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ABSTRACT

Prior studies conclude that climate plays one of the most important roles in driving variations in resi-
dential electricity consumption. While some past studies have quantified sensitivities of electricity use to
ambient temperature, 1) few previous studies utilize both high temporal and spatial resolution electricity
data, and 2) no research to our knowledge has investigated how the temporal and spatial resolution of
electricity data, and choice of ambient temperature indicators, affects quantification of these sensitivities.
In this study, we use smart meter data records of electricity use for 1245 households across California,
along with hourly ambient temperature records, to compute electricity-temperature sensitivities using a
segmented linear regression approach. We find that electricity use and temperature show the strongest
relationships when computed using daily accumulated electricity use and daily average temperatures;
using these metrics results in a mean electricity-temperature sensitivity of 0.11 kW °C-!. This value is
higher than corresponding sensitivities computed using spatially aggregated data, with values ranging
from 0.097-0.10kW °C-! depending on the amount of spatial aggregation. Through presenting probabil-
ity density functions of household-level electricity-temperature sensitivities, we illustrate insights that
can be gleaned using high resolution electricity datasets such as that used here. We note that values of
electricity-temperature sensitivity reported here are representative of the 1245 households under inves-

tigation.

© 2018 Published by Elsevier B.V.

1. Introduction

The United States (US) residential sector accounts for about 37%
of total US electricity consumption—more than any other end-use
sector—making it a target for energy efficiency and power grid re-
liability interventions in recent years [1]. Household electricity de-
mand increased by 16.5% [2] between 2001 and 2015 in the US
and is projected to increase by 8% and 11% between 2015 and 2040
with and without the Clean Power Plan, respectively [3]. Much of
this increase is expected to come from increases in space cool-
ing demand. In 2016, space cooling and heating together was the
largest end use of electricity, representing nearly 18% and 7% of
US residential sector electricity demand [4,5], respectively. Demand
for cooling is expected to increase by 11% between 2015 and 2040
in the US, outpacing the average projected rate of increase (8%)
in total electricity consumption [3]. Although these increases are
significant, nearly 90% of US homes already have air-conditioning
(AC), which is very high compared to other regions of the world.
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Exploding global demand for AC, combined with increasing urban-
ization, is expected to bring cooling to billions of people in the
coming decades, which poses large questions regarding the impact
that these new electricity demands will have on global energy de-
mand and greenhouse gas emissions [6,7].

Although a large number of factors impact residential electric-
ity consumption, climate has been shown to play one of the most
important roles in driving variations in residential electricity con-
sumption [5,8-11]. Because of the diverse nature of the residen-
tial sector, analyzing the sensitivity of electricity demand to ambi-
ent temperature across the residential sector presents unique chal-
lenges compared to other sectors [12,13]. Households tend to have
larger spatiotemporal variations in electricity consumption com-
pared to other sectors, driving more uncertainty in prediction [14],
presumably due to factors such as highly variable housing stock
characteristics, appliances and other energy consuming device se-
lections, occupant behavioral patterns, heating and cooling sources,
energy prices, demographic factors, and other socio-economic indi-
cators, which can vary significantly across regions [15-19]. Thus, to
maximize our understanding of factors affecting residential sector
electricity use, energy-climate sensitivity should be derived using
data at the household level so that variability across residences can
be observed and analyzed.
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Coarse data resolution has been a limiting factor in the major-
ity of prior research endeavors in this field. Although there are a
few studies that have used high resolution data, past studies typi-
cally rely on daily, monthly or annual electricity consumption data
that might be insufficient for resolving the relationship between
climate and electricity consumption [8]. Additionally, most studies
utilize relatively coarse climatic data to represent relatively broad
spatial extents, often ranging from megacity- to country-wide in
scale [12,20,21]. These spatial scales are not sufficient for building
a highly resolved understanding of climate-driven variations in en-
ergy consumption behavior. Using datasets that have coarse spatial
and/or temporal resolution can average out important insights and
cause loss of valuable information, especially for studies address-
ing the residential sector. Confounding analysis of the residential
sector is the fact that residential homes have greater daily and sea-
sonal variations in electricity use than other sectors, distinguishing
the residential sector as the most difficult to analyze due to high
amounts of variability and uncertainty [12-14,19,22,23]. Relying on
temporally aggregated data, in particular, diminishes the ability to
gain insight on electricity consumption patterns, which can lead to
uncertainties in quantifying electricity-temperature relationships.
Although this issue has been partially addressed by several re-
cent studies using either high temporal resolution data (e.g. hourly
or sub-hourly) [10,24-28] or high spatial resolution data (e.g. at
building level) [24,29,30], knowledge gaps still exist.

Our main insights based on a survey of existing literature in
this field (detailed below in Section 2) are that previous stud-
ies: 1) use datasets that vary widely in spatiotemporal resolu-
tion, spanning hourly to yearly resolution, across various spatial
regions of interest; 2) rarely utilize electricity datasets that are
both highly temporally and spatially resolved, and 3) utilize dif-
ferent types of electricity and temperature indicators to determine
electricity-temperature sensitivities (e.g. hourly temperature, daily
average temperature, daily minimum or maximum temperature,
cooling degree days (CDD) or heating degree days (HDD), monthly
average temperature, and some other derived indicators).

Despite these large methodological differences, no research
to the authors’ knowledge has investigated how electricity-
temperature sensitivities vary according to the spatiotemporal res-
olution of electricity and climate data or choice in temperature
indicators. While it is straightforward to assume that increasing
data resolution is valuable to establishing refined and robust func-
tional relationships between residential electricity usage and cli-
mate parameters, these increases in data resolution can cause large
increases in the computational resource requirements of analysis,
so gaining insight into these tradeoffs offer merit. Thus, research
questions addressed in this study are as follows:

1) How does the spatiotemporal resolution of selected datasets
affect the calculated relationship between residential elec-
tricity consumption and climatic parameters, i.e.,, ambient
temperature?

2) How does the choice of temperature indicators affect the
calculated relationship between residential electricity and
ambient temperature?

Understanding and quantifying the functional relationships be-
tween residential electricity consumption and climatic parameters
is crucial to developing effective energy conservation, peak energy
management, and climate adaptation strategies, as well as inform-
ing meaningful and cost-effective power capacity investments in
the future. Establishing robust electricity-temperature sensitivities
is particularly important for future studies attempting to under-
stand the role that phenomena such as climate change and the ur-
ban heat island effect might have on the power sector.

2. Literature review

Previous studies conclude that climate plays one of the most
important roles in driving variability in residential electricity con-
sumption [5,8-11]. In an effort to improve estimates of electricity-
temperature relationships (hereafter referred to as “electricity—
temperature sensitivity”), we conducted a survey of existing lit-
erature on this topic. Table 1 summarizes 24 publications in the
literature analyzing climate-related influences on electricity con-
sumption. These studies come from somewhat disparate fields
including grid-scale electricity demand forecasting [10,31-35],
building-level energy use modeling [24,29], and assessing the
impact of climate change on electricity consumption [22,25,27-
30,33,36-40]. The studies investigate regions in more than 40
countries and differ significantly according to research scope and
objectives, data availability, researcher preferences on data metrics,
and spatio-temporal resolution. Major modeling and data selection
considerations across these studies are discussed in the sections
below and resulting research objectives to be explored are then
identified.

2.1. Models and observations

Studies have used different methods to quantify energy-climate
relationships, including statistical techniques (e.g., regression) that
relate energy use and climate indicators, and physics-based build-
ing energy modeling [41]. Statistical analyses offer advantages over
other methods that rely on model-simulated data since they gen-
erally make use of real historical energy use and climate data. Re-
gression models describe the relationship between a dependent
variable, usually electricity consumption, and a temporally aligned
independent variable, such as ambient temperature. Other climatic
parameters such as humidity, wind speed, and solar insolation,
have also been used as independent variables in multivariable re-
gression analyses. Twenty out of 24 studies summarized in Table 1,
representing the vast majority of analyses in this space, use re-
gression methods. Within these 20 studies, 13 applied linear re-
gression models [22,26,27,31,33-36,38,40,42-44], four applied non-
linear regression models [24,30,45,46], and three applied a mixture
of linear and non-linear models [28,29,47].

2.2. Electricity data metrics and resolution

Studies utilizing real-world electricity data have used a vari-
ety of metrics or indicators to characterize electricity use based
on source datasets with widely varying spatiotemporal resolutions.
While most studies surveyed use hourly, daily, monthly, season-
ally, or yearly accumulated electricity usage data [22,25-32,34-
36,38,43-45,47], six use peak electricity demand (i.e. electricity
load during time periods of highest demand and electricity prices)
[28,33,36,40,42,43], and one uses mean electric current intensity
(Amperes) [10]. Ideally, the electricity indices utilized in a partic-
ular research study should reflect the research questions under
investigation. For example, electricity usage data are most suit-
able for predicting future energy use trends and patterns (e.g. as
a result of climate change or urban heat islands) [10,22,25,27,29-
31,35,38,44,46,47], while peak electricity demand data are valuable
for informing grid reliability [28,33,36,40,42,43].

The underlying resolution of these datasets is also an impor-
tant driver of the accuracy in computed energy use-climate re-
lationships [48,49]. Coarse spatial resolution has been a major
limitation across the majority of prior research endeavors in this
field. Past studies rely on electricity data at the sub-city [10], city
[25,44,45,47,50], county [26,36], state [22,28,33,34,38,40], regional
[46], or country levels [27,31,32,35,42,43] since house-level data
have been less commonly available. However, these spatial scales
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Table 1
Literature review of studies that investigate the influence of climate on electricity consumption.
Number Model type Temperature  Stationary Form of Data temporal Data spatial Derived electricity— Region Time Citation
indicator point tem- electricity data resolution resolution temperature period
perature sensitivity

1 Tobit model CDD 18.3 °C Air Three min Household Not reported Pittsburgh 2010 (Horowitz,
(quadratic to conditioning  interval® (metered only Mauch, and
CDD) electricity load hourly® at air Sowell

conditioner) 2014)[24]

2 Recurrent Humidex index N/A Mean electric Hourly?®: Sub-city (a Not reported Italy 2002-2003 (Beccali et al.
neural (derived from current district in 2008)[10]
network temperature intensity Italy)

and humidity)

3 Time-series Hourly N/A Hourly Hourly?*" City 0.3-0.5% per 1% Singapore 2003-2012 (Doshi et al.
econometric  temperature electricity temperature 2012)[25]
model demand increase

4 Linear Hourly 18 °C Hourly Hourly?* Grid scale 6% °C! Sacramento 08-08- (Pomerantz
regression temperature electricity (similar to County 2012 (one et al. 2015)[26]

demand county) (California) day)

5 Single-variable CDH® 24 °C Hourly Hourly®:" Country Mean hourly Thailand 2004 (Parkpoom
linear electricity demand: and Harrison
regression demand 2.4-3.5% °C-1 peak 2008)[27]

hourly demand:
2.8-4.2% °C1

6 Cubic Average daily N/A Daily Hourly? Daily” State Annual demand: California 2004-2005 (Franco and
regression for temperature & electricity & monthly® 14-4.4% °oCc1 d Sanstad
daily demand maximum demand and daily peak demand: 2008)[28]
and linear hourly hourly peak 1.7-5% °Cc~1d
regression for temperature electricity
hourly peak demand
demand

7 Non-linear Daily average 22 °C Daily energy ~ Hourly? daily® City Summer daily Greece 1993-2001
regression temperature demand demand: 0.6% °C~! (Giannakopoulos
(formulas not and CDD/HDD d and Psiloglou
specified) 2006)[45]

8 Multivariable  Daily average 21 °C Daily average Hourly?® daily® County Hourly load: USA 2006-2014 (Auffhammer,
linear temperature or peak 1.6% °C~! ¢ Daily Baylis, and
regression demand peak demand Hausman
(also a semi- 1.9% oc-1 d 2017)[36]
parametric
function)

9 Multivariable  Daily max N/A Daily peak Daily?:" Regional Daily peak Canada 1991-1995 (Colombo,
non-linear temperature demand demand: 2.3% °C-! Etkin, and
regression d Karney
(cubic) 1999)[46]

10 Linear Daily max N/A Daily peak Hourly? daily’ State August peak California 1960-1990 (Sathaye et al.
regression temperature demand demand: 2013)[33]

(only data 5.6-7%0°C14d
points above
25¢°C are used)

1 Multivariable CDD & HDD 18°C Daily Daily®? Country Not reported Spain 1983-1999 (Pardo, Meneu,
linear electricity and Valor
regression demand 2002)[35]

12 Linear Temperature  N/A Summer Daily*? Country Daily peak Israel 1987-1988  (Segal et al.
regression at 8:00 and peak-hour demand: 1992)[42]

14:00 electricity load 2.6-2.7% °C-1d

13 Linear Daily average N/A Daily energy  Daily®" Country Daily average Netherlands 1970-1999 (Hekkenberg

regression temperature demand demand: 0.5% °C~! et al.
2009)[43]

14 Multivariable  CDD & HDD 18.5°C Monthly Hourly? Daily® Country Daily demand: Greece 1993-2002 (Mirasgedis
linear electricity and monthly” 11-1.9% °C-1 d et al.
regression demand 2006)(31]

15 Using both (DD & HDD  Building Monthly Monthly?:? Buildings 14% °C-1 4 USA 1989 (Belzer, Scott,
linear specific energy sampled in and Sands
regression and (but only  demand for 101 cities 1996)[29]
physical average is commercial
models reported)  buildings

16 log-linear Number of N/A Monthly Monthly?®-® Household 9-13% °C'd California 2003-2006
specification  days per year electricity (Aroonruengsawat
model that the mean demand of and

daily households Auffhammer
temperature 2011)[30]
falls in each

temperature

bin (every 5°F)

(continued on next page)
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Table 1 (continued)

Number Model type Temperature  Stationary Form of Data temporal Data spatial Derived electricity- Region Time Citation
indicator point tem- electricity data resolution resolution temperature period

perature sensitivity

17 Multivariable CDD Not Monthly Monthly®.® City Monthly demand:  Bangkok, 2002-2006
linear specified electricity 7.49% °C-1 Thailand (Wangpattarapong
regression demand et al.

2008)[44]

18 Both quadratic Monthly N/A Monthly Monthly? City domestic: 8.9% °C-! Hong Kong 1990-2004 (Fung et al.
and linear average electricity commercial: 2006)[47]
regression temperature demand 3.0% °C!

industrial:
2.0% °C-!

19 Multivariable CDD & HDD 18 °C Summer Peak Daily? State Not reported California 1970-2005 (Lebassi et al.
linear electricity Monthly” 2010)[40]
regression demand

20 Time series CDD & HDD  State Monthly Monthly?-? State 2.54% °C-1 d USA 2008-2012 (Huang and
multivariable  (population specific electricity Gurney
linear weighted) demand 2016)[22]
regression

21 Multivariable  CDD & HDD 53°F-71°F  Monthly Monthly?:? State residential: Maryland 1977-2001 (Ruth and Lin
linear (different  electricity 0.1% °F-1 2006)[38]
regression across fuels demand commercial:

and 0.04% °F!
sectors)

22 Multivariable  Monthly Region Monthly Monthly?®-® State Summer monthly: 8 states in USA 1984-1993  (Sailor and
linear average specific electricity 5.97-32.2 kWh per Mufioz
regression temperature demand capita °C~' month~! 1997)[34]

23 Panel analysis Average N/A Monthly Monthly? Country Not reported 31 countries ~ 1978-2000 (Bigano,
models seasonal energy Seasonally” around the Bosello, and

temperature demand and yearly” world Marano
(including 2006)[32]
electricity)

24 Not specified Annual N/A Grid load at a Not City 1. Peak demand: Different cities 1986 (Akbari
average specific time  specified®" in US 1992)[50]
temperature

FL: 6% °C-!
AL: 3% °C!
West TX: 6%°C!
NM: 3% °C!
AZ: 1% °C!
Southern CA:
3% °C1
Northern CA:
1.5% °C1
2. Annual usage:
FL: 3% °C!
AL: 1.5% °C-!
West TX: 3% °C!
NM: 0.5% °C~!
AZ: 6% °C!
Southern CA:
1.5% °C!
Northern CA:
0.5% °C~!

Note:

2 Source data resolution
b Processed data resolution

N
¢ CDH: Cooling Degree Hours, defined by the cited literature as: “a short-term version of CDD described by: Y (T, — T,) for T > T, and 0 otherwise, where N is the number
h=1

of hours in the period of interest, T is the air temperature, and T, is the cooling base temperature, commonly taken to be 24 °C in Thailand.”
4 Value is calculated from percentage or absolute change in electricity consumption under different climate change scenarios versus a baseline period.

are not sufficient for building a highly resolved understanding of
climate-driven variations in energy consumption behavior, espe-
cially for regions with large climatic variations, such as those adja-
cent to mountains and coasts like the Los Angeles basin.

The temporal resolution of datasets also varied consider-
ably across the surveyed studies. For source data resolution,
eight of the 24 studies use monthly aggregated electricity us-
age [22,29,30,32,34,38,44,47], five use daily aggregated electric-
ity usage [35,37,40,42,46], nine use hourly electricity data [10,25-
28,31,33,36,45], one uses sub-hourly meter data at the appliance
level instead of the entire household [24], and one study does not

specify data resolution [50]. The majority of studies have source
data and processed data of the same resolution, but eight utilize
processed data at a coarser resolution than source data [24,28,31-
33,36,40,45], meaning that the researchers chose to aggregate their
datasets prior to analysis.

Although a few studies address the importance of high resolu-
tion data [36,48,49], typically no justification is provided on why
one resolution is chosen over other possible resolutions. It is as-
sumed that temporal resolution reflects the availability of source
data in most cases. Most studies rely on data being shared by util-
ity companies or grid operators, so resolution is constrained by
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the data provided to researchers [10,25-28,31,33,35-37,42,44-47].
Relatively low temporal resolution data (e.g. monthly or yearly av-
erages) have traditionally been most easily acquired from techni-
cal reports or bills [29,30]; while the widespread dissemination of
smart electricity meters has enabled the collection of hourly elec-
tricity data, few studies have had access to these data for analysis
[24].

2.3. Temperature data metrics

Prior studies have used a variety of indicators for char-
acterizing climate. For example, recent studies have utilized
a range of temperature metrics, including Cooling/Heating De-
gree Days [22,24,27,29,31,35,38,40,44], hourly temperature [25,26],
daily average temperature [28,36,43,45], daily max temperature
[33,46], monthly average temperature [34,47], seasonal average
temperature [32], histograms of daily temperature [30,50], and
other indices derived from temperature data [10]. Of the lit-
erature surveyed in Table 1, 10 out of 24 used CDD/HDD
[22,24,27,29,31,35,38,40,44,45] and six used daily average or max
temperature [28,33,36,43,45,46], suggesting that daily tempera-
tures have been the most commonly utilized resolution in this
body of literature.

2.4. Stationary point temperatures

Studies utilizing CDD and HDD (see Section 3.2 and Eq. (2) for
more details on CDD/HDD) as a temperature indicator need to
choose a pre-defined, fixed threshold temperature to calculate this
metric. The threshold (also sometimes called a “stationary point
temperature” or “base temperature”) refers to the temperature be-
low (above) which no cooling (heating) is needed (discussed in
more detail in Section 3.2). In past studies, 18 °C is the most com-
mon threshold temperature, chosen by five out of 13 studies that
use CDD and/or HDD [24,26,31,35,40]. 60 °F (15.6 °C), 21 °C, 22 °C,
and 24 °C are also used in past studies [27,36,38,45]|. Three stud-
ies assign specific stationary point temperatures to different build-
ings or regions [22,29,34]. One study does not specify stationary
point temperature [44]. Several methods have been applied to set
a stationary point temperature, including: 1) choosing the temper-
ature threshold arbitrarily; 2) referencing a previous study in the
same or neighboring region; and 3) extracting it from a prelimi-
nary electricity-temperature plot. Only one study analyzes the im-
pact of setting a region-specific stationary point temperature using
a segmented regression model, but the study calculates this point
at the state level only [22].

3. Methods

To address the research questions presented above, this study
utilizes a dataset representing the hourly electricity consumption
of 1245 households across California for a one-year period. We
also utilize data from a network of 145 weather stations to assess
hourly temperatures in locations adjacent to each home. A seg-
mented linear regression model is applied to assess the electricity—
temperature sensitivity of each household. The electricity data are
spatially and temporally aggregated in various ways (i.e. both be-
fore and after computing electricity-temperature sensitivity) to as-
sess how data resolution impacts electricity-temperature sensitiv-
ity. In addition, the dependence of chosen temperature indicators
on computed sensitivities is assessed. The dataset used here in-
cludes only residential homes and thus varies from many previous
studies using spatially aggregated datasets, which would also in-
clude commercial and industrial buildings.

*  CIMIS Weather Stations
Customer Count within Zipcode
1-2
-4
B4-6
6 -3
HlS-10

Fig. 1. Map showing locations of the 1245 residential electricity customers (shown
as number of households per zip code) and 145 CIMIS weather stations considered
in this study. Each household was linked to a weather station based on shortest
distance.

3.1. Datasets

Hourly smart meter data records of electricity usage at the
household level from 1245 residential customers (after data clean-
ing and screening) across California were analyzed. These house-
holds reflect utility customers that voluntarily downloaded an
energy-related smart phone app for tracking their electricity use.
Since this sample is likely biased towards energy-conscious house-
holds, this paper focuses on comparing methods for computing
energy-temperature sensitivity but does not claim that computed
values are representative of the general population of California
cities. Only zip code information for each household included in
the dataset was provided to protect customer privacy. Several pro-
cedures for data cleaning and screening were carried out. First, to
fully capture the year-round relationship between residential elec-
tricity consumption and ambient temperature, only customers with
one full year of electricity data (05/18/2015-05/17/2016) were in-
cluded in the study. Second, households that could be identified as
energy generators (e.g., with solar photovoltaic installations) were
removed from the dataset to reduce the impacts of these house-
holds on load curves. We defined these generating households as
those that had a negative value of electricity usage at any time;
thus, households whose onsite generation never exceeded their
own energy use through the period of study would not be flagged
and is a limitation of the study.

The households included in the dataset spanned 41 counties,
549 zip codes, and 15 of 16 climate zones in California [51]. These
climate zones were established by the California Energy Commis-
sion (CEC) and specifically characterize building energy use under
various climate characteristics [51].

Hourly ambient temperature data over the year under investi-
gation were retrieved from the California Irrigation Management
Information System (CIMIS) [52], which includes a network of over
145 automated weather stations in California covering most of the
state’s population centers. Geospatial analysis was executed with
ArcGIS (10.4.1, ESRI, Redlands, CA, USA) to map each household
with an electricity record to its nearest weather station. Fig. 1 illus-
trates the number of homes per zip code and location of weather
stations of this study.
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Fig. 2. Example of a home in Clovis, CA illustrating the stationary point temper-
ature (SPT) and electricity-temperature sensitivity through a segmented linear re-
gression method.

It is important to note that this dataset, which includes utility
records averaging 30 households per county and less than three
households per zip code, is not statistically representative of the
population from a spatial perspective. Accordingly, the objective
of this study is not to define the effects of climate on electricity
across regional boundaries (i.e. city, county, climate zone); rather,
the goal is to assess the influence of spatiotemporal electric-
ity data resolution and climate indicators on derived electricity-
temperature sensitivity (see research questions in the Introduc-
tion).

3.2. Statistical models

The nonlinearity of relationships between building energy con-
sumption and ambient temperature has been established in previ-
ous studies [28,34,45-47]. Nonlinear regression models (i.e. poly-
nomial functions) have been developed that can achieve a good
fit among variables. However, sophisticated models may have is-
sues with overfitting and can thus fail to generalize trends under
investigation and are also not applicable to other regions [53]. To
address the nonlinear relationship between electricity use and am-
bient temperature in residential homes, while avoiding overfitting,
a segmented linear regression model proposed by [54] will be uti-
lized in this analysis.

The segmented linear regression reveals two important pieces
of information. The first is the stationary point temperature (SPT),
which sits at the stationary point of the piece-wise linear func-
tion and can be thought of as analogous to the base tempera-
ture in the CDD method. In other words, stationary point temper-
ature is the temperature at which household electricity consump-
tion reaches a minimum, with the assumption that no cooling or
heating is needed at this temperature. In the segmented regres-
sion model, the stationary point is calculated iteratively to deter-
mine the best overall piece-wise linear fit of the original dataset.
The second is the slope of the linear regression to the right of the
stationary point temperature (referred to in this analysis as the
“electricity-temperature sensitivity”), representing the change in
electricity consumption that corresponds to a change in ambient
temperature of one degree Celsius. Electricity-temperature sensi-
tivity can be affected by factors like house size, insulation, behav-
ior, etc., since these factors also affect air-conditioning use.

Fig. 2 shows an example segmented regression for a home
in Clovis, California. Daily aggregated electricity usage is plotted

against daily average temperature, and stationary point tempera-
ture and electricity—-temperature sensitivity are illustrated. The plot
in Fig. 2 is thus divided into two regimes: (1) strong positive sen-
sitivity between electricity use and temperature to the right of the
stationary point temperature, and (2) electricity use that is rela-
tively insensitive to temperature change to the left of the station-
ary point temperature. In California, cooling energy demand from
air conditioning is driven by electricity while heating is mainly
supported by natural gas [55], which is why there is not a strong
increase in electricity use as temperatures decrease below the sta-
tionary point. For the same reason, only one stationary point is
identified in the segmented model, whereas in some regions there
might be two (e.g., in the case of Israel described in [56]).

To address research question 1, stationary point temperature
and electricity-temperature sensitivity are computed for different
spatial aggregation levels using a segmented regression defined as:

Est _ Jog+ B x Tse €1,
t  |or+ B xTse £ey,

where Eg; is a vector of residential electricity consumption over

a period of time t (vertical axis in Fig. 2). ? is expressed in
units of electric power (kW). Ts¢ is a vector of near-surface am-
bient temperatures (in the units of °C) over the same period of
time (horizontal axis in Fig. 2). The first row of Eq. (1) describes
the relationship between ? and Ts; for Ty, <SPT;, ¢. The second

row of Eq. (1) describes the relationship between ? and Ty, for

T, > SPT;, ;. The electricity-temperature sensitivity, Sy, is defined
as the slope of the regression line above the SPT (i.e., B;), with
units of kW °C~1, SPT is calculated by iteratively locating the inter-
section of the two linear regions to maximize the model’s overall
coefficients of determination (r?). Thus, in Eq. (1), Es¢ and Ts, are
inputs to the segmented regression and all other variables are out-
puts. (Note: «q, @y, and B are additional regression coefficients
and € is the error term.)

The spatial and temporal aggregations of data represented in
vectors Eg¢ and Ty, as well as scalars S, and SPTs, ¢, are indicated
by subscripts s and t, respectively. Values of subscript s in this
study include household, city, county, and climate zone, and t can
be hourly or daily. For example, if s=household for Ts, then T,
corresponds to the observed temperature at the nearest weather
station for that home, while if s=city, Ts; corresponds to the pop-
ulation weighted spatial mean observed temperature for that city.
By “population”, we mean “number of homes”, so “population-
weighted spatial mean” means we take the average of tempera-
ture readings from multiple weather stations in the area, weighted
according to how many homes are assigned to each weather sta-
tion. (Note that we discuss various daily temperature metrics be-
low when discussing research question 2.)

For s=household (i.e. no spatial aggregation), segmented lin-
ear regression is conducted separately for each of 1245 homes us-
ing their hourly or daily aggregated electricity consumption (i.e.
depending on t). The mean values of both stationary point tem-
peratures (Sﬁ's:household,t) and sensitivities (gs:household,t) are com-
puted by taking the mean over all 1245 households of computed
stationary point temperatures and sensitivities. For s = city, county,
or climate zone, the segmented linear regressions are carried out
using spatially averaged electricity consumption over spatial ex-
tent s, along with population-weighted temperature to mimic stud-
ies using more spatially aggregated data to compute sensitivities.
The mean values Sg; and SPTs, are then computed by taking the
population-weighted average of all city, county, or climate zone
level sensitivities and stationary point temperatures (i.e. depend-
ing on s), respectively. For example, to compute §s=dw,t=da”y. we
first compute spatially aggregated electricity use for each city, and
then the city level (hourly) electricity data is accumulated to daily

TS,t < SPTSt (1)
Ts¢ > SPT;;
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Fig. 3. Probability density distributions of electricity-temperature sensitivities (a, b) and stationary point temperatures (c, d) of all 1245 homes in this study’s dataset. Red
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resolution. For temperature, first the metric of choice (see the next
paragraph) is computed for each weather station (i.e. daily mini-
mum, average, or maximum), and then city population-weighted
averages are computed. Then, segmented linear regressions are ap-
plied using the averaged data per city to compute city-level sta-
tionary point temperatures and electricity-temperature sensitivi-
ties. Lastly, Si_city ¢—daily and SPTs; are computed by taking the
mean of city-level values.

To address research question 2, the relationship between res-
idential electricity use and various temperature indicators (i.e.,
hourly temperature, daily average temperature, daily maximum
temperature, daily minimum temperature, and CDD) are explored.
To quantify the effect of utilizing different temperature indica-
tors on computed electricity-temperature sensitivities, we carry
out the segmented linear regression using hourly temperature (i.e.
t=hourly), daily maximum, daily minimum, and daily average
temperature (i.e. for t=daily). This comparison is carried out for
both a typical household in San Jose, and also for all households
(within our dataset) in the City of San Jose. We also compute sen-
sitivity using CDD assuming a uniform base temperature T, =18 °C
for all homes. Since CDD calculations already include base temper-
atures, a standard linear regression model is applied rather than
the segmented regression; the slopes of these linear regressions
represent the electricity-CDD sensitivity. The coefficient of deter-
mination (r2) values of these regression models are compared to
assess the quality of fit.

CDD is computed as:

_ fday max [0’ T t—nourly (h) - Tb]dh

CDD o

(2)

T t—hourly(h) is the hourly ambient temperature for hour h ex-
pressed in °C and T, is the base temperature (i.e. 18.0 °C in this
study). The daily value of CDD can be obtained by integrating
T t—hourly(h) over each day as done in [57]. Physically, the base

temperature is the ambient temperature at which a building’s
heat loss and heat gain reaches an equilibrium, such that cool-
ing is not needed. The base temperature is often chosen based
on previous studies that focus on a similar geographical zone or
is set arbitrarily. Due to different climate zones, building char-
acteristics, and occupant behavior patterns, the base temperature
can vary significantly among spatial areas [22,34]. This issue has
been identified by several previous studies [10,22,29,34,38] in-
cluded in Table 1. In our study, CDD is calculated as the cumu-
lative degrees beyond 18.0 °C for each hour on a daily basis. We
note that computing electricity-CDD sensitivities using linear re-
gression is analogous to that of electricity-temperature sensitives
using segmented linear regression with a fixed stationary point
temperature.

4. Results
4.1. Sensitivity and stationary point temperature distribution

One of the biggest advantages to using household level elec-
tricity consumption data to derive electricity-temperature rela-
tionships is that these data illustrate home-to-home variability in
terms of (a) the ambient temperatures at which homes start using
increased electricity (i.e. stationary point temperature), and (b) the
amount of additional electricity that homes use as temperatures
increase beyond the stationary point. Probability density distribu-
tions of electricity-temperature sensitivities (top row) and station-
ary point temperatures (bottom row) for all households investi-
gated here are plotted in Fig. 3. Subplots a and c in this figure use
daily average temperature, while subplots b and d use daily maxi-
mum temperature. Both distributions of sensitivities are skewed to
the right.

The long tails of the probability density distributions of
electricity-temperature sensitivities represent homes that have
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large increases in electricity consumption as temperatures increase
above the stationary point (Fig. 3 (a) and (b)). When daily max-
imum temperature is used in the segmented regression, 47% of
households in the dataset have a sensitivity less than 0.05 kW °C-1,
while 24%, 24%, and 6% of households have a sensitivity value of
0.05 to 0.1, 0.1 to 0.2, and over 0.2 kW °C~!, respectively. For daily
average temperature, 34% of households in the dataset have a sen-
sitivity less than 0.05kW °C-1, while 19%, 32%, and 15% of house-
holds have a sensitivity value of 0.05 to 0.1, 0.1 to 0.2, and over
0.2kW °C-1, respectively. Both temperature indicators have similar
distribution shapes, but daily average temperature leads to over-
all higher sensitivity values than daily maximum temperature. In
other words, daily electricity consumption at the household level
is generally more sensitive to daily average temperature than daily
maximum temperature.

If daily maximum temperature is used, the stationary point
temperatures of the 1245 homes are distributed within a range
from about 10-35 °C with a mean value of 231449 °C
(73.6 8.9 °F) (Fig. 3(d)). For daily average temperature, the dis-
tribution of stationary point temperatures is almost normal within
a range from about 5-25 °C and more concentrated to the mean
value, which is 17.1£3.9 °C (62.8+7.0 °F) (Fig. 3(c)). It is inter-
esting that a small percentage of homes have negative or zero
sensitivity values in Fig. 3(a) and (b). This can be attributed to
a lack of cooling devices in these homes, or on-site energy gen-
eration (e.g., solar photovoltaics). Also, a small number of homes
have stationary point temperatures less than 10 °C in Fig. 3(c)
and (d), which appears anomalously low. One possible explana-
tion is differences between ambient and indoor air temperature
due to solar heating; in this case, indoor temperatures may be
higher than ambient, causing inhabitants to turn on air condi-
tioners at lower ambient temperatures than expected. More in-
formation about building design is needed to further explore
this possibility. Homes without cooling devices could also be the
cause, with lower than expected stationary point temperatures be-
ing identified for reasons other than increasing cooling energy
use.

4.2. Impact of temperature indicators on computed
electricity-temperature sensitivity

The impact of using various temperature indicators on com-
puted electricity—temperature sensitivity is illustrated using (a)
electricity data for a typical household in San Jose, and (b) av-
eraged electricity consumption for all households for which we
have data in San Jose (Fig. 4). The city of San Jose is cho-
sen because our dataset includes a relatively large number of
homes (n=80) compared to other cities. In Fig. 4, the first row
shows hourly electricity consumption versus hourly temperature.
The other rows show daily accumulated electricity consumption
versus daily minimum temperature, daily average temperature,
daily maximum temperature, and cooling degree days at 18 °C
(CDD18C) both including and excluding days with CDD18C=0.
(Days with CDD18C=0 occur when hourly temperatures remain
below 18 °C.)

The temperature indicator utilized significantly affects the co-
efficient of determination (r2) and the computed electricity-
temperature sensitivity. Overall, using hourly electricity and tem-
perature data shows weak coefficients of determination relative to
the daily metrics. Among the daily metrics (i.e. daily minimum, av-
erage, and maximum temperature), daily average temperature is
shown to lead to (a) the highest coefficients of determination for
both the typical home and all homes in San Jose, and (b) highest
sensitivity. Daily maximum temperature and daily minimum tem-
perature lead to the second and third highest sensitivities among
the daily metrics. Linear regressions of daily aggregated electricity
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Fig. 4. Segmented linear regression applied to a single household (left column) and
the average of households in our dataset (n=_80) within the City of San Jose, Cali-
fornia (right column) using various temperature indicators: hourly temperature (a,
b), daily minimum temperature (c, d), daily average temperature (e, f), daily maxi-
mum temperature (g, h), CDD18C including days with CDD18C=0 (i, j), and CDD18C
without days where CDD18C=0 (k, 1). SPT corresponds to Stationary Point Temper-
ature and S corresponds to electricity-temperature sensitivity. In panel (i-1), Base
Temp corresponds to the base temperature, which can be seen as a prescribed sta-
tionary point temperature.

use versus CDD18C (including days with CDD18C=0) show simi-
lar sensitivity as daily average temperatures for both the individ-
ual home and city of San Jose. The coefficient of determination and
sensitivity increases when days with CDD18C =0 are removed from
the regression.
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Table 2

Electricity-temperature sensitivities and stationary point temperatures computed with various spatial aggregations using electricity consumption data for 1245 California

households.

Mean value of
electricity-temperature

Resolution of electricity use
data, Eg¢, used in the

Standard deviation of
electricity-temperature

Standard deviation of
stationary point temperature in

Mean value of stationary point
temperature SPT ;_gajy in °C

segmented regression analysis  sensitivity §5.[:daily (kW °C1) sensitivity (kW °C-1) (°F) °C (°F)
Using daily maximum temperature
s=household? 0.079f 0.18 231 (73.6) 4.93 (8.87)
s =city” 0.066 0.058 22.4 (72.3) 4.46 (8.03)
s=county® 0.063 0.040 22.2 (71.9) 3.21 (5.78)
s=climate zone? 0.063 0.036 22.3 (72.1) 3.30 (5.93)
s = state® 0.064 N/A 22.1 (71.8) N/A
Using daily average temperature
s=household 0.118 0.10 17.1 (62.8) 3.86 (6.95)
s=city 0.098 0.082 17.1 (62.8) 3.50 (6.30)
s=county 0.098 0.058 17.2 (63.0) 2.08 (3.74)
s=climate zone 0.097 0.040 17.2 (63.0) 2.64 (4.75)
s=state 0.10 N/A 17.0 (62.6) N/A

2 Segmented regression was performed for each household, and then sensitivity and stationary points per home were averaged for all homes in California.
b Electricity data were averaged by city, segmented regression was performed for each city, and then sensitivity and stationary points were population-weighted averaged

for all cities.

¢ Electricity data were averaged by county, segmented regression was performed for each county, and then sensitivity and stationary points were population-weighted

averaged for all counties.

4 Electricity data were averaged by climate zone, segmented regression was performed for each climate zone, and then sensitivity and stationary points were population-

weighted averaged for all climate zones.

¢ Electricity data were averaged for entire state of California and then segmented regression was performed for state-averaged data
f Equivalent to 10.5% change in electricity consumption °C~! (% change means the relative change in electricity consumption per °C increase using the consumption at

the stationary pointe temperature as a baseline).
& Equivalent to 15.3% change in electricity consumption °C~*

4.3. Impact of spatial aggregation on computed
electricity-temperature sensitivity

Mean values of stationary points (ﬁs,t:daily) and sensitivities
(§s,t:daily) for California derived using data with different spatial
aggregation levels (i.e. household, city, county, climate zone, and
state) are displayed in Table 2. Sensitivity values are calculated
using both daily maximum temperature and daily average temper-
ature for comparison purposes.

When daily maximum temperature is used, the mean value of
sensitivities calculated using household level electricity data (i.e.
no spatial aggregation) Sq_pousehold.t—daily 1S 0.079kW °C~1, about
19% higher than computing sensitivities where s is spatially aggre-
gated to the city, county, climate zone or state-level, which range
from 0.063 to 0.066 kW °C~1, depending on the level of spatial ag-
gregation (Table 2). A similar phenomenon is also observed using
daily average temperature. The mean value of sensitivities com-
puted for the 1245 homes using household level electricity data is
0.11 kW °C-1, higher than that using aggregated data, which ranges
from 0.097 to 0.10kW °C-1.

The level of spatial aggregation affects electricity-temperature
sensitivity more than stationary point temperature (up to 19%
for sensitivity vs. 4% for stationary point temperature by us-
ing daily maximum temperature, and up to 6% vs. 1% by us-
ing daily average temperature). Using daily maximum tempera-
ture, the mean value of computed stationary point temperature
SPT_nousehold.t=daily for all 1245 households is 23.1 °C (73.6 °F).
Using electricity data that are spatially aggregated, stationary
point temperatures SPTs:city/county/climate zone/state, t=daily 4I€ slightly
lower, ranging from 22.1 to 22.4 °C (71.8 to 72.3 °F). Using daily av-
erage temperature, the stationary point temperature is 17.0-17.2 °C
(62.6-63.0 °F), regardless of level of aggregation.

5. Discussion
5.1. Advantages of utilizing high spatiotemporal resolution data

Using high spatiotemporal resolution electricity and climate
data to investigate the effects of climate variability on energy con-

sumption offer advantages over using aggregated data. From a re-
search perspective, having access to household-level data enables
the ability to investigate how data resolution influences computed
electricity-temperature interactions. Table 2 indicates that com-
puted electricity-temperature sensitivity is dependent on the level
of spatial aggregation of the data used in the segmented linear re-
gressions. For example, our research suggests that computing the
electricity-temperature sensitivity using household data and then
averaging all households in a state results in a different sensitiv-
ity value than computing the sensitivity using state-mean elec-
tricity data, as illustrated in Table 2. In addition, using electricity
data at the household level is ideal for most accurately calculating
electricity-temperature sensitivities given that more representative
temperature data for each household can be used in the analysis.
This is especially important for cities like Los Angeles that have
strong spatial variability in climate.

Two case studies are presented here to explicitly illustrate
how different electricity-temperature sensitivities can arise using
household level versus aggregated data (see Fig. 5). In Case I,
Household A (zip code 94583, San Ramon) has large daily non-
cooling loads (i.e. electricity use to the left of the stationary point)
and a large sensitivity. Household B (zip code 90504, Torrance)
has relatively small daily non-cooling loads and a small corre-
sponding sensitivity. A smaller sensitivity value is calculated if we
take the mean value of sensitivities computed per household (i.e.
§5:h0usehold,t:daily) compared to performing the segmented regres-
sions after aggregating the electricity consumption of two house-
holds (i.e. §5:dty_t:daily). In the latter case, the average sensitiv-
ity will be weighted towards Household A because of its higher
electricity use and thus S;_nousehold.t—daily > Ss—city.t—daily- In Case 1I,
Household C (zip code 92571, Perris) has overall high daily elec-
tricity use with relatively small sensitivity while Household D (zip
code 92069, San Marcos) has small daily electricity consumption
with relatively high sensitivity. In this case, a higher sensitiv-
ity value is calculated if we take the mean value of sensitivities
computed per household compared to performing the segmented
regression after aggregating the electricity consumption of two
households (Ss_household.t=daily < Ss—city.t—daily)- In either case, com-
puting the mean sensitivity after spatial aggregation will weight
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Fig. 5. Two case studies illustrating two households with different non-cooling electricity usages and sensitivities. In Case I (top row), Household A has higher daily electricity
use and a larger electricity-temperature sensitivity value than Household B. In Case II (bottom row), Household C has a higher daily electricity use, but a smaller sensitivity
than Household D. In either case, the average sensitivity for the two households, if calculated based on aggregated electricity use, will more heavily weight the larger

electricity consumer.

big electricity consumers more heavily, and give less weight to
smaller consumers regardless of their sensitivity values.

A second advantage to using high spatiotemporal resolution
data is that they offer the ability to investigate the distribution
of energy use patterns among different households, which in this
study is reflected by stationary point temperatures and sensi-
tivities. Fig. 3 illustrates that households in this sample have a
wide distribution of sensitivities and stationary point tempera-
tures. Variability in sensitivities are likely a result of variations in
occupant behavior patterns, building and HVAC system character-
istics, and climate zone. More information about building charac-
teristics at the household level is needed to further quantify the
relative importance of these causal factors of variability in sen-
sitivity. We hypothesize that a large number of households show
small sensitivity to ambient temperature change due to lack of air
conditioning equipment presumably concentrated in coastal loca-
tions, and possibly also due to homes with relatively low square
footage and/or occupants that cannot afford air conditioning. These
hypotheses should be validated with additional datasets in fu-
ture analyses. Fig. 3 also illustrates that different households have
unique stationary point temperatures, which is an important dis-
tinction between the method used in this study and previous stud-
ies that assume fixed base temperatures that are not necessarily
computed based on the dataset (e.g. CDD18C). Spatial variations in
stationary point temperatures reflect building characteristics, occu-
pant behavior, and climate variability [22]. If aggregated electricity
data are used, only one stationary point temperature for the entire
region can be computed and used in regressions.

5.2. Roles of temperature indicators

As indicated in Fig. 4 and Table 2, electricity-temperature sen-
sitivities are dependent on the temperature indicator used in the
regression. We suggest that the following considerations be used
to help decide which temperature indicator is of interest.

First, electricity and temperature show the strongest relation-
ships when computed using data at daily temporal resolution. Re-
gressions between hourly household electricity consumption and
hourly temperature result in relatively low coefficients of determi-
nation (r2). This can be partially explained by the daily electricity
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Fig. 6. Histogram of time of day corresponding to peak energy for each household
during summer (July, August, September). Peak hourly electricity use occurs in the
late afternoon to early evening for the majority of households in this study.

use patterns of residential homes, which can be heavily affected by
household energy consumption behavior. For example, energy use
patterns in many cases will not directly follow hourly temperatures
since occupants that go to work during normal business hours may
peak in their electricity usage in the evening when ambient tem-
peratures are not at their daily peak. There can also be a timing
lag between ambient outside temperature rise and its impact on
indoor temperature (and thus, air conditioning usage). This reason-
ing can also be partially observed by Fig. 6, which presents a his-
togram of the hour of day at which summertime (defined as July,
August, September) peak electricity consumption occurs for each
household. (In other words, the height of each bar represents the
total number of households that have summertime peak electricity
consumption at that time of day.) The hour of day corresponding
to peak electricty consumption per household represents the most
frequently occurring daily peak time over the summertime period.
We observe in this study that the timing of most households’ peak
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electricity use does not correspond to daily peak ambient temper-
ature (usually during mid afternoon). By contrast, a large number
of households have peak energy use in the late afternoon through
early evening. Although we currently lack data to calculate how
much of this peak energy use is driven by air conditioners, it is
reasonable to assume that air conditioners are a major driver of
evening electricity consumption since a large fraction of occupants
are home from work during this period and might choose to cool
their homes for occupant comfort.

Second, the choice of whether to use daily average or maxi-
mum temperature depends on the research questions under inves-
tigation. For example, most research analyses assessing the impacts
of climate change on electricity utilize daily average temperature,
since this indicator is what is estimated most commonly in global
climate modeling studies [22,28,29,32,37-40]. On the other hand,
daily maximum temperature is often used to predict future peak
electricity demand, which is driven instantaneously by extreme
heat during the day [28,33,46]. While it should be noted that total
electricity usage is dependent on many factors, in this study, daily
average temperature shows the best segmented linear relationship
with electricity use relative to other temperature indicators (i.e.
hourly, and daily minimum and maximum temperature). One of
the driving reasons for this trend is likely due to nature of temper-
ature fluctuations across differing climates, which can change the
need for cooling throughout the day. For example, while a coastal
home may experience similar daily average temperature (e.g. 30°C)
with an inland home in a dry desert region, the diurnal tempera-
ture range that each home experiences can be vastly different (e.g.,
coastal daily temperature range: 28-32°C vs inland: 20-40°C). In
this example, the maximum daily (or minimum daily) temperature
is vastly different in each region, even when the daily average tem-
perature is the similar. While one might assume that total daily
electricity consumption might scale with maximum temperature,
the inland home would experience a great deal more nighttime
cooling than the coastal home; this nighttime cooling might atten-
uate the need for some daytime air-conditioning use since it ex-
periences pre-cooling. On the other hand, while the coastal home
might not be subjected to extreme maximum temperatures, it also
experiences less cooling relief during the evening in this example.

Third, setting a uniform, pre-defined base temperature as is
done in the CDD calculation is not as good as computing house-
hold level stationary point temperatures. Using pre-defined base
temperatures can lead to inaccuracies in regressions when occu-
pant behaviors lead to the AC turning on at ambient temperatures
below the threshold. This effect can be observed in Fig. 4(i) and
(j), illustrated by data points with CDD18C = 0. Including these zero
values affects the regression slope (i.e. sensitivity) relative to ex-
cluding the zeros (see Fig. 4(k) and (1)). In addition, using CDD18C
as the indicator (with linear regression) leads to coefficients of de-
termination that are smaller than when using daily average tem-
perature (with segmented regression). Thus, using daily average
temperatures with segmented regression may be best for studies
that investigate sensitivities of daily electricity use (as opposed to
peak energy use) rather than CDD18C.

5.3. Comparing computed electricity-temperature sensitivity to
previous studies

Using the dataset described in this study, the com-
puted electricity-temperature sensitivity §s=household_[=daily is
0.079 kW °C-! using daily maximum temperature and 0.11 kW °C~!
using daily average temperature. However, previous studies com-
monly present electricity-temperature sensitivity in units of
percentage change in electricity consumption per °C increase
in ambient temperature (% °C-!). Thus, to be comparable with
sensitivity values from past studies, we also computed electricity—

temperature sensitivity in units of percentage change in electricity
consumption per °C increase in ambient temperature (% °C-1).
These sensitivities (Ss_pousehold.i=daily) Were 10.5% °C~! using daily
maximum temperature and 15.3% °C~! using daily average tem-
perature in this dataset. (All of these values are computed by
calculating the sensitivities in percent units for each household
and then averaging over all households.) Among previous studies
surveyed, three report electricity-temperature sensitivity values
computed using hourly or monthly average temperature data,
presented as 6% °C~! [26], 8.9% °C~! [47], and 9-13% °C~! [30],
which are similar in magnitude to those computed in this study.

Calculating electricity-temperature sensitivity in units of
kW °C-1 versus % °C-! presents tradeoffs in terms of insights
gained. Sensitivities in units of kW °C~1 will be highest for house-
holds with high cooling loads regardless of the magnitude of non-
cooling loads, while reporting in units of % °C~! is dependent on
the magnitude of cooling loads versus non-cooling loads. Thus, a
household with small non-cooling loads would have a higher per-
centage increase in cooling load per unit temperature rise relative
to a household with high non-cooling loads, even if the cooling
load increase in kW °C-! are equal; yet, reporting the percent-
age of cooling load increase is insightful for understanding trends
such as the relative increases in electricity costs for different socio-
economic populations.

In addition to these considerations regarding selected units,
several caveats of such comparisons in sensitivities between this
and prior studies should be noted: 1) the sample size of this study
is not statistically representative of electricity users in the state
of California; and 2) electricity-temperature sensitivities can be
driven by numerous factors, e.g. occupant behavior patterns, cli-
mate zones, housing characteristics, etc. Neither this study nor pre-
vious studies have revealed enough detailed information to explain
these differences in sensitivities, but will be the focus of future re-
search.

6. Conclusion

Despite a growing body of literature utilizing various types of
electricity usage and temperature source data across a wide range
of spatiotemporal resolutions, no research to our knowledge has
focused on assessing the impacts of data resolution and choice
of temperature metrics on computed functional relationships be-
tween electricity usage and ambient temperature. To address this,
we use hourly energy use records from 1245 customers across
California along with corresponding hourly ambient temperature
data to investigate the dependence of spatiotemporal data resolu-
tion and temperature metrics on computed electricity-temperature
sensitivities. Sensitivities are computed using a segmented linear
regression model. We use this regression model with input data
at various resolutions to emulate source data of spatial resolutions
including household, city, county, and climate zone, and temporal
resolutions including hourly and daily. In addition, we compare the
impacts on computed electricity-temperature sensitivity of using
hourly, daily minimum, daily mean, daily maximum, or cooling de-
gree days as temperature indicators in the regression model.

Results indicate that the strongest relationships between elec-
tricity consumption and temperature, as indicated using the co-
efficients of determination, are computed when using data at
daily temporal resolution (i.e. daily accumulated electricity con-
sumption and daily average temperature), even when compared
to those relationships computed using more resolved hourly elec-
tricity consumption and temperature data. This finding indicates
that increasing the temporal resolution of electricity data to in-
crements smaller than daily do not translate to higher regression
model performance. By contrast, increasing the spatial resolution
of electricity data improved the accuracy of computed electricity-
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temperature sensitivity (i.e., since ambient temperatures experi-
enced by the house can be more accurately determined), and elu-
cidated new trends masked by using spatially aggregated data as
well.

The choice of temperature indicator can also impact the com-
puted electricity-temperature sensitivities and stationary point
temperature values. In this study, regression models utilizing daily
average temperature offered higher coefficients of determination
than those using daily minimum temperature, daily maximum
temperature, or cooling degree days, thus showing the best seg-
mented linear relationship with electricity usage. Moreover, we
find that computing a unique household level stationary point
temperature is superior to setting a uniform, pre-defined base tem-
perature as is done in standard CDD calculations. Having access to
household level data enables the calculation of a household spe-
cific base temperature (assuming that base temperature is effec-
tively the equivalent of stationary point temperature), which can
enhance the accuracy of computed sensitivities. In addition, having
household level electricity data allows for determining more repre-
sentative temperatures for that household, which can improve the
accuracy of computed sensitivities especially in places like the Los
Angeles Basin where temperature variations are significant. How-
ever, it should be noted that the choice of using daily average or
maximum temperature depends on the research questions under
investigation, and there are cases where daily average temperature
might not be the indicator of choice.

To summarize, the take-away points of this study are:

- Sensitivities between residential electricity consumption and
ambient temperature are best computed using daily data, as
indicated using the coefficient of determination from a seg-
mented linear regression model. Daily data led to improved
regressions even when compared to hourly electricity con-
sumption and temperature data. Daily data refers to daily
accumulated electricity usage or daily average power con-
sumption. The choice of whether to use daily average ver-
sus maximum temperature depends on the research ques-
tion under investigation (see next bullet).

Daily average temperature is the best choice for explor-
ing general relationships between residential electricity con-
sumption and ambient temperature. While use of daily
average temperatures led to the highest coefficients of deter-
mination, use of daily maximum temperature can be more
appropriate for investigating certain research questions (e.g.
relationships between peak electricity use versus tempera-
ture).

Having access to household level data can enhance
the accuracy of computed sensitivities, and elucidate
new trends (e.g., household-to-household variations in
electricity-temperature sensitivity and stationary point tem-
perature, which can be thought of as the ambient tempera-
ture at which the AC is turned on) masked by using spatially
aggregated data.

For future research, a more statistically representative dataset
of electricity consumption records is needed for better quantifying
and understanding the relationship between residential electricity
consumption and climatic parameters, which is essential for inves-
tigating effective energy conservation, peak energy management,
and climate adaptation strategies.
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