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Abstract

Despite the ubiquity of transportation data, methods to infer the state parameters of a network
either ignore sensitivity of route decisions, require route enumeration for parameterizing
descriptive models of route selection, or require complex bilevel models of route assignment
behavior. These limitations prevent modelers from fully exploiting ubiquitous data in monitoring
transportation networks. Inverse optimization methods that capture network route choice
behavior can address this gap, but they are designed to take observations of the same model to
learn the parameters of that model, which is statistically inefficient (e.g. requires estimating
population route and link flows). New inverse optimization models and supporting algorithms
are proposed to learn the parameters of heterogeneous travelers’ route behavior to infer shared
network state parameters (e.g. link capacity dual prices). The inferred values are consistent with
observations of each agent’s optimization behavior. We prove that the method can obtain unique
dual prices for a network shared by these agents in polynomial time. Four experiments are
conducted. The first one, conducted on a 4-node network, verifies the methodology to obtain
heterogeneous link cost parameters even when multinomial or mixed logit models would not be
meaningfully estimated. The second is a parameter recovery test on the Nguyen-Dupuis network
that shows that unique latent link capacity dual prices can be inferred using the proposed method.
The third test on the same network demonstrates how a monitoring system in an online learning
environment can be designed using this method. The last test demonstrates this learning on real
data obtained from a freeway network in Queens, New York, using only real-time Google Maps
queries.
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1 Introduction

Travel data has become increasingly abundant and ubiquitous in recent years due to
advances in information and communications technologies (ICTs) and Big Data. The shift to
data-driven methods in transportation is apparent. Notable efforts include the Mobile Millennium
project to track traffic using GPS phone data (Herrera et al., 2010), use of transit smart card data
in Santiago to estimate travel demand patterns (Munizaga and Palma, 2012), urban link
performance inference from New York City taxi data (Zhan et al., 2013), and the Digital Matatu
Project in Nairobi, Kenya, to characterize their flexible bus system with cell phone data
(Williams et al., 2015), among others.

Such methods make use of observations from data to infer or learn specific characteristics of
system components that are not directly observable. For example, the study from Zhan et al.
(2013) infers link travel times using taxi GPS data. The methodology is generally classified as an
inverse model (see Tarantola, 2005), which assumes there exists a model M that transforms a set
of parameters 0 to a set of outputs X as X = M(6). The inverse model deals with finding a set of
parameter estimates § based on observed outputs x as § = M~1(x). In a network setting, the
state of a network may be defined by several types of parameters that require estimation: link
costs, link/path flows, origin-destination (OD) flows, link capacities or congestion effects.

Inference in a network context using inverse models has a long history and literature. The
primary factor distinguishing inference methods for network parameters is whether, and how, the
method handles sensitivity of route decisions by travelers or (in the case of non-transportation
networks) packets to the state of the network. A second consideration is that system parameters
(e.g., link costs and capacity effects) need to be inferred as they depend on external factors like
weather, presence of incidents, etc., particularly in transportation networks.

The simplest inference methods relate an observable set of attributes to the desired
parameters directly through network structure (e.g. link flow is the sum of the proportions of all
OD flows that use that link) absent of any route decision sensitivity. One example is Van Zuylen
and Willumsen (1980), who propose an OD estimation model from link traffic counts using
entropy maximization to determine the proportion of OD flows that are most likely to traverse an
observed link. The variables are connected by an incidence matrix that reflects the network
structure. Instead of using entropy maximization, Bell (1991) uses a constrained generalized least
squares approach with additional information from prior surveys/studies to regularize the inverse
problem. Path flows are not explicit in such models.

Inverse models that deal with route sensitivity do so by explicitly mapping observed
variables like link counts to latent path flows, and then mapping those path flows to desired
parameters like OD flows. Examples include Vardi (1996) and Tebaldi and West (1998). Vardi
(1996) coins this topic as “network tomography”, and proposes methods to estimate parametric
distributions of flow from observed link count data for a single known path or for a Markovian
distribution of paths. Tebaldi and West (1998) use Bayesian inference to estimate the parametric
distributions considered by Vardi (1996). Since these methods require path enumeration, it may
be difficult to apply them to large networks. Recent efforts (Airoldi and Blocker, 2013; Hazelton,
2015) use more efficient route flow sampling strategies to make these inference models more
scalable. These methods are tested on networks with up to 21 nodes.

In the case of transportation networks, two qualities offer unique challenges and
opportunities to network inference: (1) state changes can involve system parameters like link
capacities due to weather or incidents; and (2) route decisions are fundamentally governed by
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behavioral mechanisms like route choice behavior. Changes that involve link capacities or other
similar system parameters may be much harder to anticipate using parametric models (e.g.
normal distributions) for path assignment based only on prior data. To compensate for this,
transportation researchers have inserted behavioral mechanisms (Cascetta et al., 1996; Vovsha
and Bekhor, 1998; Srinivasan and Mahmassani, 2000; Dia, 2002; Frejinger and Bierlaire, 2007;
Ben-Elia and Shiftan, 2010; Gao, 2012; Fosgerau et al., 2013) into the inverse models so that
route sensitivity can rely on the mechanism where data is sparse. Route enumeration remains an
issue in some cases, even as researchers seek ways to address that with choice set selection. For
example, Fosgerau et al. (2013), Baillong and Cominetti (2006), and Akamatsu (1996) make use
of Markovian models to overcome route generation. A literature survey is available from Prato
(2009).

To overcome the route enumeration problem, more integration of behavior with network
structure has been sought (see Watling et al., 2015). For example, when considering congestion
or capacity effects of networks, the presence of a stochastic user equilibrium behavior (Daganzo
and Sheffi, 1977) may be assumed. In the case of OD estimation, Yang et al. (1992) assume
Wardrop’s user equilibrium behavioral principle to assign observed link flows to route flows
without having to enumerate paths. Other efforts include Ashok and Ben-Akiva (2002), who
allow for perturbations from the behavioral mechanism with stochastic assignment. A new
problem emerges, however, with the complexity of having a nonconvex bilevel optimization
problem for the inverse model.

To summarize, methods to infer the state parameters of a network either ignore sensitivity of
route decisions, require route enumeration for parameterizing models of route selection, or
require complex bilevel models of route assignment behavior. Some of these inference methods,
particularly for demand patterns in a network, may not even be necessary in an age of data
ubiquity. For instance, methods like Tang et al. (2015) and Alexander et al. (2015) use GPS or
mobile phone data to reduce OD estimation to a basic sampling problem without having to infer
them from other observed variables. Nevertheless, there remains a challenge of being able to
explain network state changes, as illustrated in Fig. 1. The classic Nguyen-Dupuis network
(Nguyen and Dupuis, 1984) is used to show two states of latent link capacities imposed on the
network. In the figure, the change from one state on the left to the next on the right is due to a
change in the link 7 capacity. Based on observation (and hypothetically from methods in Tang et
al. (2015) and Alexander et al. (2015)), we can compute or estimate the total system travel times
(68,400 on left, 70,000 on right) and observe that there is a difference in flow on links 3, 4, 5, 7,
8,9,10, 11, 12, 14, and 15, but we cannot explain why the state change occurs.



Fig. 1. Illustration of a state change in the Nguyen-Dupuis network that leads to a change in observed flows
(link IDs in red parentheses).

One potential solution for network inference is inverse optimization. Ahuja and Orlin (2001)
proposed a class of inverse problems posed as a linear optimization model. This class of
problems, called inverse optimization (IO), allows one to learn linear programming parameters
from observed decision variables and prior information such that the desired optimality condition
is maintained. IO models capture the route choice mechanism if it follows an assignment-based
mathematical program. The models also have great flexibility in inferring either demand or
system parameters.

Nonetheless, inverse optimization in the current literature also cannot effectively explain the
state change in Fig. 1 for two primary reasons. First, the closest model from Gtiler and Hamacher
(2010) studies the single commodity capacity inverse minimum cost flow problem and conclude
that it is NP-hard. However, the example in Fig. 1 describes a multicommodity flow problem in
which there is demand from node 1 and node 4 to node 2 and node 3. Second, IO assumes that
the data obtained is at the same level of the model, e.g. an inverse of a network flow model uses
observation of the flow data to learn the parameters of the system model. In many transportation
cases, however, this is untrue. The system model is the whole transportation network, and its
parameters dictate how the congestion and capacity effects influence travel. However, it is the
individual agents that are optimizing their own network models (e.g. shortest path) as a
behavioral mechanism and learning from their experiences. Without addressing this discrepancy,
current IO methods need to estimate variables at the population level, e.g. total link or path
flows, which is statistically inefficient. If we are able to synchronize the route choice behavioral
mechanism at the system level with the behavior of individual agents, we may be able to avoid
this costly step.

We propose to address this discrepancy with a new data-driven methodology that uses
inverse optimization with network models that rely on only learning from sampled
heterogeneous agents. The method takes observed routes of travelers to estimate heterogeneous
route preferences and infer network parameters that influence these observed routes, such as the
dual prices of the link capacities. Because the method learns the preferences of multiple agents
and relates those preferences to system parameters, it can be used in an online learning
environment in which system parameters are updated over time based on only real-time sampling
of individual agents without having to estimate population link or path flows.

The remainder of the paper is organized as follows. Section 2 expands on the review of
inverse optimization as a learning methodology, and recent developments to handle
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heterogeneity in observed data. Section 3 presents the proposed methodology in two stages: first
as a basic model to infer heterogeneous route preferences of multiple agents using a shared
network, and second in inferring the parameters of that network to explain their route choices.
Section 4 presents four computational experiments that include a demonstration of online
learning in a synthetic network and in a real data illustration of a freeway network in Queens,
NY. Section 5 concludes.

2 Review of inverse optimization

Inverse optimization can be used to learn network parameters from a prior value. The first
inverse optimization model was proposed by Burton and Toint (1992) for the inverse shortest
path problem, and it was further generalized by Ahuja and Orlin (2001). It is defined as follows:
for a given prior ¢, of a linear program’s (LP’s) parameters and observed decision variables x*,
determine an updated c such that x* is optimal while minimizing its L; norm from the prior, as
shown in Eq. (1). A is the constraint matrix and b is the vector of side constraint values.

min |cq — c|:x* = argmin{cTx: Ax < b,x > 0} (1)
C

The L; norm minimization is used to regularize what would otherwise be an ill-posed
problem with infinite solutions. This ensures that a unique solution can be obtained given a prior
Co- Alternatively, weights can be added for further calibration. Ahuja and Orlin (2001) showed
that Eq. (1) (as well as the L, norm variant) can be reformulated as an LP. This is done by
introducing two non-negative decision variable vectors e and f such that their difference is equal
to co — c: ¢o — ¢ = e — f. The problem can then be reformulated using strong duality and dual
feasibility conditions, as shown in Eq. (2) to Eq. (5).

r}l;lérfl e+ f (L1 norm minimization) (2)
subject to

ATy >co—e+f (dual feasibility) 3)

bTy =(co—e+ f)Tx* (strong duality) 4)

v,e,f=0 (non-negativity) (5)

where y is a dual variable of the original LP.

There have been a number of advances and applications in inverse optimization, with an
early survey on combinatorial IO by Heuberger (2004). Table 1 provides a summary of these
advances. For example, Wang (2009) proposed a cutting plane method to solve the inverse
mixed integer linear programming (InvMILP) problem. Giiler and Hamacher (2010) proposed an
10 model for estimating link capacities. Zhang and Zhang (2010) proposed an inverse quadratic
program. Chow and Recker (2012) proposed an inverse vehicle routing problem (VRP) that
includes side constraint (goal arrival times) estimation. Bertsimas et al. (2015) proposed an
inverse variational inequality to estimate the parameters that would lead to observed patterns
under equilibrium.



There are also many applications for 10. Day et al. (2002) used 10 as a tool for model
calibration for railroad networks. Burkard et al. (2004) applied 1O to facility location problems.
Agarwal and Ergun (2008) used IO as a mechanism design approach to select a solution from the
core for a multicommodity flow game between different service networks seeking an alliance.
Brucker and Shakhlevich (2009) studied applications in inverse scheduling. Bertsimas et al.
(2012) applied IO to estimate the Black-Litterman model in portfolio optimization in the
financial industry. Birge et al. (2014) applied IO to reveal the electricity market structure based
on observed choices made by competitors. Chow et al. (2014) proposed an inverse traffic
assignment problem for calibrating impedances at freight facilities, and You et al. (2016) used
truck GPS data to infer parameters to forecast urban truck delivery patterns. Hong et al. (2017)
proposed using inverse optimization to infer the heterogeneous route-level parameters of a mixed
logit model of route choice, and tested that method with transit smart card data taken from
50,000 trips in the Seoul metro system. They show empirically that the fixed point method
proposed in Chow and Recker (2012) is able to discern heterogeneous parameter distributions for
a utility function composed of transit time, transfer, and crowding.

Table 1. Overview of inverse optimization advances and applications

Methodological advances New applications
Burton and Toint Inverse shortest path Day et al. (2002) Network calibration
(1992)
Ahuja and Orlin Inverse linear programming Burkard et al. (2004) Inverse median problem
(2001)
Wang (2009) Inverse MILP Agarwal and Ergun Mechanism design
(2008)
Giiler and Hamacher Link capacities in inverse Brucker and Inverse scheduling
(2010) minimum cost flow problem Shakhlevich (2009)
Zhang and Zhang Nonlinear inverse optimization Bertsimas et al. (2012)  Financial portfolio
(2010) management
Chow and Recker Multi-agent inverse optimization, | Birge et al. (2014) Electricity market structure
(2012) inverse VRP with side constraint
estimation
Aswani et al. (2015) Noisy data Chow et al. (2014) Inverse traffic assignment
Bertsimas et al. (2015) Inverse variational inequality You et al. (2016) Urban truck forecasting
Esfahani et al. (2015)  Incomplete information Hong et al. (2017) Mixed logit estimation

Despite these developments, IO methods involve a single model and observations of
decision variable outputs of that model. In many instances, observations are not made at the
aggregate level, but come from individual behavioral agent decisions. This dichotomy between a
system model and learning through agent observations is an important distinction. First, 10
methods require system observations, but obtaining that information from individual agents
result in heterogeneous inputs. The result is that additional estimation of system aggregation
from agent observations is needed, which leads to increased inefficiencies. Second, the resulting
information from agent observations may not be consistent with the system model when
inferring system parameters. This limitation is evident in the IO literature, where most efforts
have focused on systems with learning from the same system level observations (e.g. observed
company choices and their electricity pricing decisions, or an individual’s perceived costs of a
network from their own observed path choices).

Recent studies have tried to address these point by using noisy observations. Aswani et al.
(2015) set up a bilevel problem to estimate from noisy data, and Esfahani et al. (2015) modeled
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the noisy information problem as a robust optimization model. Both approaches explain the
heterogeneity with stochastic distributions to allow suboptimal observations. However, this leads
to discrepancies with mechanistic assumptions in the prevailing system model (i.e. it may lead to
an observation that is not optimal with respect to their own preferences). The limitation of
current IO methods to using system observations is also in computational efficiency. For
example, Giiler and Hamacher (2010) proposed an 10 model to infer link capacities for a
minimum cost flow problem from observed flows. They conclude that the model is NP-hard.

Chow and Recker (2012) proposed a multi-agent framework for IO where a sample of
individuals’ trip scheduling data is obtained and used to infer parameters of individual activity
scheduling (variant of vehicle routing from Recker, 1995). In this case, parameters of multiple
individuals are estimated such that the mean of their parameters is a fixed point. This leads to a
learning process for heterogeneous parameters of a system model, where individually calibrated
optimization models correspond to observations as optimal solutions. Chow and Djavadian
(2015) showed how sampled heterogeneous parameters can be fit into a mixed logit
representation of constrained activity schedule choice. Hong et al. (2017) empirically proved the
effectiveness of using inverse optimization for mixed logit route choice model parameter
estimation with transit smart card data.

We formalize the multi-agent approach for network route choice such that observations are
taken from agents, estimated parameters are heterogeneous and consistent with those agent
observations, and further used to infer system-level network parameters that impact those
observations.

3 Proposed methodology

We first formalize the multi-agent 10 framework for general networks with route
assignment, and then expand that framework to a methodology to infer network parameters.

3.1 Basic multi-agent inverse transportation problem framework

Consider a network G(N,A) that receives observations from a population P of agents
behaviorally seeking to travel from an origin r; € N to a destination s; € N, Vi € P according to
a shortest path in terms of additive link costs. Each agent i € P has a perception of network
parameters in a subnetwork g; € G; these varying perceptions are reflected in heterogeneous
parameters at the system level.

In the basic multi-agent inverse transportation problem framework, let us assume there are
no congestion or capacity effects, and only heterogeneous link costs are present. In other words,
each link cost ¢4, a € A, is described by a distribution over P such that an agent’s perceived
values of c,; justify their revealed route choice x;. Parameter learning is achieved with a set of
inverse shortest path problems ¢~1(g;,co,x;), one for each agent, constrained to have an
invariant common prior, as illustrated in Fig. 2 and in Eq. (6) and Eq. (7).
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Fig. 2. Illustration of multi-agent inverse optimization as a fixed point problem.
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min {lco — cil: xj = argmin, ¢(gi,¢;)},  Vi€P (6)
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_1 Z
Co = |P| : Ci (7)
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Since ¢ is a shortest path problem, which is an LP, each agent’s inverse LP (InvLP) can
reach a unique LP solution under L; norm (Ahuja and Orlin, 2001) for a given initial prior c,.
The constraint in Eq. (7) interprets the prior as a common prior (Feinberg, 2000; Chow and
Recker, 2012) among the population. Given an initial guess of a common prior, a convergent
iterative algorithm (e.g. Method of Successive Averages (MSA)) would reach a unique and
statistically consistent fixed point with respect to that guess (see Chow and Recker, 2012). If we
change the starting point (for example shifting all ¢, values from all 1 to all 1000), it would lead
to a different fixed point solution set. This is similar to how the estimated parameters in random
utility models are also only unique relative to each other, but the overall values can be scaled up
or down. An MSA-based algorithm is shown here.

Algorithm 1: MSA-based algorithm to solve Eq. (6) to Eq. (7)
0. Given an initial common prior c3 (e.g. previous update), and set n = 1.
1. Foreach agent i € P, solve an inverse shortest path problem ¢* = ¢~ (g;, ¢, x).
2. Setaverage to u™ = ﬁZiep .

3. “

Update common prior: ¢! = —
n+1

c{,‘+ﬁun. Set n=n+1 and go to step 1 if

stopping criterion not reached.

If a sample S P of the population is used to infer the fixed point and distribution of the
heterogeneous parameters, Chow and Djavadian (2015) show that a constrained mixed
multinomial logit utility function as shown in Eq. (8) can aggregate agent observations. In a
discrete choice model of route choice, each individual selects a route that maximizes their utility.
The utility function can correspond to the objective function estimated for the individuals’
shortest path problems. Consider Eq. (8) as a random utility function representing a whole
population.



Uji = BiXji + € (8)

where Uj; is the utility for alternative (route) j by agent i, §; is a random coefficient vector that is
normally distributed, Xj; is an attribute of the alternative, and ¢;; is a Gumbel-distributed error.
To compute the probability from the normal distribution of the random coefficients, one can
simulate a set of R draws such that a simulated probability can be computed: Pr(j|,6’j,Xﬁ) =
1
N
“random draw” of the random coefficients c; of the utility function in the mixed logit model if
we assume S = R.

While the discussion here focuses on link travel costs only, the framework is applicable to
other types of network flow parameters. For example, in Chow and Djavadian (2015), activity
routing models capture parking duration, schedule delay, schedule makespan, and number of trip
chains in the objective function. Hong et al. (2017) estimate the transit time, transfer, and
crowding parameters in their route choice model.

Yrer Pr(j| ﬁjr,Xﬁ). For the S agents, the objective function of each agent is equivalent to a

3.2 Network parameter inference via decomposition

The methodology is further expanded to directly consider network parameters. Consider the
capacitated multicommodity flow problem in Eq. (9) to Eq. (12), where M is the set of
commodities and u = {ug,c4} is a vector of capacity constraints for a subset of links in the
network.

: T
min Z C' Xm (cost minimization) ©)
m
subject to

(flow conservation for each

Ax, =b,, VmeM it ) (10)
Z Xm S U (bundled capacity constraints)  (11)
meM

Xm =0, YmeM (non-negativity) (12)

The inverse problem to infer the values of u from observed x, and other network
parameters is NP-hard (Giiler and Hamacher, 2010). Instead of tackling this inverse problem
directly, we seek dual prices w corresponding to the constraint set (11). A value of w, =0
means that a link a € A is not operating at capacity u,, while w, > 0 reflects the impact of a
binding capacity on agents’ route choices. In other words, we do not concern ourselves with
finding capacity, but instead with finding the effects of the capacity and its interaction with the
agents.

In this problem, we assume link costs are not heterogeneous and known in advance. Instead,
each agent has a perceived value of the dual price of the capacitated links. The capacitated
problem can be decomposed into a master problem for determining optimal dual prices and
unconstrained sub-problems for each commodity. The dual price is reflected within each agent’s
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shortest path problem through the Partial Dualization Theorem (Ahuja et al., 1993): the w
corresponding to Eq. (11) in the multicommodity flow problem is equivalent to a w for the
uncapacitated shortest path problem of each agent i € P as shown in Eq. (13).

n}(iin(c +w)Tx; (13)

By relying on this relationship, we introduce a multi-agent inverse transportation problem to
infer the network dual prices. Each agent solves an 10 where there is a common prior dual price
vector w,. We define two non-negative decision variables e; and f; for each agent such that
wo —w; = e; — f;, and solve Eq. (14) to Eq. (18) for each agent, subject to Eq. (19) for all
agents. In other words, route dependencies are captured by bundle constraints such as capacity
(Eq. 11). With decomposition, the original problem is decomposed into individual shortest path
problems where the costs in the objective are updated to reflect the dual price obtained from the
restricted master problem (Eq. 13). In the inverse problem, the requirement for a common prior
(Eq. 19) ensures the solution will fit the bundling constraints.

r_ni_r}_ e; + fi, Vi € P (L1 norm minim{'zationfor each (14)

yiepfi agent i € P)
subject to

ATy, zc+wo—e +f;, VieP (dual feasibility) (15)

bTy,=(c+wo—e;+f)Tx{, Vi€EP (strong duality) (16)

wo—e+f;=20,  VieEP (dual price non-negativity) (17)

yoe,fi =20, VieP (non-negativity) (18)

Wo = %; Wi (common prior) (19)

The formulation in Eq. (14) to Eq. (18) refers to an inverse of a generic LP in standard form
as expressed in Eq. (1). In the case of taking the inverse shortest path, there are equality
constraints so the dual variables for that problem are unbounded. The following three assertions
are made.

Proposition 1. Eq. (14) to Eq. (19) has a unique solution in a common prior dual price vector
for all capacitated links, and this vector is the same for all agents, i.e. wy = w; Vi € P.

Proof. A multicommodity flow problem solution has a unique set of dual prices (Ahuja et al.,
1993). This homogeneity occurs because the dual price is a lower bound threshold for each
individual, and the highest value price is the one kept. This can be illustrated with two agents A
and B sharing a link a. Suppose agent A would leave link a if the dual price was w,. This means
any value of w > w, would incentivize agent A to leave link a. Now suppose agent B has a dual
price of wg > w4. Any common prior price wy, < w, < wg would not be fixed, because agent B
would perturb up towards wg while agent A would be indifferent, until the common prior and
final prices become fixed at w, = wpg, and both agent A and B share the same wg. m
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Proposition 2. The unique inverse optimal parameters to Eq. (14) to Eq. (19) can be reached by
starting with an initial guess at w} = 0 and then following a basic iterative update of wi*! :=

1 n
mZieP w;.

Proof. Since w} = 0 represents the lower boundary, in each iteration n the updated average of

wg would always be increasing due to the lower threshold condition explained in the Proposition

. . : 1
1 proof. This means a basic iterative update of letting wit*? := Pl

increasing. Therefore, it is guaranteed to reach the unique solution. m

Y.iep Wt is monotonically

The algorithm is explicitly shown here.

Algorithm 2: Iterative algorithm to solve Eq. (14) to Eq. (19)
0. Given an initial common prior wg (e.g. previous update), and n = 1.
1. For each agent i € P, solve an inverse shortest path problem with augmented link costs in
Eq. (13), w" = ¢71 (s, w3, x7).

n+1 _ 1

2. Update common prior: wy '~ = IPIZiEP wl'. Set n =n+1 and go to step 1 if wi*t! =

wg.

Proposition 3. The unique inverse optimal parameters to Eq. (14) to Eq. (19) can be reached in
polynomial time using the basic iterative update from Proposition 2.

Proof. Each run of the agent IO problem is an LP which is polynomial time solvable. The
number of iterations of the iterative update is finite. This can be shown in a worst case scenario;
suppose out of |P| agents, |P| — 1 of them all exhibit dual price of 0 for a particular link while
one agent i has a dual price of w; > 0. In this case, in each iteration all the |P| — 1 agents would
keep setting the w’s to 0 and agent i’s to w;. This means in the worst case the average will

always be increasing by I‘%il as a finite step size until the optimum is reached. m

These properties of the methodology signify the effectiveness of using agent observations to
learn network parameters. We illustrate the methodology for two iterations. Consider three link
flows observed in the network in Fig. 3, x = {100,200,100}. We can assume there are three
groups of homogeneous agents, agent group 1 choosing link 1, agent group 2 choosing link 2,
and agent group 3 choosing link 3. Each agent group seeks a dual price to explain their link
choice, resulting in nine values of w (for each agent and each link), and three values of wy,.

C1=3

C3=6

Fig. 3. Toy network used for illustrating methodology.
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The algorithm is initiated by setting w} = {0,0,0}. An inverse shortest path problem is run
for each agent. For agent group 1, wi = {0,0,0} because they are already traveling on the
shortest path with dual prices at zero. For agent group 2 to choose link 2, a value of wy = {1,0,0}
is needed. Lastly for agent group 3 to choose link 3, a value of wa = {3,2,0} is needed. At the
end of this iteration, the weighted average of the three agents is taken as the new prior: wé =
{200+300 200

400 400’
{5 1 2 (31 2 . 3 _
L O},w2 = {E’E’ 0}, and w$ ={3,2,0}. These would lead to a new prior w§ =
{(125+300+300) 50+100+200,0} = {2,1,0}. By inspection we can see that the dual prices will
400 400 16’8
approach w§ = w; = w; = wj = {3,2,0}.

O} = {Z,%,O}. If this is advanced a second iteration, we would get w? =

)

3.3 Online learning

Suppose we have a system that receives agent routes as they are revealed in real time. The
multi-agent 10 model works in that setting without having to estimate population level
parameters. It is assumed that each time a traveler updates their route decision, that information
is sent to a system that learns from the observation to update link capacity dual prices. This
information can then be used to monitor how system changes are affecting traveler decisions in
real time. We augment Algorithm 2 to this setting as Algorithm 3.

Algorithm 3: online learning algorithm to update system
0. Given: an initial common prior (obtained from a system) wy.
1. For newly arrived agent i € P, solve an inverse shortest path problem with augmented
link costs in Eq. (13), wi*t = ¢~1(g;, wé, x).

2. Update common prior: witt = w/*t,

4 Numerical experiments

Four experiments are conducted. The first is performed on a small network to evaluate the
proposed method without capacity effects. The second and third tests are conducted on the
Nguyen-Dupuis network with capacity effects. We perform a parameter recovery test to see
whether hidden dual prices can be recovered using the methodology. We also verify that the
method can be applied in an online multi-agent learning setting. In the fourth test, the online
learning is demonstrated using real data from a freeway network in Queens, New York City, and
Google Maps real-time shortest path queries over a 3-hour period. All the data sets generated for
these tests are publicly accessible on https://github.com/BUILTNYU/Network-learning-via-
multi-agent-inverse-transportation-problems.

4.1 Verification of method to estimate heterogeneous link cost parameters
4.1.1 Experiment I design

This experiment has two primary objectives. The first is to illustrate the capability of the
proposed method to capture heterogeneity of users’ preferences at one network level (/ink costs)
even when observations are made at another level (route choice). This objective is achieved by
using a simple network with enumerated paths, and simulated link costs that vary across the
population. These link cost variations reflect different traffic and environmental conditions (e.g.
weather and road surface conditions) present during each user’s trip, while observable route
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choices may be obtained from GPS, phone, or transit smart card data (to varying degrees). Link
cost heterogeneity is reflected in distributions of the link costs across the population.

The second objective is to demonstrate how the proposed method can better handle
structural changes in the underlying network. This is accomplished by applying the estimated
models on a scenario where one of the links is removed.

To give the results more context, we estimate two discrete choice models: an aggregate
multinomial logit model for route choice, and a mixed multinomial logit model that allows
distributions in the path cost taste parameter. In total, the following scenarios shown in Table 2
are evaluated. Parameter estimation is run for the first six scenarios.

Table 2. Scenarios evaluated in Experiment 1

No. Scenario Model

1 Baseline, independent links Multinomial logit

2 Mixed multinomial logit

3 Shortest path problems calibrated with Algorithm 1
4 Baseline, correlated links Multinomial logit

5 Mixed multinomial logit

6 Shortest path problems calibrated with Algorithm 1
7 Link 3 removed, independent links = Multinomial logit

8 Shortest path problems calibrated with Algorithm 1
9 Link 3 removed, correlated links Multinomial logit

10 Shortest path problems calibrated with Algorithm 1

4.1.2 Experiment 1 data

Consider a network as shown in Fig. 4 with five links identified in blue, where there are 500
agents traveling from node 1 to node 4. For the independent links scenario, the perceived link
costs of the 500 agents are randomly simulated resulting in mean link costs of ¢ =
(0.49,0.50,0.50,0.48,0.49) and standard deviations of o, = (0.29,0.28,0.29,0.29,0.28). The
data is available on the GitHub site noted in Section 4 as Test Set 1. There are only three paths in
their choice set represented by the following link sequences: (1,4), (2,5),(1,3,5), where their
average path costs are 0.97, 0.99, and 1.48, respectively. Based on the simulated perceived costs
and assumption that the travelers choose shortest routes, 48% choose (1,4), 48% choose (2,5),
and 4% choose (1,3,5).

Fig. 4. Test network for Section 4.1 experiment with node (in black) and link IDs (in blue).

For the network scenario with correlated link costs, link 3 and link 5 are simulated to have
positive correlation of 0.35. The simulated average link costs across the population of 500 agents
are ¢ =(1.72,2.03,0.71,1.48,1.10), while the standard deviations are o, =
(0.40,0.41,0.23,0.42,0.31). The average path costs in this correlated network are 3.20, 3.13, and
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3.53, corresponding to paths 1, 2, and 3. The data are available on the GitHub site noted in
Section 4 as Test Set 2. Based on the simulated perceived costs and same assumption as above,
43% choose (1,4), 48% choose (2,5), and 9% choose (1,3,5).

For the proposed method, an initial common prior of ¢, = 0.5 is assumed for all links.
Algorithm 1 is employed to obtain an estimate of link costs for each of the 500 agents such that
their posterior mean values are within a tolerance of 0.001 of the prior values. Since there are
three routes, there are only two degrees of freedom for link costs to vary, so we do not expect
estimated distributions to reflect more than two alternative options.

For the aggregate multinomial and mixed logit models, the utility functions are based on
route costs to be consistent with the route choices. This is by design to contrast the outcomes of
the proposed method. For the logit models, the average path costs are assumed to be known as
the explanatory path cost variable X; for each alternative j. U; = B;X; + ¢; is an aggregate utility
function that is dependent only on the same average path cost variables for everyone. X, is set to
be the utility of path 2 (2,5) relative to path 1 (1,4): X, = ¢, + ¢s — ¢; — ¢4, while X5 is the
utility of path 3 (1,3,5) relative to path 1: X3 = c3 + ¢5 — ¢4. In the mixed logit, f; is normally
distributed.

4.1.3 Results: Heterogeneity?

We first estimate the parameters for the independent and correlated networks using the
proposed method. Algorithm 1 is employed with the convergence shown in Fig. 5 for the
independent network. Based on a tolerance of 0.001, the algorithm terminated after 22 iterations
for the independent network data set and 19 iterations for the correlated network data set.
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Fig. 5. Convergence of algorithm 1 on test network for the independent link costs scenario.

The results confirm our hypothesis. Fig. 6 illustrates how the multi-agent inverse
optimization outputs a distribution of link costs across the population based on observation of
their route choices and the reliance on the normative route choice behavior in the inverse
transportation problem. The values are {0.489, 0.498,0.009, (0.490, 0.493), (0.481, 0.484)} on
the independent network corresponding to links 1 to 5, and
{(1.689,1.693), (2.061,2.065),0.371,1.476,1.104} on the correlated network. The link costs
end up being homogeneous for the first three links in the independent network (latter three links
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in the correlated network), and are split over two different values for the remaining two links (the
first two links in the correlated network). This reflects how even a network with only two
degrees of freedom in information can lead to an estimation of heterogeneous link costs.
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Fig. 6. Output distribution of posterior link costs across the population of 500 simulated agents for link 1
(top) to link 5 (bottom), for (a) independent link network and (b) correlated link network.

In summary, the tests in these scenarios verify that the multi-agent inverse transportation
problems can estimate heterogeneous link costs based only on observed route choices regardless
of whether the links are independent or correlated. By comparison, the study by Hong et al.
(2017) looks at route level attributes only, and Chow and Recker (2012) stick to same-level link
observations and link costs in activity routing.

For context, the route choices are modeled using multinomial and mixed logit models in R
using the average route costs as the explanatory variables. The estimated multinomial logit
models have log-likelihood values of —417.24 for the independent network and —469.47 for the
correlated network. The McFadden R”2 values are 0.240 and 0.145, respectively. For the mixed
logit model, a sampling of 100 simulated draws is used to obtain the results. Using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, the algorithm converges to an estimate after 4
iterations. For the mixed logit model, LL = —417.23 and p? = 0.240 for the network with
independent link costs. For the correlated network, the LL=—469.47 and p? = 0.145. The
estimated coefficients are shown in Table 3.

Since the two networks do not have the same link cost distributions, a direct comparison of
the results is not expected. However, the results clarify the value of the multi-agent inverse
transportation problems when interpreted alongside one another.

e While the proposed method endogenously obtained the average link costs, the statistical
models required prior information about the average path costs in order to be estimated.

e The statistical models clearly do not provide estimates of link-level parameters, much less
link-level heterogeneity.

e The estimated results suggest that the standard deviations of the mixed logit models (and
hence the distribution assumption for taste variation in path costs) for both the independent
and correlated networks are statistically insignificant (t-stats of 0.0081 and 0.0029,
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respectively). Despite there being path level variation in perceived costs, it is difficult to
capture this heterogeneity using the mixed logit model for this example.

e The proposed method correctly fits each individual’s route choice to obtain 100% fit to the
data of 48% for path 1, 48% for path 2, and 4% for path 3. On the other hand, the estimated
shares from MNL are 50.2% for path 1, 45.7% for path 2, and 4.1% for path 3. Similarly, in
the correlated network, the observed shares are 43% for path 1, 47.8% for path 2, and 9.2%
for path 3, while estimated shares from MNL are 38.8%, 51.3%, and 9.9%.

Table 3. Estimated parameters and significance tests for multinomial and mixed multinomial logit model
Multinomial Logit, independent network

Variable Estimate Standard error t-statistic
X —4.93040 | 0.44997 \ —10.957%**
Mixed Logit, independent network
Variable Estimate Standard error t-statistic
X —4.93848 2.08812 —2.3650*
sd. X 0.18917 23.22305 0.0081
Multinomial Logit, correlated link network
Variable Estimate Standard error t-statistic
X —4.05413 0.38268 —10.594%**
Mixed Logit, correlated link network
Variable Estimate Standard error t-statistic
X —4.054811 \ 0.656032 \ —6.1808*
sd. X 0.070375 \ 24.292289 \ 0.0029

Signif. codes: 0 “****0.001 “***0.01 “** 0.05 > 0.1 “” 1

4.1.4 Results: what happens when a link breaks down and the network changes?

To illustrate the method’s ability to evaluate significant structural changes in the network,
we consider a scenario where one of the links fail. Scenarios 7 to 10 deal with closing link 3 for
both the independent and correlated networks. Under the new scenarios, the estimated models
are applied to validate their accuracy in terms of total route shares. When link 3 is closed, the
alternative path 3 no longer exists, and there are only two routes choices left. Under these
scenarios, the simulated observed routes show that 50% of the travelers take path 1 in the
independent network, while 47.6% take path 1 in the correlated network.

The shortest path assignment using the link costs estimated with the multi-agent inverse
optimization indicate with 100% fit the optimality of the observed choices. For context, the
statistical models show some error as reported in Table 4. Since the mixed logit estimation was a
poor fit with statistically insignificant standard deviations, that model is not applied in these
scenarios.

Table 4. Estimated shares (MNL) vs. actual shares of route choices when link 3 is closed (scenarios 7 — 10)
Multinomial Logit, independent network

Alternatives Estimated Shares Actual Shares Error

Path 1 0.524 0.5 0.024

Path 2 0.476 0.5 0.024
Multinomial Logit, correlated link network

Alternatives Estimated Shares Actual Shares Error

Path 1 0.431 0.476 0.045

Path 2 0.569 0.524 0.045
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4.2 Link capacity dual price estimation parameter recovery test
4.2.1 Experiment 2 design and data inputs

In the second and third experiments, the Nguyen-Dupuis (1984) network shown in Fig. 7 is
used. In the second experiment, the goal is to conduct a parameter recovery test. Based on
Proposition 1, the dual prices are unique and homogeneous across the population of agents. It
should therefore be possible to assume link capacities on the network, solve a multicommodity
flow problem to simulate the “observed” flows, and then apply Algorithm 2 to recover the dual
prices.

The standard demand and link cost parameters from the Nguyen-Dupuis network is
assumed: 400 travelers for OD (1,2), 600 travelers for OD (4,2), 800 travelers for OD (1,3),
and 200 travelers for OD (4,3). By design, the paths in the Nguyen-Dupuis network can be
easily enumerated. These are sorted by length and shown in Table 5 with the corresponding path
IDs. Initial capacities of 400 at link 1 and 800 at link 7 are assumed to simulate the observed
flows.

For simulating the path sampling, each of the paths is randomly drawn with probability
equal to the percent flow on that path from the solution to the multicommodity flow problem. A
summary of 100 sampled paths is provided in Fig. 8, and the data set is fully accessible on the
GitHub site as Test Set 3. Although the multicommodity flow problem may require an integer
solution, in this case an LP-relaxed solution is obtained revealing dual prices of w; = 7 and
ws = 5.

The solution of the flow assignment under the hidden link capacities is used to represent the
simulated observation, as shown in Fig. 1. The use of paths is dictated by ascending order of
costs. For example, if an agent for OD (1,2) chooses to take path 2, it is because the dual price of
path 1 has an effective value of 4 or more.

Fig. 7. Nguyen-Dupuis (1984) network.

Table 5. Enumerated paths for each of the four OD pairs, sorted by length in ascending order
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OD Pair Path  Node sequence Link sequence Length |OD Pair Path Node sequence Link sequence Length
(1,2) 1 1-5-6-7-8-2 (1)-(5)-(7)-(9)-(11) 29((1,3) 14 1-5-6-7-11-3  (1)-(5)-(7)-(10)-(16) 32
2 1-5-6-7-11-2 (1)-(5)-(7)-(20)-(15) 33 15 1-5-6-10-11-3  (1)-(5)-(8)-(14)-(16) 37
3 1-5-6-10-11-2  (1)-(5)-(8)-(14)-(15) 38 16 1-5-9-10-11-3  (1)-(6)-(12)-(14)-(16) 40
4 1-5-9-10-11-2  (1)-(6)-(12)-(14)-(15) 41 17 1-5-9-13-3 (2)-(6)-(13)-(19) 36
5 1-12-6-7-8-2 (2)-(17)-(7)-(9)-(12) 35 18 1-12-6-7-11-3  (2)-(17)-(7)-(10)-(16) 38
6 1-12-6-7-11-2  (2)-(17)-(7)-(10)-(15) 39 19 1-12-6-10-11-3  (2)-(17)-(8)-(14)-(16) 43
7 1-12-6-10-11-2  (2)-(17)-(8)-(14)-(15) 44
8 1-12-8-2 (2)-(18)-(11) 32
(4,2) 9 4-5-6-7-8-2 (3)-(5)-(7)-(9)-(11) 31{(4,3) 20 4-5-6-7-11-3  (3)-(5)-(7)-(10)-(16) 34
10 4-5-6-7-11-2 (3)-(5)-(7)-(20)-(15) 35 21 4-5-6-10-11-3  (3)-(5)-(8)-(14)-(16) 39
11 4-5-6-10-11-2  (3)-(5)-(8)-(14)-(15) 40 22 4-5-9-10-11-3  (3)-(6)-(12)-(14)-(16) 42
12 4-5-9-10-11-2  (3)-(6)-(12)-(14)-(15) 43 23 4-5-9-13-3 (3)-(6)-(13)-(19) 38
13 4-9-10-11-2 (4)-(12)-(14)-(25) 37 24 4-9-10-11-3 (4)-(12)-(14)-(16) 36
25 4-9-13-3 (4)-(13)-(29) 32
35
30
25
o)
S 20
g 15
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5
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8 9 17 18 19 25
Path ID

Fig. 8. Histogram of simulated route observations in Experiment 2.

Based on this observation, we assume there are six distinct agent groups, where all members
of the group are homogeneous since no additional information is available in this experiment.
Assuming that we know there are capacities at link 1 and link 7 but their values are unknown, the
inverse shortest path problem ¢~1(g,,wd, x;) is illustrated below for an agent (path 8 in Table
5) going from node 1 to node 2 from a prior of w} = [0,0]. The y values are the dual variables of
the original shortest path problem. Because the shortest path constraints are equality constraints,
the dual prices here are unbounded.

min¢~! =efy + fi4 + e’y + fi
S.t.

V1 +ys <7 +wy, —efy + fih
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4.2.2 Results

Y1+ Y12 <9
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We run Algorithm 2 to seek the corresponding dual prices that led to this flow observation.

The convergence of the link capacity dual prices is shown in Fig. 9.

Dual price
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e | ink1Price (iter) === |ink7Price (iter)

Fig. 9. Convergence of dual prices using Algorithm 2.
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This test indicates that it is indeed possible to use the proposed method to update network
parameters that influence the agents’ route choices. In addition, all the agents end up with the
same dual price values as the priors. This test shows how our proposed method can use
individual agent learning to infer the value of shared system resources.

4.3 Verification of method in an online multi-agent learning environment
4.3.1 Experiment 3 design and data inputs

In the third experiment, we wish to verify the applicability of the proposed method as a
network monitoring tool. It is assumed that data is received in real time from one agent at a time.
After each agent observation, an update is conducted to learn of any changes in the dual prices in
the network.

The experiment is designed as follows. We change link 7 from a capacity of 800 to a
capacity of 500 and once again solve the capacitated assignment problem. In this state, the dual
prices are found to be w;* = 7 and w;* = 6. Next, we randomly draw observations from the two
states: the first 100 sequential samples are drawn from observations under the initial 800 capacity
state, followed by 100 sequential samples under the 500 capacity state representing the capacity
drop in link 7, and finally another 100 sequential samples under the 800 capacity state
representing a return to initial state. The data is summarized in Fig. 10 and accessible on GitHub
as Test Set 4. The time of each arrival is assumed to be constantly distributed to be one unit of
time.

40" _ TR0 e 0T 20l HHO NS | 80| Wit e 00 | &
LeL08 08 8. e s s 008 s 000 8e T g ey LeLe.0, 00ke,

300 Sample Draws

Fig. 10. Trajectory of simulated routes observed in Experiment 3 with regime changes marked by blue
vertical lines.

Fig. 10 shows there are key paths that directly affect the dual prices when they are observed.
For example, path 13 only appears when the system is operating under the 500 capacity regime,
while path 18 only appears in the 800 capacity regime. We test to see if the methodology, when
operated in an online learning environment, is sensitive to these regime changes.
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4.3.1 Results

The online updating approach in Algorithm 3 is employed. Each update uses the posterior of
the previous update as its prior. We get the following trajectory of the posterior dual prices
shown in Fig. 11 as an example of how the monitoring occurs over 300 sequential observations.

The result shows that the proposed method is indeed sensitive to regime changes in this
example, even as there is a learning period after each state change. The learning rate depends on
the likelihood of the right observation that comes along to reveal the need for a change. For
example, the change to 500 capacity state does not impact the monitoring of the dual price
immediately. It is not until a new route observation of path 13, indicating a detour in route
because of the decreased capacity, does the dual price shift. As a result, the sampling rate is
important. The routes are also important. In this case, the monitoring system is able to detect a
shift back and forth because the 500 capacity state leads to a different set of routes than the 800
capacity state. If the routes remain the same, no change may be detected.

8
7
6
S5
&4
S
a3 800 capacity 500 capacity 800 capacity
2 state state state
1
0
0 50 100 150 200 250 300

Online agent arrivals

link 1 link 7

Fig. 11. Dual price trajectories based on 300 simulated agent arrivals operating in three separate states.

As designed, the monitoring system does not currently allow the dual prices to deflate to
zero. If, for example, a link that was initially operating at capacity but is now no longer at
capacity, the system would not be able to detect a lack of detour flows. One possible solution is
to build in a time value component, so that sampled data will also include their inter-arrival
times. Longer periods of time of inactivity would result in discounting of the dual prices back to
zero. However, this would require proper calibration based on demand densities and sampling
rates. We will look into this issue in future research.

4.4 Hllustration of online network learning using real data from Queens, New York
4.4.1. Data and experimental design

In this final experiment, we illustrate network learning using a real data example. A highway
network from Queens in New York City is shown in Fig. 12 overlaid upon a Google Maps
image. The link free flow travel times (“FF time”) are presented in Table 6. The network is
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designed to have two entries/exits for each of the four cardinal directions. On June 5, 2017, we
queried a series of shortest paths from Google Maps API based on Google’s real-time travel
times. The queried data, along with the network information and network learning code, are all
located in the GitHub site. The following steps are taken to obtain this data.
1. Initiate with dual prices equal to zero for all links in the Queens freeway network.
2. Starting at 6:30AM, and every 5 minutes thereafter until 9:30AM,
a. Randomly choose one cardinal direction as the origin and one as the destination.
b. Sample the four real-time shortest paths for each of the possible entry/exit pairs.
For example, if origin is North and destination is South, there are four shortest
paths: N1-S1, N1-S2, N2-S1, N2-S2.
c. Keep the one that is shortest among these as the simulated observation.
d. Run Algorithm 3 to update the link dual prices based on the observation.

As congestion occurs in the network, the effects of the capacity on shifting routes should be
recognized by the network learning algorithm. The dual prices should reflect links that become
more congested with binding capacity effects that result in route diversions. The magnitudes of
the dual prices should give a relative measure of the insufficient capacity in the link with respect
to other links. We take snapshots of the shortest paths found in Google Maps (where congested
links are typically red to black in color) so that qualitative comparisons can be made, as a
comprehensive quantitative comparison is not possible with these latent variables.

Fig. 12. Queens freeway network.
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Table 6. Link attributes for the Queens freeway network.

Link id start node end node FF time (s) Link id start node end node FF time (s)
1 w1 1 211 21 9 \ 7 233
2 1 Wl 211 22 7 9 233
3 1 2 77 23 9 \ 2 99
4 2 77 24 2 9 99
5 2 3 133 25 1 \ 8 95
6 3 2 133 26 8 1 95
7 3 N1 39 27 8 \ S1 180
8 N1 3 39 28 S1 8 180
9 3 113 29 9 | S1 180
10 4 3 113 30 S1 9 180
11 4 N2 50 31 8 \ 9 36
12 N2 4 50 32 9 36
13 4 5 228 33 w2 \ 178
14 5 4 228 34 w2 178
15 5 El 54 35 \ 5 60
16 El 5 54 36 6 60
17 7 5 109 37 \ S2 101
18 5 7 109 38 S2 6 101
19 7 4 206 39 6 \ E2 57
20 4 7 206 40 E2 6 57

4.4.2. Queens freeway network experimental results

Fig. 15 shows the trajectory of the link dual prices (the ones that became binding) as they
evolve from one new sample update to the next. The figure illustrates the sensitivity of the
method to changes in the network parameters over time, despite being based on only 37
randomly sampled individual route choices. We provide a snapshot of the dual prices for the
links as they change every half hour throughout the 3-hour study period as shown in Fig. 14. For
comparison, we include Fig. 15 to show screenshots of the Google Maps real-time shortest paths
found at the same times as the dual price snapshots. The screenshots provide a qualitative
validation by indicating the presence of congestion that occurs at similar segments and similar

time frames.
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Fig. 13. Trajectories of link dual prices as estimated using Algorithm 3 for Queens freeway network over a 3-
hour period.
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heavier arrows.
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A number of conclusions are drawn from this illustrative experiment.
[ ]

Network system attributes like link dual prices can be updated using only samples of
individual route observations, without need to estimate total link or path flows. This
demonstrates the significance of this methodology in being able to cheaply monitor a
transportation network’s system performance over time.

The changes show that the inference model is indeed sensitive to changes in the system. As
traffic increases from 6:30AM to 9:30AM in the study period resulting in more spillbacks
and incidents impacting link capacities, the set of dual prices steadily increases on average as
shown in Fig. 13.

The accuracy of the inference cannot be established quantitatively. However, a visual
comparison between Fig. 14 and Fig. 15 indicate similarities in positive dual prices where
congestion occurs. For example, the 7:00AM screenshot shows that the segment between
nodes 4 and 5 is highly congested, and that is interpreted correctly in Fig. 14. The 7:30AM
screenshot reveals the alternative path traversing the link between nodes 8 and S1 is
congested, which is captured correctly in the inference model. The 8:30AM screenshot
indicates congestion between nodes 5 and 7, which is also captured by the model. This delay
lingers through 9:30AM, and is properly captured as well by the inference model.
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Fig. 15. Screenshots of Google Maps real-time shortest path input data at corresponding half-hour intervals
that reveal congested segments.
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5 Conclusion

In this study, we derived a new class of inverse optimization models such that shared
network resources can be quantified from agent observations. This class is fundamentally
different from the classic inverse optimization model, which requires more statistically
inefficient estimation of aggregate system parameters like population link or path flows. The
proposed multi-agent inverse optimization model class captures heterogeneity in agents using
shared system resources, and also infers such system parameters as link capacity dual prices all
without having to estimate population flows. This contribution makes it possible to cheaply
apply 10 techniques to many data-driven transportation problems in which observations are
obtained from only samples of selfish agents or in an online learning setting.

To elaborate, we formalize a multi-agent inverse optimization modeling approach using a
fixed point common prior to capture heterogeneity, relate that approach to link capacity dual
prices through decomposition properties, and propose three algorithms to support these models.
We further prove that the method can obtain unique dual prices for a network shared by the agent
population in polynomial time (depending on LP algorithm used). The methodology is tested in
four experiments:

1) For a path-enumerated 4-node network, we verify that the methodology can indeed obtain
heterogeneous estimates of link cost parameters, even when there is not enough structural
information for meaningful interpretation with a purely descriptive method like a mixed logit
model.

2) For the Nguyen-Dupuis network, we conduct a parameter recovery test to verify that the
proposed method works in inferring shared system resources through agent information. This
test illustrates how much easier it is to infer impacts of link capacities than to try and
estimate them directly as Giiler and Hamacher (2010) tried to do as an NP-hard problem.

3) We construct an online learning example to demonstrate how the method can work in this
setting. Link 7 in the network is set to experience a capacity drop before returning to its
original state to mimic an incident. The results show that the online learning is able to pick
up on that drop through an increase in the dual price observed from updated sequences of
agent route choices.

4) The online learning is further illustrated using real data from a freeway network in Queens,
New York, based on sampled real-time Google Maps shortest path queries. Through these
queries, we are able to estimate the link capacity interactions with the travelers under
congestion, and monitor this evolution over a three-hour period.

This work differs from other data-driven methods in the literature. Learning is made through
the use of a normative behavioral mechanism so that online monitoring and strategic planning
scenario evaluation are possible. The research also has implications for automated systems and
artificially intelligent networks in the context of autonomous fleets (Guo et al., 2017) and smart
cities. By structuring the learning in the same environment as the design and operation, it makes
it easier in future research to design integrated learning and optimization strategies in networks.
For example, some recent research is looking at ways to optimize resources to sense and learn
from a network (e.g. Ryzhov and Powell, 2011). A next step in this evolution will be to operate a
system that jointly considers resource allocation to optimally serve users and learn from them.
Multi-agent 10 is one way to approach such a problem.
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Other extensions of this research include: conducting studies using multiple sensor sources
(e.g. loop detectors, video cameras, taxi GPS data) and integrating the multi-agent 1O approach;
considering Bayesian techniques like Markov chain Monte Carlo methods for online learning
through sampling (Tebaldi and West, 1998); and designing more sophisticated online learning
systems that incorporate time value of observations and deterioration rate of dual prices. For
example, a new observation that shows dual price is 5 instead of 0 can have different meanings if
the observation arrives 1 minute later versus 1 hour later. This temporal component needs to be
studied. Other aspects of real applications also need to be considered: data can be noisy (e.g.
perceived link capacity dual price for agents may differ) and may require stochastic assignment
consideration (Ashok and Ben-Akiva, 2002), only fragments of actual paths may be available
(e.g. transit fare smart card data), or travelers may choose to stay at home. Aggregation methods,
while discussed in Chow and Djavadian (2015), can be further expanded upon in this generalized
route inference setting.
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