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a b s t r a c t 

Prior studies conclude that climate plays one of the most important roles in driving variations in resi- 

dential electricity consumption. While some past studies have quantified sensitivities of electricity use to 

ambient temperature, 1) few previous studies utilize both high temporal and spatial resolution electricity 

data, and 2) no research to our knowledge has investigated how the temporal and spatial resolution of 

electricity data, and choice of ambient temperature indicators, affects quantification of these sensitivities. 

In this study, we use smart meter data records of electricity use for 1245 households across California, 

along with hourly ambient temperature records, to compute electricity–temperature sensitivities using a 

segmented linear regression approach. We find that electricity use and temperature show the strongest 

relationships when computed using daily accumulated electricity use and daily average temperatures; 

using these metrics results in a mean electricity–temperature sensitivity of 0.11 kW °C −1 . This value is 

higher than corresponding sensitivities computed using spatially aggregated data, with values ranging 

from 0.097–0.10 kW °C −1 depending on the amount of spatial aggregation. Through presenting probabil- 

ity density functions of household-level electricity–temperature sensitivities, we illustrate insights that 

can be gleaned using high resolution electricity datasets such as that used here. We note that values of 

electricity–temperature sensitivity reported here are representative of the 1245 households under inves- 

tigation. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

The United States (US) residential sector accounts for about 37%

of total US electricity consumption—more than any other end-use

sector—making it a target for energy efficiency and power grid re-

liability interventions in recent years [1] . Household electricity de-

mand increased by 16.5% [2] between 2001 and 2015 in the US

and is projected to increase by 8% and 11% between 2015 and 2040

with and without the Clean Power Plan, respectively [3] . Much of

this increase is expected to come from increases in space cool-

ing demand. In 2016, space cooling and heating together was the

largest end use of electricity, representing nearly 18% and 7% of

US residential sector electricity demand [4,5] , respectively. Demand

for cooling is expected to increase by 11% between 2015 and 2040

in the US, outpacing the average projected rate of increase (8%)

in total electricity consumption [3] . Although these increases are

significant, nearly 90% of US homes already have air-conditioning

(AC), which is very high compared to other regions of the world.
∗ Corresponding authors. 
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xploding global demand for AC, combined with increasing urban-

zation, is expected to bring cooling to billions of people in the

oming decades, which poses large questions regarding the impact

hat these new electricity demands will have on global energy de-

and and greenhouse gas emissions [6,7] . 

Although a large number of factors impact residential electric-

ty consumption, climate has been shown to play one of the most

mportant roles in driving variations in residential electricity con-

umption [5,8–11] . Because of the diverse nature of the residen-

ial sector, analyzing the sensitivity of electricity demand to ambi-

nt temperature across the residential sector presents unique chal-

enges compared to other sectors [12,13] . Households tend to have

arger spatiotemporal variations in electricity consumption com-

ared to other sectors, driving more uncertainty in prediction [14] ,

resumably due to factors such as highly variable housing stock

haracteristics, appliances and other energy consuming device se-

ections, occupant behavioral patterns, heating and cooling sources,

nergy prices, demographic factors, and other socio-economic indi-

ators, which can vary significantly across regions [15–19] . Thus, to

aximize our understanding of factors affecting residential sector

lectricity use, energy-climate sensitivity should be derived using

ata at the household level so that variability across residences can

e observed and analyzed. 

https://doi.org/10.1016/j.enbuild.2018.09.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
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Coarse data resolution has been a limiting factor in the major-

ty of prior research endeavors in this field. Although there are a

ew studies that have used high resolution data, past studies typi-

ally rely on daily, monthly or annual electricity consumption data

hat might be insufficient for resolving the relationship between

limate and electricity consumption [8] . Additionally, most studies

tilize relatively coarse climatic data to represent relatively broad

patial extents, often ranging from megacity- to country-wide in

cale [12,20,21] . These spatial scales are not sufficient for building

 highly resolved understanding of climate-driven variations in en-

rgy consumption behavior. Using datasets that have coarse spatial

nd/or temporal resolution can average out important insights and

ause loss of valuable information, especially for studies address-

ng the residential sector. Confounding analysis of the residential

ector is the fact that residential homes have greater daily and sea-

onal variations in electricity use than other sectors, distinguishing

he residential sector as the most difficult to analyze due to high

mounts of variability and uncertainty [12–14,19,22,23] . Relying on

emporally aggregated data, in particular, diminishes the ability to

ain insight on electricity consumption patterns, which can lead to

ncertainties in quantifying electricity–temperature relationships. 

lthough this issue has been partially addressed by several re-

ent studies using either high temporal resolution data (e.g. hourly

r sub-hourly) [10,24–28] or high spatial resolution data (e.g. at

uilding level) [24,29,30] , knowledge gaps still exist. 

Our main insights based on a survey of existing literature in

his field (detailed below in Section 2 ) are that previous stud-

es: 1) use datasets that vary widely in spatiotemporal resolu-

ion, spanning hourly to yearly resolution, across various spatial

egions of interest; 2) rarely utilize electricity datasets that are

oth highly temporally and spatially resolved, and 3) utilize dif-

erent types of electricity and temperature indicators to determine

lectricity–temperature sensitivities (e.g. hourly temperature, daily

verage temperature, daily minimum or maximum temperature,

ooling degree days ( CDD ) or heating degree days ( HDD ), monthly

verage temperature, and some other derived indicators). 

Despite these large methodological differences, no research

o the authors’ knowledge has investigated how electricity–

emperature sensitivities vary according to the spatiotemporal res-

lution of electricity and climate data or choice in temperature

ndicators. While it is straightforward to assume that increasing

ata resolution is valuable to establishing refined and robust func-

ional relationships between residential electricity usage and cli-

ate parameters, these increases in data resolution can cause large

ncreases in the computational resource requirements of analysis,

o gaining insight into these tradeoffs offer merit. Thus, research

uestions addressed in this study are as follows: 

1) How does the spatiotemporal resolution of selected datasets

affect the calculated relationship between residential elec-

tricity consumption and climatic parameters, i.e., ambient

temperature? 

2) How does the choice of temperature indicators affect the

calculated relationship between residential electricity and

ambient temperature? 

Understanding and quantifying the functional relationships be-

ween residential electricity consumption and climatic parameters

s crucial to developing effective energy conservation, peak energy

anagement, and climate adaptation strategies, as well as inform-

ng meaningful and cost-effective power capacity investments in

he future. Establishing robust electricity–temperature sensitivities

s particularly important for future studies attempting to under-

tand the role that phenomena such as climate change and the ur-

an heat island effect might have on the power sector. 
. Literature review 

Previous studies conclude that climate plays one of the most

mportant roles in driving variability in residential electricity con-

umption [5,8–11] . In an effort to improve estimates of electricity–

emperature relationships (hereafter referred to as “electricity–

emperature sensitivity”), we conducted a survey of existing lit-

rature on this topic. Table 1 summarizes 24 publications in the

iterature analyzing climate-related influences on electricity con-

umption. These studies come from somewhat disparate fields

ncluding grid-scale electricity demand forecasting [10,31–35] ,

uilding-level energy use modeling [24,29] , and assessing the

mpact of climate change on electricity consumption [22,25,27–

0,33,36–40] . The studies investigate regions in more than 40

ountries and differ significantly according to research scope and

bjectives, data availability, researcher preferences on data metrics,

nd spatio-temporal resolution. Major modeling and data selection

onsiderations across these studies are discussed in the sections

elow and resulting research objectives to be explored are then

dentified. 

.1. Models and observations 

Studies have used different methods to quantify energy-climate

elationships, including statistical techniques (e.g., regression) that

elate energy use and climate indicators, and physics-based build-

ng energy modeling [41] . Statistical analyses offer advantages over

ther methods that rely on model-simulated data since they gen-

rally make use of real historical energy use and climate data. Re-

ression models describe the relationship between a dependent

ariable, usually electricity consumption, and a temporally aligned

ndependent variable, such as ambient temperature. Other climatic

arameters such as humidity, wind speed, and solar insolation,

ave also been used as independent variables in multivariable re-

ression analyses. Twenty out of 24 studies summarized in Table 1 ,

epresenting the vast majority of analyses in this space, use re-

ression methods. Within these 20 studies, 13 applied linear re-

ression models [22,26,27,31,33–36,38,40,42–44] , four applied non-

inear regression models [24,30,45,46] , and three applied a mixture

f linear and non-linear models [28,29,47] . 

.2. Electricity data metrics and resolution 

Studies utilizing real-world electricity data have used a vari-

ty of metrics or indicators to characterize electricity use based

n source datasets with widely varying spatiotemporal resolutions.

hile most studies surveyed use hourly, daily, monthly, season-

lly, or yearly accumulated electricity usage data [22,25–32,34–

6,38,43–45,47] , six use peak electricity demand (i.e. electricity

oad during time periods of highest demand and electricity prices)

28,33,36,40,42,43] , and one uses mean electric current intensity

Amperes) [10] . Ideally, the electricity indices utilized in a partic-

lar research study should reflect the research questions under

nvestigation. For example, electricity usage data are most suit-

ble for predicting future energy use trends and patterns (e.g. as

 result of climate change or urban heat islands) [10,22,25,27,29–

1,35,38,44,46,47] , while peak electricity demand data are valuable

or informing grid reliability [28,33,36,40,42,43] . 

The underlying resolution of these datasets is also an impor-

ant driver of the accuracy in computed energy use-climate re-

ationships [4 8,4 9] . Coarse spatial resolution has been a major

imitation across the majority of prior research endeavors in this

eld. Past studies rely on electricity data at the sub-city [10] , city

25,44,45,47,50] , county [26,36] , state [22,28,33,34,38,40] , regional

46] , or country levels [27,31,32,35,42,43] since house-level data

ave been less commonly available. However, these spatial scales
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Table 1 

Literature review of studies that investigate the influence of climate on electricity consumption. 

Number Model type Temperature 

indicator 

Stationary 

point tem- 

perature 

Form of 

electricity data 

Data temporal 

resolution 

Data spatial 

resolution 

Derived electricity–

temperature 

sensitivity 

Region Time 

period 

Citation 

1 Tobit model 

(quadratic to 

CDD ) 

CDD 18.3 °C Air 

conditioning 

electricity load 

Three min 

interval a 

hourly b 

Household 

(metered only 

at air 

conditioner) 

Not reported Pittsburgh 2010 (Horowitz, 

Mauch, and 

Sowell 

2014) [24] 

2 Recurrent 

neural 

network 

Humidex index 

(derived from 

temperature 

and humidity) 

N/A Mean electric 

current 

intensity 

Hourly a , b Sub-city (a 

district in 

Italy) 

Not reported Italy 20 02–20 03 (Beccali et al. 

2008) [10] 

3 Time-series 

econometric 

model 

Hourly 

temperature 

N/A Hourly 

electricity 

demand 

Hourly a , b City 0.3–0.5% per 1% 

temperature 

increase 

Singapore 2003–2012 (Doshi et al. 

2012) [25] 

4 Linear 

regression 

Hourly 

temperature 

18 °C Hourly 

electricity 

demand 

Hourly a , b Grid scale 

(similar to 

county) 

6% °C −1 Sacramento 

County 

(California) 

08–08–

2012 (one 

day) 

(Pomerantz 

et al. 2015) [26] 

5 Single-variable 

linear 

regression 

CDH c 24 °C Hourly 

electricity 

demand 

Hourly a , b Country Mean hourly 

demand: 

2.4 −3.5% °C −1 peak 

hourly demand: 

2.8 −4.2% °C −1 

Thailand 2004 (Parkpoom 

and Harrison 

2008) [27] 

6 Cubic 

regression for 

daily demand 

and linear 

regression for 

hourly peak 

demand 

Average daily 

temperature & 

maximum 

hourly 

temperature 

N/A Daily 

electricity 

demand and 

hourly peak 

electricity 

demand 

Hourly a Daily b 

& monthly b 
State Annual demand: 

1.4 −4.4% °C −1 d 

daily peak demand: 

1.7 −5% °C −1 d 

California 20 04–20 05 (Franco and 

Sanstad 

2008) [28] 

7 Non-linear 

regression 

(formulas not 

specified) 

Daily average 

temperature 

and CDD / HDD 

22 °C Daily energy 

demand 

Hourly a daily b City Summer daily 

demand: 0.6% °C −1 

d 

Greece 1993–2001 

(Giannakopoulos 

and Psiloglou 

2006) [45] 

8 Multivariable 

linear 

regression 

(also a semi- 

parametric 

function) 

Daily average 

temperature 

21 °C Daily average 

or peak 

demand 

Hourly a daily b County Hourly load: 

1.6% °C −1 d Daily 

peak demand 

1.9% °C −1 d 

USA 2006–2014 (Auffhammer, 

Baylis, and 

Hausman 

2017) [36] 

9 Multivariable 

non-linear 

regression 

(cubic) 

Daily max 

temperature 

N/A Daily peak 

demand 

Daily a , b Regional Daily peak 

demand: 2.3% °C −1 

d 

Canada 1991–1995 (Colombo, 

Etkin, and 

Karney 

1999) [46] 

10 Linear 

regression 

Daily max 

temperature 

(only data 

points above 

25 °C are used) 

N/A Daily peak 

demand 

Hourly a daily b State August peak 

demand: 

5.6 −7% °C −1 d 

California 1960–1990 (Sathaye et al. 

2013) [33] 

11 Multivariable 

linear 

regression 

CDD & HDD 18 °C Daily 

electricity 

demand 

Daily a , b Country Not reported Spain 1983–1999 (Pardo, Meneu, 

and Valor 

2002) [35] 

12 Linear 

regression 

Temperature 

at 8:00 and 

14:00 

N/A Summer 

peak-hour 

electricity load 

Daily a , b Country Daily peak 

demand: 

2.6 −2.7% °C −1 d 

Israel 1987–1988 (Segal et al. 

1992) [42] 

13 Linear 

regression 

Daily average 

temperature 

N/A Daily energy 

demand 

Daily a , b Country Daily average 

demand: 0.5% °C −1 

Netherlands 1970–1999 (Hekkenberg 

et al. 

2009) [43] 

14 Multivariable 

linear 

regression 

CDD & HDD 18.5 °C Monthly 

electricity 

demand 

Hourly a Daily b 

and monthly b 
Country Daily demand: 

1.1 −1.9% °C −1 d 

Greece 1993–2002 (Mirasgedis 

et al. 

2006) [31] 

15 Using both 

linear 

regression and 

physical 

models 

CDD & HDD Building 

specific 

(but only 

average is 

reported) 

Monthly 

energy 

demand for 

commercial 

buildings 

Monthly a , b Buildings 

sampled in 

101 cities 

14% °C −1 d USA 1989 (Belzer, Scott, 

and Sands 

1996) [29] 

16 log-linear 

specification 

model 

Number of 

days per year 

that the mean 

daily 

temperature 

falls in each 

temperature 

bin (every 5 ̊F) 

N/A Monthly 

electricity 

demand of 

households 

Monthly a , b Household 9 −13% °C −1 d California 20 03–20 06 

(Aroonruengsawat 

and 

Auffhammer 

2011) [30] 

( continued on next page ) 
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Table 1 ( continued ) 

Number Model type Temperature 

indicator 

Stationary 

point tem- 

perature 

Form of 

electricity data 

Data temporal 

resolution 

Data spatial 

resolution 

Derived electricity–

temperature 

sensitivity 

Region Time 

period 

Citation 

17 Multivariable 

linear 

regression 

CDD Not 

specified 

Monthly 

electricity 

demand 

Monthly a , b City Monthly demand: 

7.49% °C −1 

Bangkok, 

Thailand 

20 02–20 06 

(Wangpattarapong 

et al. 

2008) [44] 

18 Both quadratic 

and linear 

regression 

Monthly 

average 

temperature 

N/A Monthly 

electricity 

demand 

Monthly a , b City domestic: 8.9% °C −1 

commercial: 

3.0% °C −1 

industrial: 

2.0% °C −1 

Hong Kong 1990–2004 (Fung et al. 

2006) [47] 

19 Multivariable 

linear 

regression 

CDD & HDD 18 °C Summer Peak 

electricity 

demand 

Daily a 

Monthly b 
State Not reported California 1970–2005 (Lebassi et al. 

2010) [40] 

20 Time series 

multivariable 

linear 

regression 

CDD & HDD 

(population 

weighted) 

State 

specific 

Monthly 

electricity 

demand 

Monthly a , b State 2.54% °C −1 d USA 2008–2012 (Huang and 

Gurney 

2016) [22] 

21 Multivariable 

linear 

regression 

CDD & HDD 53 ̊F-71 ̊F 

(different 

across fuels 

and 

sectors) 

Monthly 

electricity 

demand 

Monthly a , b State residential: 

0.1% °F −1 

commercial: 

0.04% °F −1 

Maryland 1977–2001 (Ruth and Lin 

2006) [38] 

22 Multivariable 

linear 

regression 

Monthly 

average 

temperature 

Region 

specific 

Monthly 

electricity 

demand 

Monthly a , b State Summer monthly: 

5.97–32.2 kWh per 

capita °C −1 month −1 

8 states in USA 1984–1993 (Sailor and 

Muñoz 

1997) [34] 

23 Panel analysis 

models 

Average 

seasonal 

temperature 

N/A Monthly 

energy 

demand 

(including 

electricity) 

Monthly a 

Seasonally b 

and yearly b 

Country Not reported 31 countries 

around the 

world 

1978–20 0 0 (Bigano, 

Bosello, and 

Marano 

2006) [32] 

24 Not specified Annual 

average 

temperature 

N/A Grid load at a 

specific time 

Not 

specified a , b 
City 1. Peak demand: Different cities 

in US 

1986 (Akbari 

1992) [50] 

FL: 6% °C −1 

AL: 3% °C −1 

West TX: 6% °C −1 

NM: 3% °C −1 

AZ: 1% °C −1 

Southern CA: 

3% °C −1 

Northern CA: 

1.5% °C −1 

2. Annual usage: 

FL: 3% °C −1 

AL: 1.5% °C −1 

West TX: 3% °C −1 

NM: 0.5% °C −1 

AZ: 6% °C −1 

Southern CA: 

1.5% °C −1 

Northern CA: 

0.5% °C −1 

Note: 
a Source data resolution 
b Processed data resolution 

c CDH : Cooling Degree Hours, defined by the cited literature as: “a short–term version of CDD described by: 
N ∑ 

h =1 

( T h − T b ) f or T ≥ T b and 0 otherwise , where N is the number 

of hours in the period of interest, T is the air temperature, and T b is the cooling base temperature, commonly taken to be 24 °C in Thailand.”
d Value is calculated from percentage or absolute change in electricity consumption under different climate change scenarios versus a baseline period. 

a  

c  

c  

c

 

a  

e  

a  

i

2  

l  

s  

d  

p

3  

d

 

t  

o  

s  

d  

i  
re not sufficient for building a highly resolved understanding of

limate-driven variations in energy consumption behavior, espe-

ially for regions with large climatic variations, such as those adja-

ent to mountains and coasts like the Los Angeles basin. 

The temporal resolution of datasets also varied consider-

bly across the surveyed studies. For source data resolution,

ight of the 24 studies use monthly aggregated electricity us-

ge [22,29,30,32,34,38,44,47] , five use daily aggregated electric-

ty usage [35,37,40,42,46] , nine use hourly electricity data [10,25–

8,31,33,36,45] , one uses sub-hourly meter data at the appliance

evel instead of the entire household [24] , and one study does not
pecify data resolution [50] . The majority of studies have source

ata and processed data of the same resolution, but eight utilize

rocessed data at a coarser resolution than source data [24,28,31–

3,36,40,45] , meaning that the researchers chose to aggregate their

atasets prior to analysis. 

Although a few studies address the importance of high resolu-

ion data [36,4 8,4 9] , typically no justification is provided on why

ne resolution is chosen over other possible resolutions. It is as-

umed that temporal resolution reflects the availability of source

ata in most cases. Most studies rely on data being shared by util-

ty companies or grid operators, so resolution is constrained by
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Fig. 1. Map showing locations of the 1245 residential electricity customers (shown 

as number of households per zip code) and 145 CIMIS weather stations considered 

in this study. Each household was linked to a weather station based on shortest 

distance. 

3

 

h  

i  

h  

e  

S  

h  

e  

v  

c  

t  

c  

f  

t  

o  

c  

e  

r  

h  

t  

t  

o  

a

 

5  

c  

s  

v

 

g  

I  

1  

s  

A  

w  

t  

s

the data provided to researchers [10,25–28,31,33,35–37,42,44–47] .

Relatively low temporal resolution data (e.g. monthly or yearly av-

erages) have traditionally been most easily acquired from techni-

cal reports or bills [29,30] ; while the widespread dissemination of

smart electricity meters has enabled the collection of hourly elec-

tricity data, few studies have had access to these data for analysis

[24] . 

2.3. Temperature data metrics 

Prior studies have used a variety of indicators for char-

acterizing climate. For example, recent studies have utilized

a range of temperature metrics, including Cooling/Heating De-

gree Days [22,24,27,29,31,35,38,40,44] , hourly temperature [25,26] ,

daily average temperature [28,36,43,45] , daily max temperature

[33,46] , monthly average temperature [34,47] , seasonal average

temperature [32] , histograms of daily temperature [30,50] , and

other indices derived from temperature data [10] . Of the lit-

erature surveyed in Table 1 , 10 out of 24 used CDD / HDD

[22,24,27,29,31,35,38,40,44,45] and six used daily average or max

temperature [28,33,36,43,45,46] , suggesting that daily tempera-

tures have been the most commonly utilized resolution in this

body of literature. 

2.4. Stationary point temperatures 

Studies utilizing CDD and HDD (see Section 3.2 and Eq. (2) for

more details on CDD / HDD ) as a temperature indicator need to

choose a pre-defined, fixed threshold temperature to calculate this

metric. The threshold (also sometimes called a “stationary point

temperature” or “base temperature”) refers to the temperature be-

low (above) which no cooling (heating) is needed (discussed in

more detail in Section 3.2 ). In past studies, 18 °C is the most com-

mon threshold temperature, chosen by five out of 13 studies that

use CDD and/or HDD [24,26,31,35,40] . 60 °F (15.6 °C), 21 °C, 22 °C,

and 24 °C are also used in past studies [27,36,38,45] . Three stud-

ies assign specific stationary point temperatures to different build-

ings or regions [22,29,34] . One study does not specify stationary

point temperature [44] . Several methods have been applied to set

a stationary point temperature, including: 1) choosing the temper-

ature threshold arbitrarily; 2) referencing a previous study in the

same or neighboring region; and 3) extracting it from a prelimi-

nary electricity–temperature plot. Only one study analyzes the im-

pact of setting a region-specific stationary point temperature using

a segmented regression model, but the study calculates this point

at the state level only [22] . 

3. Methods 

To address the research questions presented above, this study

utilizes a dataset representing the hourly electricity consumption

of 1245 households across California for a one-year period. We

also utilize data from a network of 145 weather stations to assess

hourly temperatures in locations adjacent to each home. A seg-

mented linear regression model is applied to assess the electricity–

temperature sensitivity of each household. The electricity data are

spatially and temporally aggregated in various ways (i.e. both be-

fore and after computing electricity–temperature sensitivity) to as-

sess how data resolution impacts electricity–temperature sensitiv-

ity. In addition, the dependence of chosen temperature indicators

on computed sensitivities is assessed. The dataset used here in-

cludes only residential homes and thus varies from many previous

studies using spatially aggregated datasets, which would also in-

clude commercial and industrial buildings. 
.1. Datasets 

Hourly smart meter data records of electricity usage at the

ousehold level from 1245 residential customers (after data clean-

ng and screening) across California were analyzed. These house-

olds reflect utility customers that voluntarily downloaded an

nergy-related smart phone app for tracking their electricity use.

ince this sample is likely biased towards energy-conscious house-

olds, this paper focuses on comparing methods for computing

nergy-temperature sensitivity but does not claim that computed

alues are representative of the general population of California

ities. Only zip code information for each household included in

he dataset was provided to protect customer privacy. Several pro-

edures for data cleaning and screening were carried out. First, to

ully capture the year-round relationship between residential elec-

ricity consumption and ambient temperature, only customers with

ne full year of electricity data (05/18/2015–05/17/2016) were in-

luded in the study. Second, households that could be identified as

nergy generators (e.g., with solar photovoltaic installations) were

emoved from the dataset to reduce the impacts of these house-

olds on load curves. We defined these generating households as

hose that had a negative value of electricity usage at any time;

hus, households whose onsite generation never exceeded their

wn energy use through the period of study would not be flagged

nd is a limitation of the study. 

The households included in the dataset spanned 41 counties,

49 zip codes, and 15 of 16 climate zones in California [51] . These

limate zones were established by the California Energy Commis-

ion (CEC) and specifically characterize building energy use under

arious climate characteristics [51] . 

Hourly ambient temperature data over the year under investi-

ation were retrieved from the California Irrigation Management

nformation System (CIMIS) [52] , which includes a network of over

45 automated weather stations in California covering most of the

tate’s population centers. Geospatial analysis was executed with

rcGIS (10.4.1, ESRI, Redlands, CA, USA) to map each household

ith an electricity record to its nearest weather station. Fig. 1 illus-

rates the number of homes per zip code and location of weather

tations of this study. 
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Fig. 2. Example of a home in Clovis, CA illustrating the stationary point temper- 

ature ( SPT ) and electricity–temperature sensitivity through a segmented linear re- 

gression method. 
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It is important to note that this dataset, which includes utility

ecords averaging 30 households per county and less than three

ouseholds per zip code, is not statistically representative of the

opulation from a spatial perspective. Accordingly, the objective

f this study is not to define the effects of climate on electricity

cross regional boundaries (i.e. city, county, climate zone); rather,

he goal is to assess the influence of spatiotemporal electric-

ty data resolution and climate indicators on derived electricity–

emperature sensitivity (see research questions in the Introduc-

ion). 

.2. Statistical models 

The nonlinearity of relationships between building energy con-

umption and ambient temperature has been established in previ-

us studies [28,34,45–47] . Nonlinear regression models (i.e. poly-

omial functions) have been developed that can achieve a good

t among variables. However, sophisticated models may have is-

ues with overfitting and can thus fail to generalize trends under

nvestigation and are also not applicable to other regions [53] . To

ddress the nonlinear relationship between electricity use and am-

ient temperature in residential homes, while avoiding overfitting,

 segmented linear regression model proposed by [54] will be uti-

ized in this analysis. 

The segmented linear regression reveals two important pieces

f information. The first is the stationary point temperature ( SPT) ,

hich sits at the stationary point of the piece-wise linear func-

ion and can be thought of as analogous to the base tempera-

ure in the CDD method. In other words, stationary point temper-

ture is the temperature at which household electricity consump-

ion reaches a minimum, with the assumption that no cooling or

eating is needed at this temperature. In the segmented regres-

ion model, the stationary point is calculated iteratively to deter-

ine the best overall piece-wise linear fit of the original dataset.

he second is the slope of the linear regression to the right of the

tationary point temperature (referred to in this analysis as the

electricity–temperature sensitivity”), representing the change in

lectricity consumption that corresponds to a change in ambient

emperature of one degree Celsius. Electricity–temperature sensi-

ivity can be affected by factors like house size, insulation, behav-

or, etc., since these factors also affect air-conditioning use. 

Fig. 2 shows an example segmented regression for a home

n Clovis, California. Daily aggregated electricity usage is plotted
gainst daily average temperature, and stationary point tempera-

ure and electricity–temperature sensitivity are illustrated. The plot

n Fig. 2 is thus divided into two regimes: (1) strong positive sen-

itivity between electricity use and temperature to the right of the

tationary point temperature, and (2) electricity use that is rela-

ively insensitive to temperature change to the left of the station-

ry point temperature. In California, cooling energy demand from

ir conditioning is driven by electricity while heating is mainly

upported by natural gas [55] , which is why there is not a strong

ncrease in electricity use as temperatures decrease below the sta-

ionary point. For the same reason, only one stationary point is

dentified in the segmented model, whereas in some regions there

ight be two (e.g., in the case of Israel described in [56] ). 

To address research question 1, stationary point temperature

nd electricity–temperature sensitivity are computed for different

patial aggregation levels using a segmented regression defined as:

E s , t 

t 
= 

{
α1 + β1 × T s , t ± ε1 , T s , t < SP T s,t 
α2 + β2 × T s , t ± ε2 , T s , t ≥ SP T s,t 

(1) 

here E s,t is a vector of residential electricity consumption over

 period of time t (vertical axis in Fig. 2 ). 
E s , t 

t is expressed in

nits of electric power (kW). T s,t is a vector of near-surface am-

ient temperatures (in the units of °C) over the same period of

ime (horizontal axis in Fig. 2 ). The first row of Eq. (1) describes

he relationship between 

E s , t 
t and T s,t for T s , t < SPT s, t . The second

ow of Eq. (1) describes the relationship between 

E s , t 
t and T s,t for

 s , t ≥ SPT s, t . The electricity–temperature sensitivity, S s,t , is defined

s the slope of the regression line above the SPT (i.e., β2 ), with

nits of kW °C 

−1 . SPT is calculated by iteratively locating the inter-

ection of the two linear regions to maximize the model’s overall

oefficients of determination ( r 2 ). Thus, in Eq. (1) , E s,t and T s,t are

nputs to the segmented regression and all other variables are out-

uts. (Note: α1 , α2 , and β1 are additional regression coefficients

nd ε is the error term.) 

The spatial and temporal aggregations of data represented in

ectors E s,t and T s,t, as well as scalars S s,t , and SPT s, t , are indicated

y subscripts s and t , respectively. Values of subscript s in this

tudy include household, city, county, and climate zone, and t can

e hourly or daily. For example, if s = household for T s,t , then T s,t 

orresponds to the observed temperature at the nearest weather

tation for that home, while if s = city, T s,t corresponds to the pop-

lation weighted spatial mean observed temperature for that city.

y “population”, we mean “number of homes”, so “population-

eighted spatial mean” means we take the average of tempera-

ure readings from multiple weather stations in the area, weighted

ccording to how many homes are assigned to each weather sta-

ion. (Note that we discuss various daily temperature metrics be-

ow when discussing research question 2.) 

For s = household (i.e. no spatial aggregation), segmented lin-

ar regression is conducted separately for each of 1245 homes us-

ng their hourly or daily aggregated electricity consumption (i.e.

epending on t ). The mean values of both stationary point tem-

eratures ( SPT s = household ,t ) and sensitivities ( S s = household ,t ) are com-

uted by taking the mean over all 1245 households of computed

tationary point temperatures and sensitivities. For s = city, county,

r climate zone, the segmented linear regressions are carried out

sing spatially averaged electricity consumption over spatial ex-

ent s, along with population-weighted temperature to mimic stud-

es using more spatially aggregated data to compute sensitivities.

he mean values S̄ s,t and SP T s,t are then computed by taking the

opulation-weighted average of all city, county, or climate zone

evel sensitivities and stationary point temperatures (i.e. depend-

ng on s ), respectively . For example, to compute S s = city ,t= daily , we

rst compute spatially aggregated electricity use for each city, and

hen the city level (hourly) electricity data is accumulated to daily
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Fig. 3. Probability density distributions of electricity–temperature sensitivities (a, b) and stationary point temperatures (c, d) of all 1245 homes in this study’s dataset. Red 

dashed lines indicate the mean values of all 1245 homes. Blue dashed lines indicate the median values of all 1245 homes (Note that in panel d, the blue dashed line partially 

overlaps the red dashed line.) Sensitivity in units of kW °C −1 can be converted to kWh day −1 °C −1 by multiplying by a factor of 24. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

h  

i  

o  

i  

a  

c  

b  

c  

l  

n  

g  

u  

t

4

4

 

t  

t  

t  

i  

a  

i  

t  

a  

g  

d  

m  

t

 

e  
resolution. For temperature, first the metric of choice (see the next

paragraph) is computed for each weather station (i.e. daily mini-

mum, average, or maximum), and then city population-weighted

averages are computed. Then, segmented linear regressions are ap-

plied using the averaged data per city to compute city-level sta-

tionary point temperatures and electricity–temperature sensitivi-

ties. Lastly, S s = city ,t= daily and SP T s,t are computed by taking the

mean of city-level values. 

To address research question 2, the relationship between res-

idential electricity use and various temperature indicators (i.e.,

hourly temperature, daily average temperature, daily maximum

temperature, daily minimum temperature, and CDD ) are explored.

To quantify the effect of utilizing different temperature indica-

tors on computed electricity–temperature sensitivities, we carry

out the segmented linear regression using hourly temperature (i.e.

t = hourly), daily maximum, daily minimum, and daily average

temperature (i.e. for t = daily). This comparison is carried out for

both a typical household in San Jose, and also for all households

(within our dataset) in the City of San Jose. We also compute sen-

sitivity using CDD assuming a uniform base temperature T b = 18 °C
for all homes. Since CDD calculations already include base temper-

atures, a standard linear regression model is applied rather than

the segmented regression; the slopes of these linear regressions

represent the electricity- CDD sensitivity. The coefficient of deter-

mination ( r 2 ) values of these regression models are compared to

assess the quality of fit. 

CDD is computed as: 

CDD = 

∫ 
day max 

[
0 , T s,t= hourly ( h ) − T b 

]
dh 

24 

(2)

T s,t = hourly (h) is the hourly ambient temperature for hour h ex-

pressed in °C and T b is the base temperature (i.e. 18.0 °C in this

study). The daily value of CDD can be obtained by integrating

T s,t = hourly (h) over each day as done in [57] . Physically, the base
emperature is the ambient temperature at which a building’s

eat loss and heat gain reaches an equilibrium, such that cool-

ng is not needed. The base temperature is often chosen based

n previous studies that focus on a similar geographical zone or

s set arbitrarily. Due to different climate zones, building char-

cteristics, and occupant behavior patterns, the base temperature

an vary significantly among spatial areas [22,34] . This issue has

een identified by several previous studies [10,22,29,34,38] in-

luded in Table 1 . In our study, CDD is calculated as the cumu-

ative degrees beyond 18.0 °C for each hour on a daily basis. We

ote that computing electricity- CDD sensitivities using linear re-

ression is analogous to that of electricity–temperature sensitives

sing segmented linear regression with a fixed stationary point

emperature. 

. Results 

.1. Sensitivity and stationary point temperature distribution 

One of the biggest advantages to using household level elec-

ricity consumption data to derive electricity–temperature rela-

ionships is that these data illustrate home-to-home variability in

erms of (a) the ambient temperatures at which homes start using

ncreased electricity (i.e. stationary point temperature), and (b) the

mount of additional electricity that homes use as temperatures

ncrease beyond the stationary point. Probability density distribu-

ions of electricity–temperature sensitivities (top row) and station-

ry point temperatures (bottom row) for all households investi-

ated here are plotted in Fig. 3 . Subplots a and c in this figure use

aily average temperature, while subplots b and d use daily maxi-

um temperature. Both distributions of sensitivities are skewed to

he right. 

The long tails of the probability density distributions of

lectricity–temperature sensitivities represent homes that have
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Fig. 4. Segmented linear regression applied to a single household (left column) and 

the average of households in our dataset ( n = 80) within the City of San Jose, Cali- 

fornia (right column) using various temperature indicators: hourly temperature (a, 

b), daily minimum temperature (c, d), daily average temperature (e, f), daily maxi- 

mum temperature (g, h), CDD18C including days with CDD18C = 0 (i, j), and CDD18C 

without days where CDD18C = 0 (k, l). SPT corresponds to Stationary Point Temper- 

ature and S corresponds to electricity–temperature sensitivity. In panel (i–l), Base 

Temp corresponds to the base temperature, which can be seen as a prescribed sta- 

tionary point temperature. 

u  

l  

u  

s  

t

arge increases in electricity consumption as temperatures increase

bove the stationary point ( Fig. 3 (a) and (b)). When daily max-

mum temperature is used in the segmented regression, 47% of

ouseholds in the dataset have a sensitivity less than 0.05 kW °C 

−1 ,

hile 24%, 24%, and 6% of households have a sensitivity value of

.05 to 0.1, 0.1 to 0.2, and over 0.2 kW °C 

−1 , respectively. For daily

verage temperature, 34% of households in the dataset have a sen-

itivity less than 0.05 kW °C 

−1 , while 19%, 32%, and 15% of house-

olds have a sensitivity value of 0.05 to 0.1, 0.1 to 0.2, and over

.2 kW °C 

−1 , respectively. Both temperature indicators have similar

istribution shapes, but daily average temperature leads to over-

ll higher sensitivity values than daily maximum temperature. In

ther words, daily electricity consumption at the household level

s generally more sensitive to daily average temperature than daily

aximum temperature. 

If daily maximum temperature is used, the stationary point

emperatures of the 1245 homes are distributed within a range

rom about 10–35 °C with a mean value of 23.1 ± 4.9 °C
73.6 ± 8.9 °F) ( Fig. 3 (d)). For daily average temperature, the dis-

ribution of stationary point temperatures is almost normal within

 range from about 5–25 °C and more concentrated to the mean

alue, which is 17.1 ± 3.9 °C (62.8 ± 7.0 °F) ( Fig. 3 (c)). It is inter-

sting that a small percentage of homes have negative or zero

ensitivity values in Fig. 3 (a) and (b). This can be attributed to

 lack of cooling devices in these homes, or on-site energy gen-

ration (e.g., solar photovoltaics). Also, a small number of homes

ave stationary point temperatures less than 10 °C in Fig. 3 (c)

nd (d), which appears anomalously low. One possible explana-

ion is differences between ambient and indoor air temperature

ue to solar heating; in this case, indoor temperatures may be

igher than ambient, causing inhabitants to turn on air condi-

ioners at lower ambient temperatures than expected. More in-

ormation about building design is needed to further explore

his possibility. Homes without cooling devices could also be the

ause, with lower than expected stationary point temperatures be-

ng identified for reasons other than increasing cooling energy

se. 

.2. Impact of temperature indicators on computed 

lectricity–temperature sensitivity 

The impact of using various temperature indicators on com-

uted electricity–temperature sensitivity is illustrated using (a)

lectricity data for a typical household in San Jose, and (b) av-

raged electricity consumption for all households for which we

ave data in San Jose ( Fig. 4 ). The city of San Jose is cho-

en because our dataset includes a relatively large number of

omes ( n = 80) compared to other cities. In Fig. 4 , the first row

hows hourly electricity consumption versus hourly temperature.

he other rows show daily accumulated electricity consumption

ersus daily minimum temperature, daily average temperature,

aily maximum temperature, and cooling degree days at 18 °C
 CDD18C ) both including and excluding days with CDD18C = 0.

Days with CDD18C = 0 occur when hourly temperatures remain

elow 18 °C.) 

The temperature indicator utilized significantly affects the co-

fficient of determination ( r 2 ) and the computed electricity–

emperature sensitivity. Overall, using hourly electricity and tem-

erature data shows weak coefficients of determination relative to

he daily metrics. Among the daily metrics (i.e. daily minimum, av-

rage, and maximum temperature), daily average temperature is

hown to lead to (a) the highest coefficients of determination for

oth the typical home and all homes in San Jose, and (b) highest

ensitivity. Daily maximum temperature and daily minimum tem-

erature lead to the second and third highest sensitivities among

he daily metrics. Linear regressions of daily aggregated electricity
se versus CDD18C (including days with CDD18C = 0) show simi-

ar sensitivity as daily average temperatures for both the individ-

al home and city of San Jose. The coefficient of determination and

ensitivity increases when days with CDD18C = 0 are removed from

he regression. 
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Table 2 

Electricity–temperature sensitivities and stationary point temperatures computed with various spatial aggregations using electricity consumption data for 1245 California 

households. 

Resolution of electricity use 

data, E s,t , used in the 

segmented regression analysis 

Mean value of 

electricity–temperature 

sensitivity S s,t= daily (kW °C −1 ) 

Standard deviation of 

electricity–temperature 

sensitivity (kW °C −1 ) 

Mean value of stationary point 

temperature SPT s,t= daily in °C 
( °F) 

Standard deviation of 

stationary point temperature in 

°C ( °F) 

Using daily maximum temperature 

s = household a 0.079 f 0.18 23.1 (73.6) 4.93 (8.87) 

s = city b 0.066 0.058 22.4 (72.3) 4.46 (8.03) 

s = county c 0.063 0.040 22.2 (71.9) 3.21 (5.78) 

s = climate zone d 0.063 0.036 22.3 (72.1) 3.30 (5.93) 

s = state e 0.064 N/A 22.1 (71.8) N/A 

Using daily average temperature 

s = household 0.11 g 0.10 17.1 (62.8) 3.86 (6.95) 

s = city 0.098 0.082 17.1 (62.8) 3.50 (6.30) 

s = county 0.098 0.058 17.2 (63.0) 2.08 (3.74) 

s = climate zone 0.097 0.040 17.2 (63.0) 2.64 (4.75) 

s = state 0.10 N/A 17.0 (62.6) N/A 

a Segmented regression was performed for each household, and then sensitivity and stationary points per home were averaged for all homes in California. 
b Electricity data were averaged by city, segmented regression was performed for each city, and then sensitivity and stationary points were population-weighted averaged 

for all cities. 
c Electricity data were averaged by county, segmented regression was performed for each county, and then sensitivity and stationary points were population-weighted 

averaged for all counties. 
d Electricity data were averaged by climate zone, segmented regression was performed for each climate zone, and then sensitivity and stationary points were population- 

weighted averaged for all climate zones. 
e Electricity data were averaged for entire state of California and then segmented regression was performed for state-averaged data 
f Equivalent to 10.5% change in electricity consumption °C −1 (% change means the relative change in electricity consumption per °C increase using the consumption at 

the stationary pointe temperature as a baseline). 
g Equivalent to 15.3% change in electricity consumption °C −1. 
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4.3. Impact of spatial aggregation on computed 

electricity–temperature sensitivity 

Mean values of stationary points ( SPT s,t= daily ) and sensitivities

( S s,t= daily ) for California derived using data with different spatial

aggregation levels (i.e. household, city, county, climate zone, and

state) are displayed in Table 2 . Sensitivity values are calculated

using both daily maximum temperature and daily average temper-

ature for comparison purposes. 

When daily maximum temperature is used, the mean value of

sensitivities calculated using household level electricity data (i.e.

no spatial aggregation) S s = household ,t= daily is 0.079 kW °C 

−1 , about

19% higher than computing sensitivities where s is spatially aggre-

gated to the city, county, climate zone or state-level, which range

from 0.063 to 0.0 6 6 kW °C 

−1 , depending on the level of spatial ag-

gregation ( Table 2 ). A similar phenomenon is also observed using

daily average temperature. The mean value of sensitivities com-

puted for the 1245 homes using household level electricity data is

0.11 kW °C 

−1 , higher than that using aggregated data, which ranges

from 0.097 to 0.10 kW °C 

−1 . 

The level of spatial aggregation affects electricity–temperature

sensitivity more than stationary point temperature (up to 19%

for sensitivity vs. 4% for stationary point temperature by us-

ing daily maximum temperature, and up to 6% vs. 1% by us-

ing daily average temperature). Using daily maximum tempera-

ture, the mean value of computed stationary point temperature

SPT s = household ,t= daily for all 1245 households is 23.1 °C (73.6 °F).

Using electricity data that are spatially aggregated, stationary

point temperatures SPT s = city / county / climate zone / state , t= daily are slightly

lower, ranging from 22.1 to 22.4 °C (71.8 to 72.3 °F). Using daily av-

erage temperature, the stationary point temperature is 17.0–17.2 °C
(62.6–63.0 °F), regardless of level of aggregation. 

5. Discussion 

5.1. Advantages of utilizing high spatiotemporal resolution data 

Using high spatiotemporal resolution electricity and climate

data to investigate the effects of climate variability on energy con-
umption offer advantages over using aggregated data. From a re-

earch perspective, having access to household-level data enables

he ability to investigate how data resolution influences computed

lectricity–temperature interactions. Table 2 indicates that com-

uted electricity–temperature sensitivity is dependent on the level

f spatial aggregation of the data used in the segmented linear re-

ressions. For example, our research suggests that computing the

lectricity–temperature sensitivity using household data and then

veraging all households in a state results in a different sensitiv-

ty value than computing the sensitivity using state-mean elec-

ricity data, as illustrated in Table 2 . In addition, using electricity

ata at the household level is ideal for most accurately calculating

lectricity–temperature sensitivities given that more representative

emperature data for each household can be used in the analysis.

his is especially important for cities like Los Angeles that have

trong spatial variability in climate. 

Two case studies are presented here to explicitly illustrate

ow different electricity–temperature sensitivities can arise using

ousehold level versus aggregated data (see Fig. 5 ). In Case I,

ousehold A (zip code 94583, San Ramon) has large daily non-

ooling loads (i.e. electricity use to the left of the stationary point)

nd a large sensitivity. Household B (zip code 90504, Torrance)

as relatively small daily non-cooling loads and a small corre-

ponding sensitivity. A smaller sensitivity value is calculated if we

ake the mean value of sensitivities computed per household (i.e.

 s = household ,t= daily ) compared to performing the segmented regres-

ions after aggregating the electricity consumption of two house-

olds (i.e. S s = city ,t= daily ). In the latter case, the average sensitiv-

ty will be weighted towards Household A because of its higher

lectricity use and thus S s = household ,t= daily > S s = city ,t= daily . In Case II,

ousehold C (zip code 92571, Perris) has overall high daily elec-

ricity use with relatively small sensitivity while Household D (zip

ode 92069, San Marcos) has small daily electricity consumption

ith relatively high sensitivity. In this case, a higher sensitiv-

ty value is calculated if we take the mean value of sensitivities

omputed per household compared to performing the segmented

egression after aggregating the electricity consumption of two

ouseholds ( S s = household ,t= daily < S s = city ,t= daily ). In either case, com-

uting the mean sensitivity after spatial aggregation will weight
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Fig. 5. Two case studies illustrating two households with different non-cooling electricity usages and sensitivities. In Case I (top row), Household A has higher daily electricity 

use and a larger electricity–temperature sensitivity value than Household B. In Case II (bottom row), Household C has a higher daily electricity use, but a smaller sensitivity 

than Household D. In either case, the average sensitivity for the two households, if calculated based on aggregated electricity use, will more heavily weight the larger 

electricity consumer. 
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Fig. 6. Histogram of time of day corresponding to peak energy for each household 

during summer (July, August, September). Peak hourly electricity use occurs in the 

late afternoon to early evening for the majority of households in this study. 
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ig electricity consumers more heavily, and give less weight to

maller consumers regardless of their sensitivity values. 

A second advantage to using high spatiotemporal resolution

ata is that they offer the ability to investigate the distribution

f energy use patterns among different households, which in this

tudy is reflected by stationary point temperatures and sensi-

ivities. Fig. 3 illustrates that households in this sample have a

ide distribution of sensitivities and stationary point tempera-

ures. Variability in sensitivities are likely a result of variations in

ccupant behavior patterns, building and HVAC system character-

stics, and climate zone. More information about building charac-

eristics at the household level is needed to further quantify the

elative importance of these causal factors of variability in sen-

itivity. We hypothesize that a large number of households show

mall sensitivity to ambient temperature change due to lack of air

onditioning equipment presumably concentrated in coastal loca-

ions, and possibly also due to homes with relatively low square

ootage and/or occupants that cannot afford air conditioning. These

ypotheses should be validated with additional datasets in fu-

ure analyses. Fig. 3 also illustrates that different households have

nique stationary point temperatures, which is an important dis-

inction between the method used in this study and previous stud-

es that assume fixed base temperatures that are not necessarily

omputed based on the dataset (e.g. CDD18C ). Spatial variations in

tationary point temperatures reflect building characteristics, occu-

ant behavior, and climate variability [22] . If aggregated electricity

ata are used, only one stationary point temperature for the entire

egion can be computed and used in regressions. 

.2. Roles of temperature indicators 

As indicated in Fig. 4 and Table 2 , electricity–temperature sen-

itivities are dependent on the temperature indicator used in the

egression. We suggest that the following considerations be used

o help decide which temperature indicator is of interest. 

First, electricity and temperature show the strongest relation-

hips when computed using data at daily temporal resolution. Re-

ressions between hourly household electricity consumption and

ourly temperature result in relatively low coefficients of determi-

ation ( r 2 ). This can be partially explained by the daily electricity
se patterns of residential homes, which can be heavily affected by

ousehold energy consumption behavior. For example, energy use

atterns in many cases will not directly follow hourly temperatures

ince occupants that go to work during normal business hours may

eak in their electricity usage in the evening when ambient tem-

eratures are not at their daily peak. There can also be a timing

ag between ambient outside temperature rise and its impact on

ndoor temperature (and thus, air conditioning usage). This reason-

ng can also be partially observed by Fig. 6 , which presents a his-

ogram of the hour of day at which summertime (defined as July,

ugust, September) peak electricity consumption occurs for each

ousehold. (In other words, the height of each bar represents the

otal number of households that have summertime peak electricity

onsumption at that time of day.) The hour of day corresponding

o peak electricty consumption per household represents the most

requently occurring daily peak time over the summertime period.

e observe in this study that the timing of most households’ peak
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electricity use does not correspond to daily peak ambient temper-

ature (usually during mid afternoon). By contrast, a large number

of households have peak energy use in the late afternoon through

early evening. Although we currently lack data to calculate how

much of this peak energy use is driven by air conditioners, it is

reasonable to assume that air conditioners are a major driver of

evening electricity consumption since a large fraction of occupants

are home from work during this period and might choose to cool

their homes for occupant comfort. 

Second, the choice of whether to use daily average or maxi-

mum temperature depends on the research questions under inves-

tigation. For example, most research analyses assessing the impacts

of climate change on electricity utilize daily average temperature,

since this indicator is what is estimated most commonly in global

climate modeling studies [22,28,29,32,37–40] . On the other hand,

daily maximum temperature is often used to predict future peak

electricity demand, which is driven instantaneously by extreme

heat during the day [28,33,46] . While it should be noted that total

electricity usage is dependent on many factors, in this study, daily

average temperature shows the best segmented linear relationship

with electricity use relative to other temperature indicators (i.e.

hourly, and daily minimum and maximum temperature). One of

the driving reasons for this trend is likely due to nature of temper-

ature fluctuations across differing climates, which can change the

need for cooling throughout the day. For example, while a coastal

home may experience similar daily average temperature (e.g. 30 °C)

with an inland home in a dry desert region, the diurnal tempera-

ture range that each home experiences can be vastly different (e.g.,

coastal daily temperature range: 28–32 °C vs inland: 20–40 °C). In

this example, the maximum daily (or minimum daily) temperature

is vastly different in each region, even when the daily average tem-

perature is the similar. While one might assume that total daily

electricity consumption might scale with maximum temperature,

the inland home would experience a great deal more nighttime

cooling than the coastal home; this nighttime cooling might atten-

uate the need for some daytime air-conditioning use since it ex-

periences pre-cooling. On the other hand, while the coastal home

might not be subjected to extreme maximum temperatures, it also

experiences less cooling relief during the evening in this example. 

Third, setting a uniform, pre-defined base temperature as is

done in the CDD calculation is not as good as computing house-

hold level stationary point temperatures. Using pre-defined base

temperatures can lead to inaccuracies in regressions when occu-

pant behaviors lead to the AC turning on at ambient temperatures

below the threshold. This effect can be observed in Fig. 4 (i) and

(j), illustrated by data points with CDD18C = 0. Including these zero

values affects the regression slope (i.e. sensitivity) relative to ex-

cluding the zeros (see Fig. 4 (k) and (l)). In addition, using CDD18C

as the indicator (with linear regression) leads to coefficients of de-

termination that are smaller than when using daily average tem-

perature (with segmented regression). Thus, using daily average

temperatures with segmented regression may be best for studies

that investigate sensitivities of daily electricity use (as opposed to

peak energy use) rather than CDD18C . 

5.3. Comparing computed electricity–temperature sensitivity to 

previous studies 

Using the dataset described in this study, the com-

puted electricity–temperature sensitivity S s = household ,t= daily is

0.079 kW °C 

−1 using daily maximum temperature and 0.11 kW °C 

−1 

using daily average temperature. However, previous studies com-

monly present electricity–temperature sensitivity in units of

percentage change in electricity consumption per °C increase

in ambient temperature (% °C 

−1 ). Thus, to be comparable with

sensitivity values from past studies, we also computed electricity–
emperature sensitivity in units of percentage change in electricity

onsumption per °C increase in ambient temperature (% °C 

−1 ).

hese sensitivities ( S s = household ,t= daily ) were 10.5% °C 

−1 using daily

aximum temperature and 15.3% °C 

−1 using daily average tem-

erature in this dataset. (All of these values are computed by

alculating the sensitivities in percent units for each household

nd then averaging over all households.) Among previous studies

urveyed, three report electricity–temperature sensitivity values

omputed using hourly or monthly average temperature data,

resented as 6% °C 

−1 [26] , 8.9% °C 

−1 [47] , and 9-13% °C 

−1 [30] ,

hich are similar in magnitude to those computed in this study. 

Calculating electricity–temperature sensitivity in units of

W °C 

−1 versus % °C 

−1 presents tradeoffs in terms of insights

ained. Sensitivities in units of kW °C 

−1 will be highest for house-

olds with high cooling loads regardless of the magnitude of non-

ooling loads, while reporting in units of % °C 

−1 is dependent on

he magnitude of cooling loads versus non-cooling loads. Thus, a

ousehold with small non-cooling loads would have a higher per-

entage increase in cooling load per unit temperature rise relative

o a household with high non-cooling loads, even if the cooling

oad increase in kW °C 

−1 are equal; yet, reporting the percent-

ge of cooling load increase is insightful for understanding trends

uch as the relative increases in electricity costs for different socio-

conomic populations. 

In addition to these considerations regarding selected units,

everal caveats of such comparisons in sensitivities between this

nd prior studies should be noted: 1) the sample size of this study

s not statistically representative of electricity users in the state

f California; and 2) electricity–temperature sensitivities can be

riven by numerous factors, e.g. occupant behavior patterns, cli-

ate zones, housing characteristics, etc. Neither this study nor pre-

ious studies have revealed enough detailed information to explain

hese differences in sensitivities, but will be the focus of future re-

earch. 

. Conclusion 

Despite a growing body of literature utilizing various types of

lectricity usage and temperature source data across a wide range

f spatiotemporal resolutions, no research to our knowledge has

ocused on assessing the impacts of data resolution and choice

f temperature metrics on computed functional relationships be-

ween electricity usage and ambient temperature. To address this,

e use hourly energy use records from 1245 customers across

alifornia along with corresponding hourly ambient temperature

ata to investigate the dependence of spatiotemporal data resolu-

ion and temperature metrics on computed electricity–temperature

ensitivities. Sensitivities are computed using a segmented linear

egression model. We use this regression model with input data

t various resolutions to emulate source data of spatial resolutions

ncluding household, city, county, and climate zone, and temporal

esolutions including hourly and daily. In addition, we compare the

mpacts on computed electricity–temperature sensitivity of using

ourly, daily minimum, daily mean, daily maximum, or cooling de-

ree days as temperature indicators in the regression model. 

Results indicate that the strongest relationships between elec-

ricity consumption and temperature, as indicated using the co-

fficients of determination, are computed when using data at

aily temporal resolution (i.e. daily accumulated electricity con-

umption and daily average temperature), even when compared

o those relationships computed using more resolved hourly elec-

ricity consumption and temperature data. This finding indicates

hat increasing the temporal resolution of electricity data to in-

rements smaller than daily do not translate to higher regression

odel performance. By contrast, increasing the spatial resolution

f electricity data improved the accuracy of computed electricity-
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emperature sensitivity (i.e., since ambient temperatures experi-

nced by the house can be more accurately determined), and elu-

idated new trends masked by using spatially aggregated data as

ell. 

The choice of temperature indicator can also impact the com-

uted electricity–temperature sensitivities and stationary point

emperature values. In this study, regression models utilizing daily

verage temperature offered higher coefficients of determination

han those using daily minimum temperature, daily maximum

emperature, or cooling degree days, thus showing the best seg-

ented linear relationship with electricity usage. Moreover, we

nd that computing a unique household level stationary point

emperature is superior to setting a uniform, pre-defined base tem-

erature as is done in standard CDD calculations. Having access to

ousehold level data enables the calculation of a household spe-

ific base temperature (assuming that base temperature is effec-

ively the equivalent of stationary point temperature), which can

nhance the accuracy of computed sensitivities. In addition, having

ousehold level electricity data allows for determining more repre-

entative temperatures for that household, which can improve the

ccuracy of computed sensitivities especially in places like the Los

ngeles Basin where temperature variations are significant. How-

ver, it should be noted that the choice of using daily average or

aximum temperature depends on the research questions under

nvestigation, and there are cases where daily average temperature

ight not be the indicator of choice. 

To summarize, the take-away points of this study are: 

• Sensitivities between residential electricity consumption and

ambient temperature are best computed using daily data, as

indicated using the coefficient of determination from a seg-

mented linear regression model. Daily data led to improved

regressions even when compared to hourly electricity con-

sumption and temperature data. Daily data refers to daily

accumulated electricity usage or daily average power con-

sumption. The choice of whether to use daily average ver-

sus maximum temperature depends on the research ques-

tion under investigation (see next bullet). 

• Daily average temperature is the best choice for explor-

ing general relationships between residential electricity con-

sumption and ambient temperature. While use of daily

average temperatures led to the highest coefficients of deter-

mination, use of daily maximum temperature can be more

appropriate for investigating certain research questions (e.g.

relationships between peak electricity use versus tempera-

ture). 

• Having access to household level data can enhance

the accuracy of computed sensitivities, and elucidate

new trends (e.g., household-to-household variations in

electricity–temperature sensitivity and stationary point tem- 

perature, which can be thought of as the ambient tempera-

ture at which the AC is turned on) masked by using spatially

aggregated data. 

For future research, a more statistically representative dataset

f electricity consumption records is needed for better quantifying

nd understanding the relationship between residential electricity

onsumption and climatic parameters, which is essential for inves-

igating effective energy conservation, peak energy management,

nd climate adaptation strategies. 
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