT systems. Other fusing computa-

ion operations will be discussed in our future works due to the

pace limitation. In summary, the main contributions of our paper

re summarized as follows. 

(1) The definitions of multi-modal sensory data and the problem

f fusing computation on multi-modal sensory data are firstly pro-

osed. 

(2) A model for integrating the multi-modal sensory data gen-

rated in a IoT system is provided. The algorithm for learning such

 model according to the training data is given. 

(3) A distributed algorithm for detecting the events coopera-

ively is presented based on the above model. 

(4) The real system experiments were carried out. The extensive

xperimental results verify the efficiency and effectiveness of all

he proposed algorithms. 

The rest of the paper is organized as follows. Section 2 pro-

ides the problem definition. Section 3 discusses how to con-

truct the model for integrating the multiple modal sensory data.

ection 4 proposes a distributed cooperative event detection algo-

ithm. Section 5 presents the experimental results. Section 6 sur-

eys the related works and Section 7 concludes the paper. 

. Problem definition 

Assume that there are n sensor nodes in a IoT system, indexed

y {1, 2, ���, n }. Similar to traditional sensor networks, each sensor

ode i samples a sensory data stream from the monitored physical

orld. Let D i denote the sensory data stream sampled by sensor

ode i , and d it ∈ D i denotes the snapshot value sampled by sensor

ode i at time t . As mentioned in Section 1 , the type of d it depends

n D i , i.e. d it does not have to be a single value. For example, d it is

 frame of image if D i is a video stream, d it is a scalar value if D i is

 scalar data stream, d it is a vector if D i is a vector data stream, etc .

urthermore, the clocks of all the sensor nodes in the system are

ynchronized according to some well established techniques [22] . 

Let f i (1 ≤ i ≤n ) be the sampling frequency of sensor node i .

n a given time window [ T s , T f ], the sensory data of sensor

ode i can be regarded as a set of m snapshots, i.e. , D i (T s , T f ) =
 d it 1 , d it 2 , . . . , d it m } , where t 1 = T s , m = | T f − T s | × f i , and t r+1 − t r =
 / f i for any 1 ≤ r ≤ m − 1 . 

Since the sampling frequency of a sensor node could be large,

he consecutive snapshots from a sensor may be very similar with

ach other. Thus, we use observation to denote a set of consecu-

ive snapshots which have little variation. The formal definition of

bservation is given as follows. 

efinition 1 (Observation) . An observation of sensor i , denoted by

 il , satisfies that o il is a set of consecutive snapshots, where l is an

nteger to identify the serial number of observations in D i . Thus,

 il = { d it l 1 , d it l 2 , . . . , d it l k } , where t l 1 < . . . < t l k and t l j+1 
− t l j = 1 / f i

or ∀ 1 ≤ j ≤ k − 1 . 

Therefore, a sensory data stream in any given time window

 T s , T f ] can be divided into a set of observations, i.e. , D i (T s , T f ) =
 i 1 

⋃ 

o i 2 
⋃ · · · ⋃ 

o ir , where o il is disjoint with o ij in temporal space

or any 1 ≤ l � = j ≤ r . 

Apparently, the number of the observations collected by a sen-

or node are determined by the variation of the monitored process

r event. Since the variation of a process or event always follows

ertain laws, the number of the observations collected by a sensor

ode is limited. Let m 

(o) 
i 

be the number of all the possible obser-
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Fig. 1. The distance between two snapshots. 
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ations collected by sensor node i . We assume that the training

ata of each sensor node i (1 ≤ i ≤n ) is large enough and can cover

ll the observations. The case that the training data are insufficient

ill be considered in our future work due to space limitation. 

Meanwhile, we found that a process or event is always reflected

y a series of states in most applications. For example, in a fire

etection system, there are three states, representing normal, risk

nd fire respectively. Thus, we use S 1 , S 2 , . . . , S k to denote the states

f our system. As the monitoring processes of IoT systems are com-

licates, we regard S 1 , S 2 , . . . , S k as hidden states. 

Obviously, there exists a certain relationship between a hidden

tate and an observation. Meanwhile, two different states are re-

ated to each other. In most monitoring systems, the Markov prop-

rty is guaranteed [23,24] , i.e. a current state is only determined

y the previous one, and the current observation only depends on

he current state. Thus, we can construct the integration model of

he multi-modal sensory data based on the Hidden Markov Process

21] . 

According to the above analysis, let F be the integration model

f multi-modal sensory data . F uses an m 

(o) 
i 

× k matrix, B i (=
 b pq ] 

1 ≤p≤m 

(o) 
i 

, 1 ≤q ≤k 
) , to describe the relationship between states

nd observations of sensor node i (1 ≤ i ≤n ), and uses a k × k ma-

rix, A (= [ a i j ] k ×k ) , to represent relationship among states, and

 i (1 ≤ i ≤n ) and A satisfies that: 1). A (p, q ) = Pr { z t = S q | z t−1 = S p }
or any 1 ≤p and q ≤ k ; 2). B i (p, r) = Pr { x t = o ir | z t = S p } for any
 ≤ r ≤ m 

(o) 
i 

and 1 ≤p ≤ k . where Pr { X} denotes the probability of
andom event X, x t and z t are random variables, t denotes the cur-

ent time slot and t − 1 denotes the previous time slot exactly be-

ore t . That is, A and B i (1 ≤ i ≤n ) are the transition probability ma-

rix and emission probability matrix of F , respectively. 

From the above analysis, the model F will project the sensory

ata streams with different modalities into the sequences of states

rstly and then all the computations are implemented on states in-

tead of the raw sensory data Therefore, F needs to be constructed

rstly. The problem of learning F based on the training data is de-

ned as follows. 

Input: 

(1) Data streams in a long time window [ T s , T f ], { D i ( T s ,

 f )|1 ≤ i ≤n }; 

(2) The hidden states { S 1 , S 2 , . . . , S k } . 
Output: 

(1) The observation sets and observation sequences of n sensor

odes; 

(2) The transition and emission probability matrices, A,

 i (1 ≤ i ≤n ). �
Finally, the problem of cooperative event detection is took as an

xample to show how to use F , which is defined as follows. 

Input: 

1. Current time window [ T (c) s , T (c) 
f 

] ; 

2. Sensory data streams from n sensor nodes in [ T (c) s , T (c) 
f 

] , 

i.e. { D i (T 
(c) 
s , T (c) 

f 
) | 1 ≤ i ≤ n } ; 

3. F = { A, B 1 , B 2 , . . . , B n } . 
Output: The probability of the event being happens. �
The symbols that used in the paper is summarized in Table 1 . 

. Integration model learning algorithm 

Two sub problems need to be solved in order to learn model F
ccording to the training data sets: 

1) How to retrieve the observation set and observation se-

uence from a continuous sensory data stream? 

2) How to learn the transition probability matrix A and the emis-

ion probability matrices { B |1 ≤ i ≤n } according to the observations?
i 
The following two subsections provide the solutions to the

bove problems. Considering the distributed properties of IoT sys-

ems, all the algorithm proposed in the rest sections are also dis-

ributed, so that the data processing abilities of each sensor node

re utilized sufficiently comparing with the centralized algorithms.

eanwhile, lots of energy will be saved if we adopt the distributed

lgorithms in a IoT system since fewer data are required to be

ransmitted in the network comparing with the centralized ones. 

.1. Observation determination algorithm 

The observations can be determined by each sensor node locally

ccording to its training data set. 

.1.1. The simple method 

According to Section 2 , the training data set of sensor node i is

enoted by D i ( T s , T f ). If the corresponding states of each sensory

ata stream are available, the method for determining the obser-

ations is trivial. 

Suppose that (S (i ) 
1 

, S (i ) 
2 

, . . . , S (i ) m i 
) denotes the state sequence cor-

esponding to D i ( T s , T f ), and t 1 , t 2 , . . . , t m i 
is the time sequence

f state changing, i.e. t q (2 ≤ q ≤m i ) is the time instance at which

he state changes from S (i ) 
q −1 

to S (i ) q , where t 1 = T s . Therefore,

 1 , t 2 , . . . , t m i 
divide the data stream D i ( T s , T f ) into m i parts. We

se o i 1 , o i 2 , . . . , o im i 
to denote these parts, then o ir can be regarded

s an observation for all 1 ≤ r ≤m i . Therefore, the original observa-

ion set can be determined by O i = { o i 1 , o i 2 , . . . , o im i 
} , and the orig-

nal observation sequence satisfies 
−→ 

O i = (o i 1 , o i 2 , . . . , o im i 
) . 

Apparently, duplicate observations in set O i , which are regarded

s redundant information, should be removed in order to save

pace and time costs for constructing model F . To reduce the re-

undant observations, the similarity of two observations needs to

e evaluated. Since an observation contains a group of snapshots

s shown in Definition 1 , the distance between any two snapshots

s required firstly. 

Let d it 1 and d it 2 denote two snapshots sampled by sensor i ,

nd Dis (d it 1 , d it 2 ) be the distance between d it 1 and d it 2 . Then,

is (d it 1 , d it 2 ) = | d it 1 − d it 2 | if the sensory data sampled by sensor i

s scalar data, Dis (d it 1 , d it 2 ) = || −→ 

d it 1 −
−→ 

d it 2 || 2 if the sensory data sam-

led by sensor i is vector data, as shown in Fig. 1 , or Dis (d it 1 , d it 2 )

an be determined by the Euclidean distance between two images

25] if the sensory data sampled by i is video data. 

Based on the distance between two snapshots, the distance be-

ween two observations is defined as follows. 

efinition 2 (Distance between two Observations) . Let o iq and o ir 
e two observations of sensor i . The minimum weighted edit dis-

ance, denoted by ED ( o iq , o ir ), is used to denote the distance be-

ween o iq and o ir , where 

1. the weight of modifying d it 1 to d it 2 equals Dis (d it 1 , d it 2 ) ; 

2. the weight of deleting and inserting d it 1 equals Dis (d it 1 , 0 ) ; 

or any d it 1 ∈ o iq and d it 2 ∈ o ir . 
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Table 1 

Symbol list. 

Symbol Description 

i (1 ≤ i ≤n ) ID of Sensor Node 

D i Sensory data stream sampled by sensor i 

d it The snapshot value sampled by sensor i at time t 

[ T s , T f ] The given time window 

o il An observation of sensor i 

m 

(o) 
i 

Number of all the possible observations collected by i 

F Integration model of multi-modal sensory data 

S 1 , S 2 , . . . , S k The hidden states 

A (= [ a i j ] k ×k ) Transition probability matrix 

B i (= [ b pq ] 1 ≤p≤m (o) 
i 

, 1 ≤q ≤k 
) Emission probability matrix of Sensor i 

O i = { o i 1 , o i 2 , . . . , o im i } Original observation set corresponding to D i ( T s , T f ) −→ 

O i = (o i 1 , o i 2 , . . . , o im i ) Original observation sequence corresponding to D i ( T s , T f ) −→ 

S (i ) = (S (i ) 
1 

, S (i ) 
2 

, . . . , S (i ) m i 
) State sequence corresponding to D i ( T s , T f ) 

Dis (d it 1 , d it 2 ) Distance between two observations 
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Based on Definition 2 , the minimum weighted edit distance be-

tween any two observations are calculated firstly, and the observa-

tions are merged together if their distance is smaller than b , where

b is a threshold specified by users and the Needleman-Wunsch al-

gorithm in [26] is used to calculate the minimum weight edit dis-

tance. The detail algorithm is given is shown in Algorithm 4 in the

appendix. 

To determine the original observation set, we only need a se-

quentially scan according to the corresponding states, so the com-

putation cost is O ( m i ). 

To reduce the redundant observations, the average computation

cost is equal to O ((m i ) 
2 l 2 a v g ) since we need to calculate the mini-

mum weight edit distance of m i (m i − 1) pairs of observations, and

the average computation complexity for calculating the minimum

weight edit distance of one pair is O (l 2 a v g ) according to [26] , where

l avg denotes the average number of snapshots contained by an ob-

servation. 

3.1.2. Similarity based method 

The method introduced above is efficient and has high accuracy.

However, in some applications, the corresponding states of each

sensory data stream are hard to be obtained even for the training

data set, because these states are hidden and cannot be observed

directly. Therefore, we introduce another similarity based method

for this case. 

Since we do not have any additional information except D i ( T s ,

T f ), one feasible way to determine the observation is based on the

similarity between each pair of snapshots. Before introducing the

algorithm, we first give the definition of a division and the induc-

tive distance of a division for clarity. 

Definition 3 (Division) . { o i 1 , o i 2 , . . . , o il } is a division of D i ( T s , T f ) iff.

1. o i 1 , . . . , o il are observations that satisfy Definition 1 ; 

2. o i 1 
⋃ 

o i 2 
⋃ 

. . . 
⋃ 

o il = D i (T s , T f ) and o ix and o iy are disjoint in

temporal space for any 1 ≤ x � = y ≤ l. �

Definition 4 (The length and inductive distance of a division) . Let

{ o i 1 , o i 2 , . . . , o il } be a division of D i ( T s , T f ). The length of division

{ o i 1 , o i 2 , . . . , o il } is equal to l and the inductive distance of the di-
vision { o i 1 , o i 2 , . . . , o il } , denoted by ID (o i 1 , o i 2 , . . . , o il ) , satisfies that

ID (o i 1 , o i 2 , . . . , o il ) = max { Dis (d it 1 , d it 2 ) | d it 1 , d it 1 ∈ o ix 
∧ 

1 ≤ x ≤
m } . �

Next, we consider two cases for observation determination, and

the users can select one according to the applications. 

Case 1. According to the algorithm in the above section, it re-

quires to compare each pair of the observations in the original ob-

servation sequence to identify the redundant ones. Therefore, the

length of the original observation sequence determined by a divi-

sion should be as small as possible so that fewer comparisons are
eeded. Due to such intuition, we required to find the division of

 i ( T s , T f ) whose length is minimized on condition that inductive

istance is no more than b 1 , where b 1 is a given threshold. The

ormal definition of such problem is defined as follows. 

in | −→ 

O i | 
.t. Dis (d i,t l j 

, d i,t l r 
) ≤ b 1 for any o ip ∈ 

−→ 

O i and d i,t l j 
, d i,t l r 

∈ o ip . 

Such a problem can be solved by a greedy algorithm, which

onsists of fours steps. First, let l = 1 . Then, scan D i ( T s , T f ) sequen-

ially, and insert the snapshots to observation o il until the distance

etween the new coming snapshot with any one snapshot in o il 
eing larger than b 1 . Third, let l = l + 1 and repeat the second step

ntil we reach the end of D i ( T s , T f ). Finally, call the algorithm in

ection 3.1.1 to remove the redundant observations in the observa-

ion set and replace them in the observation sequence. 

The detail algorithm is given in Algorithm 5 in the appendix. 

Case 2. In some applications, the length of an observation

hould not be too large in order to catch every variance of the

onitoring object accurately. On the other hand, the length of an

bservation should not be too small as well since the correspond-

ng states of the monitored objects usually are limit according to

he analysis in Section 2 . Due to such reasons, a set of consecutive

napshots is regarded to contain multiple observations and should

e divided recursively if its size is larger than b 2 , however, it is

egarded as an observation and cannot be divided again if its size

s smaller than or equal to b 2 , where b 2 is a given threshold. Un-

er such an assumption, the inductive distance of the division is

equired to be minimized. Specifically, the problem of determining

he required division is formalized as follows. 

Min max { Dis (d it 1 , d it 2 ) | d it 1 , d it 1 ∈ o il 
∧ 

o il ∈ O i } such that for
ach o il ∈ O i , 

1. o il is an observation and satisfies Definition 1 ; 

2. o il and o iw are disjoint and 
⋃ 

o il ∈ O i o il = D i (T s , T f ) , where o iw 
is any other observation in O i ; 

3. | o il | ≤ b 2 , | o il | + | o i (l+1) | > b 2 , | o i (l−1) | + | o il | > b 2 , where

o i (l−1) , o il and o i (l+1) are arbitrary three consecutive obser-

vations in O i . 

Such a problem can be solved by a dynamic programming

ethod. Let α[ q, r ] denote the subset of D i ( T s , T f ) that contains

he q -th, (q + 1) -th, (q + 2) -th,... , r -th snapshots in D i ( T s , T f ), where

 ≤ q < r ≤ | D i ( T s , T f )|. The optimal division of α[ q, r ] is defined as

ollows. 

efinition 5 (Optimal Division) . { o il 1 , o il 2 , . . . , o il v } is the optimal

ivision of α[ q, r ] if and only if 

1. { o il 1 , o il 2 , . . . , o il v } is the division of α[ q, r ] that satisfies

Definition 2 ; 
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2. | o il x | ≤ b 2 , | o il x | + | o il x +1 
| > b 2 , | o il x −1 

| + | o ix | > b 2 , where

1 ≤ x ≤ v 

3. for any other division of α[ q, r ], { o ′ 
il 1 

, o ′ 
il 2 

, . . . , o ′ 
il ′ v 

} , which

satisfies condition (1) and (2), we have the following For-

mula (1) . 

max { Dis (d it 1 , d it 2 ) | d it 1 , d it 2 ∈ o il x 
∧ 

1 ≤ x ≤ v } ≤
max { Dis (d it 1 , d it 2 ) | d it 1 , d it 2 ∈ o ′ 

il x 

∧ 

o ′ 
il x 

∈ { o ′ 
il 1 

, . . . , o ′ 
il ′ v 
}} (1) 

Let ID [ q, r ] denote the inductive distance of the optimal division

f α[ p, r ], i.e. , ID [ q, r] = max { Dis (d it 1 , d it 2 ) | d it 1 , d it 2 ∈ o il x 
∧ 

1 ≤ x ≤
 } . Therefore, the following dynamic programming function is ob-

ained. 

D [ q, r] = 

{
max 
q ≤k ≤r 

{ ID [ q, k ] , ID [ k, r] } if | r − q | > b 2 

max { Dis (d it 1 , d it 2 ) | d it 1 , d it 2 ∈ α[ q, r] } Otherwise 

(2) 

The dynamic programming function needs to be solved so that

he original observation set and sequence, O i and 
−→ 

O i , can be deter-

ined. Finally, The algorithm given in Section 3.1.1 will be used to

educe the redundant information in O i and 
−→ 

O i . Since the length of

ny observation is bounded (less than b 2 ), the computation cost of

emoving the redundant observations is also controllable. 

.2. The algorithms of determining transition and emission 

robability matrices 

Let S 1 , S 2 , . . . , S k denote hidden states, and 
−→ 

O 1 , 
−→ 

O 2 , . . . , 
−→ 

O n be

he observation sequences retrieved from n sensor nodes by the

ethod in Section 3.1 . Then, the remaining problem for construct-

ng model F is to determine the transition probability matrix

 and the emission matrices { B i |1 ≤ i ≤n }. Similar to Section 3.1 ,

here are two cases that need to be considered. 

.2.1. The maximum likelihood based algorithm 

First, if the corresponding states of each sensory data stream

re available, it is easy to determine the transition and emission

robability metrics. 

Suppose 
−→ 

S (i ) = (S (i ) 
1 

, S (i ) 
2 

, . . . , S (i ) m i 
) denote the state sequence cor-

esponding to D i ( T s , T f ), and 
−→ 

O i = (x 1 , x 2 , . . . , x m i 
) denote the obser-

ation sequence identified by the algorithm in Section 3.1 . There-

ore, for each sensor node i (1 ≤ i ≤n ), the problem of determining

he local transition and emission probability matrices, A i and B i ,

an be formalized as follows according to the maximum likelihood

stimation [27] . 

 i , B i = arg max A,B Pr ( 
−→ 

S (i ) , 
−→ 

O i | A, B ) (3)

uch that 

1. A ( p, q ) ≥0 and 
∑ k 

q =1 A (p, q ) = 1 for all p, q ∈ [1, k ]; 

2. B ( p, v ) > 0 and 
∑ m 

(o) 
i 

v =1 
B (p, v ) = 1 for all p ∈ [1, k ] and 1 ≤ v ≤

m 

(o) 
i 

. 

here m 

(o) 
i 

= | O i | denotes the number of the observations in the

bservation set, and M ( p, q ) is the element in the p -th row and

 -th column of matrix M . 

heorem 1. A i and B i are the solution of the problem given

n Formula (3) if A i (p, q ) = 

∑ m i 
t=1 

I(S (i ) t = S q 
∧ 

S 
(i ) 
t−1 

= S p ) ∑ m i 
t=1 

I(S (i ) 
t−1 

= S p ) 
and B i (q, v ) =∑ m i 

t=1 
I(S (i ) t = S q 

∧ 

x t = o i v ) ∑ m i 
t=1 

I(S (i ) t = S q ) 
for all 1 ≤ q, p ≤ k and 1 ≤ v ≤ m 

(o) 
i 

, where I ( X )

s an indicate function, i.e. I(X ) = 1 if random event X is true, other-

ise I(X ) = 0 . �
The proof of Theorem 1 is given in the appendix. Based on Theorem

 , the local transition and emission probability matrices can be deter-

ined by each sensor node itself. For each local emission probability

atrix, it can be stored locally and does not need to be transmitted

o the sink since it only describes the relationship between the hid-

en states and the sensor’s own observations. However, for each local

ransition probability matrix, it needs to be transmitted to the sink

s a global transition probability matrix is required to integrate the

ulti-modal sensory data from different sensor nodes. 

Let A i denote the local transition probability matrix obtained

y sensor node i (1 ≤ i ≤n ) . The global transition probability ma-

rix (A) can be constructed by A (p, q ) = 

∑ n 
i =1 A i (p.q ) ∑ n 

i =1 

∑ k 
j=1 A i (p,k ) 

. Since

 k 
j=1 A i (p, k ) = 1 for all 1 ≤ i ≤n , A (p, q ) = ( 

∑ n 
i =1 A i (p.q )) /n . 

The algorithm of determining the transition and emission prob-

bility matrices is given in Algorithm 6 in Appendix. The commu-

ication cost of the algorithm is O ( k 2 ) since the local transition

robability matrix needs to be transmitted and aggregated along

he spanning tree towards the sink. The computation complexity is

 ( max { k 2 m i , km 

(o) 
i 

m i } ) since the appearance times of each pair of

wo states and each pair of a state and an observation need to be

ounted. 

.2.2. The EM algorithm 

When the corresponding states of each data stream are un-

nown, we will construct the transition and emission probability

atrices distributely based on the EM algorithm. 

Let 
−→ 

O i = (x 1 , x 2 , . . . , x m i 
) be the observation sequence obtained

y sensor node i (1 ≤ i ≤n ) during [ T s , T f ] according to the method

n Section 3.1 . Since the EM algorithm is an iteration method, let

 

(r) 
i 

and B (r) 
i 

(1 ≤ i ≤ n ) denote the local transition and emission

robability matrices after r iterations, where A (0) 
i 

and B (0) 
i 

are the

nitial matrices. 

Let 
−→ 

z i = (z i 1 , z i 2 , . . . , z im i 
) be the random vectors to denote the

equence of states corresponding to 
−→ 

O i . The aim of the EM al-

orithm is to maximum the expected value of the log-likelihood

unction, which is given as follows 

(A, B ;A (r−1) 
i 

, B (r−1) 
i 

) = E 

[ 
log Pr ( 

−→ 

z i , 
−→ 

O i | A, B ) 

∣∣∣−→ 

O i , A 
(r−1) 
i 

, B (r−1) 
i 

] 
= 

∑ 

−→ 

z i ∈ S m i 
log Pr ( 

−→ 

z i , 
−→ 

O i | A, B ) Pr ( 
−→ 

z i | −→ 

O i , A 
(r−1) 
i 

, B (r−1) 
i 

) 

here m i is the length of sequence 
−→ 

O i , and m i ≥ | O i | = m 

(o) 
i 

since

here may exist some redundant observations in 
−→ 

O i . 

Let ϕ( 
−→ 

z i ) = Pr ( 
−→ 

z i | −→ 

O i , A 
(r−1) 
i 

, B (r−1) 
i 

) , then Q(A, B ;A (r−1) 
i 

,

 

(r−1) 
i 

) = 

∑ 

−→ 

z i ∈ S m i log Pr ( 
−→ 

z i , 
−→ 

O i | A, B ) ϕ( 
−→ 

z i ) . Thus, the problem

f determining A (r) 
i 

and B (r) 
i 

iteratively can be formalized as 

A (r) 
i 

, B (r) 
i 

= arg max 
A,B 

Q(A, B ;A (r−1) 
i 

, B (r−1) 
i 

) 

= arg max A,B 

∑ 

−→ 

z i ∈ S m p log Pr ( 
−→ 

z i , 
−→ 

O i | A, B ) ϕ( 
−→ 

z i ) 
(4) 

uch that 

1. A ( p, q ) ≥0 and 
∑ k 

q =1 A (p, q ) = 1 for all p, q ∈ [1, k ]; 

2. B ( p, v ) > 0 and 
∑ m 

(o) 
i 

v =1 
B (p, v ) = 1 for all p ∈ [1, k ] and 1 ≤ v ≤

m 

(o) 
i 

. 

heorem 2. A (r) 
i 

and B (r) 
i 

are the solutions of the above

roblem if A (r) 
i 

(p, q ) = 

∑ m i 
t=1 

ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 
and B (r) 

i 
(q, v ) =

∑ k 
p=1 

∑ m i 
t=1 

I(x t = o i v ) ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 
for any 1 ≤p , q ≤ k and 1 ≤ v ≤ | O i | =

 

(o) 
i 

, where ηt (p, q ) = βp (t − 1) A (r−1) 
i 

(p, q ) B (r−1) 
i 

(q, x t ) γq (t) ,
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[

βp (t) = Pr (x 1 , x 2 , . . . , x t , z it = S p | A (r−1) 
i 

, B (r−1) 
i 

) and γq (t) =
Pr (x t+1 , ..., x m i −1 , x m i 

, z it = S q | A (r−1) 
i 

, B (r−1) 
i 

) . �
The proof of the above theorem is give in Appendix, and accord-

ing to it, we need to determine βp (t) (= Pr (x 1 , x 2 , . . . , x t , z it =
S p | A (r−1) 

i 
, B (r−1) 

i 
)) and γq (t) (= Pr (x t+1 , ..., x m i −1 , x m i 

, z it =
S q | A (r−1) 

i 
, B (r−1) 

i 
)) firstly. Fortunately, βp ( t ) and γ q ( t ) can be

determined by the forward and backward procedures. The algorithms

are given in Algorithms 1 and 2 where ( π1 , π2 , ..., π k ) denote the

initial distribution of the states, which can be determined according

to the background knowledge of the application. Otherwise, we can

set πp = 1 /k for 1 ≤ p ≤ k. 

Based on the above algorithms and Theorem 2 , the EM algo-

rithm for determining the transition and emission probability ma-

trices is presented as follows. 

Step 1. All the sensors in the network are organized as a span-

ning tree rooted at the sink. The sink broadcasts the initial transi-

tion probability matrix A (0) along the spanning tree to the network.

Step 2. Each sensor i (1 ≤ i ≤n ) initializes the local emission

probability matrix B (0) 
i 

, and sets A (0) 
i 

to be A (0) and r = 1 , where

r is the iteration times. 

Step 3. For all 1 ≤ p , q ≤ k and 1 ≤ t ≤m i , sensor

nodes i (1 ≤ i ≤n ) calculates βp (t − 1) , γ q ( t ) according to

Algorithms 1 and 2 , then it computes ηt ( p, q ) by ηt (p, q ) =
βp (t − 1) A (r−1) 

i 
(p, q ) B (r−1) 

i 
(q, x t ) γq (t)) . 

Step 4. Sensor i determines A (r) 
i 

and B (r) 
i 

by A (r) (p, q ) =∑ m i 
t=1 

ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 
and B (r) 

i 
(q, v ) = 

∑ k 
p=1 

∑ m i 
t=1 

I(x t = o i v ) ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 
for all

1 ≤ p , q ≤ k and 1 ≤ v ≤ m 

(o) 
i 

, where m 

(o) 
i 

= | O i | denotes the num-

ber of the observations discovered in Section 3.1 . Let r = r + 1 . 

Step 5. Step 3 and Step 4 are repeated iteratively un-

til r exceeds R times or max 1 ≤p,q ≤k {| A (r) i 
(p, q ) − A (r−1) 

i 
(p, q ) |} ≤

ε1 
∧ 

max 
1 ≤q ≤k, 1 ≤v ≤m 

(o) 
i 

{| B (r) 
i 

(p, q ) − A (r−1) 
i 

(p, q ) |} ≤ ε2 , where R , ε1 

and ε2 are given thresholds. 

Step 6. Sensor node i transmits A (r) 
i 

along the spanning tree

towards the sink when the iteration is ended. { A (r) 
i 

| 1 ≤ i ≤ n } are
added together during the transmission. Finally, the sink deter-

mines A by A = 

∑ n 
i =1 

1 
n A 

(r) 
i 

. 

The communication cost of the algorithm is O ( k 2 ) since the A (0) 

needs to be broadcasted in Step 1, and the local transition prob-

ability matrices need to be transmitted towards the sink in Step

6. The computation complexity in each iteration is O ( k 2 m i ) since

it needs to calculate ηt ( p, q ) for all 1 ≤p , q ≤ k and 1 ≤ t ≤m i . Thus,

the maximum computation cost of the above algorithm is equal to

O ( Rk 2 m i ). 

3.3. Discussion 

To determine the Integration Model, F , of multi-modal sen-

sory data, we hae proposed three Observation Determination Algo-

rithms and two algorithm for calculating the Transition and Emis-

sion Probability Matrices. 

Among these algorithms, the simple observation determining

method introduced in Section 3.1.1 and the Maximum Likelihood

based algorithm given in Section 3.2.1 are more efficient since they

does not require iterated computation. However, more detailed in-

formation, e.g. the corresponding states of each sensory data stream

in training set, are also required by these algorithms. 

On the other hand, although the algorithms introduced in

Sections 3.1.2 and 3.2.2 are more complex and consume more com-

putation resource for determining the observations, transition and

emission probability matrices, the input information required by

them are much fewer, so that these algorithms are suitable to deal

with the situation that the limited information is available dur-
ng training the integration model F . Moreover, the greedy and

ynamic programming method mentioned in Section 3.1.2 are de-

igned for different optimal goals. Therefore, the users are able to

hoose any of the above algorithms adaptively based on the situa-

ion they have. 

. Case study: a cooperative event detection 

Using the algorithms introduced in Section 3 , the model for in-

egrating multi-modal sensory data, denoted by F , can be learned.

ext, we will discuss the problem of how to use F for supporting

he fusing computation. The following section takes the coopera-

ion event detection as an example for studying such problem, and

he reasons are as follows. First, the event detection is one of the

ost important and primary applications for sensor networks and

oT systems. Second, the event detection is sensitive on time and

nergy consumption, while the latency and transmission cost are

ramatically reduced with the cooperation of the multi-modal sen-

ory data since they provide more abundant information about the

onitoring objects. Therefore, the efficiency of the event detection

s largely improved with the help of the multi-modal sensory data,

hich is also verified in our experimental results. Due to the space

imitation, the other fusing computation will be considered in our

urther works. 

To utilize F for cooperative event detection, there still exist two

roblems that need to be solved: 

1). How to identify the observations contained in current data

treams? 

2). How to deduce the most likely sequence of the states? 

.1. Observation identification algorithm 

For each sensor node i (1 ≤ i ≤n ), let D i (T 
(c) 
s , T (c) 

f 
) denote

he sensory data stream collected in the current time window

 T (c) s , T (c) 
f 

] , and O i denote its observation set with size m 

(o) 
i 

. Then,

he problem of identifying the observations in D i (T 
(c) 
s , T (c) 

f 
) can be

efined as 

−→ 

 

(c) 
i 

= arg min −→ 

O 

ED (D i (T 
(c) 
s , T ( f ) s ) , 

−→ 

O ) (5)

uch that 

1. 
−−→ 

O 

(c) 
i 

= (o ir 1 , o ir 2 , . . . , o ir l ) , l ≥1, and 

2. o ir 1 , o ir 2 , . . . , o ir l ∈ O i , where O i is the set of the observations

determined in integration model learning process ( i.e. the al-

gorithms in Section 3.1 ) 

here ED (D i (T 
(c) 
s , T 

( f ) 
s ) , 

−→ 

O ) denotes the minimum weight edit dis-

ance of two sequences. 

Let 
−−→ 

O 

(c) 
i 

be the optimal solution of the problem given by For-

ula (5) , and { (x p , y (l) ps , y 
(l) 
p f 

) | 1 ≤ p ≤ m 

(o) 
i 

, 1 ≤ l ≤ x p } satisfy that
 p denotes the times of o ip appearing in 

−−→ 

O 

(c) 
i 

, y (l) ps and y 
(l) 
p f 

is the

tart and end position of l -th appearance of o ip in 
−−→ 

O 

(c) 
i 

. If o ip �∈ 

−−→ 

O 

(c) 
i 

,

 p = 0 . Therefore, the problem in Formula (5) can be formalized as

n integer programming problem as follows. 

in 
∑ m 

(o) 
i 

p=1 

∑ x p 

l=1 
ED (D i (y 

(l) 
ps , y 

(l) 
p f 

) , o ip ) (6)

uch that 

(1) x p is an integer in range [0 , | D i (T 
(c) 
s , T (c) 

f 
) | ] for all 1 ≤ p ≤

 

(o) 
i 

; 

(2) { y (l) ps | 1 ≤ l ≤ x p } and { y (l) p f 
| 1 ≤ l ≤ x p } are integers in range

0 , | D i (T 
(c) 
s , T (c) 

f 
) | ] for all 1 ≤ p ≤ m 

(o) 
i 

; 
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(3) ∃ p ∈ [1 , m 

(o) 
i 

] satisfies that x p > 0 and y (l) 
p f 

> y (l) ps for all

 ≤ l ≤ x p ; 

(4) ∃ p ∈ [1 , m 

(o) 
i 

] satisfies that y (1) 
ps = 1 and ∃ q ∈ [1 , m 

(o) 
i 

] satis-

es that y 
(x q ) 

q f 
= | D i (T 

(c) 
s , T (c) 

f 
) | ; 

(5) ∃ q ∈ [1 , m 

(o) 
i 

] and l 2 ∈ [1, x q ] satisfies that y 
(l 1 ) 

p f 
= y 

(l 2 ) 
qs if

 

(l 1 ) 

p f 
� = | D i (T 

(c) 
s , T (c) 

f 
) | for ∀ p ∈ [1 , m 

(o) 
i 

] and ∀ l 1 ∈ [1, x p ]; 

(6) y 
(l 2 ) 

q f 
≤ y 

(l 1 ) 
ps ≤ y 

(l 1 ) 

p f 
OR y 

(l 1 ) 
ps ≤ y 

(l 1 ) 

p f 
≤ y 

(l 2 ) 
qs for ∀ p, q ∈

1 , m 

(o) 
i 

] , ∀ l 1 ∈ [1, x p ] and ∀ l 2 ∈ [1, x q ]. 

Since the integer programming problem is NP-hard, it is also

ard to compute the optimal solution of the problem presented

n Formula (5) . The naive method to deal with the problem is the

numerating algorithm. Suppose that the current time window is

mall enough so that there are at most h observations in it. Then,

he enumerating algorithm enumerates 
∑ h 

r=1 

(
m 

(o) 
i 

)r 

observation 

equences to form the candidate set, where m 

(o) 
i 

is the size of the

bservation set that is determined in integration model learning

rocess. After that, the weight edit distance between D i (T 
(c) 
s , T (c) 

f 
)

nd each candidate sequence is calculated, and the one with the

mallest weight edit distance is chosen and returned. 

The computation complexity of the enumerating algorithm is

qual to O (| D i (T 
(c) 
s , T (c) 

f 
) | 2 

(
m 

(o) 
i 

)h 

) . It is unacceptable when the

ime window is large. Another heuristic algorithm based on a

reedy strategy is provided. 

The detail steps of the heuristic algorithm are as follows. 

First,let 
−→ 

O 

c 
i 

= () . Let S with l “Null” be the matching sequence,

here l = | D i (T 
(c) 
s , T (c) 

f 
) | . 

Second, for each observation o ip , scan D i (T 
(c) 
s , T (c) 

f 
) sequentially,

nd an integer λps satisfies that the sub stream D i (λps , λps + | o ip | )
as the smallest weight edit distance with o ip . If there exists mul-

iple integers satisfy the above condition, then let λps be the small-

st one. 

Third, select an observation o iq from O i satisfying that

D (D i (λqs , λqs + | o iq | ) , o iq ) / | o iq | is smallest among all observations

n O i . If there exists multiple observations satisfies the above ones,

andom select one. 

Fourth, update the sub sequence of S whose start and end posi-

ions are λqs and λqs + | o iq | to be o iq , and insert o iq to −→ 

O 

c 
i 
according

o λqs . Change the snapshot to be “Null” in D i (T 
(c) 
s , T (c) 

f 
) from po-

ition λqs to λq f + | o iq | . 
Fifth, for each o ip ∈ O i , if [ λps , λps + | o ip | ] overlaps [ λqs , λqs +

 o iq | ] , then recalculate λps as shown in step 2. 

Finally, repeat Step 3, Step 4 and Step 5 until the number of

onsecutive “Null” in S is smaller than any length of observation in

 i . Return 
−→ 

O 

c 
i 
. 

Above algorithm has polynomial complexity, and is efficient to

rocess data stream sampled in a large time window. 

.2. Deducing the most likely state sequence 

Let 
−−→ 

O 

(c) 
i 

= (x (c) 
1 

, x (c) 
2 

, . . . , x (c) τi 
) , where 

−−→ 

O 

(c) 
i 

is the observation

equence in current time window returned by the method in

ection 4.1 , and τ i be the length of 
−−→ 

O 

(c) 
i 

. The problem of deduc-

ng most likely state sequence is defined as 

→ 

 

(c) 
i 

= arg max −→ 

z 
Pr ( 

−→ 

z | −−→ 

O 

(c) 
i 

, A, B i ) (7)

here 
−→ 

z denotes the random state sequence in current time win-

ow with length τ i , A and B i are the transition and emission prob-

bility matrices. 
Since 
∑ 

−→ 

z 
Pr ( 

−−→ 

O 

(c) 
i 

, 
−→ 

z | A, B i ) = Pr ( 
−−→ 

O 

(c) 
i 

| A, B i ) is a constant value

hen 
−−→ 

O 

(c) 
i 

, A and B i are given, we have 

−→ 

z (c) 
i 

= arg max −→ 

z Pr ( 
−→ 

z | −−→ 

O 

(c) 
i 

, A, B i ) = arg max −→ 

z 

Pr ( 
−→ 

z , 
−−→ 

O (c) 
i 

| A,B i ) 

Pr ( 
−−→ 

O (c) 
i 

| A,B i ) 

= arg max −→ 

z Pr ( 
−→ 

z , 
−−→ 

O 

(c) 
i 

| A, B i ) 

herefore, the problem can be solved by a dynamic programming

ethod. Let 

( j, t) = max 
(z i 1 , ... ,z it−1 ) ∈ S t−1 

Pr (x (c) 
1 

, . . . , x (c) t , z i 1 , . . . , z it−1 , z it = S j | A, B i ) 

here z ip (1 ≤p ≤ t ) denotes the random state. Therefore, 

ax −→ 

z 
Pr ( 

−→ 

z | −→ 

O i , A, B i ) = 

k 
max 
j=1 

μ( j, τi ) (8)

nd 

( j, t) = 

k 
max 
p=1 

μ(p, t − 1) A (p, j) B i ( j, x 
c 
t ) (9)

hus, 
−→ 

z (c) 
i 

can be obtained by solving the dynamic programming

unction according to Formula (9) . The algorithm is shown in

lgorithm 6 , where πp (1 ≤ p ≤ k ) is the steady-state probability of

he Markov process, and can be determined by transition probabil-

ty matrix A . 

.3. Cooperative event detection algorithm 

Based on the discussions in Sections 4.1 and 4.2 , the coopera-

ive event detection algorithm has three steps. 

First, each sensor node i (1 ≤ i ≤n ) retrieves the observation se-

uence from its current data stream D i (T 
(c) 
s , T (c) 

f 
) using the algo-

ithm in 4.1. It determines the most likely state sequence 
−→ 

z (c) 
i 

using

he algorithm in Section 4.2 . 

Second, each sensor i (1 ≤ i ≤n ) transmits the last state in state

equence 
−→ 

z (c) 
i 

, that is z iτi , to the sink by the spanning tree routing

rotocol. 

Third, the sink obtains { S r 1 , S r 2 , . . . , S r h } (= 

⋃ n 
i =1 { z iτi } ) after re-

eiving 

{ z iτi | 1 ≤ i ≤ n } from the network. Let S e ∈ { S 1 , S 2 , . . . , S k } de-
ote the state of event e . Then, the sink calculates ϕ = Pr (X t+1 =
 e | (X t = S r 1 ) 

∨ 

(X t = S r 2 ) 
∨ 

. . . 
∨ 

( X t = S r h )) by the following for-

ula 

 = 

h ∑ 

i =1 

Pr (X t+1 = S e 
⋂ 

X t = S r i ) ∑ h 
i =1 Pr (X t = S r i ) 

= 

h ∑ 

i =1 

Pr (X t+1 = S e | X t = S r i ) Pr (X t = S r i ) ∑ h 
i =1 Pr (X t = S r i ) 

ince X t = S r j and X t = S r i are mutually disjoint with each other,

here X t and X t+1 are random variables. Based on the transition

robability matrix A , Pr (X t+1 = S e | X t = S r i ) = A (e, r i ) and Pr (X t =
 r i ) can be determined by the steady-state probability of the

arkov process. Thus, the probability that event e will happen in

ext time slot, i.e. ϕ, can be obtained by the sink. If ϕ is larger

han a given threshold, the sink reports e to the users. 

Since only states are required to be transmitted, the above al-

orithm saves a lot of energy during event detection. Meanwhile,

he computation cost of the sink is O ( n ) when executing the above

lgorithm, which is also very low. 
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Webcam to Collect Image

Microphone to Collect Sound

Telosb Sensor Node to Collect
Illumination, Temerature and Humidity

Boe-Bot Robot

Infrared Sensor and Sensor 
to Detect Obstacles 

Ultrasonic Sender and Sensor 
to Detect Obstacles

Fig. 2. The devices in the system. 
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5. Experimental results 

Two real testbeds is used to evaluate the performance of our

proposed model. 

The first one is an indoor intrusion detection system. It is based

on TinyOS 2.1.0 and consists of two Boe-Bot Robots [28] which can

move automatically according to the instructions. The ultrasonic

and infrared ray sensors are deployed on the two robots to mea-

sure distance, detect obstacles and sensing the temperature from

intruder. Furthermore, ten TelosB sensors are also deployed in the

monitored region, which are static and can continuously sample

the temperature, humidity and light intensity from the monitored

area. Three of them are used for routing, one is preserved as the

sink. Finally, the system also contains two camera and two micro-

phone to catch the variation of video and audio in the monitored

region. The devices used in the system is presented in Fig. 2 . 

The second one is the human motion monitoring system. We

use five iPhones to monitor the motions of the holders. The oper-

ating system is iOS7.1. The accelerometer and the gyroscope em-

bedded in the iPhone are used to sample the velocity and the an-

gular velocity of the human motion. The camera and microphone

are also utilized to sample the video and audio data from holders. 

In these systems, the number of computation operations and

transmissions is calculated while the proposed algorithms are ap-

plied. According to [29] , the energy cost of a sensor to send and

receive one byte is set to be 0.0144 mJ and 0.0057 mJ, respectively.

The energy consumed of executing 10 0 0 instructions of CPU for a

sensor is equal to that consumed by sending a bit message. 

5.1. The performance of learning algorithm 

The first group experiments are to investigate the energy cost

of the redundant observation reducing algorithm in Section 3.1 . In

the experiments, the energy consumption is calculated while the

number of original observations varies from 20 to 50, and the av-

erage length of an observation is set to be 20, 30 and 50 respec-

tively, where the length of an observation equals to the number of

snapshot it contains. According to Fig. 3 , it costs little energy for

deleting the redundant observations from the original observation

set even when its size is large since the energy consumed by the

computation is quite small. 

The second group experiments are to compare the distance of

two snapshots inner an observation with that between different
bservations. In the experiments, the maximum distance of two

napshots inner an observation, the minimum and maximum dis-

ances between two snapshots in different observations were cal-

ulated while the average length of an observation increased from

0 to 60. Fig. 4 shows that the distance of two snapshots inner an

bservation is much smaller than that of two snapshots belonging

o different observations, so that the observations in a data stream

an be partitioned by similarity comparison. 

The third group of the experiment is to investigate the recall

nd precision rate of the similarity based method in Section 3.1 . In

he experiments, the number of the real observations in a stream

s set to be 15 and 20, the average length of an observation is set

o 50 and 100. The recall rate is calculate while the given bound
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Fig. 5. Recall rate of similarity based algorithm. 
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 is increase from 80 to 160, and the precision rate is calculated

hile b grows from 10 to 100. The results in Fig. 5 show that the

ecall rate is close to 1 expect when the given bound is too large.

ig. 6 shows that the precision rate is also approached to 1 expect

hen the given bound is too small. Therefore, the above results in-

icate that the bound b is easy to set for determine the observation

ccording to the similarity, which is because the observations cor-

esponding to different state are easy to be distinguished according

o Fig. 3 . 

The fourth group experiments are to investigate the computa-

ion complexity and energy cost of the transition and emission

robability matrices determining algorithms. In the experiments,

he number of operations and the energy cost of the simple al-

orithm and EM algorithm were calculated while the number of

tates, k , increase from 6 to 10. Fig. 7 show that EM algorithm

eeds more operations than the simple algorithm since its input

nformation is much less. However, the energy consumed by the

wo algorithms is almost the same according to Fig. 8 . since the

ata size transmitted by both algorithms is the same and the en-

rgy costed by computation is quite smaller than that costed by

ransmission for a sensor device. These results also verify that EM
lgorithm is energy efficient even that it can deal with more com-

licate situation. 

.2. The performance of event detection algorithm 

The first group experiments are to investigate the energy cost

f observation identification algorithms. which are introduced in

ection 4.1 . In the experiments, the energy consumed by enumer-

ting and greedy algorithms was calculated while the number of

napshots in the current time window varied from 20 to 100, and

he average length of an observation is 20. The experimental re-

ults is presented in Fig. 9 (a) and (b). These figures show that the

nergy cost of enumerating algorithm is 10 6 times more than that

f greedy algorithm. Since greedy algorithm is only a polynomial

ime algorithm, it needs much fewer computation operations to

dentify observations, so that much energy is saved. 

The second group experiments are to evaluate the ratio bound

f the greedy algorithm. In the experiments, the relative weighted

dit distances between the observation sequences and the origi-

al data stream were calculated while the number of snapshots

ncreased from 21 to 103, and the average length of an observation

s 20, where the observation sequences are returned by the enu-

erating and greedy algorithm, respectively. The experimental re-

ults are given in Fig. 9 (c). It shows that the relative weighted edit

istances brought by the greedy algorithm and enumerating algo-

ithm are almost the same. According to discussion in Section 4.1 ,

he enumerating algorithm is optimal, that is, the weighted edit

istance brought by it is minimum, so that the results generated by

he greed algorithm is very close to the optimal ones, and thus the

reedy algorithm achieve the excellent ratio bound during identi-

ying the observations. 

In the third group experiments, the relative weighted edit dis-

ance between the observation sequence returned by the greedy

lgorithm and the original data stream was calculated while the

verage number of observations in a time window increased from

 to 15, and the average length of each observations equaled to 20

nd 40. The experimental results are presented in Fig. 10 . It shows

hat the distance between the result returned by the greedy al-

orithm and the original data stream is quite small, that is, the

bservation identifying by the greedy algorithm is very close to

he original data stream, which means that the greedy algorithm

chieve high accuracy. 

The fourth group experiments are to evaluate the energy cost

f the state sequence deducing algorithm in Section 4.2 . In the ex-

eriments, the energy consumed by the algorithm was computed

hile the number of states, k , increased from 2 to 10, and the

umber of observations in a time window is equal to 3 and 8. The

xperimental results are presented in Fig. 11 . It shows that the en-

rgy consumed by Algorithm 3 in Section 4.2 is extremely small.
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Based on Algorithm 3 , the most like state sequence, i.e. 
−→ 

z (c) 
i 

, is de-

termined by the dynamic programming algorithm, which is a poly-

nomial algorithm. Meanwhile, most of input information is stored

locally. Therefore, the energy consumed by transmission and com-

putation is quite low, so that lots of energy could be saved for ob-

taining 
−→ 

z (c) 
i 

. 

In the fifth group experiments, the energy cost of the event de-

tection algorithm was computed while the number of observations

in current time window increased from 4 to 12, and the size of

the training observation set equals to 10 and 20. Fig. 13 (a) and (b)

show that the energy cost of our event detection algorithm is ex-

tremely small comparing with that of transmitting scalar data or

vector data since only a state is required to be transmitted. 

In the last group of experiments, the probability of correctly de-

tecting the event was calculated while the number of sensor de-
ices increased from 1 to 5. The results in Fig. 12 show

Algorithm 1: The Algorithm for computing βp ( t ). 

Input : A 

(r−1) 
i 

, B (r−1) 
i 

, 
−→ 

O i = (x 1 , x 2 , . . . , x m i 
) 

Output : { βp (t) | 1 ≤ p ≤ k, 1 ≤ t ≤ m i } 
1 βp (1) = πp B 

(r−1) 
i 

(p, x 1 ) for all 1 ≤ p ≤ k ; for 2 ≤ t ≤ m i 

do 

2 for 1 ≤ q ≤ k do 

3 βq (t) = 

∑ k 
p=1 βp (t − 1) A 

(r−1) 
i 

(p, q ) B (r−1) 
i 

(q, x t ) 

4 Return { βp (t) | 1 ≤ p ≤ k, 1 ≤ t ≤ m i } ; 

Algorithm 2: The Algorithm for computing γ q ( t ). 

Input : A 

(r−1) 
i 

, B (r−1) 
i 

, 
−→ 

O i = (x 1 , x 2 , . . . , x m i 
) 

Output : { γq (t) | 1 ≤ q ≤ k, 1 ≤ t ≤ m i } 
1 γq (m i ) = B (r−1) 

i 
(q, x m i 

) for all 1 ≤ p ≤ k ; for 
t = m i − 1 ; t ≥ 1 ; t − − do 

2 for 1 ≤ q ≤ k do 

3 γq (t) = 

∑ k 
p=1 A 

(r−1) 
i 

(q, p) B (r−1) 
i 

(q, x t+1 ) γp (t + 1) ; 

4 Return { γq (t) | 1 ≤ q ≤ k, 1 ≤ t ≤ m i } ; 

hat such probability is largely improved when more sensor de-

ices are deployed in the monitored region Meanwhile, we also

nd that the monitoring accuracy can be significantly enhanced

hen multi-modal sensory data are involved in the system since

hey can catch different properties of the monitored objects. 
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Fig. 13. Energy cost of event detection algorithm. 

Algorithm 3: The Algorithm of Deducing the Most likely State 

Sequence. 

Input : A, B (r−1) 
i 

, 
−−→ 

O 

(c) 
i 

= (x (c) 1 , x (c) 2 , . . . , x (c) τi 
) 

Output : 
−→ 

z (c) 
i 

1 

−→ 

z (c) 
i 

= () ; 
2 for 1 ≤ p ≤ k do 

3 μ(p, 1) = πp B i (p, x 
(c) 
1 ) ; 

4 z i 1 = arg max k p=1 μ(p, 1) ; 

5 Insert z i 1 into 
−→ 

z (c) 
i 
; 

6 for 2 ≤ t ≤ τi do 

7 for 1 ≤ q ≤ k do 

8 μ( j, t) = max k p=1 μ(p, t − 1) A (p, j) B i ( j, x 
c 
t ) ; 

9 z it = max k 
j=1 

μ( j, t) ; 

10 Insert z it into 
−→ 

z (c) 
i 
; 

11 Return 

−→ 

z (c) 
i 
; 

Algorithm 4: Redundant Observation Removing Algorithm. 

Input : The original observation set 
O i = { o iq | 1 ≤ q ≤ m i } , the original sequence −→ 

O i = (o i 1 , o i 2 , . . . , o im i 
) , the bound b 

Output : The final observation set and observation 

sequence. 
1 for 1 ≤ q ≤ m i do 

2 Count the appearance time of each o iq ; 
3 for 1 ≤ q ≤ m i do 

4 for 1 ≤ r ≤ m i do 

5 ED (o iq , o ir ) is calculated by [26] 
6 if ED (o iq , o ir ) ≤ b then 

7 if The appearance times of o iq is larger then 

8 Delete all o ir from O i ; 

9 Use o iq to replace o ir in 

−→ 

O i , andUpdate the 
appearance times of o iq ; 

10 else 
11 Delete all o iq from O i ; 

12 Use o ir to replace o ip in 

−→ 

O i , andUpdate the 
appearance times of o ir ; 

13 Return O i and 

−→ 

O i ; 

Algorithm 5: Greedy Algorithm for Determining Observation 

Sequence and Set. 

Input : Training data set D i (T s , T f ) and distance bound 

b 1 
Output : Observation set O i and observation sequence −→ 

O i 

1 O i = ∅ , l = 1 , o il = ∅ , 
−→ 

O i = () ; 
2 for each d it j ∈ D i (T s , T f ) do 

3 if o il == ∅ then 

4 o il = o il 
⋃ { d it j } ; 

5 else 
6 Insert = ture ; 
7 for each d it p ∈ o il do 

8 if Dis (d it j , d it p ) > b 1 then 

9 Insert = faulse , 
10 break; 

11 if Insert == ture then 

12 o il = o il 
⋃ { d it j } , 

13 else 
14 O i = O i 

⋃ { o il } ,Insert o il into −→ 

O i o i (l+1) = ∅ , l = l + 1 ; 

15 Call the algorithm in section 3.1.1 to remove and 

replace the redundant observations in O i and 

−→ 

O i ; 

16 Return O i and 

−→ 

O i ; 

6

 

w  
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. Related works 

Currently, there doesn’t exist any work considering how to deal

ith multi-modal sensory data at the same time. The published

iteratures including the data integration and event detection tech-

iques are the only ones which are related to our work. 

Flora et al. [18] and Khalil et al. [19] proposed two semantics

ased sensory data integration method for WSNs. In their works,

he authors used XML schema to denote sensory data, and dis-

ussed how to integrate the sensory data when the XML struc-

ures adopted by different sensors are not same. The sensory data

onsidered by them is still described by the same language, and

he modality of data that they can deal with is simple. Jirkovský

t al. [20] discuss the approach of understanding data heterogene-

ty in Cyber-Physical Systems(CPS). The authors summarize the

hallenges for data integration in CPS, and proposed the shared

HS ontology and SBDH based on Semantic Web technology in or-

er to integrate sensory data. However, similar as [18,19] , the sen-

ory data consider by it also share the same modality, and the het-
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Algorithm 6: The Maximum Likelihood based Algorithm for 

Setting Transition and Emission Probability Matrices. The ref- 

erence cited in this table is [38] 

Input : { −→ 

O i | 1 ≤ i ≤ n } and { −→ 

S (i ) | 1 ≤ i ≤ n } 
Output : The transition matrix A and the emission 

matrices { B i | 1 ≤ i ≤ n } 
1 All the sensors in the network are organized as a 
spanning tree rooted at the sink according to [38]; 

2 for each sensor node i (1 ≤ i ≤ n ) do 

3 for each q (1 ≤ q ≤ k ) do 

4 for each p (1 ≤ p ≤ k ) do 

5 count 1 = 

m i ∑ 

t=1 

I(S (i ) t = S q 
∧ 

S (i ) t−1 = S p ) , count 2 = 

m i ∑ 

t=1 

I(S (i ) t−1 = S p ) , A i (p, q ) = 

cout 1 
count 2 

; 

6 count 3 = 

m i ∑ 

t=1 

I(S (i ) t = S q ) ; 

7 for each v (1 ≤ v ≤ m 

(o) 
i 

) do 

8 cout 4 = 

m i ∑ 

t=1 

I(S (i ) t = S q 
∧ 

x t = o i v ) , B i (q, v ) = 

count 4 
count 3 

; 

9 Return B i by each sensor node; 
10 Transmit A i towards the sink; 

11 { A i | 1 ≤ i ≤ n } are transmitted and aggregated along 
the spanning tree; 

12 The sink obtains 
∑ n 

i =1 A i , A = 

1 
n 

∑ n 
i =1 A i ; 

13 Return A ; 
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erogeneity of data only reflects in their representation. Thus, the

problem of how to support the fusing computation on multi-modal

sensory data are not considered either. Besides, the approach pro-

posed by it is centralized, not suitable and efficient for IoT systems.

Meanwhile, the data integration methods in other areas cannot

support the fusing computation on multiple sensory data as well.

Dai et al. [30] studied a data integration problem for health-care

data, the authors proposed a Neural Concept Liking approach for

accurate concept linking, and give a data integration method ac-

cordingly. Similar as the above works, all the data considered by

Dai et al. [30] is text snippets, and they cannot applyto multi-

modal sensory data. A Bayesian framework for integrating the het-

erogeneous gene data, combining the evidences and determining a

posterior probability of whether each pairs of genes had a func-

tional relationship is studied by Troyanskaya et al. [31] . The au-

thors introduced a system, named as MAGIC, to achieve such aim.

However, the input data of MAGIC are real matrices and just has

different formats, so that the multi-modal data had not been in-

vestigated by Troyanskaya et al. [31] , either. Furthermore, all these

algorithms are centralized, and not suitable for IoT systems. 

For event detection, [32,33] propose several algorithms based

on threshold and interest diffusion. These algorithms can only

identify few events, and there exist lots of redundant reports since

they do not consider the spatial and temporal correlations between

sensory data. Furthermore, they only consider how to deal with

scalar data, and are not applicable to complicated multi-modal

sensory data. The works in [34–37] proposed pattern and statisti-

cal model based event detection algorithms. These algorithms save

lots of energy since the correlation among sensory data is suffi-

ciently considered. However, these algorithms also only can deal

with a single modal sensory data and cannot process multi-modal

sensory data. 
. Conclusion 

This paper takes the event detection as an example to study the

using computation algorithm on multi-modal sensory data. Firstly,

 novel model to integrate multi-modal sensory data is proposed

ased on the Hidden Markov Model. Two model learning algo-

ithms are given according to the maximum likelihood and EM es-

imation. Finally, the event detection algorithm is provided based

n the learnt model and current collected sensory data. The the-

retical analysis and extensive experiment results indicate that all

he proposed algorithms have high performance in terms of accu-

acy and energy consumption. 
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ppendix A 

1. Algorithms in Section 3.1 and the Proof of Theorem 1 

This section will present the Redundant Observation Remov-

ng Algorithm discussed in Section 3.1.1 and the Greedy Algo-

ithm for Determining Observation Sequence and Set involved in

ection 3.1.2 , respectively. Meanwhile, we will also provide the

roof of Theorem 1 , which is mentioned in Section 3.2.1 . 

Theorem 1. A i and B i are the solution of the problem given

n Formula (3) if A i (p, q ) = 

∑ m i 
t=1 

I(S (i ) t = S q 
∧ 

S 
(i ) 
t−1 

= S p ) ∑ m i 
t=1 

I(S (i ) 
t−1 

= S p ) 
and B i (q, v ) =∑ m i 

t=1 
I(S (i ) t = S q 

∧ 

x t = o i v ) ∑ m i 
t=1 

I(S (i ) t = S q ) 
for all 1 ≤ q, p ≤ k and 1 ≤ v ≤ m 

(o) 
i 

, where I ( X )

s an indicate function, i.e. I(X ) = 1 if random event X is true, other-

ise I(X ) = 0 . 

Proof of Theorem 1. According to Formula (3) , we have 

 i , B i = arg max 
A,B 

Pr ( 
−→ 

S (i ) , 
−→ 

O i | A, B ) = arg max 
A,B 

( log Pr ( 
−→ 

S (i ) , 
−→ 

O i | A, B )) 

= arg max 
A,B 

log { 
m i ∏ 

t=1 

Pr (x t | S (i ) t , B ) 

m i ∏ 

t=1 

Pr (S (i ) t | S (i ) 
t−1 

, A ) } 

= arg max 
A,B 

m i ∑ 

t=1 

( log B (S (i ) t , x t ) + log A (S (i ) 
t−1 

, S (i ) t )) 

= arg max 
A,B 

k ∑ 

p=1 

k ∑ 

q =1 

| m 

(o) 
i 

| ∑ 

v =1 

m i ∑ 

t=1 

{ I(S (i ) t = S q 
∧ 

x t = o i v ) × log B (q, v

+ I(S (i ) t = S q 
∧ 

S (i ) 
t−1 

= S p ) log A (p, q ) } (10

Let L (A, B, ε, δ) satisfy 

 (A, B, ε, δ) = 

k ∑ 

p=1 

k ∑ 

q =1 

| m 

(o) 
i 

| ∑ 

v =1 

m i ∑ 

t=1 

{ I(S (i ) t = S q 
∧ 

x t = o i v ) log B (q, v ) 

+ I(S (i ) t = S q 
∧ 

S (i ) 
t−1 

= S p ) log A (p, q ) } 

+ 

k ∑ 

q =1 

ε q (1 −
m 

(o) 
i ∑ 

v =1 

B (q, v )) + 

k ∑ 

p=1 

δp (1 −
k ∑ 

q =1 

A (p, q )) (11)

here δp = 

m i ∑ 

t=1 

I(S (i ) 
t−1 

= S p ) and εq = 

m i ∑ 

t=1 

I(S (i ) t = S q ) . 
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Since 
∑ m 

(o) 
i 

v =1 
B (q, v ) = 1 and 

∑ k 
q =1 A (p, q ) = 1 , Formula (11) can

e reduced to 

 i , B i = arg max 
A,B 

L (A, B, ε, δ) (12)

According to the condition of Theorem 1 , A i (p, q ) =∑ m i 
t=1 

I(S (i ) t = S q 
∧ 

S 
(i ) 
t−1 

= S p ) ∑ m i 
t=1 

I(S (i ) 
t−1 

= S p 
) for any 1 ≤p, q ≤ k . Thus, ∂L (A,B,ε,δ) 

∂A (p,q ) 

∣∣∣
A = A i 

= 0 .

imilarly, ∂L (A,B,ε,δ) 
∂B (q, v ) 

∣∣∣
B = B i 

= 0 Therefore, A i and B i are the solution

f the problem given in Formula (3) . �

2. The algorithm in Section 3.2.1 and the Proof of Theorem 2 

The following section will provide the pseudocode of

he Algorithm discussed in Section 3.2.1 , and the proof of

heorem 2 shown in Section 3.2.2 . 

Theorem 2. A (r) 
i 

and B (r) 
i 

are the solutions of the above problem if

 

(r) 
i 

(p, q ) = 

∑ m i 
t=1 

ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 
and B (r) 

i 
(q, v ) = 

∑ k 
p=1 

∑ m i 
t=1 

I(x t = o i v ) ηt (p,q ) ∑ k 
p=1 

∑ m i 
t=1 

ηt (p,q ) 

or any 1 ≤p , q ≤ k and 1 ≤ v ≤ | O i | = m 

(o) 
i 

, where 

ηt (p, q ) = βp (t − 1) A (r−1) 
i 

(p, q ) B (r−1) 
i 

(q, x t ) γq (t ) , βp (t ) = Pr (x 1 ,

 2 , . . . , x t , z it = S p | A (r−1) 
i 

, B (r−1) 
i 

) and γq (t) = Pr (x t+1 , . . . , x m i −1 ,

 m i 
, z it = S q | A (r−1) 

i 
, B (r−1) 

i 
) . 

Proof of Theorem 2. Let L (A (r) 
i 

, B (r) 
i 

, ε, δ) satisfy 

L (A, B, ε, δ) = 

∑ 

−→ 

z i ∈ S m p 
ϕ( 

−→ 

z i ) 
k ∑ 

p=1 

k ∑ 

q =1 

| m 

(o) 
i 

| ∑ 

v =1 

m i ∑ 

t=1 

{ I(z it = S q 
∧ 

x t = o i v ) 

log B (q, v ) + I(z it = S q 
∧ 

z it−1 = S p ) log A (p, q ) } 

+ 

k ∑ 

q =1 

εq 

⎛ ⎝ 1 −
m 

(o) 
i ∑ 

v =1 

B (q, v ) 

⎞ ⎠ + 

k ∑ 

p=1 

δp 

( 

1 −
k ∑ 

q =1 

A (p, q ) 

) 

(13) 

here δp and εq satisfies that 

δp = 

∑ 

−→ 

z i 
ϕ( 

−→ 

z i ) 
∑ m i 

t=1 
I(z it−1 = S p ) and εq = 

∑ 

−→ 

z i 
ϕ( 

−→ 

z i )
 m i 
t=1 

I(z it = S q ) . 

Using the similar proof with Theorem 1 , we have that A (r) 
i 

nd B (r) 
i 

are the solution of the problem given in Formula (4) if

 

(r) 
i 

, B (r) 
i 

= arg max A,B L (A, B, ε, δ) . . Thus, 

∂L (A, B, ε, δ) 

∂A (p, q ) 
= 

∑ 

−→ 

z i ∈ S m p 
ϕ( 

−→ 

z i ) 
1 

A (p, q ) 

m i ∑ 

t=1 

I(z it = S q 
∧ 

z it−1 = S p ) −δp

(14) 

ased on the condition in Theorem 2 , 

 

(r) 
i 

(p, q ) = 

∑ m i 

t=1 
ηt (p, q ) ∑ k 

p=1 

∑ m i 

t=1 
ηt (p, q ) 

= 

1 

Pr ( 
−→ 

O i | A (r−1) 
i 

,B (r−1) 
i 

) 

∑ m i 

t=1 
ηt (p, q ) 

1 

Pr ( 
−→ 

O i | A (r−1) 
i 

,B (r−1) 
i 

) 

∑ k 
p=1 

∑ m i 

t=1 
ηt (p, q ) 

(15) 

here the numerator of Formula (15) satisfies that ∑ m i 

t=1 
ηt (p, q ) 

 ( 
−→ 

O i | A (r−1) 
i 

, B (r−1) 
i 

) 
= 

∑ m i 

t=1 
βp (t −1) A (r−1) 

i 
(p, q ) B (r−1) 

i 
(q, x t ) γq (t) 

Pr ( 
−→ 

O i | A (r−1) 
i 

, B (r−1) 
i 

) 

= 

1 

Pr ( 
−→ 

O i | A (r−1) 
i 

, B (r−1) 
i 

) 

m i ∑ 

t=1 

∑ 

−→ 

z 

I(z it−1 = S p 
∧ 

z it = S q ) 

Pr ( 
−→ 

z i , 
−→ 

O i | A (r−1) 
i 

, B (r−1) 
i 

) 

 

= 

m i ∑ 

t=1 

∑ 

−→ 

z i 

I(z it−1 = S p 
∧ 

z it = S q ) Pr ( 
−→ 

z i | −→ 

O i , A 
(r−1) 
i 

, B (r−1) 
i 

) (16) 

ince ηt (p, q ) = βp (t) A 
(r−1) 
i 

(p, q ) B (r−1) 
i 

(q, x t ) γq (t + 1) , βp (t) = Pr

(x 1 , x 2 , . . . , x t , z it = S p | A (r−1) 
i 

, B (r−1) 
i 

) and γq (t) = Pr (x t+1 , . . . , x m i −1 ,

 m i 
, z it = S q | A (r−1) 

i 
, B (r−1) 

i 
) . According to the definition of ϕ( 

−→ 

z i ) (=
r ( 

−→ 

z i | −→ 

O i , A 
(r−1) , B (r−1) 

i 
)) , we have 

1 

Pr ( 
−→ 

O i | A (r−1) 
i 

, B (r−1) 
i 

) 

m i ∑ 

t=1 

ηt (p, q ) 

= 

∑ 

−→ 

z i 

ϕ( 
−→ 

z i ) 

m i ∑ 

t=1 

I(z it−1 = S p 
∧ 

z it = S q ) (17) 

y the same way, the denominator of Formula (15) satisfies 

1 

Pr ( 
−→ 

O i | A (r−1) 
i 

, B (r−1) ) 

k ∑ 

p=1 

m i ∑ 

t=1 

ηt (p, q ) = 

∑ 

−→ 

z i 

ϕ( 
−→ 

z i ) 

m i ∑ 

t=1 

I(z it−1 = S p ) 

(18) 

rom Formulas (15), (17) and (18) , we have A (r) 
i 

(p, q ) =∑ 

−→ 

z i 
ϕ( 

−→ 

z i ) 
∑ m i 

t=1 
I(z it−1 = S p 

∧ 

z it = S q ) ∑ 

−→ 

z i 
ϕ( 

−→ 

z i ) 
∑ m i 

t=1 
I(z it−1 = S p ) 

. Therefore, ∂L (A,B,ε,δ) 
∂A (p,q ) 

∣∣∣
A = A (r) 

i 

= 

∑ 

−→ 

z i 
ϕ 

( 
−→ 

z i ) 
∑ m i 

t=1 
I(z it−1 = S p ) − δp . Since δp = 

∑ 

−→ 

z i 
ϕ( 

−→ 

z i ) 
∑ m i 

t=1 
I(z it−1 =

 p ) , 
∂L (A,B,ε,δ) 

∂A (p,q ) 

∣∣∣
A = A (r) 

i 

= 0 . 

Similarly, ∂L (A,B,ε,δ) 
∂B (q, v ) 

∣∣∣
B = B (r) 

i 

= 0 . Therefore, A (r) 
i 

and 
̂ 

B (r) 
i 

are the

olution of the problem shown in Formula (4) . �
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