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With the development of Internet of Things (IoT), heterogeneous sensory data appears everywhere in our
lives. Unlike traditional sensory data, heterogeneous sensory data often involves variety modalities of data
in one set, so that it is called as the multi-modal sensory data in this paper. The appearance of such data
making it possible to monitor more complicated objects and improve monitoring accuracy. However, due
to lack of integration model for multi-modal sensory data, most of the existing sensory data management
algorithms only consider single modal sensory data, resulting in insufficient utilization of sensory data.
Thus, we propose a model for integrating the heterogeneous sensory data generated in a IoT system based
on Hidden Markov Process in the paper. The distributed algorithm for constructing such a model is then
presented. The integration model can be applied to many applications, while we take the cooperative
event detection as an example for illustration. The extensive theoretical analysis and experimental results

show that all the proposed algorithms are efficient and effective .

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of sensing techniques, embody
systems and cross-technology communication [1-3], various sen-
sors are always involved in a IoT system or even in a single de-
vice. For example, the current smart phones are equipped with
several different sensors, such as accelerometer, digital compass,
gyroscope, GPS, microphone and camera [4]. An intelligent traffic
monitoring system could involve many flow monitoring sensors,
such as electronic eyes, GPS devices and intelligent traffic lights.
A smart home application always contains the RFIDs for locating
some objects, the sensors for sampling the temperature, humidity,
light intensity, air flow and so on in the environment, the smart
bracelet for obtaining the healthy information of monitoring peo-
ple, the cameras and acoustic sensors for catching the abnormal
informations and guaranteeing the safety of house etc.

Unlike the traditional sensor networks, the sensory data sam-
pled by the current IoT system not only have big volume [5,6] but
also involved diverse modalities. In the aforementioned exam-
ple, a crowdsourcing task running in a smart phone may use
the accelerometer, microphone and camera to collect sensory data
simultaneously, while the sensory data sampled by them are vec-
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tor data, audio data and video data, respectively. Similarly, an in-
telligent traffic system also generates scalar data, vector data and
video data simultaneously. Meanwhile, in a forest ecology moni-
toring system, temperature and humidity are presented as scalar
data, wind velocity and direction are presented as vector data, and
pictures of plants and videos of animals are presented as multime-
dia data. Furthermore, in a smart home application, the dataset in-
cludes the scalar data such as temperature, humidity .etc, the vec-
tor data, such as the movement information of monitoring persons,
and the multimedia data, such as the data sampled by the camera
and acoustic sensors. We notice that the data set generated by the
above IoT systems refer to multiple modalities, and we call such
heterogeneous data set as multi-modal sensory data set.

The appearance of such multi-modal sensory data provide
abundant information and great opportunities to reveal the mys-
terious physical world, and it also brings many benefits for current
IoT system. Firstly, the multi-modal sensory data supply plenty
of semantics information comparing with the traditional sensory
data. Since each modality of sensory data give some new informa-
tion about the monitoring objects, and thus, the multi-modal sen-
sory data breaks the limitation of the single-modal sensory data,
and make it possible for multi-preceptive observation and analy-
sis. Secondly, more complexity objects could be monitored by cur-
rent IoT system with the help of multi-modal sensory data. Obvi-
ously, more detailed and comprehensive information are required
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when the monitoring objects are complex, and the multi-modal
sensory data set meets such requirements since it provides abun-
dant semantics information. Thirdly, the multi-modal sensory data
improve the utilization of system and shorten the latency of dis-
covering the abnormal information. Since the sensory data of dif-
ferent modalities are related with each other, the system utiliza-
tion rate will be further promoted if we sufficiently take advan-
tage of such relationship. Meanwhile, the abnormal event could be
detected in time with the help of different modalities of sensory
data, so that it will save lots of time for event detection.

Based on the above discussion, the multi-modal sensory data
are quite useful for current IoT system, and they will be ubiquitous
for us since the monitoring objects of current IoT systems become
more and more complex. However, it also brings many challenges
on how to manage and make maximum utilization of these data.
Although there are a great number of distributed sensory data
management algorithms in traditional sensor networks, including
data acquisition algorithms [7], data collection algorithm [8], data
mining and modeling algorithms [9,10], data transmission schedul-
ing algorithms [11,12], and query processing algorithms [13,14] .etc,
but most of them are only suitable for dealing with scalar data and
cannot process more complicated data. Some of the works, such as
[15-17], investigate how to deal with multimedia data in WSNs,
but they only consider one modality of sensory data and cannot
deal with multi-modal sensory data. Besides, the multi-modal sen-
sory data are also quite different from the traditional heteroge-
neous data that have been studied because most of them, as dis-
cussed in [18-20], only consider the data with different structures,
while they still share the same modality.

To the best of our knowledge, we are the first one to con-
sider the problem of dealing with the multi-modal sensory data.
Then, the first problem is coming: can we process sensory data
one modality by one modality separately without fusing them to-
gether? Unfortunately, the answer is no. Since most of the current
monitored objects become more complicated than they used to
be, one or two modalities of sensory data cannot describe them
accurately. For example, to discover the variation of forest ecol-
ogy, temperature, humidity, wind velocity and direction, video and
image data should be managed simultaneously. To recognize hu-
man activities by smart phones, the sensory data sampled by the
accelerometer, digital compass, gyroscope, GPS, microphone and
camera should all be taken into account. Moreover, fusing compu-
tation on the multi-modal sensory data also improves the obser-
vation accuracy. For example, in a fire monitoring system, it will
catch the threat of fire as early as possible if temperature, light,
video and audio data are considered together.

Due to the above reasons, a group of fusing computation al-
gorithms on multi-modal sensory data are desired for current IoT
systems. However, it is quite challenging to simultaneously deal
with even two modalities of sensory data as their representations
are quite diverse. To make the fusing computations to be possible,
a model of integrating the multi-modal sensory data is highly ex-
pected.

In this paper, we construct such a model according to the Hid-
den Markov Process [21]. The model firstly projects each sensory
data stream collected by a sensor node into a sequence of states.
Thus, the fusing computations can be executed on states instead of
on the raw sensory data. To the best of our knowledge, it is the
first model to consider the problem of how to integrate the multi-
modal sensory data in IoT systems. Such a model projection pro-
cess makes the fusing computation on multi-model sensory data
to be possible and can be applied to many applications. For exam-
ple, discovering the relationship between different models of sen-
sory data, backtracking the reason of certain phenomenons, mining
the pattern of frequent observations, detecting the events cooper-
atively, etc. Furthermore, this model can provide insights for the

sensor deployment strategy to cover the events, the system control
method to avoid disasters, etc, thus, it is valuable for the current
[oT systems.

Finally, the cooperative event detection is taken as an example
to show how to use our model to support the fusing computations
on multi-modal sensory data because the event detection is one of
most important operations in IoT systems. Other fusing computa-
tion operations will be discussed in our future works due to the
space limitation. In summary, the main contributions of our paper
are summarized as follows.

(1) The definitions of multi-modal sensory data and the problem
of fusing computation on multi-modal sensory data are firstly pro-
posed.

(2) A model for integrating the multi-modal sensory data gen-
erated in a IoT system is provided. The algorithm for learning such
a model according to the training data is given.

(3) A distributed algorithm for detecting the events coopera-
tively is presented based on the above model.

(4) The real system experiments were carried out. The extensive
experimental results verify the efficiency and effectiveness of all
the proposed algorithms.

The rest of the paper is organized as follows. Section 2 pro-
vides the problem definition. Section 3 discusses how to con-
struct the model for integrating the multiple modal sensory data.
Section 4 proposes a distributed cooperative event detection algo-
rithm. Section 5 presents the experimental results. Section 6 sur-
veys the related works and Section 7 concludes the paper.

2. Problem definition

Assume that there are n sensor nodes in a IoT system, indexed
by {1, 2, ---, n}. Similar to traditional sensor networks, each sensor
node i samples a sensory data stream from the monitored physical
world. Let D; denote the sensory data stream sampled by sensor
node i, and d;; € D; denotes the snapshot value sampled by sensor
node i at time t. As mentioned in Section 1, the type of d;; depends
on D;, i.e. di; does not have to be a single value. For example, d;; is
a frame of image if D; is a video stream, d;; is a scalar value if D; is
a scalar data stream, d;; is a vector if D; is a vector data stream, etc.
Furthermore, the clocks of all the sensor nodes in the system are
synchronized according to some well established techniques [22].

Let f;(1<i<n) be the sampling frequency of sensor node i.
In a given time window [T, Tj], the sensory data of sensor
node i can be regarded as a set of m snapshots, ie., D;i(Ts, Ty) =
{dit,. dit, - - dig, }, where ty =Tg, m=|Tf = Ts| x f;, and tq — & =
1/fiforany 1 <r<m-1.

Since the sampling frequency of a sensor node could be large,
the consecutive snapshots from a sensor may be very similar with
each other. Thus, we use observation to denote a set of consecu-
tive snapshots which have little variation. The formal definition of
observation is given as follows.

Definition 1 (Observation). An observation of sensor i, denoted by
0;, satisfies that o;; is a set of consecutive snapshots, where [ is an
integer to identify the serial number of observations in D;. Thus,
0 = {difll s ditlz yeees di[’k }, where t,1 <...< tlk and tle - tlj = ]/fl
forVi<j<k-1.

Therefore, a sensory data stream in any given time window
[Ts, Tf] can be divided into a set of observations, ie., Di(Ts, Ty) =
0i1 Jop U---Joj, where oy is disjoint with o; in temporal space
forany 1<l#£j<r.

Apparently, the number of the observations collected by a sen-
sor node are determined by the variation of the monitored process
or event. Since the variation of a process or event always follows
certain laws, the number of the observations collected by a sensor
node is limited. Let mlfo) be the number of all the possible obser-
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vations collected by sensor node i. We assume that the training
data of each sensor node i(1<i<n) is large enough and can cover
all the observations. The case that the training data are insufficient
will be considered in our future work due to space limitation.

Meanwhile, we found that a process or event is always reflected
by a series of states in most applications. For example, in a fire
detection system, there are three states, representing normal, risk
and fire respectively. Thus, we use S1, S5, ..., S to denote the states
of our system. As the monitoring processes of [oT systems are com-
plicates, we regard Sy, S;, ..., S as hidden states.

Obviously, there exists a certain relationship between a hidden
state and an observation. Meanwhile, two different states are re-
lated to each other. In most monitoring systems, the Markov prop-
erty is guaranteed [23,24], i.e. a current state is only determined
by the previous one, and the current observation only depends on
the current state. Thus, we can construct the integration model of
the multi-modal sensory data based on the Hidden Markov Process
[21].

According to the above analysis, let F be the integration model
of multi-modal sensory data. F uses an m,.(") x k matrix, B; (=
[bpq]lgpfm;o),lﬁqfk), to describe the relationship between states

and observations of sensor node i(1<i<n), and uses a k x k ma-
trix, A (= [ajj]xxk), to represent relationship among states, and
B;(1<i<n) and A satisfies that: 1). A(p,q) = Pr{z; = S¢|z;_1 = Sp}
for any 1<p and g<k; 2). Bi(p,r) = Pr{x; = 05|zt = Sp} for any
1<r< ml.(") and 1<p<k. where Pr{X} denotes the probability of
random event X, x; and z; are random variables, t denotes the cur-
rent time slot and t — 1 denotes the previous time slot exactly be-
fore t. That is, A and B;(1 <i<n) are the transition probability ma-
trix and emission probability matrix of F, respectively.

From the above analysis, the model F will project the sensory
data streams with different modalities into the sequences of states
firstly and then all the computations are implemented on states in-
stead of the raw sensory data Therefore, 7 needs to be constructed
firstly. The problem of learning F based on the training data is de-
fined as follows.

Input:

(1) Data streams in a long time window [Ts, Ty, {Di(Ts,
Tl <i<n};

(2) The hidden states {Sq,S,, ..., S}

Output:

(1) The observation sets and observation sequences of n sensor
nodes;

(2) The transition and emission probability matrices, A,
Bi(1<i<n). O

Finally, the problem of cooperative event detection is took as an
example to show how to use F, which is defined as follows.

Input:

1. Current time window [Ts(c), Tf(c)];

2. Sensory data streams from n sensor nodes in [TS(C), Tf(c)],
ie (Di(TO, T{N1 =i <n);

3. F={A,By.B;,...,Bg}.

Output: The probability of the event being happens. O
The symbols that used in the paper is summarized in Table 1.

3. Integration model learning algorithm

Two sub problems need to be solved in order to learn model F
according to the training data sets:

1) How to retrieve the observation set and observation se-
quence from a continuous sensory data stream?

2) How to learn the transition probability matrix A and the emis-
sion probability matrices {B;|1 <i<n} according to the observations?

Fig. 1. The distance between two snapshots.

The following two subsections provide the solutions to the
above problems. Considering the distributed properties of IoT sys-
tems, all the algorithm proposed in the rest sections are also dis-
tributed, so that the data processing abilities of each sensor node
are utilized sufficiently comparing with the centralized algorithms.
Meanwhile, lots of energy will be saved if we adopt the distributed
algorithms in a IoT system since fewer data are required to be
transmitted in the network comparing with the centralized ones.

3.1. Observation determination algorithm

The observations can be determined by each sensor node locally
according to its training data set.

3.1.1. The simple method

According to Section 2, the training data set of sensor node i is
denoted by Di(Ts, Ty). If the corresponding states of each sensory
data stream are available, the method for determining the obser-
vations is trivial. )

Suppose that (Sg'), S;’), . 5;(12) denotes the state sequence cor-
responding to D(Ts, Ty), and ty, tp,..., tm, is the time sequence
of state changing, ie. t;(2<qg=<m;) is the time instance at which
the state changes from Sl(]'zl to Séi), where t; = T;. Therefore,
t1, ta,..., tm, divide the data stream Di(Ts, Ty) into m; parts. We
use 0jq, 03, - - -, Ojy, to denote these parts, then o; can be regarded
as an observation for all 1 <r <m;. Therefore, the original observa-
tion set can be determined by O; = {0;1, 0j3, ..., 0jn, }, and the orig-

inal observation sequence satisfies 5>, = (01,02, - - -, Oy )-

Apparently, duplicate observations in set O;, which are regarded
as redundant information, should be removed in order to save
space and time costs for constructing model F. To reduce the re-
dundant observations, the similarity of two observations needs to
be evaluated. Since an observation contains a group of snapshots
as shown in Definition 1, the distance between any two snapshots
is required firstly.

Let di, and di, denote two snapshots sampled by sensor i,
and Dis(dy,,dy,) be the distance between dj, and dy,. Then,
Dis(dyt,  dit,) = |dit, —dit, | if the sensory data sampled by sensor i

is scalar data, Dis(d,, dir,) = ||¢E1) - d_i[;||2 if the sensory data sam-
pled by sensor i is vector data, as shown in Fig. 1, or Dis(dy,, di,)
can be determined by the Euclidean distance between two images
[25] if the sensory data sampled by i is video data.

Based on the distance between two snapshots, the distance be-
tween two observations is defined as follows.

Definition 2 (Distance between two Observations). Let 0;, and o;;
be two observations of sensor i. The minimum weighted edit dis-
tance, denoted by ED(o0jq, 0;), is used to denote the distance be-
tween o0y, and o;;, where

1. the weight of modifying d;;, to d;, equals Dis(dy,, di, );
2. the weight of deleting and inserting d;, equals Dis(d;, ,0);

for any dy, € 0y and dy, € 0;.
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Table 1
Symbol list.
Symbol Description
i(1<i<n) ID of Sensor Node
D; Sensory data stream sampled by sensor i
dy The snapshot value sampled by sensor i at time t
[Ts, T5] The given time window
0j An observation of sensor i
mf") Number of all the possible observations collected by i
F Integration model of multi-modal sensory data
S$1.5, ..., Sk The hidden states
A (= [aijlkxk) Transition probability matrix
Bi (= [bpqllspsm:m‘lsqsk) Emission probability matrix of Sensor i
0; ={0i1,0p, ..., Oim,} Original observation set corresponding to Di(Ts, Ty)
a = (0i1, 01, ..., Oim, ) Original observation sequence corresponding to D(Ts, Tf)
SO = (5,59, ....sP)  State sequence corresponding to Dy(T;, Ty)
Dis(dy, . dir, ) Distance between two observations

Based on Definition 2, the minimum weighted edit distance be-
tween any two observations are calculated firstly, and the observa-
tions are merged together if their distance is smaller than b, where
b is a threshold specified by users and the Needleman-Wunsch al-
gorithm in [26] is used to calculate the minimum weight edit dis-
tance. The detail algorithm is given is shown in Algorithm 4 in the
appendix.

To determine the original observation set, we only need a se-
quentially scan according to the corresponding states, so the com-
putation cost is O(m;).

To reduce the redundant observations, the average computation
cost is equal to O((m,-)zlg,,g) since we need to calculate the mini-
mum weight edit distance of m;(m; — 1) pairs of observations, and
the average computation complexity for calculating the minimum
weight edit distance of one pair is oagvg) according to [26], where
lavg denotes the average number of snapshots contained by an ob-
servation.

3.1.2. Similarity based method

The method introduced above is efficient and has high accuracy.
However, in some applications, the corresponding states of each
sensory data stream are hard to be obtained even for the training
data set, because these states are hidden and cannot be observed
directly. Therefore, we introduce another similarity based method
for this case.

Since we do not have any additional information except D;(Ts,
T;), one feasible way to determine the observation is based on the
similarity between each pair of snapshots. Before introducing the
algorithm, we first give the definition of a division and the induc-
tive distance of a division for clarity.

Definition 3 (Division). {0, 05, ..., 05} is a division of Dy(Ts, Ty) iff.

1. 0j1,..., 0 are observations that satisfy Definition 1;
2. oy Jop U. ..oy = Di(Ts, Tf) and o;, and 0jy are disjoint in
temporal space forany 1 <x#y<I[. O

Definition 4 (The length and inductive distance of a division). Let
{0i1. 02, ..., 0y} be a division of Di(Ts, Ty). The length of division
{0i1, 042, ...,0;5} is equal to I and the inductive distance of the di-
vision {0;1, 03, ..., 0;}, denoted by ID(0;, 0, ..., 0;), satisfies that

ID(031, 013, - .., 0y) = max{Dis(dy, , di,) | die, . dir, € Oy A1 <X <
m}. 0O

Next, we consider two cases for observation determination, and
the users can select one according to the applications.

Case 1. According to the algorithm in the above section, it re-
quires to compare each pair of the observations in the original ob-
servation sequence to identify the redundant ones. Therefore, the
length of the original observation sequence determined by a divi-
sion should be as small as possible so that fewer comparisons are

needed. Due to such intuition, we required to find the division of
Di(Ts, Tr) whose length is minimized on condition that inductive
distance is no more than b;, where b; is a given threshold. The
formal definition of such problem is defined as follows.

=d
Min| O;|
-
s.t. Dis(d;y, ,diy, ) < by for any o0y € O; and dy¢, , d;y, € 0y
j T i T

Such a problem can be solved by a greedy algorithm, which
consists of fours steps. First, let [ = 1. Then, scan Dy(Ts, Ty) sequen-
tially, and insert the snapshots to observation o; until the distance
between the new coming snapshot with any one snapshot in oy
being larger than b;. Third, let [ = [+ 1 and repeat the second step
until we reach the end of Di(Ts, Ty). Finally, call the algorithm in
Section 3.1.1 to remove the redundant observations in the observa-
tion set and replace them in the observation sequence.

The detail algorithm is given in Algorithm 5 in the appendix.

Case 2. In some applications, the length of an observation
should not be too large in order to catch every variance of the
monitoring object accurately. On the other hand, the length of an
observation should not be too small as well since the correspond-
ing states of the monitored objects usually are limit according to
the analysis in Section 2. Due to such reasons, a set of consecutive
snapshots is regarded to contain multiple observations and should
be divided recursively if its size is larger than b,, however, it is
regarded as an observation and cannot be divided again if its size
is smaller than or equal to by, where b, is a given threshold. Un-
der such an assumption, the inductive distance of the division is
required to be minimized. Specifically, the problem of determining
the required division is formalized as follows.

Min max{Dis(dy, . di,) | di,,di, € 0y Aoy € O;} such that for
each 0; €0;,

1. 0;; is an observation and satisfies Definition 1;

2. oy and oy, are disjoint and Uoyeo, 0t = Di(Ts. Ty). where 0;,,
is any other observation in O;;

3. logl by, oyl +lojqs1yl > b2, lojg—_1)| + 04| > ba, where
0j(i—1y» 0y and 0;(, 1y are arbitrary three consecutive obser-
vations in O;.

Such a problem can be solved by a dynamic programming
method. Let «[g, r] denote the subset of Di(Ts, Ty) that contains
the g-th, (q + 1)-th, (q + 2)-th,... ,r-th snapshots in Dy(Ts, Tf), where
1<q<r<|Dy(Ts, Tf)|. The optimal division of «[q, r] is defined as
follows.

Definition 5 (Optimal Division). {oy,, 0y, ...
division of «[gq, r] if and only if

.05,} is the optimal

1 {oy,, 0i,,-.., 0y} is the division of «[g, r] that satisfies
Definition 2;
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2. |og,| < by,
T<x=<v
3. for any other division of «q, 1], {0;11’02'12""’
satisfies condition (1) and (2), we have the following For-

mula (1).

log,| +loj, ., | > b2,

i1 |0ﬂx—1 | + |0ix| > by, where

o, }, which
il},

max{Dis(dy, . di;,) | di,. dir, € 0y, N1 =x <V} < (1)
max{Dis(dy,, di,) | di,,di, € oj.lx /\% € {o§,l, . o§,;}}

Let ID|[q, r] denote the inductive distance of the optimal division
of a[p, r], ie, ID[q.r] = max{Dis(dy, , di,) | dit,. dir, € o4, A1 <x <
v}. Therefore, the following dynamic programming function is ob-
tained.

max{ID[q, k], ID[k, r]} if [r—q| > by
ID[q, 1] = § asksr
max({Dis(dy,, di,) | di,, dir, € a[q, 7]} Otherwise
(2)

The dynamic programming function needs to be solved so that
—
the original observation set and sequence, O; and O;, can be deter-
mined. Finally, The algorithm given in Section 3.1.1 will be used to
reduce the redundant information in O; and O;. Since the length of
any observation is bounded (less than b,), the computation cost of
removing the redundant observations is also controllable.

3.2. The algorithms of determining transition and emission
probability matrices

Let S$1.S;,..., Sk denote hidden states, and 5;5; ..... 5,)1 be
the observation sequences retrieved from n sensor nodes by the
method in Section 3.1. Then, the remaining problem for construct-
ing model F is to determine the transition probability matrix
A and the emission matrices {B;|1 <i<n}. Similar to Section 3.1,
there are two cases that need to be considered.

3.2.1. The maximum likelihood based algorithm

First, if the corresponding states of each sensory data stream
are available, it is easy to determine the transition and emission
probability metrics.

Suppose SO = (Sﬁ”, Sg'), e S,(,;?) denote the state sequence cor-

responding to Dy(Ts, Ty), and 5: = (X1, X2, ..., Xm;) denote the obser-
vation sequence identified by the algorithm in Section 3.1. There-
fore, for each sensor node i(1 <i<n), the problem of determining
the local transition and emission probability matrices, A; and B,
can be formalized as follows according to the maximum likelihood
estimation [27].

-

A;, B; = argmax, 3 Pr(s?, 0;
such that

1. A(p, q)>=0 and Zg:1A(p, q)=1forall p, qel1, k];

()
2. B(p, v)>0 and Z:L"] B(p,v)=1forall pe[l,k]and 1 <v <

(0)
m;~.

A, B) (3)

where mi(") =|0;| denotes the number of the observations in the
observation set, and M(p, q) is the element in the p-th row and
g-th column of matrix M.

Theorem 1. A; and B; are the solution of the problem given

m; (i) _ (i) _
in Formula (3) if A(p.q) = ZELSC TSNS g gy
X2 16521 =5p)

Yo 1654 =S A xe=0z,)
T 1657=50)

is an indicate function, i.e. I(X) =1 if random event X is true, other-

wise [(X)=0. O

forall1<q, p<kand 1 <v < ml.("), where I(X)

The proof of Theorem 1 is given in the appendix. Based on Theorem
1, the local transition and emission probability matrices can be deter-
mined by each sensor node itself. For each local emission probability
matrix, it can be stored locally and does not need to be transmitted
to the sink since it only describes the relationship between the hid-
den states and the sensor’s own observations. However, for each local
transition probability matrix, it needs to be transmitted to the sink
as a global transition probability matrix is required to integrate the
multi-modal sensory data from different sensor nodes.

Let A; denote the local transition probability matrix obtained
by sensor node i(1<i<n). The global transition probability ma-
. _ YA
trix (A) can be constructed by A(p,q) = Y AGD
YK Ai(p.k) =1 forall 1<i<n, A(p.q) = (11 Ai(p.))/n.

The algorithm of determining the transition and emission prob-
ability matrices is given in Algorithm 6in Appendix. The commu-
nication cost of the algorithm is O(k%) since the local transition
probability matrix needs to be transmitted and aggregated along
the spanning tree towards the sink. The computation complexity is
O(max{k2m,-,kmf°)m,-}) since the appearance times of each pair of
two states and each pair of a state and an observation need to be
counted.

Since

3.2.2. The EM algorithm

When the corresponding states of each data stream are un-
known, we will construct the transition and emission probability
matrices distributely based on the EM algorithm.

Let 5), = (X1,X2, ..., Xm;) be the observation sequence obtained
by sensor node i(1<i<n) during [Ts, T] according to the method
in Section 3.1. Since the EM algorithm is an iteration method, let
Al.(r) and Bi(r) (1 <i<n) denote the local transition and emission

probability matrices after r iterations, where AI,(O) and Bgo) are the
initial matrices.
Let Z, = (zi1,Zips .- - »Zim;) be the random vectors to denote the

sequence of states corresponding to 5: The aim of the EM al-
gorithm is to maximum the expected value of the log-likelihood
function, which is given as follows

QA B ATV BT = E[logpr(z’, O/1A, B) 6’,.,A§f-1>,3§f-1>]
= 3 logPr(Z, i|A, B)Pr(Z [0;, AT, BY)
Z eS™Mi

where m; is the length of sequence 5: and m; > |0;| = m,.(") since
there may exist some redundant observations in 5),
—
Let @(z)=Pr(z]0. AV, B D), then Q(A.BA"",
_ -
) = 7 comi 108 Pr(Z, 0;|A,B)¢(Z;). Thus, the

of determining Ai(r) and Bi(r) iteratively can be formalized as

A" B = argmaxQ(A. B: ATV BV

problem

= = N (4)
= argmaxa p Zzesmp logPr(z;, 0;|A,B)p(Z;)

such that
1. A(p, q)>0 and ZgzlA(p,q) =1forall p, ge[1, kJ;
(0)
2. B(p, v)>0 and ZZL B(p,v)=1forall pe[l,k]and 1 <v <
m©
e
Theorem 2. Al.(r) and Bfr) are the solutions of the above
mj
A (p,q) = === PD gag g0 (g ) —
i (P4) Yh S e (p) i @v)
Ky T 1(x¢=0i) 1t (p.)

KT ()
mfo), where

problem  if

for any 1<p,q<k and 1<v<|0j=

ne(p.q) = Bp(t — DA (p, @BV (q. %) 4 (0),
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Bp(t) = Pr(xy, Xy, ..., %, i = Sp |Al.<r‘l), Bfr‘l)) and
Pr(Xe 1, ... Xm;—1, Xm;» Zit =Sq |Afr’”, Bfr’”). O

The proof of the above theorem is give in Appendix, and accord-
ing to it, we need to determine Bp(t) (=Pr(xi,xa,...,X:, 2 =
Sp|Al.("1), Bi(r‘l))) and  yg(t)  (=Pr(Xepq. o X1 Xmy» Zig =
Sq|A§r‘”,Bi(r‘l))) firstly. Fortunately, Bp(t) and yq(t) can be
determined by the forward and backward procedures. The algorithms
are given in Algorithms 1 and 2 where (7, 75, .., 7) denote the
initial distribution of the states, which can be determined according
to the background knowledge of the application. Otherwise, we can
set mp =1/k for 1<p<k.

Vq([) =

Based on the above algorithms and Theorem 2, the EM algo-
rithm for determining the transition and emission probability ma-
trices is presented as follows.

Step 1. All the sensors in the network are organized as a span-
ning tree rooted at the sink. The sink broadcasts the initial transi-
tion probability matrix A(®) along the spanning tree to the network.

Step 2. Each sensor i(1<i<n) initializes the local emission
probability matrix Bl.(o), and sets A,.(O) to be A® and r =1, where
r is the iteration times.

Step 3. For all 1<pgq<k and 1<t<m; sensor
nodes i(1<i<n) calculates Bp(t—1), yq(t) according to
Algorithms 1 and 2, then it computes n{p, q) by n:(p,q) =
Bp(t — DA (p. 9B (. x) yq (D).

Step 4. Sensor i determines Al.(r) and Bl.(r) by AD(p,q) =

kZI":'&”zMw and B (q.v) = I %21 I%Foivm(nq)
2p=1 Lp2q M (P 21 Lptq M (P
1<p,gq<kand 1 <v< ml.(a), where mi(") = |0;| denotes the num-
ber of the observations discovered in Section 3.1. Let r =1+ 1.

Step 5. Step 3 and Step 4 are repeated iteratively un-
til r exceeds R times or maxlsp,qskﬂAi(r)(p, q)—Afr‘l)(p, 9} <
{1B" (p.q) ~A" " (p,q)|} < €. where R, €;

and €, are given thresholds.
Step 6. Sensor node i transmits A,.(r) along the spanning tree

for all

€1 /\ max

towards the sink when the iteration is ended. {Al.(r)ll <i<n} are
added together during the transmission. Finally, the sink deter-
mines A by A=Y, 14"

The communication cost of the algorithm is O(k?) since the A(©
needs to be broadcasted in Step 1, and the local transition prob-
ability matrices need to be transmitted towards the sink in Step
6. The computation complexity in each iteration is O(k?m;) since
it needs to calculate n¢(p, q) for all 1<p,q<k and 1 <t<m;. Thus,
the maximum computation cost of the above algorithm is equal to
O(RKk2my).

3.3. Discussion

To determine the Integration Model, F, of multi-modal sen-
sory data, we hae proposed three Observation Determination Algo-
rithms and two algorithm for calculating the Transition and Emis-
sion Probability Matrices.

Among these algorithms, the simple observation determining
method introduced in Section 3.1.1 and the Maximum Likelihood
based algorithm given in Section 3.2.1 are more efficient since they
does not require iterated computation. However, more detailed in-
formation,e.g. the corresponding states of each sensory data stream
in training set, are also required by these algorithms.

On the other hand, although the algorithms introduced in
Sections 3.1.2 and 3.2.2 are more complex and consume more com-
putation resource for determining the observations, transition and
emission probability matrices, the input information required by
them are much fewer, so that these algorithms are suitable to deal
with the situation that the limited information is available dur-

ing training the integration model F. Moreover, the greedy and
dynamic programming method mentioned in Section 3.1.2 are de-
signed for different optimal goals. Therefore, the users are able to
choose any of the above algorithms adaptively based on the situa-
tion they have.

4. Case study: a cooperative event detection

Using the algorithms introduced in Section 3, the model for in-
tegrating multi-modal sensory data, denoted by F, can be learned.
Next, we will discuss the problem of how to use F for supporting
the fusing computation. The following section takes the coopera-
tion event detection as an example for studying such problem, and
the reasons are as follows. First, the event detection is one of the
most important and primary applications for sensor networks and
IoT systems. Second, the event detection is sensitive on time and
energy consumption, while the latency and transmission cost are
dramatically reduced with the cooperation of the multi-modal sen-
sory data since they provide more abundant information about the
monitoring objects. Therefore, the efficiency of the event detection
is largely improved with the help of the multi-modal sensory data,
which is also verified in our experimental results. Due to the space
limitation, the other fusing computation will be considered in our
further works.

To utilize F for cooperative event detection, there still exist two
problems that need to be solved:

1). How to identify the observations contained in current data
streams?

2). How to deduce the most likely sequence of the states?

4.1. Observation identification algorithm

For each sensor node i(1<i<n), let D;(T.©, Tf(c)) denote
the sensory data stream collected in the current time window
(1€, T;C)], and O; denote its observation set with size ml.("). Then,
the problem of identifying the observations in D,—(TS(C), Tf(c)) can be
defined as

-2 —
0 = argmin ED(D(T”. (). 0) (5)
0
such that
.
1. Oi(c) = (0iry Oiry -+ 0jr)), 1= 1, and
2. 04, Ojr,s -, 0jy € Oy, where O; is the set of the observations

determined in integration model learning process (i.e. the al-
gorithms in Section 3.1)

where ED(D,-(TS(C), Ts(f)), 8) denotes the minimum weight edit dis-
tance of two sequences.

—
Let Ofc) be the optimal solution of the problem given by For-

[OINO) (0)

mula (5), and {(xp, ¥ps ,y;f) |[1<p< ml.0 , 1 <1 <xp} satisfy that

0}

—>
xp denotes the times of o;, appearing in O}C), Vps

and yl()l} is the

— —
start and end position of I-th appearance of 0;, in O,.(C). If 0;, ¢ Oi(c),
xp = 0. Therefore, the problem in Formula (5) can be formalized as
an integer programming problem as follows.

Min S EDDOR. Y. 0p) (6)
such that

(1) xp is an integer in range [0, |D,~(TS(C),Tf(C))|] forall 1<p<
mi(");

) {y%11 <l <xp) and {yg}|1 <l <xp} are integers in range
(0. 1D T{)|] for all 1< p < m;;
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(3) dpe [1,mlf°)] satisfies that x,>0 and yS} >ygs) for all
1<l<xp;
(4) dp e [1, mlg")] satisfies that y{!) =1 and 3q < [1, mi(")] satis-

ps =
fies that y;’}‘” = |Dy(T©, Tf(C))|;

(5) Elqe[l,mf")] and I, €[1, xq] satisfies that y;’}):yélsz) if
y;}}) # DT, T()| for Vp e [1,m*] and VI €1, x,];

I I 1 I 1 1
6) vy =ypd =y OR ypl <y <y

[1.m], VI, €[1, x] and VI €1, xq].

Since the integer programming problem is NP-hard, it is also
hard to compute the optimal solution of the problem presented
in Formula (5). The naive method to deal with the problem is the
enumerating algorithm. Suppose that the current time window is
small enough so that there are at most h observations in it. Then,

for Vp,qe

;
the enumerating algorithm enumerates ZL] (mf‘”) observation

sequences to form the candidate set, where mi(") is the size of the
observation set that is determined in integration model learning
process. After that, the weight edit distance between D;(T,, Tf(c))
and each candidate sequence is calculated, and the one with the
smallest weight edit distance is chosen and returned.

The computation complexity of the enumerating algorithm is

h
equal to O(|Di(TS(C),Tf(C))|2(mi(°)> ). It is unacceptable when the

time window is large. Another heuristic algorithm based on a
greedy strategy is provided.

The detail steps of the heuristic algorithm are as follows.

First,let 5?“ = (). Let S with [ “Null” be the matching sequence,
where [ = |D;(T9, Tf<°)|.

Second, for each observation o;,, scan Di(TS(C), Tf(c)) sequentially,
find an integer Aps satisfies that the sub stream D;(Aps, Aps + [0jp|)
has the smallest weight edit distance with o;,. If there exists mul-
tiple integers satisfy the above condition, then let Aps be the small-
est one.

Third, select an observation o, from O; satisfying that
ED(D;(Ags. Ags + |0jql). 0ig)/]0j4| is smallest among all observations
in O;. If there exists multiple observations satisfies the above ones,
random select one.

Fourth, update the sub sequence of S whose start and end posi-
tions are Aqs and Ags + |0j4] to be 0, and insert o0, to 5?“ according
to Ags. Change the snapshot to be “Null” in D;(T,, Tf(‘) ) from po-
sition Ags t0 Agf + |0jg].

Fifth, for each oy, €0;, if [Aps, Aps +[0;,|] overlaps [Ags, Ags +
|ojg|], then recalculate Aps as shown in step 2.

Finally, repeat Step 3, Step 4 and Step 5 until the number of
consecutive “Null” in S is smaller than any length of observation in
0;. Return 5?

Above algorithm has polynomial complexity, and is efficient to
process data stream sampled in a large time window.

4.2. Deducing the most likely state sequence

— —
Let Oi(c) = (xgc),xgc), .. .,xi?), where O;C) is the observation
sequence in current time window returned by the method in
—
Section 4.1, and t; be the length of Oi(c). The problem of deduc-
ing most likely state sequence is defined as
— o
zl.(c) = argmaxPr(z |OI.<C),A, B;) (7)
z
where Z denotes the random state sequence in current time win-

dow with length 7;, A and B; are the transition and emission prob-
ability matrices.

— N —
Since Y - Pr(Ofc), Z|A, By) = Pr(Ol.(c) |A, B;) is a constant value
—
when Ofc), A and B; are given, we have

- 73
Pr(Z,0;"|A,B;)

(] Z10©

C C

z;” = argmax Pr(Z|0;”, A, B;) = argmax -
Pr(0|A.B;)

z
o ==
=argmax Pr(Z, Oi(c) |A, B;)

Therefore, the problem can be solved by a dynamic programming
method. Let

n(G.ty= max  Pr(x\9, ... x9 zy, ... zy 1, zi = S;|A By)

(Zi1, - Zig—1 ) €S

where z;, (1 <p <t) denotes the random state. Therefore,

maxPr(Z |0, A, B;) = mkalx w(j, o) (8)
Zz j=
and
. k . .
w1 t) = max pu(p. t = DA(p. j)Bi(j. %) (9)

—
Thus, zfc) can be obtained by solving the dynamic programming
function according to Formula (9). The algorithm is shown in
Algorithm 6, where 7 (1 <p<k) is the steady-state probability of
the Markov process, and can be determined by transition probabil-
ity matrix A.

4.3. Cooperative event detection algorithm

Based on the discussions in Sections 4.1 and 4.2, the coopera-
tive event detection algorithm has three steps.

First, each sensor node i(1 <i<n) retrieves the observation se-
quence from its current data stream D,-(TS(C), Tf(c) ) using the algo-

—
rithm in 4.1. It determines the most likely state sequence zi(c)

the algorithm in Section 4.2.
Second, each sensor i(1<i<n) transmits the last state in state

using

iy
sequence zi(c), that is z;;, to the sink by the spanning tree routing
protocol.

Third, the sink obtains {Sy,Sr,, ..., S }(= U?:1{z,»,i}) after re-
ceiving

{zi;; | 1 <i<n} from the network. Let Se € {S1, Sz, ..., S} de-
note the state of event e. Then, the sink calculates ¢ = Pr(X;,; =
Sel(Xe = SOV =S,)V...VX = Srh)) by the following for-
mula

h
Z Pr(XtH = Se ﬂxt = Sr,-)
=l
ShoPr(X =S;)

h
Y Pr(Xe 1 =SelXe =S,) Pr(X; = Sp,)
i=1

i, Pr(X =S5,

since X =Srj and X; = S;; are mutually disjoint with each other,
where X; and X;,; are random variables. Based on the transition
probability matrix A, Pr(Xr . = Se|Xe =Sr,) =A(e.r;) and Pr(X; =
Sr,) can be determined by the steady-state probability of the
Markov process. Thus, the probability that event e will happen in
next time slot, i.e. ¢, can be obtained by the sink. If ¢ is larger
than a given threshold, the sink reports e to the users.

Since only states are required to be transmitted, the above al-
gorithm saves a lot of energy during event detection. Meanwhile,
the computation cost of the sink is O(n) when executing the above
algorithm, which is also very low.
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Telosb Sensor Node to Collect

Illumination, Temerature and Humidity

Ultrasonic Sender and Sé
to Detect Obstacles

lnfrareﬂ Sensor

to Detect Obstacles

Boe-Bot Robot

Fig. 2. The devices in the system.

5. Experimental results

Two real testbeds is used to evaluate the performance of our
proposed model.

The first one is an indoor intrusion detection system. It is based
on TinyOS 2.1.0 and consists of two Boe-Bot Robots [28] which can
move automatically according to the instructions. The ultrasonic
and infrared ray sensors are deployed on the two robots to mea-
sure distance, detect obstacles and sensing the temperature from
intruder. Furthermore, ten TelosB sensors are also deployed in the
monitored region, which are static and can continuously sample
the temperature, humidity and light intensity from the monitored
area. Three of them are used for routing, one is preserved as the
sink. Finally, the system also contains two camera and two micro-
phone to catch the variation of video and audio in the monitored
region. The devices used in the system is presented in Fig. 2.

The second one is the human motion monitoring system. We
use five iPhones to monitor the motions of the holders. The oper-
ating system is i0S7.1. The accelerometer and the gyroscope em-
bedded in the iPhone are used to sample the velocity and the an-
gular velocity of the human motion. The camera and microphone
are also utilized to sample the video and audio data from holders.

In these systems, the number of computation operations and
transmissions is calculated while the proposed algorithms are ap-
plied. According to [29], the energy cost of a sensor to send and
receive one byte is set to be 0.0144 m] and 0.0057 m)J, respectively.
The energy consumed of executing 1000 instructions of CPU for a
sensor is equal to that consumed by sending a bit message.

5.1. The performance of learning algorithm

The first group experiments are to investigate the energy cost
of the redundant observation reducing algorithm in Section 3.1. In
the experiments, the energy consumption is calculated while the
number of original observations varies from 20 to 50, and the av-
erage length of an observation is set to be 20, 30 and 50 respec-
tively, where the length of an observation equals to the number of
snapshot it contains. According to Fig. 3, it costs little energy for
deleting the redundant observations from the original observation
set even when its size is large since the energy consumed by the
computation is quite small.

The second group experiments are to compare the distance of
two snapshots inner an observation with that between different

—+—Avg Lenght=50
4 r—©— Avg Length=30
—v— Avg Length=20

Energy Cost (mJ)

o]

eee%

20 30 40 50
The number of observations

Fig. 3. Energy cost of merging observations.

P
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I Inter Minimum Distance |
[ Jinter Maximum Distance

120
100 1

L

80

L

60

40

20

Distance between two Snapshots

20 30 40 50 60
The Average Length of an Observation

Fig. 4. Comparison on the distance of two snapshots.

observations. In the experiments, the maximum distance of two
snapshots inner an observation, the minimum and maximum dis-
tances between two snapshots in different observations were cal-
culated while the average length of an observation increased from
20 to 60. Fig. 4 shows that the distance of two snapshots inner an
observation is much smaller than that of two snapshots belonging
to different observations, so that the observations in a data stream
can be partitioned by similarity comparison.

The third group of the experiment is to investigate the recall
and precision rate of the similarity based method in Section 3.1. In
the experiments, the number of the real observations in a stream
is set to be 15 and 20, the average length of an observation is set
to 50 and 100. The recall rate is calculate while the given bound
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Fig. 6. Precision rate of similarity based algorithm.
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Fig. 7. Computation complexity of determining transition and emission matrices.

b is increase from 80 to 160, and the precision rate is calculated
while b grows from 10 to 100. The results in Fig. 5 show that the
recall rate is close to 1 expect when the given bound is too large.
Fig. 6 shows that the precision rate is also approached to 1 expect
when the given bound is too small. Therefore, the above results in-
dicate that the bound b is easy to set for determine the observation
according to the similarity, which is because the observations cor-
responding to different state are easy to be distinguished according
to Fig. 3.

The fourth group experiments are to investigate the computa-
tion complexity and energy cost of the transition and emission
probability matrices determining algorithms. In the experiments,
the number of operations and the energy cost of the simple al-
gorithm and EM algorithm were calculated while the number of
states, k, increase from 6 to 10. Fig. 7 show that EM algorithm
needs more operations than the simple algorithm since its input
information is much less. However, the energy consumed by the
two algorithms is almost the same according to Fig. 8. since the
data size transmitted by both algorithms is the same and the en-
ergy costed by computation is quite smaller than that costed by
transmission for a sensor device. These results also verify that EM

2.5

Il Simple Algorithm
5 | JEM based Alogrithm — |

157t 1

Energy Cost(mj)

Fig. 8. Energy cost of determining transition and emission matrices.

algorithm is energy efficient even that it can deal with more com-
plicate situation.

5.2. The performance of event detection algorithm

The first group experiments are to investigate the energy cost
of observation identification algorithms. which are introduced in
Section 4.1. In the experiments, the energy consumed by enumer-
ating and greedy algorithms was calculated while the number of
snapshots in the current time window varied from 20 to 100, and
the average length of an observation is 20. The experimental re-
sults is presented in Fig. 9(a) and (b). These figures show that the
energy cost of enumerating algorithm is 10% times more than that
of greedy algorithm. Since greedy algorithm is only a polynomial
time algorithm, it needs much fewer computation operations to
identify observations, so that much energy is saved.

The second group experiments are to evaluate the ratio bound
of the greedy algorithm. In the experiments, the relative weighted
edit distances between the observation sequences and the origi-
nal data stream were calculated while the number of snapshots
increased from 21 to 103, and the average length of an observation
is 20, where the observation sequences are returned by the enu-
merating and greedy algorithm, respectively. The experimental re-
sults are given in Fig. 9(c). It shows that the relative weighted edit
distances brought by the greedy algorithm and enumerating algo-
rithm are almost the same. According to discussion in Section 4.1,
the enumerating algorithm is optimal, that is, the weighted edit
distance brought by it is minimum, so that the results generated by
the greed algorithm is very close to the optimal ones, and thus the
greedy algorithm achieve the excellent ratio bound during identi-
fying the observations.

In the third group experiments, the relative weighted edit dis-
tance between the observation sequence returned by the greedy
algorithm and the original data stream was calculated while the
average number of observations in a time window increased from
6 to 15, and the average length of each observations equaled to 20
and 40. The experimental results are presented in Fig. 10. It shows
that the distance between the result returned by the greedy al-
gorithm and the original data stream is quite small, that is, the
observation identifying by the greedy algorithm is very close to
the original data stream, which means that the greedy algorithm
achieve high accuracy.

The fourth group experiments are to evaluate the energy cost
of the state sequence deducing algorithm in Section 4.2. In the ex-
periments, the energy consumed by the algorithm was computed
while the number of states, k, increased from 2 to 10, and the
number of observations in a time window is equal to 3 and 8. The
experimental results are presented in Fig. 11. It shows that the en-
ergy consumed by Algorithm 3 in Section 4.2 is extremely small.
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Fig. 9. Comparison of observation identification algorithms.
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Fig. 12. The probability of detecting the event.
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Fig. 11. Energy cost of state sequence assignment algorithm.

—_—
Based on Algorithm 3, the most like state sequence, i.e. zi(‘), is de-
termined by the dynamic programming algorithm, which is a poly-
nomial algorithm. Meanwhile, most of input information is stored
locally. Therefore, the energy consumed by transmission and com-

putation _15) quite low, so that lots of energy could be saved for ob-
taining Zi(c).

In the fifth group experiments, the energy cost of the event de-
tection algorithm was computed while the number of observations
in current time window increased from 4 to 12, and the size of
the training observation set equals to 10 and 20. Fig. 13(a) and (b)
show that the energy cost of our event detection algorithm is ex-
tremely small comparing with that of transmitting scalar data or
vector data since only a state is required to be transmitted.

In the last group of experiments, the probability of correctly de-
tecting the event was calculated while the number of sensor de-

Algorithm 2: The Algorithm for computing y ¢(t).

Input: A", B, G, = (x1.X. .. .. Xm)
Output: {y,(t) |1 <g=<k 1<t=<m}
1 Yq(m;) =B (q, xm,) for all 1 < p < k;for

t=mj—1; t>1; t —— do
for1<qg<kdo

2
3| | v =5 AT (@ P)B V(G xe ) yp(E+ 1);
a Return {y,()[1 =g <k, 1<t <m};

that such probability is largely improved when more sensor de-
vices are deployed in the monitored region Meanwhile, we also
find that the monitoring accuracy can be significantly enhanced
when multi-modal sensory data are involved in the system since
they can catch different properties of the monitored objects.
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Fig. 13. Energy cost of event detection algorithm.

Algorithm 3: The Algorithm of Deducing the Most likely State
Sequence.

—
Input: A, BV, 00 = (x{9 x{, ..., x)
—
Output: z©
N
129 =();
2for1<p<kdo
3 | w(p.1) =m,Bi(p.x\7);
47y = argmax’lf):l uw(p, 1);
—
5 Insert z;; into zi(c);
esfor2<t<rt do
7 | for1<qg<kdo
8 \ w (. t) = maxs_, u(p. t — DA(p, ))Bi(j. x0);
9 | zir =max{_, u(j.0);
—
10 | Insert z; into z\;

—
1 Return z9;

Algorithm 4: Redundant Observation Removing Algorithm.

Input: The original observation set
0; ={o0j | 1 < q <my}, the original sequence
5:- = (0i1, 0i2, . . ., Ojmy, ), the bound b
Output: The final observation set and observation
sequence,
1for1 <q<m;do
2 \ Count the appearance time of each o;,;
3for1<q<m do

4 | for1<r<m;do

5 ED(0i4, 0) is calculated by [26]

6 if ED(0y4, 0;) < b then

7 if The appearance times of oy is larger then

8 Delete all o;; from O;;

9 Use o4 to replace o; in a andUpdate the
appearance times of 0jg;

10 else

1 Delete all o from O;;

12 Use o; to replace o;, in 5), andUpdate the
appearance times of o;;

13 Return O; and O;;

Algorithm 5: Greedy Algorithm for Determining Observation
Sequence and Set.

Input: Training data set D;(T;, Tr) and distance bound
b
Output: Observation set O; and observation sequence
—
0; R
10;=0,1=1,0;=0, 0; =();

2 for each dl-tj e Di(T;, Ty) do

3 | if 0y == ¢ then

4 | | oy=o0sUldi;};

5 | else

6 Insert = ture;

7 for each d;, € 0; do

8 if DiS(ditj, djtp) > b; then

9 Insert = faulse,

10 break;

1 if Insert == ture then

12 | oa = o0q Ufdu;},

13 else

14 0; = 0; J{oy}.Insert oy into
6>ioi(l+1) =pl=1+1,

15 Call the algorithm in section 3.1.1 to remove and

. . —

replace the redundant observations in O; and O;;
—
16 Return O; and O;;

6. Related works

Currently, there doesn’t exist any work considering how to deal
with multi-modal sensory data at the same time. The published
literatures including the data integration and event detection tech-
niques are the only ones which are related to our work.

Flora et al. [18] and Khalil et al. [19] proposed two semantics
based sensory data integration method for WSNs. In their works,
the authors used XML schema to denote sensory data, and dis-
cussed how to integrate the sensory data when the XML struc-
tures adopted by different sensors are not same. The sensory data
considered by them is still described by the same language, and
the modality of data that they can deal with is simple. Jirkovsky
et al. [20] discuss the approach of understanding data heterogene-
ity in Cyber-Physical Systems(CPS). The authors summarize the
challenges for data integration in CPS, and proposed the shared
SHS ontology and SBDH based on Semantic Web technology in or-
der to integrate sensory data. However, similar as [18,19], the sen-
sory data consider by it also share the same modality, and the het-
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Algorithm 6: The Maximum Likelihood based Algorithm for
Setting Transition and Emission Probability Matrices. The ref-
erence cited in this table is [38]

— e
Input: {O; | 1 <i<n}and {S® | 1 <i<n}
Output: The transition matrix A and the emission
matrices {B; | 1 <i < n}
1 All the sensors in the network are organized as a
spanning tree rooted at the sink according to [38];
2 for each sensor node i (1 <i<n) do
3 | foreachq (1 <q<k)do
for each p (1 < p<k) do
m; .
5 count; = Y I(S? =S, A S

-1 =
t=1

m; .
LI =5 A (p.0) = i

Sp),count, =

6 counts = Z 1SY = Sy);
7 for each v (1 <v<m{) do
m; .
8 couty = Y I(S = Sy \ X% = 04),Bi(q, V) =
county . =
counts ’

9 | Return B; by each sensor node;

10 | Transmit A; towards the sink;

1 {A; | 1 <i < n} are transmitted and aggregated along
the spanning tree;

12 The sink obtains Y} | A, A=15"1 A;

13 Return A;

erogeneity of data only reflects in their representation. Thus, the
problem of how to support the fusing computation on multi-modal
sensory data are not considered either. Besides, the approach pro-
posed by it is centralized, not suitable and efficient for IoT systems.

Meanwhile, the data integration methods in other areas cannot
support the fusing computation on multiple sensory data as well.
Dai et al. [30] studied a data integration problem for health-care
data, the authors proposed a Neural Concept Liking approach for
accurate concept linking, and give a data integration method ac-
cordingly. Similar as the above works, all the data considered by
Dai et al. [30] is text snippets, and they cannot applyto multi-
modal sensory data. A Bayesian framework for integrating the het-
erogeneous gene data, combining the evidences and determining a
posterior probability of whether each pairs of genes had a func-
tional relationship is studied by Troyanskaya et al. [31]. The au-
thors introduced a system, named as MAGIC, to achieve such aim.
However, the input data of MAGIC are real matrices and just has
different formats, so that the multi-modal data had not been in-
vestigated by Troyanskaya et al. [31], either. Furthermore, all these
algorithms are centralized, and not suitable for IoT systems.

For event detection, [32,33] propose several algorithms based
on threshold and interest diffusion. These algorithms can only
identify few events, and there exist lots of redundant reports since
they do not consider the spatial and temporal correlations between
sensory data. Furthermore, they only consider how to deal with
scalar data, and are not applicable to complicated multi-modal
sensory data. The works in [34-37] proposed pattern and statisti-
cal model based event detection algorithms. These algorithms save
lots of energy since the correlation among sensory data is suffi-
ciently considered. However, these algorithms also only can deal
with a single modal sensory data and cannot process multi-modal
sensory data.

7. Conclusion

This paper takes the event detection as an example to study the
fusing computation algorithm on multi-modal sensory data. Firstly,
a novel model to integrate multi-modal sensory data is proposed
based on the Hidden Markov Model. Two model learning algo-
rithms are given according to the maximum likelihood and EM es-
timation. Finally, the event detection algorithm is provided based
on the learnt model and current collected sensory data. The the-
oretical analysis and extensive experiment results indicate that all
the proposed algorithms have high performance in terms of accu-
racy and energy consumption.
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Appendix A
Al. Algorithms in Section 3.1 and the Proof of Theorem 1

This section will present the Redundant Observation Remov-
ing Algorithm discussed in Section 3.1.1 and the Greedy Algo-
rithm for Determining Observation Sequence and Set involved in
Section 3.1.2, respectively. Meanwhile, we will also provide the
proof of Theorem 1, which is mentioned in Section 3.2.1.

Theorem 1. A; and B; are the solution of the problem given

i e ap ) = S 6=S NS =5p) (@) =
in Formula (3) if Ai(p,q) = Z:Tll(s(i,)]=sp) and B;(q,v) =

T 1650 =8g Axi=04)
T 1650 =50)
is an indicate function, i.e. I(X) =1 if random event X is true, other-
wise [(X) =0
Proof of Theorem 1. According to Formula (3), we have

forall 1<q, p<k and 1 <v<m , where I(X)

— - — -
A, B; = argmax Pr(s®, 0;|A,B) = argn}%x(log Pr(s®, 0;|A, B))

mx . .
= argmax log{]_[ Pr(x|S\", B) I1 Pr(s” s, A)}
t=1

t=1

m;
4 N
= argn}%xg(logB(S('), x) +logA(S™,,51))

k Im®1 m

= argmaxzz 3 S =Sy \ % = oy) x logB(q.v)
p=1q=1 v=1 t=1

+ 15" =S5 \ S, =Sp) logA(p. q)} (10)

Let £(A, B, €, §) satisfy

k |"1(D)| m;

L(A,B,€,8) = ZZ > Z{I(S(‘) Sq /\ Xt = 0yy) log B(q. v)

p=1g=1 v=1 t=1
+ 15" =Sy \ S, = Sp) logA(p. q)}

m(o)

- Z € (1 —ZB(q v>)+Zap<1 —ZA(p Q) (1)

m; X
where 8§, = z 180, =Sp) and g = Y I(SY = Sp).
t=1
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©)
Since ZZL B(q,v) =1 and ZSZ1A(1), q) =1, Formula (11) can
be reduced to

A,-,B,»:argn,}ellgx,c(A,B,e,(S) (12)

According to the condition of Theorem 1, Ai(p,q)=
S 16" =54 A5, =Sp) dLABed)|  _

AN ) for any 1 <p, q <k. Thus, SRpD st 0.

JdL(A,B.€,8)
dB(q,v)

of the problem given in Formula (3). O

Similarly, = 0 Therefore, A; and B; are the solution
—B;

A2. The algorithm in Section 3.2.1 and the Proof of Theorem 2

The following section will provide the pseudocode of
the Algorithm discussed in Section 3.2.1, and the proof of
Theorem 2 shown in Section 3.2.2.

Theorem 2. Ai(') and Bl.(r) are the solutions of the above problem if

m; — 5 5
=311 =Sp N\ zie = So) Pr(Z [0;. ATV, BT V) (16)

t=1 Z

since 7¢(p, @) = Bp®A ™V (. 9B (@, x)yg(t + 1), Bp(t) =Pr
(X1.X2, ..., Xe, 2 = SplAi(r‘l),Blfr‘l)) and yq(t) =Pr(Xe 1. ... Xm;_1.
Xm;. Zir = Sq |Ai(r‘”, Bl.("l)). According to the definition of ¢(Z}) (=
Pr(Z]0;, AT-1, B™1)), we have

oG |A(r b, 2 Zm(p )

Y 0@ Y s =Sy N\ = S) (17)
Z t=1

By the same way, the denominator of Formula (15) satisfies

k m;

r e (p.g) YK S Ixe=0i) e (P.0)
Ai( ') = Z’{,itg& 7t (p.q) ’ lZ’f,; 1221 1e(p.q)
forany 1<p,q<kand 1 <v < |0;| = m;”’, where

ne(p ) = Bp(t — DA (p, )" N, X)¥q(0), Bp(t) =Pr(xy,
X2, ... Xt Zip = Sp|Ai("”,B,.(r’”) and  yq(t) =Pr(xe,q, ...,
Xm;. Zie = SqlA" ™V BID).

Proof of Theorem 2. Let ﬁ(Al.(r), Bl.('), €, 8) satisfy

(r)
and B;"(q.v) =
(0)

Xm,-—l’

k Im®| m,

LABe€d =) <p<z,>22 D D @ =Sq \* = 0w)

Z, eS™p p=1g=1 v=1 t=1
logB(q. v) +1(zi = Sq /\ zi—1 = Sp) 10gA(p. q)}
m(o)

+ Zeq 1—ZB(q ) +Z(Sp 1—ZA(IJ q) (13)

where §, and €4 satisfies that
8p =37 ¢(Z) X4 11 = Sp) and €g = Y7 ¢(Z)
Yo 1z = Sg).
Using the similar proof with Theorem 1, we have that Afr)
and B,.(r) are the solution of the problem given in Formula (4) if
Ai(r), B,.(r) =argmaxy g L(A, B, €, 8).. Thus,

0L(A,B,€,8
W Z (0(21 A( Zl(zxt—sq/\zzt 1=5p)-8p
(14)
Based on the condition in Theorem 2,
l Yt Zi’l‘l ne(p. q)
> ne(p.q)
(r 1) pr-1) t=1
_ Pr(0; |A BT (15)

Zp 1 ne(p.q)

where the numerator of Formula (15) satisfies that

Yo XM Bp—DAT T (p, )BTV (g, x:) (1)
Pr(0;|A" ", B ) Pr(0, AT 1. B D)

1
ZZI(ZH 1 —Sp /\Zzt —Sq

Pr(O |ATD BV 2
|A(' D g1y

Pr(0; |A‘r D BY)

Pr(7,

> me(p q)—pr(z, Zl(zn 1=Sp)

Pr(0; |A<’ D Br-1) ;5 i
(18)

From Formulas (15), (17) and (18),
Xz @(Z) T 1zig_1=Sp Nzy=Sq)
Tz 0(Z) Lol 1Gie1=5p)
(Z) X Wzig—1 = Sp) — 8p.

JL(A,B.€,8)
Sp). THAGD

() —
we have A" (p.q) =

Therefore,

0L(A.B.€.0) —
0A(P.9)  |p4_qD ZZ
1

Since  8p = Yz ¢(Z) X4 1(ie 1

S

Aca®
1

9L(A.B.€.5)

_ Q) ()
0800} |p_p0 — 0. Therefore, A and B are the
1

Similarly,

solution of the problem shown in Formula (4). O
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