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Abstract 
Despite the ubiquity of transportation data, methods to infer the state parameters of a network 

either ignore sensitivity of route decisions, require route enumeration for parameterizing 

descriptive models of route selection, or require complex bilevel models of route assignment 

behavior. These limitations prevent modelers from fully exploiting ubiquitous data in monitoring 

transportation networks. Inverse optimization methods that capture network route choice 

behavior can address this gap, but they are designed to take observations of the same model to 

learn the parameters of that model, which is statistically inefficient (e.g. requires estimating 

population route and link flows). New inverse optimization models and supporting algorithms 

are proposed to learn the parameters of heterogeneous travelers’ route behavior to infer shared 

network state parameters (e.g. link capacity dual prices). The inferred values are consistent with 

observations of each agent’s optimization behavior. We prove that the method can obtain unique 

dual prices for a network shared by these agents in polynomial time. Four experiments are 

conducted. The first one, conducted on a 4-node network, verifies the methodology to obtain 

heterogeneous link cost parameters even when multinomial or mixed logit models would not be 

meaningfully estimated. The second is a parameter recovery test on the Nguyen-Dupuis network 

that shows that unique latent link capacity dual prices can be inferred using the proposed method. 

The third test on the same network demonstrates how a monitoring system in an online learning 

environment can be designed using this method. The last test demonstrates this learning on real 

data obtained from a freeway network in Queens, New York, using only real-time Google Maps 

queries. 
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1 Introduction 
 

Travel data has become increasingly abundant and ubiquitous in recent years due to 

advances in information and communications technologies (ICTs) and Big Data. The shift to 

data-driven methods in transportation is apparent. Notable efforts include the Mobile Millennium 

project to track traffic using GPS phone data (Herrera et al., 2010), use of transit smart card data 

in Santiago to estimate travel demand patterns (Munizaga and Palma, 2012), urban link 

performance inference from New York City taxi data (Zhan et al., 2013), and the Digital Matatu 

Project in Nairobi, Kenya, to characterize their flexible bus system with cell phone data 

(Williams et al., 2015), among others.  

Such methods make use of observations from data to infer or learn specific characteristics of 

system components that are not directly observable. For example, the study from Zhan et al. 

(2013) infers link travel times using taxi GPS data. The methodology is generally classified as an 

inverse model (see Tarantola, 2005), which assumes there exists a model 𝑀 that transforms a set 

of parameters 𝜃 to a set of outputs 𝑋 as 𝑋 = 𝑀(𝜃). The inverse model deals with finding a set of 

parameter estimates 𝜃 based on observed outputs 𝑥 as 𝜃 = 𝑀−1(𝑥). In a network setting, the 

state of a network may be defined by several types of parameters that require estimation: link 

costs, link/path flows, origin-destination (OD) flows, link capacities or congestion effects.  

 Inference in a network context using inverse models has a long history and literature. The 

primary factor distinguishing inference methods for network parameters is whether, and how, the 

method handles sensitivity of route decisions by travelers or (in the case of non-transportation 

networks) packets to the state of the network. A second consideration is that system parameters 

(e.g., link costs and capacity effects) need to be inferred as they depend on external factors like 

weather, presence of incidents, etc., particularly in transportation networks.  

The simplest inference methods relate an observable set of attributes to the desired 

parameters directly through network structure (e.g. link flow is the sum of the proportions of all 

OD flows that use that link) absent of any route decision sensitivity. One example is Van Zuylen 

and Willumsen (1980), who propose an OD estimation model from link traffic counts using 

entropy maximization to determine the proportion of OD flows that are most likely to traverse an 

observed link. The variables are connected by an incidence matrix that reflects the network 

structure. Instead of using entropy maximization, Bell (1991) uses a constrained generalized least 

squares approach with additional information from prior surveys/studies to regularize the inverse 

problem. Path flows are not explicit in such models. 

Inverse models that deal with route sensitivity do so by explicitly mapping observed 

variables like link counts to latent path flows, and then mapping those path flows to desired 

parameters like OD flows. Examples include Vardi (1996) and Tebaldi and West (1998). Vardi 

(1996) coins this topic as “network tomography”, and proposes methods to estimate parametric 

distributions of flow from observed link count data for a single known path or for a Markovian 

distribution of paths. Tebaldi and West (1998) use Bayesian inference to estimate the parametric 

distributions considered by Vardi (1996). Since these methods require path enumeration, it may 

be difficult to apply them to large networks. Recent efforts (Airoldi and Blocker, 2013; Hazelton, 

2015) use more efficient route flow sampling strategies to make these inference models more 

scalable. These methods are tested on networks with up to 21 nodes.  

 In the case of transportation networks, two qualities offer unique challenges and 

opportunities to network inference: (1) state changes can involve system parameters like link 

capacities due to weather or incidents; and (2) route decisions are fundamentally governed by 
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behavioral mechanisms like route choice behavior. Changes that involve link capacities or other 

similar system parameters may be much harder to anticipate using parametric models (e.g. 

normal distributions) for path assignment based only on prior data. To compensate for this, 

transportation researchers have inserted behavioral mechanisms (Cascetta et al., 1996; Vovsha 

and Bekhor, 1998; Srinivasan and Mahmassani, 2000; Dia, 2002; Frejinger and Bierlaire, 2007; 

Ben-Elia and Shiftan, 2010; Gao, 2012; Fosgerau et al., 2013) into the inverse models so that 

route sensitivity can rely on the mechanism where data is sparse. Route enumeration remains an 

issue in some cases, even as researchers seek ways to address that with choice set selection. For 

example, Fosgerau et al. (2013), Baillong and Cominetti (2006), and Akamatsu (1996) make use 

of Markovian models to overcome route generation. A literature survey is available from Prato 

(2009). 

To overcome the route enumeration problem, more integration of behavior with network 

structure has been sought (see Watling et al., 2015). For example, when considering congestion 

or capacity effects of networks, the presence of a stochastic user equilibrium behavior (Daganzo 

and Sheffi, 1977) may be assumed. In the case of OD estimation, Yang et al. (1992) assume 

Wardrop’s user equilibrium behavioral principle to assign observed link flows to route flows 

without having to enumerate paths. Other efforts include Ashok and Ben-Akiva (2002), who 

allow for perturbations from the behavioral mechanism with stochastic assignment. A new 

problem emerges, however, with the complexity of having a nonconvex bilevel optimization 

problem for the inverse model.    

To summarize, methods to infer the state parameters of a network either ignore sensitivity of 

route decisions, require route enumeration for parameterizing models of route selection, or 

require complex bilevel models of route assignment behavior. Some of these inference methods, 

particularly for demand patterns in a network, may not even be necessary in an age of data 

ubiquity. For instance, methods like Tang et al. (2015) and Alexander et al. (2015) use GPS or 

mobile phone data to reduce OD estimation to a basic sampling problem without having to infer 

them from other observed variables. Nevertheless, there remains a challenge of being able to 

explain network state changes, as illustrated in Fig. 1. The classic Nguyen-Dupuis network 

(Nguyen and Dupuis, 1984) is used to show two states of latent link capacities imposed on the 

network. In the figure, the change from one state on the left to the next on the right is due to a 

change in the link 7 capacity. Based on observation (and hypothetically from methods in Tang et 

al. (2015) and Alexander et al. (2015)), we can compute or estimate the total system travel times 

(68,400 on left, 70,000 on right) and observe that there is a difference in flow on links 3, 4, 5, 7, 

8, 9, 10, 11, 12, 14, and 15, but we cannot explain why the state change occurs.  
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Fig. 1. Illustration of a state change in the Nguyen-Dupuis network that leads to a change in observed flows 

(link IDs in red parentheses). 

 

One potential solution for network inference is inverse optimization. Ahuja and Orlin (2001) 

proposed a class of inverse problems posed as a linear optimization model. This class of 

problems, called inverse optimization (IO), allows one to learn linear programming parameters 

from observed decision variables and prior information such that the desired optimality condition 

is maintained. IO models capture the route choice mechanism if it follows an assignment-based 

mathematical program. The models also have great flexibility in inferring either demand or 

system parameters.  

Nonetheless, inverse optimization in the current literature also cannot effectively explain the 

state change in Fig. 1 for two primary reasons. First, the closest model from Güler and Hamacher 

(2010) studies the single commodity capacity inverse minimum cost flow problem and conclude 

that it is NP-hard. However, the example in Fig. 1 describes a multicommodity flow problem in 

which there is demand from node 1 and node 4 to node 2 and node 3. Second, IO assumes that 

the data obtained is at the same level of the model, e.g. an inverse of a network flow model uses 

observation of the flow data to learn the parameters of the system model. In many transportation 

cases, however, this is untrue. The system model is the whole transportation network, and its 

parameters dictate how the congestion and capacity effects influence travel. However, it is the 

individual agents that are optimizing their own network models (e.g. shortest path) as a 

behavioral mechanism and learning from their experiences. Without addressing this discrepancy, 

current IO methods need to estimate variables at the population level, e.g. total link or path 

flows, which is statistically inefficient. If we are able to synchronize the route choice behavioral 

mechanism at the system level with the behavior of individual agents, we may be able to avoid 

this costly step.  

We propose to address this discrepancy with a new data-driven methodology that uses 

inverse optimization with network models that rely on only learning from sampled 

heterogeneous agents. The method takes observed routes of travelers to estimate heterogeneous 

route preferences and infer network parameters that influence these observed routes, such as the 

dual prices of the link capacities. Because the method learns the preferences of multiple agents 

and relates those preferences to system parameters, it can be used in an online learning 

environment in which system parameters are updated over time based on only real-time sampling 

of individual agents without having to estimate population link or path flows.  

 The remainder of the paper is organized as follows. Section 2 expands on the review of 

inverse optimization as a learning methodology, and recent developments to handle 
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heterogeneity in observed data. Section 3 presents the proposed methodology in two stages: first 

as a basic model to infer heterogeneous route preferences of multiple agents using a shared 

network, and second in inferring the parameters of that network to explain their route choices. 

Section 4 presents four computational experiments that include a demonstration of online 

learning in a synthetic network and in a real data illustration of a freeway network in Queens, 

NY. Section 5 concludes. 

 

 

2 Review of inverse optimization 
 

 Inverse optimization can be used to learn network parameters from a prior value. The first 

inverse optimization model was proposed by Burton and Toint (1992) for the inverse shortest 

path problem, and it was further generalized by Ahuja and Orlin (2001). It is defined as follows: 

for a given prior 𝑐0 of a linear program’s (LP’s) parameters and observed decision variables 𝑥∗, 

determine an updated 𝑐 such that 𝑥∗ is optimal while minimizing its 𝐿1 norm from the prior, as 

shown in Eq. (1). 𝐴 is the constraint matrix and 𝑏 is the vector of side constraint values. 

 

min
c

 |𝑐0 − 𝑐|: 𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑐𝑇𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} (1) 

 

The 𝐿1 norm minimization is used to regularize what would otherwise be an ill-posed 

problem with infinite solutions. This ensures that a unique solution can be obtained given a prior 

𝑐0. Alternatively, weights can be added for further calibration. Ahuja and Orlin (2001) showed 

that Eq. (1) (as well as the 𝐿∞ norm variant) can be reformulated as an LP. This is done by 

introducing two non-negative decision variable vectors 𝑒 and 𝑓 such that their difference is equal 

to 𝑐0 − 𝑐: 𝑐0 − 𝑐 = 𝑒 − 𝑓. The problem can then be reformulated using strong duality and dual 

feasibility conditions, as shown in Eq. (2) to Eq. (5). 

 

min
y,e,f

𝑒 + 𝑓 (𝐿1 norm minimization) (2) 

subject to   

𝐴𝑇𝑦 ≥ 𝑐0 − 𝑒 + 𝑓 (dual feasibility) (3) 

𝑏𝑇𝑦 = (𝑐0 − 𝑒 + 𝑓)𝑇𝑥∗ (strong duality) (4) 

𝑦, 𝑒, 𝑓 ≥ 0 (non-negativity) (5) 

 

where 𝑦 is a dual variable of the original LP. 

 There have been a number of advances and applications in inverse optimization, with an 

early survey on combinatorial IO by Heuberger (2004). Table 1 provides a summary of these 

advances. For example, Wang (2009) proposed a cutting plane method to solve the inverse 

mixed integer linear programming (InvMILP) problem. Güler and Hamacher (2010) proposed an 

IO model for estimating link capacities. Zhang and Zhang (2010) proposed an inverse quadratic 

program. Chow and Recker (2012) proposed an inverse vehicle routing problem (VRP) that 

includes side constraint (goal arrival times) estimation. Bertsimas et al. (2015) proposed an 

inverse variational inequality to estimate the parameters that would lead to observed patterns 

under equilibrium. 
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There are also many applications for IO. Day et al. (2002) used IO as a tool for model 

calibration for railroad networks. Burkard et al. (2004) applied IO to facility location problems. 

Agarwal and Ergun (2008) used IO as a mechanism design approach to select a solution from the 

core for a multicommodity flow game between different service networks seeking an alliance. 

Brucker and Shakhlevich (2009) studied applications in inverse scheduling. Bertsimas et al. 

(2012) applied IO to estimate the Black-Litterman model in portfolio optimization in the 

financial industry. Birge et al. (2014) applied IO to reveal the electricity market structure based 

on observed choices made by competitors. Chow et al. (2014) proposed an inverse traffic 

assignment problem for calibrating impedances at freight facilities, and You et al. (2016) used 

truck GPS data to infer parameters to forecast urban truck delivery patterns. Hong et al. (2017) 

proposed using inverse optimization to infer the heterogeneous route-level parameters of a mixed 

logit model of route choice, and tested that method with transit smart card data taken from 

50,000 trips in the Seoul metro system. They show empirically that the fixed point method 

proposed in Chow and Recker (2012) is able to discern heterogeneous parameter distributions for 

a utility function composed of transit time, transfer, and crowding. 
 

 

Table 1. Overview of inverse optimization advances and applications 

Methodological advances New applications 

Burton and Toint 

(1992) 

Inverse shortest path Day et al. (2002) Network calibration 

Ahuja and Orlin 

(2001) 

Inverse linear programming Burkard et al. (2004) Inverse median problem 

Wang (2009) Inverse MILP Agarwal and Ergun 

(2008) 

Mechanism design 

Güler and Hamacher 

(2010) 

Link capacities in inverse 

minimum cost flow problem 

Brucker and 

Shakhlevich (2009) 

Inverse scheduling 

Zhang and Zhang 

(2010) 

Nonlinear inverse optimization Bertsimas et al. (2012) Financial portfolio 

management 

Chow and Recker 

(2012) 

Multi-agent inverse optimization, 

inverse VRP with side constraint 

estimation 

Birge et al. (2014) Electricity market structure 

Aswani et al. (2015) Noisy data Chow et al. (2014) Inverse traffic assignment 

Bertsimas et al. (2015) Inverse variational inequality You et al. (2016) Urban truck forecasting 

Esfahani et al. (2015) Incomplete information Hong et al. (2017) Mixed logit estimation 

 

Despite these developments, IO methods involve a single model and observations of 

decision variable outputs of that model. In many instances, observations are not made at the 

aggregate level, but come from individual behavioral agent decisions. This dichotomy between a 

system model and learning through agent observations is an important distinction. First, IO 

methods require system observations, but obtaining that information from individual agents 

result in heterogeneous inputs. The result is that additional estimation of system aggregation 

from agent observations is needed, which leads to increased inefficiencies. Second, the resulting 

information from agent observations may not be consistent with the system model when 

inferring system parameters. This limitation is evident in the IO literature, where most efforts 

have focused on systems with learning from the same system level observations (e.g. observed 

company choices and their electricity pricing decisions, or an individual’s perceived costs of a 

network from their own observed path choices).  

Recent studies have tried to address these point by using noisy observations. Aswani et al. 

(2015) set up a bilevel problem to estimate from noisy data, and Esfahani et al. (2015) modeled 
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the noisy information problem as a robust optimization model. Both approaches explain the 

heterogeneity with stochastic distributions to allow suboptimal observations. However, this leads 

to discrepancies with mechanistic assumptions in the prevailing system model (i.e. it may lead to 

an observation that is not optimal with respect to their own preferences). The limitation of 

current IO methods to using system observations is also in computational efficiency. For 

example, Güler and Hamacher (2010) proposed an IO model to infer link capacities for a 

minimum cost flow problem from observed flows. They conclude that the model is NP-hard.  

 Chow and Recker (2012) proposed a multi-agent framework for IO where a sample of 

individuals’ trip scheduling data is obtained and used to infer parameters of individual activity 

scheduling (variant of vehicle routing from Recker, 1995). In this case, parameters of multiple 

individuals are estimated such that the mean of their parameters is a fixed point. This leads to a 

learning process for heterogeneous parameters of a system model, where individually calibrated 

optimization models correspond to observations as optimal solutions. Chow and Djavadian 

(2015) showed how sampled heterogeneous parameters can be fit into a mixed logit 

representation of constrained activity schedule choice. Hong et al. (2017) empirically proved the 

effectiveness of using inverse optimization for mixed logit route choice model parameter 

estimation with transit smart card data. 

 We formalize the multi-agent approach for network route choice such that observations are 

taken from agents, estimated parameters are heterogeneous and consistent with those agent 

observations, and further used to infer system-level network parameters that impact those 

observations.  

 

 

3 Proposed methodology 
 

We first formalize the multi-agent IO framework for general networks with route 

assignment, and then expand that framework to a methodology to infer network parameters.  

 

3.1 Basic multi-agent inverse transportation problem framework 

Consider a network 𝐺(𝑁, 𝐴) that receives observations from a population 𝑃 of agents 

behaviorally seeking to travel from an origin 𝑟𝑖 ∈ 𝑁 to a destination 𝑠𝑖 ∈ 𝑁, ∀𝑖 ∈ 𝑃 according to 

a shortest path in terms of additive link costs. Each agent 𝑖 ∈ 𝑃 has a perception of network 

parameters in a subnetwork 𝑔𝑖 ⊆ 𝐺; these varying perceptions are reflected in heterogeneous 

parameters at the system level. 

 In the basic multi-agent inverse transportation problem framework, let us assume there are 

no congestion or capacity effects, and only heterogeneous link costs are present. In other words, 

each link cost 𝑐𝑎, 𝑎 ∈ 𝐴, is described by a distribution over 𝑃 such that an agent’s perceived 

values of 𝑐𝑎,𝑖 justify their revealed route choice 𝑥𝑖
∗. Parameter learning is achieved with a set of 

inverse shortest path problems 𝜙−1(𝑔𝑖 , 𝑐0, 𝑥𝑖
∗), one for each agent, constrained to have an 

invariant common prior, as illustrated in Fig. 2 and in Eq. (6) and Eq. (7).  
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Fig. 2. Illustration of multi-agent inverse optimization as a fixed point problem. 

 

min
𝑐0,𝑐𝑖

 {|𝑐0 − 𝑐𝑖|: 𝑥𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝜙(𝑔𝑖 , 𝑐𝑖)} , ∀𝑖 ∈ 𝑃 (6) 

Subject to 

𝑐0 =
1

|𝑃|
∑ 𝑐𝑖

𝑖∈𝑃

 (7) 

 

Since 𝜙 is a shortest path problem, which is an LP, each agent’s inverse LP (InvLP) can 

reach a unique LP solution under 𝐿1 norm (Ahuja and Orlin, 2001) for a given initial prior 𝑐0. 

The constraint in Eq. (7) interprets the prior as a common prior (Feinberg, 2000; Chow and 

Recker, 2012) among the population. Given an initial guess of a common prior, a convergent 

iterative algorithm (e.g. Method of Successive Averages (MSA)) would reach a unique and 

statistically consistent fixed point with respect to that guess (see Chow and Recker, 2012). If we 

change the starting point (for example shifting all 𝑐0 values from all 1 to all 1000), it would lead 

to a different fixed point solution set. This is similar to how the estimated parameters in random 

utility models are also only unique relative to each other, but the overall values can be scaled up 

or down. An MSA-based algorithm is shown here. 

 

Algorithm 1: MSA-based algorithm to solve Eq. (6) to Eq. (7) 

0. Given an initial common prior 𝑐0
1 (e.g. previous update), and set 𝑛 = 1. 

1. For each agent 𝑖 ∈ 𝑃, solve an inverse shortest path problem 𝑐𝑖
𝑛 = 𝜙−1(𝑔𝑖 , 𝑐0

𝑛, 𝑥𝑖
∗). 

2. Set average to 𝜇𝑛 =
1

|𝑃|
∑ 𝑐𝑖

𝑛
𝑖∈𝑃 . 

3. Update common prior: 𝑐0
𝑛+1 =

𝑛

𝑛+1
𝑐0

𝑛 +
1

𝑛+1
𝜇𝑛. Set 𝑛 = 𝑛 + 1 and go to step 1 if 

stopping criterion not reached. 

 

 If a sample 𝑆 ⊂ 𝑃 of the population is used to infer the fixed point and distribution of the 

heterogeneous parameters, Chow and Djavadian (2015) show that a constrained mixed 

multinomial logit utility function as shown in Eq. (8) can aggregate agent observations. In a 

discrete choice model of route choice, each individual selects a route that maximizes their utility. 

The utility function can correspond to the objective function estimated for the individuals’ 

shortest path problems. Consider Eq. (8) as a random utility function representing a whole 

population. 

𝜙−1(𝑔1, 𝑐0, 𝑥1
∗) 𝜙−1(𝑔|𝑃|, 𝑐0, 𝑥|𝑃|

∗ ) … 

𝑐0 

𝑐1 𝑐|𝑃| 
1

|𝑃|
∑ 𝑐𝑖

𝑖∈𝑃

 

Fixed 

point 
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𝑈𝑗𝑖 = 𝛽𝑗𝑋𝑗𝑖 + 𝜀𝑗𝑖 (8) 

 

where 𝑈𝑗𝑖 is the utility for alternative (route) 𝑗 by agent 𝑖, 𝛽𝑗 is a random coefficient vector that is 

normally distributed, 𝑋𝑗𝑖 is an attribute of the alternative, and 𝜀𝑗𝑖 is a Gumbel-distributed error. 

To compute the probability from the normal distribution of the random coefficients, one can 

simulate a set of 𝑅 draws such that a simulated probability can be computed: Pr(𝑗|𝛽𝑗 , 𝑋𝑗𝑖) =
1

|𝑆|
∑ Pr(𝑗|𝛽𝑗𝑟 , 𝑋𝑗𝑖)𝑟∈𝑅 . For the 𝑆 agents, the objective function of each agent is equivalent to a 

“random draw” of the random coefficients 𝑐𝑖 of the utility function in the mixed logit model if 

we assume 𝑆 = 𝑅. 

 While the discussion here focuses on link travel costs only, the framework is applicable to 

other types of network flow parameters. For example, in Chow and Djavadian (2015), activity 

routing models capture parking duration, schedule delay, schedule makespan, and number of trip 

chains in the objective function. Hong et al. (2017) estimate the transit time, transfer, and 

crowding parameters in their route choice model.  

 

3.2 Network parameter inference via decomposition 

The methodology is further expanded to directly consider network parameters. Consider the 

capacitated multicommodity flow problem in Eq. (9) to Eq. (12), where 𝑀 is the set of 

commodities and 𝑢 = {𝑢𝑎∈𝐴} is a vector of capacity constraints for a subset of links in the 

network. 

 

min
x

∑ 𝑐𝑇𝑥𝑚

𝑚

 (cost minimization) (9) 

subject to   

𝐴𝑥𝑚 = 𝑏𝑚, ∀𝑚 ∈ 𝑀 
(flow conservation for each 

commodity 𝑚) 
(10) 

∑ 𝑥𝑚

𝑚∈𝑀

≤ 𝑢 (bundled capacity constraints) (11) 

𝑥𝑚 ≥ 0, ∀𝑚 ∈ 𝑀 (non-negativity) (12) 

 

The inverse problem to infer the values of 𝑢 from observed 𝑥𝑚 and other network 

parameters is NP-hard (Güler and Hamacher, 2010). Instead of tackling this inverse problem 

directly, we seek dual prices 𝑤 corresponding to the constraint set (11). A value of 𝑤𝑎 = 0 

means that a link 𝑎 ∈ 𝐴 is not operating at capacity 𝑢𝑎, while 𝑤𝑎 > 0 reflects the impact of a 

binding capacity on agents’ route choices. In other words, we do not concern ourselves with 

finding capacity, but instead with finding the effects of the capacity and its interaction with the 

agents. 

 In this problem, we assume link costs are not heterogeneous and known in advance. Instead, 

each agent has a perceived value of the dual price of the capacitated links. The capacitated 

problem can be decomposed into a master problem for determining optimal dual prices and 

unconstrained sub-problems for each commodity. The dual price is reflected within each agent’s 
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shortest path problem through the Partial Dualization Theorem (Ahuja et al., 1993): the 𝑤 

corresponding to Eq. (11) in the multicommodity flow problem is equivalent to a 𝑤 for the 

uncapacitated shortest path problem of each agent 𝑖 ∈ 𝑃 as shown in Eq. (13). 

 

min
xi

(𝑐 + 𝑤)𝑇𝑥𝑖 (13) 

 

 By relying on this relationship, we introduce a multi-agent inverse transportation problem to 

infer the network dual prices. Each agent solves an IO where there is a common prior dual price 

vector 𝑤0. We define two non-negative decision variables 𝑒𝑖 and 𝑓𝑖 for each agent such that 

𝑤0 − 𝑤𝑖 = 𝑒𝑖 − 𝑓𝑖, and solve Eq. (14) to Eq. (18) for each agent, subject to Eq. (19) for all 

agents. In other words, route dependencies are captured by bundle constraints such as capacity 

(Eq. 11). With decomposition, the original problem is decomposed into individual shortest path 

problems where the costs in the objective are updated to reflect the dual price obtained from the 

restricted master problem (Eq. 13). In the inverse problem, the requirement for a common prior 

(Eq. 19) ensures the solution will fit the bundling constraints. 

 

min
yi,ei,fi

𝑒𝑖 + 𝑓𝑖 , ∀𝑖 ∈ 𝑃 (𝐿1 norm minimization for each 

agent 𝑖 ∈ 𝑃) 
(14) 

subject to   

𝐴𝑇𝑦𝑖 ≥ 𝑐 + 𝑤0 − 𝑒𝑖 + 𝑓𝑖 , ∀𝑖 ∈ 𝑃 (dual feasibility) (15) 

𝑏𝑇𝑦𝑖 = (𝑐 + 𝑤0 − 𝑒𝑖 + 𝑓𝑖)𝑇𝑥𝑖
∗, ∀𝑖 ∈ 𝑃 (strong duality) (16) 

𝑤0 − 𝑒𝑖 + 𝑓𝑖 ≥ 0, ∀𝑖 ∈ 𝑃 (dual price non-negativity) (17) 

𝑦𝑖 , 𝑒𝑖 , 𝑓𝑖 ≥ 0, ∀𝑖 ∈ 𝑃 (non-negativity) (18) 

𝑤0 =
1

|𝑃|
∑ 𝑤𝑖

𝑖∈𝑃

 (common prior) (19) 

 

The formulation in Eq. (14) to Eq. (18) refers to an inverse of a generic LP in standard form 

as expressed in Eq. (1). In the case of taking the inverse shortest path, there are equality 

constraints so the dual variables for that problem are unbounded. The following three assertions 

are made. 

 

Proposition 1. Eq. (14) to Eq. (19) has a unique solution in a common prior dual price vector 

for all capacitated links, and this vector is the same for all agents, i.e. 𝑤0 = 𝑤𝑖 ∀𝑖 ∈ 𝑃.  

 

Proof. A multicommodity flow problem solution has a unique set of dual prices (Ahuja et al., 

1993). This homogeneity occurs because the dual price is a lower bound threshold for each 

individual, and the highest value price is the one kept. This can be illustrated with two agents A 

and B sharing a link 𝑎. Suppose agent A would leave link 𝑎 if the dual price was 𝑤𝐴. This means 

any value of 𝑤 ≥ 𝑤𝐴 would incentivize agent A to leave link 𝑎. Now suppose agent B has a dual 

price of 𝑤𝐵 > 𝑤𝐴. Any common prior price 𝑤𝐴 ≤ 𝑤0 < 𝑤𝐵 would not be fixed, because agent B 

would perturb up towards 𝑤𝐵 while agent A would be indifferent, until the common prior and 

final prices become fixed at 𝑤0 = 𝑤𝐵, and both agent A and B share the same 𝑤𝐵. ∎ 
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Proposition 2. The unique inverse optimal parameters to Eq. (14) to Eq. (19) can be reached by 

starting with an initial guess at 𝑤0
1 = 0 and then following a basic iterative update of 𝑤0

𝑛+1 ≔
1

|𝑃|
∑ 𝑤𝑖

𝑛
𝑖∈𝑃 .  

 

Proof. Since 𝑤0
1 = 0 represents the lower boundary, in each iteration 𝑛 the updated average of 

𝑤0
𝑛 would always be increasing due to the lower threshold condition explained in the Proposition 

1 proof. This means a basic iterative update of letting 𝑤0
𝑛+1 ≔

1

|𝑃|
∑ 𝑤𝑖

𝑛
𝑖∈𝑃  is monotonically 

increasing. Therefore, it is guaranteed to reach the unique solution. ∎ 

 

The algorithm is explicitly shown here. 

 

Algorithm 2: Iterative algorithm to solve Eq. (14) to Eq. (19) 

0. Given an initial common prior 𝑤0
1 (e.g. previous update), and 𝑛 = 1. 

1. For each agent 𝑖 ∈ 𝑃, solve an inverse shortest path problem with augmented link costs in 

Eq. (13), 𝑤𝑖
𝑛 = 𝜙−1(𝑔𝑖 , 𝑤0

𝑛, 𝑥𝑖
∗). 

2. Update common prior: 𝑤0
𝑛+1 =

1

|𝑃|
∑ 𝑤𝑖

𝑛
𝑖∈𝑃 . Set 𝑛 = 𝑛 + 1 and go to step 1 if 𝑤0

𝑛+1 ≠

𝑤0
𝑛. 

 

Proposition 3. The unique inverse optimal parameters to Eq. (14) to Eq. (19) can be reached in 

polynomial time using the basic iterative update from Proposition 2. 

 

Proof. Each run of the agent IO problem is an LP which is polynomial time solvable. The 

number of iterations of the iterative update is finite. This can be shown in a worst case scenario; 

suppose out of |𝑃| agents, |𝑃| − 1 of them all exhibit dual price of 0 for a particular link while 

one agent 𝑖 has a dual price of 𝑤𝑖 > 0. In this case, in each iteration all the |𝑃| − 1 agents would 

keep setting the 𝑤’s to 0 and agent 𝑖’s to 𝑤𝑖. This means in the worst case the average will 

always be increasing by 
𝑤𝑖

|𝑃|
 as a finite step size until the optimum is reached. ∎ 

 

 These properties of the methodology signify the effectiveness of using agent observations to 

learn network parameters. We illustrate the methodology for two iterations. Consider three link 

flows observed in the network in Fig. 3, 𝑥 = {100, 200, 100}. We can assume there are three 

groups of homogeneous agents, agent group 1 choosing link 1, agent group 2 choosing link 2, 

and agent group 3 choosing link 3. Each agent group seeks a dual price to explain their link 

choice, resulting in nine values of 𝑤 (for each agent and each link), and three values of 𝑤0. 

 
Fig. 3. Toy network used for illustrating methodology. 

 

𝑐1 = 3 

𝑐2 = 4 

𝑐3 = 6 
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The algorithm is initiated by setting 𝑤0
1 = {0,0,0}. An inverse shortest path problem is run 

for each agent. For agent group 1, 𝑤1
1 = {0,0,0} because they are already traveling on the 

shortest path with dual prices at zero. For agent group 2 to choose link 2, a value of 𝑤2
1 = {1,0,0} 

is needed. Lastly for agent group 3 to choose link 3, a value of 𝑤3
1 = {3,2,0} is needed. At the 

end of this iteration, the weighted average of the three agents is taken as the new prior: 𝑤0
2 =

{
200+300

400
,

200

400
, 0} = {

5

4
,

1

2
, 0}. If this is advanced a second iteration, we would get 𝑤1

2 =

{
5

4
,

1

2
, 0} , 𝑤2

2 = {
3

2
,

1

2
, 0}, and 𝑤3

2 = {3,2,0}. These would lead to a new prior 𝑤0
3 =

{
(125+300+300)

400
,

50+100+200

400
, 0} = {

29

16
,

7

8
, 0}. By inspection we can see that the dual prices will 

approach 𝑤0
∗ = 𝑤1

∗ = 𝑤2
∗ = 𝑤3

∗ = {3,2,0}. 

 

3.3 Online learning 

 Suppose we have a system that receives agent routes as they are revealed in real time. The 

multi-agent IO model works in that setting without having to estimate population level 

parameters. It is assumed that each time a traveler updates their route decision, that information 

is sent to a system that learns from the observation to update link capacity dual prices. This 

information can then be used to monitor how system changes are affecting traveler decisions in 

real time. We augment Algorithm 2 to this setting as Algorithm 3. 

 

Algorithm 3: online learning algorithm to update system 

0. Given: an initial common prior (obtained from a system) 𝑤0
𝑖 . 

1. For newly arrived agent 𝑖 ∈ 𝑃, solve an inverse shortest path problem with augmented 

link costs in Eq. (13), 𝑤𝑖
𝑖+1 = 𝜙−1(𝑔𝑖 , 𝑤0

𝑖 , 𝑥𝑖
∗). 

2. Update common prior: 𝑤0
𝑖+1 = 𝑤𝑖

𝑖+1.  

 

4 Numerical experiments 
 

Four experiments are conducted. The first is performed on a small network to evaluate the 

proposed method without capacity effects. The second and third tests are conducted on the 

Nguyen-Dupuis network with capacity effects. We perform a parameter recovery test to see 

whether hidden dual prices can be recovered using the methodology. We also verify that the 

method can be applied in an online multi-agent learning setting. In the fourth test, the online 

learning is demonstrated using real data from a freeway network in Queens, New York City, and 

Google Maps real-time shortest path queries over a 3-hour period. All the data sets generated for 

these tests are publicly accessible on https://github.com/BUILTNYU/Network-learning-via-

multi-agent-inverse-transportation-problems.  

 

4.1 Verification of method to estimate heterogeneous link cost parameters 

4.1.1 Experiment 1 design 

 This experiment has two primary objectives. The first is to illustrate the capability of the 

proposed method to capture heterogeneity of users’ preferences at one network level (link costs) 

even when observations are made at another level (route choice). This objective is achieved by 

using a simple network with enumerated paths, and simulated link costs that vary across the 

population. These link cost variations reflect different traffic and environmental conditions (e.g. 

weather and road surface conditions) present during each user’s trip, while observable route 

https://github.com/BUILTNYU/Network-learning-via-multi-agent-inverse-transportation-problems
https://github.com/BUILTNYU/Network-learning-via-multi-agent-inverse-transportation-problems


13 

 

choices may be obtained from GPS, phone, or transit smart card data (to varying degrees). Link 

cost heterogeneity is reflected in distributions of the link costs across the population.  

 The second objective is to demonstrate how the proposed method can better handle 

structural changes in the underlying network. This is accomplished by applying the estimated 

models on a scenario where one of the links is removed.  

To give the results more context, we estimate two discrete choice models: an aggregate 

multinomial logit model for route choice, and a mixed multinomial logit model that allows 

distributions in the path cost taste parameter. In total, the following scenarios shown in Table 2 

are evaluated. Parameter estimation is run for the first six scenarios. 

 
Table 2. Scenarios evaluated in Experiment 1 

No. Scenario Model 

1 Baseline, independent links Multinomial logit 

2  Mixed multinomial logit 

3  Shortest path problems calibrated with Algorithm 1 

4 Baseline, correlated links  Multinomial logit 

5  Mixed multinomial logit 

6  Shortest path problems calibrated with Algorithm 1 

7 Link 3 removed, independent links Multinomial logit 

8  Shortest path problems calibrated with Algorithm 1 

9 Link 3 removed, correlated links Multinomial logit 

10  Shortest path problems calibrated with Algorithm 1 

 

4.1.2 Experiment 1 data 

Consider a network as shown in Fig. 4 with five links identified in blue, where there are 500 

agents traveling from node 1 to node 4. For the independent links scenario, the perceived link 

costs of the 500 agents are randomly simulated resulting in mean link costs of 𝑐̅ =
(0.49, 0.50, 0.50, 0.48, 0.49) and standard deviations of 𝜎𝑐 = (0.29,0.28,0.29,0.29,0.28). The 

data is available on the GitHub site noted in Section 4 as Test Set 1. There are only three paths in 

their choice set represented by the following link sequences: (1,4), (2,5), (1,3,5), where their 

average path costs are 0.97, 0.99, and 1.48, respectively. Based on the simulated perceived costs 

and assumption that the travelers choose shortest routes, 48% choose (1,4), 48% choose (2,5), 

and 4% choose (1,3,5).  

 
Fig. 4. Test network for Section 4.1 experiment with node (in black) and link IDs (in blue). 

 

For the network scenario with correlated link costs, link 3 and link 5 are simulated to have 

positive correlation of 0.35. The simulated average link costs across the population of 500 agents 

are 𝑐̅ = (1.72, 2.03, 0.71, 1.48, 1.10), while the standard deviations are 𝜎𝑐 =
(0.40,0.41,0.23,0.42,0.31). The average path costs in this correlated network are 3.20, 3.13, and 

1 

2 

3 

4 

1 

2 

3 

4 

5 
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3.53, corresponding to paths 1, 2, and 3. The data are available on the GitHub site noted in 

Section 4 as Test Set 2. Based on the simulated perceived costs and same assumption as above, 

43% choose (1,4), 48% choose (2,5), and 9% choose (1,3,5). 

For the proposed method, an initial common prior of 𝑐0 = 0.5 is assumed for all links. 

Algorithm 1 is employed to obtain an estimate of link costs for each of the 500 agents such that 

their posterior mean values are within a tolerance of 0.001 of the prior values. Since there are 

three routes, there are only two degrees of freedom for link costs to vary, so we do not expect 

estimated distributions to reflect more than two alternative options.  

For the aggregate multinomial and mixed logit models, the utility functions are based on 

route costs to be consistent with the route choices. This is by design to contrast the outcomes of 

the proposed method. For the logit models, the average path costs are assumed to be known as 

the explanatory path cost variable 𝑋𝑗 for each alternative 𝑗. 𝑈𝑗 = 𝛽𝑗𝑋𝑗 + 𝜀𝑗 is an aggregate utility 

function that is dependent only on the same average path cost variables for everyone. 𝑋2 is set to 

be the utility of path 2 (2,5) relative to path 1 (1,4): 𝑋2 = 𝑐2 + 𝑐5 − 𝑐1 − 𝑐4, while 𝑋3 is the 

utility of path 3 (1,3,5) relative to path 1: 𝑋 3 = 𝑐3 + 𝑐5 − 𝑐4. In the mixed logit, 𝛽𝑗 is normally 

distributed.  

 

4.1.3 Results: Heterogeneity? 

We first estimate the parameters for the independent and correlated networks using the 

proposed method. Algorithm 1 is employed with the convergence shown in Fig. 5 for the 

independent network. Based on a tolerance of 0.001, the algorithm terminated after 22 iterations 

for the independent network data set and 19 iterations for the correlated network data set.  

 

 
Fig. 5. Convergence of algorithm 1 on test network for the independent link costs scenario. 

 

 The results confirm our hypothesis. Fig. 6 illustrates how the multi-agent inverse 

optimization outputs a distribution of link costs across the population based on observation of 

their route choices and the reliance on the normative route choice behavior in the inverse 

transportation problem. The values are {0.489, 0.498, 0.009, (0.490, 0.493), (0.481, 0.484)} on 

the independent network corresponding to links 1 to 5, and 
{(1.689,1.693), (2.061,2.065), 0.371,1.476,1.104} on the correlated network. The link costs 

end up being homogeneous for the first three links in the independent network (latter three links 
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in the correlated network), and are split over two different values for the remaining two links (the 

first two links in the correlated network). This reflects how even a network with only two 

degrees of freedom in information can lead to an estimation of heterogeneous link costs.  

 

 
 

Fig. 6. Output distribution of posterior link costs across the population of 500 simulated agents for link 1 

(top) to link 5 (bottom), for (a) independent link network and (b) correlated link network. 
 

In summary, the tests in these scenarios verify that the multi-agent inverse transportation 

problems can estimate heterogeneous link costs based only on observed route choices regardless 

of whether the links are independent or correlated. By comparison, the study by Hong et al. 

(2017) looks at route level attributes only, and Chow and Recker (2012) stick to same-level link 

observations and link costs in activity routing. 

For context, the route choices are modeled using multinomial and mixed logit models in 𝑅 

using the average route costs as the explanatory variables. The estimated multinomial logit 

models have log-likelihood values of −417.24 for the independent network and −469.47 for the 

correlated network. The McFadden R^2 values are 0.240 and 0.145, respectively. For the mixed 

logit model, a sampling of 100 simulated draws is used to obtain the results. Using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method, the algorithm converges to an estimate after 4 

iterations. For the mixed logit model, 𝐿𝐿 = −417.23 and 𝜌2 = 0.240 for the network with 

independent link costs. For the correlated network, the LL=−469.47 and 𝜌2 = 0.145. The 

estimated coefficients are shown in Table 3.  

Since the two networks do not have the same link cost distributions, a direct comparison of 

the results is not expected. However, the results clarify the value of the multi-agent inverse 

transportation problems when interpreted alongside one another.  

• While the proposed method endogenously obtained the average link costs, the statistical 

models required prior information about the average path costs in order to be estimated.  

• The statistical models clearly do not provide estimates of link-level parameters, much less 

link-level heterogeneity. 

• The estimated results suggest that the standard deviations of the mixed logit models (and 

hence the distribution assumption for taste variation in path costs) for both the independent 

and correlated networks are statistically insignificant (t-stats of 0.0081 and 0.0029, 

(a) (b) 
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respectively). Despite there being path level variation in perceived costs, it is difficult to 

capture this heterogeneity using the mixed logit model for this example. 

• The proposed method correctly fits each individual’s route choice to obtain 100% fit to the 

data of 48% for path 1, 48% for path 2, and 4% for path 3. On the other hand, the estimated 

shares from MNL are 50.2% for path 1, 45.7% for path 2, and 4.1% for path 3. Similarly, in 

the correlated network, the observed shares are 43% for path 1, 47.8% for path 2, and 9.2% 

for path 3, while estimated shares from MNL are 38.8%, 51.3%, and 9.9%. 

 
Table 3. Estimated parameters and significance tests for multinomial and mixed multinomial logit model 

Multinomial Logit, independent network 

Variable Estimate Standard error t-statistic 

𝑿 −4.93040 0.44997 −10.957*** 

Mixed  Logit, independent network 

Variable Estimate Standard error t-statistic 

𝑿 −4.93848 2.08812 −2.3650* 

𝒔𝒅. 𝑿 0.18917 23.22305 0.0081 

Multinomial Logit, correlated link network 

Variable Estimate Standard error t-statistic 

𝑿 −4.05413 0.38268 −10.594*** 

Mixed Logit, correlated link network 

Variable Estimate Standard error t-statistic 

𝑿 −4.054811 0.656032 −6.1808* 

𝒔𝒅. 𝑿 0.070375 24.292289 0.0029 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 

 

4.1.4 Results: what happens when a link breaks down and the network changes? 

To illustrate the method’s ability to evaluate significant structural changes in the network, 

we consider a scenario where one of the links fail. Scenarios 7 to 10 deal with closing link 3 for 

both the independent and correlated networks. Under the new scenarios, the estimated models 

are applied to validate their accuracy in terms of total route shares.  When link 3 is closed, the 

alternative path 3 no longer exists, and there are only two routes choices left. Under these 

scenarios, the simulated observed routes show that 50% of the travelers take path 1 in the 

independent network, while 47.6% take path 1 in the correlated network.  

The shortest path assignment using the link costs estimated with the multi-agent inverse 

optimization indicate with 100% fit the optimality of the observed choices. For context, the 

statistical models show some error as reported in Table 4. Since the mixed logit estimation was a 

poor fit with statistically insignificant standard deviations, that model is not applied in these 

scenarios. 

 
Table 4. Estimated shares (MNL) vs. actual shares of route choices when link 3 is closed (scenarios 7 – 10) 
Multinomial Logit, independent network 

Alternatives Estimated Shares Actual Shares Error 

Path 1 0.524 0.5 0.024 

Path 2 0.476 0.5 0.024 

Multinomial Logit, correlated link network 

Alternatives Estimated Shares Actual Shares Error 

Path 1 0.431 0.476 0.045 

Path 2 0.569 0.524 0.045 
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4.2 Link capacity dual price estimation parameter recovery test 

4.2.1 Experiment 2 design and data inputs 

 In the second and third experiments, the Nguyen-Dupuis (1984) network shown in Fig. 7 is 

used. In the second experiment, the goal is to conduct a parameter recovery test. Based on 

Proposition 1, the dual prices are unique and homogeneous across the population of agents. It 

should therefore be possible to assume link capacities on the network, solve a multicommodity 

flow problem to simulate the “observed” flows, and then apply Algorithm 2 to recover the dual 

prices. 

The standard demand and link cost parameters from the Nguyen-Dupuis network is 

assumed: 400 travelers for OD (1,2), 600 travelers for OD (4,2), 800 travelers for OD (1,3), 

and 200 travelers for OD (4,3). By design, the paths in the Nguyen-Dupuis network can be 

easily enumerated. These are sorted by length and shown in Table 5 with the corresponding path 

IDs. Initial capacities of 400 at link 1 and 800 at link 7 are assumed to simulate the observed 

flows.  

For simulating the path sampling, each of the paths is randomly drawn with probability 

equal to the percent flow on that path from the solution to the multicommodity flow problem. A 

summary of 100 sampled paths is provided in Fig. 8, and the data set is fully accessible on the 

GitHub site as Test Set 3. Although the multicommodity flow problem may require an integer 

solution, in this case an LP-relaxed solution is obtained revealing dual prices of 𝑤1
∗ = 7 and 

𝑤7
∗ = 5.  

The solution of the flow assignment under the hidden link capacities is used to represent the 

simulated observation, as shown in Fig. 1. The use of paths is dictated by ascending order of 

costs. For example, if an agent for OD (1,2) chooses to take path 2, it is because the dual price of 

path 1 has an effective value of 4 or more. 

 
Fig. 7. Nguyen-Dupuis (1984) network. 

 
Table 5. Enumerated paths for each of the four OD pairs, sorted by length in ascending order 
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Fig. 8. Histogram of simulated route observations in Experiment 2. 

 

Based on this observation, we assume there are six distinct agent groups, where all members 

of the group are homogeneous since no additional information is available in this experiment. 

Assuming that we know there are capacities at link 1 and link 7 but their values are unknown, the 

inverse shortest path problem 𝜙−1(𝑔1, 𝑤0
1, 𝑥1

∗) is illustrated below for an agent (path 8 in Table 

5) going from node 1 to node 2 from a prior of 𝑤0
1 = [0,0]. The 𝑦 values are the dual variables of 

the original shortest path problem. Because the shortest path constraints are equality constraints, 

the dual prices here are unbounded. 

 

min 𝜙−1 = 𝑒1,1
𝑛 + 𝑓1,1

𝑛 + 𝑒1,7
𝑛 + 𝑓1,7

𝑛  

𝑠. 𝑡. 
−𝑦1 + 𝑦5 ≤ 7 + 𝑤0,1

𝑛 − 𝑒1,1
𝑛 + 𝑓1,1

𝑛  

OD Pair Path Node sequence Link sequence Length OD Pair Path Node sequence Link sequence Length

(1,2) 1 1-5-6-7-8-2 (1)-(5)-(7)-(9)-(11) 29 (1,3) 14 1-5-6-7-11-3 (1)-(5)-(7)-(10)-(16) 32

2 1-5-6-7-11-2 (1)-(5)-(7)-(10)-(15) 33 15 1-5-6-10-11-3 (1)-(5)-(8)-(14)-(16) 37

3 1-5-6-10-11-2 (1)-(5)-(8)-(14)-(15) 38 16 1-5-9-10-11-3 (1)-(6)-(12)-(14)-(16) 40

4 1-5-9-10-11-2 (1)-(6)-(12)-(14)-(15) 41 17 1-5-9-13-3 (1)-(6)-(13)-(19) 36

5 1-12-6-7-8-2 (2)-(17)-(7)-(9)-(11) 35 18 1-12-6-7-11-3 (2)-(17)-(7)-(10)-(16) 38

6 1-12-6-7-11-2 (2)-(17)-(7)-(10)-(15) 39 19 1-12-6-10-11-3 (2)-(17)-(8)-(14)-(16) 43

7 1-12-6-10-11-2 (2)-(17)-(8)-(14)-(15) 44

8 1-12-8-2 (2)-(18)-(11) 32

(4,2) 9 4-5-6-7-8-2 (3)-(5)-(7)-(9)-(11) 31 (4,3) 20 4-5-6-7-11-3 (3)-(5)-(7)-(10)-(16) 34

10 4-5-6-7-11-2 (3)-(5)-(7)-(10)-(15) 35 21 4-5-6-10-11-3 (3)-(5)-(8)-(14)-(16) 39

11 4-5-6-10-11-2 (3)-(5)-(8)-(14)-(15) 40 22 4-5-9-10-11-3 (3)-(6)-(12)-(14)-(16) 42

12 4-5-9-10-11-2 (3)-(6)-(12)-(14)-(15) 43 23 4-5-9-13-3 (3)-(6)-(13)-(19) 38

13 4-9-10-11-2 (4)-(12)-(14)-(15) 37 24 4-9-10-11-3 (4)-(12)-(14)-(16) 36

25 4-9-13-3 (4)-(13)-(19) 32
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−𝑦1 + 𝑦12 ≤ 9 

−𝑦4 + 𝑦5 ≤ 9 

−𝑦4 + 𝑦9 ≤ 12 

−𝑦5 + 𝑦6 ≤ 3 

−𝑦5 + 𝑦9 ≤ 9 

−𝑦6 + 𝑦7 ≤ 5 + 𝑤0,7
𝑛 − 𝑒1,7

𝑛 + 𝑓1,7
𝑛  

−𝑦6 + 𝑦10 ≤ 13 

−𝑦7 + 𝑦8 ≤ 5 

−𝑦7 + 𝑦11 ≤ 9 

+𝑦2 − 𝑦8 ≤ 9 

−𝑦9 + 𝑦10 ≤ 10 

−𝑦9 + 𝑦13 ≤ 9 

−𝑦10 + 𝑦11 ≤ 6 

+𝑦2 − 𝑦11 ≤ 9 

𝑦3 − 𝑦11 ≤ 8 

𝑦6 − 𝑦12 ≤ 7 

𝑦8 − 𝑦12 ≤ 14 

𝑦3 − 𝑦13 ≤ 11 

𝑒1,1
𝑛 − 𝑓1,1

𝑛 ≤ 𝑤0,1
𝑛  

𝑒1,7
𝑛 − 𝑓1,7

𝑛 ≤ 𝑤0,7
𝑛  

−400𝑦1 + 400𝑦2 = 400(9 + 9 + 14) 

𝑒, 𝑓 ≥ 0 

 

4.2.2 Results 

We run Algorithm 2 to seek the corresponding dual prices that led to this flow observation. 

The convergence of the link capacity dual prices is shown in Fig. 9. 

 

 
Fig. 9. Convergence of dual prices using Algorithm 2. 
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This test indicates that it is indeed possible to use the proposed method to update network 

parameters that influence the agents’ route choices. In addition, all the agents end up with the 

same dual price values as the priors. This test shows how our proposed method can use 

individual agent learning to infer the value of shared system resources. 

 

4.3 Verification of method in an online multi-agent learning environment 

4.3.1 Experiment 3 design and data inputs 

 In the third experiment, we wish to verify the applicability of the proposed method as a 

network monitoring tool. It is assumed that data is received in real time from one agent at a time. 

After each agent observation, an update is conducted to learn of any changes in the dual prices in 

the network.  

 The experiment is designed as follows. We change link 7 from a capacity of 800 to a 

capacity of 500 and once again solve the capacitated assignment problem. In this state, the dual 

prices are found to be 𝑤1
∗∗ = 7 and 𝑤7

∗∗ = 6. Next, we randomly draw observations from the two 

states: the first 100 sequential samples are drawn from observations under the initial 800 capacity 

state, followed by 100 sequential samples under the 500 capacity state representing the capacity 

drop in link 7, and finally another 100 sequential samples under the 800 capacity state 

representing a return to initial state. The data is summarized in Fig. 10 and accessible on GitHub 

as Test Set 4. The time of each arrival is assumed to be constantly distributed to be one unit of 

time.  

 

 
Fig. 10. Trajectory of simulated routes observed in Experiment 3 with regime changes marked by blue 

vertical lines. 
 

Fig. 10 shows there are key paths that directly affect the dual prices when they are observed. 

For example, path 13 only appears when the system is operating under the 500 capacity regime, 

while path 18 only appears in the 800 capacity regime. We test to see if the methodology, when 

operated in an online learning environment, is sensitive to these regime changes.  
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4.3.1 Results 

 The online updating approach in Algorithm 3 is employed. Each update uses the posterior of 

the previous update as its prior. We get the following trajectory of the posterior dual prices 

shown in Fig. 11 as an example of how the monitoring occurs over 300 sequential observations.  

The result shows that the proposed method is indeed sensitive to regime changes in this 

example, even as there is a learning period after each state change. The learning rate depends on 

the likelihood of the right observation that comes along to reveal the need for a change. For 

example, the change to 500 capacity state does not impact the monitoring of the dual price 

immediately. It is not until a new route observation of path 13, indicating a detour in route 

because of the decreased capacity, does the dual price shift. As a result, the sampling rate is 

important. The routes are also important. In this case, the monitoring system is able to detect a 

shift back and forth because the 500 capacity state leads to a different set of routes than the 800 

capacity state. If the routes remain the same, no change may be detected. 

 
Fig. 11. Dual price trajectories based on 300 simulated agent arrivals operating in three separate states. 

 

As designed, the monitoring system does not currently allow the dual prices to deflate to 

zero. If, for example, a link that was initially operating at capacity but is now no longer at 

capacity, the system would not be able to detect a lack of detour flows. One possible solution is 

to build in a time value component, so that sampled data will also include their inter-arrival 

times. Longer periods of time of inactivity would result in discounting of the dual prices back to 

zero. However, this would require proper calibration based on demand densities and sampling 

rates. We will look into this issue in future research. 

 

4.4 Illustration of online network learning using real data from Queens, New York 

4.4.1. Data and experimental design 

In this final experiment, we illustrate network learning using a real data example. A highway 

network from Queens in New York City is shown in Fig. 12 overlaid upon a Google Maps 

image. The link free flow travel times (“FF time”) are presented in Table 6. The network is 
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designed to have two entries/exits for each of the four cardinal directions. On June 5, 2017, we 

queried a series of shortest paths from Google Maps API based on Google’s real-time travel 

times. The queried data, along with the network information and network learning code, are all 

located in the GitHub site. The following steps are taken to obtain this data.  

1. Initiate with dual prices equal to zero for all links in the Queens freeway network. 

2. Starting at 6:30AM, and every 5 minutes thereafter until 9:30AM, 

a. Randomly choose one cardinal direction as the origin and one as the destination. 

b. Sample the four real-time shortest paths for each of the possible entry/exit pairs. 

For example, if origin is North and destination is South, there are four shortest 

paths: N1-S1, N1-S2, N2-S1, N2-S2.  

c. Keep the one that is shortest among these as the simulated observation. 

d. Run Algorithm 3 to update the link dual prices based on the observation.  

 

 As congestion occurs in the network, the effects of the capacity on shifting routes should be 

recognized by the network learning algorithm. The dual prices should reflect links that become 

more congested with binding capacity effects that result in route diversions. The magnitudes of 

the dual prices should give a relative measure of the insufficient capacity in the link with respect 

to other links. We take snapshots of the shortest paths found in Google Maps (where congested 

links are typically red to black in color) so that qualitative comparisons can be made, as a 

comprehensive quantitative comparison is not possible with these latent variables. 

 

 
Fig. 12. Queens freeway network. 
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Table 6. Link attributes for the Queens freeway network. 
Link_id start_node end_node FF time (s) Link_id start_node end_node FF time (s) 

1 W1 1 211 21 9 7 233 

2 1 W1 211 22 7 9 233 

3 1 2 77 23 9 2 99 

4 2 1 77 24 2 9 99 

5 2 3 133 25 1 8 95 

6 3 2 133 26 8 1 95 

7 3 N1 39 27 8 S1 180 

8 N1 3 39 28 S1 8 180 

9 3 4 113 29 9 S1 180 

10 4 3 113 30 S1 9 180 

11 4 N2 50 31 8 9 36 

12 N2 4 50 32 9 8 36 

13 4 5 228 33 W2 8 178 

14 5 4 228 34 8 W2 178 

15 5 E1 54 35 6 5 60 

16 E1 5 54 36 5 6 60 

17 7 5 109 37 6 S2 101 

18 5 7 109 38 S2 6 101 

19 7 4 206 39 6 E2 57 

20 4 7 206 40 E2 6 57 

 

4.4.2. Queens freeway network experimental results 

 Fig. 15 shows the trajectory of the link dual prices (the ones that became binding) as they 

evolve from one new sample update to the next. The figure illustrates the sensitivity of the 

method to changes in the network parameters over time, despite being based on only 37 

randomly sampled individual route choices. We provide a snapshot of the dual prices for the 

links as they change every half hour throughout the 3-hour study period as shown in Fig. 14. For 

comparison, we include Fig. 15 to show screenshots of the Google Maps real-time shortest paths 

found at the same times as the dual price snapshots. The screenshots provide a qualitative 

validation by indicating the presence of congestion that occurs at similar segments and similar 

time frames. 
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Fig. 13. Trajectories of link dual prices as estimated using Algorithm 3 for Queens freeway network over a 3-

hour period. 
 

 
Fig. 14. Snapshot of multi-agent IO output dual prices at every half-hour with non-zero prices represented by 

heavier arrows. 
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A number of conclusions are drawn from this illustrative experiment.  

• Network system attributes like link dual prices can be updated using only samples of 

individual route observations, without need to estimate total link or path flows. This 

demonstrates the significance of this methodology in being able to cheaply monitor a 

transportation network’s system performance over time.  

• The changes show that the inference model is indeed sensitive to changes in the system. As 

traffic increases from 6:30AM to 9:30AM in the study period resulting in more spillbacks 

and incidents impacting link capacities, the set of dual prices steadily increases on average as 

shown in Fig. 13. 

• The accuracy of the inference cannot be established quantitatively. However, a visual 

comparison between Fig. 14 and Fig. 15 indicate similarities in positive dual prices where 

congestion occurs. For example, the 7:00AM screenshot shows that the segment between 

nodes 4 and 5 is highly congested, and that is interpreted correctly in Fig. 14. The 7:30AM 

screenshot reveals the alternative path traversing the link between nodes 8 and S1 is 

congested, which is captured correctly in the inference model. The 8:30AM screenshot 

indicates congestion between nodes 5 and 7, which is also captured by the model. This delay 

lingers through 9:30AM, and is properly captured as well by the inference model. 

 

 

 
Fig. 15. Screenshots of Google Maps real-time shortest path input data at corresponding half-hour intervals 

that reveal congested segments. 
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5 Conclusion 
 

 In this study, we derived a new class of inverse optimization models such that shared 

network resources can be quantified from agent observations. This class is fundamentally 

different from the classic inverse optimization model, which requires more statistically 

inefficient estimation of aggregate system parameters like population link or path flows. The 

proposed multi-agent inverse optimization model class captures heterogeneity in agents using 

shared system resources, and also infers such system parameters as link capacity dual prices all 

without having to estimate population flows. This contribution makes it possible to cheaply 

apply IO techniques to many data-driven transportation problems in which observations are 

obtained from only samples of selfish agents or in an online learning setting. 

 To elaborate, we formalize a multi-agent inverse optimization modeling approach using a 

fixed point common prior to capture heterogeneity, relate that approach to link capacity dual 

prices through decomposition properties, and propose three algorithms to support these models. 

We further prove that the method can obtain unique dual prices for a network shared by the agent 

population in polynomial time (depending on LP algorithm used). The methodology is tested in 

four experiments: 

1) For a path-enumerated 4-node network, we verify that the methodology can indeed obtain 

heterogeneous estimates of link cost parameters, even when there is not enough structural 

information for meaningful interpretation with a purely descriptive method like a mixed logit 

model. 

2) For the Nguyen-Dupuis network, we conduct a parameter recovery test to verify that the 

proposed method works in inferring shared system resources through agent information. This 

test illustrates how much easier it is to infer impacts of link capacities than to try and 

estimate them directly as Güler and Hamacher (2010) tried to do as an NP-hard problem. 

3) We construct an online learning example to demonstrate how the method can work in this 

setting. Link 7 in the network is set to experience a capacity drop before returning to its 

original state to mimic an incident. The results show that the online learning is able to pick 

up on that drop through an increase in the dual price observed from updated sequences of 

agent route choices. 

4) The online learning is further illustrated using real data from a freeway network in Queens, 

New York, based on sampled real-time Google Maps shortest path queries. Through these 

queries, we are able to estimate the link capacity interactions with the travelers under 

congestion, and monitor this evolution over a three-hour period. 

 

This work differs from other data-driven methods in the literature. Learning is made through 

the use of a normative behavioral mechanism so that online monitoring and strategic planning 

scenario evaluation are possible. The research also has implications for automated systems and 

artificially intelligent networks in the context of autonomous fleets (Guo et al., 2017) and smart 

cities. By structuring the learning in the same environment as the design and operation, it makes 

it easier in future research to design integrated learning and optimization strategies in networks. 

For example, some recent research is looking at ways to optimize resources to sense and learn 

from a network (e.g. Ryzhov and Powell, 2011). A next step in this evolution will be to operate a 

system that jointly considers resource allocation to optimally serve users and learn from them. 

Multi-agent IO is one way to approach such a problem.  
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Other extensions of this research include: conducting studies using multiple sensor sources 

(e.g. loop detectors, video cameras, taxi GPS data) and integrating the multi-agent IO approach; 

considering Bayesian techniques like Markov chain Monte Carlo methods for online learning 

through sampling (Tebaldi and West, 1998); and designing more sophisticated online learning 

systems that incorporate time value of observations and deterioration rate of dual prices. For 

example, a new observation that shows dual price is 5 instead of 0 can have different meanings if 

the observation arrives 1 minute later versus 1 hour later. This temporal component needs to be 

studied. Other aspects of real applications also need to be considered: data can be noisy (e.g. 

perceived link capacity dual price for agents may differ) and may require stochastic assignment 

consideration (Ashok and Ben-Akiva, 2002), only fragments of actual paths may be available 

(e.g. transit fare smart card data), or travelers may choose to stay at home. Aggregation methods, 

while discussed in Chow and Djavadian (2015), can be further expanded upon in this generalized 

route inference setting.  
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