IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

893

Datum: Managing Data Purchasing and Data
Placement in a Geo-Distributed Data Market

Xiaoqi Ren™, Student Member, IEEE, Palma London, Student Member, IEEE,
Juba Ziani, Student Member, IEEE, and Adam Wierman, Member, IEEE

Abstract— This paper studies two design tasks faced by a geo-
distributed cloud data market: which data to purchase (data
purchasing) and where to place/replicate the data for delivery
(data placement). We show that the joint problem of data
purchasing and data placement within a cloud data market can
be viewed as a facility location problem and is thus NP-hard.
However, we give a provably optimal algorithm for the case
of a data market made up of a single data center and then
generalize the structure from the single data center setting in
order to develop a near-optimal, polynomial-time algorithm for
a geo-distributed data market. The resulting design, Datum,
decomposes the joint purchasing and placement problem into
two subproblems, one for data purchasing and one for data
placement, using a transformation of the underlying bandwidth
costs. We show, via a case study, that Datum is near optimal
(within 1.6%) in practical settings.

Index Terms— Data market, geo-distributed analytics.

I. INTRODUCTION

EN years ago computing infrastructure was a comnmod-

ity — the key boitleneck for new tech startups was the
cost of acquiring and scaling computational power as they
grew. Now, computing power and memory are services that
can be cheaply subscribed to and scaled as needed via cloud
providers like Amazon EC2, Microsoft Azure, etc.

We are beginning the same transition with respect to dafa.
Data is broadly being gathered, bought, processed and sold
in various marketplaces. However, it is still a commodity,
often obtained through offline negotiations between providers
and companies [1]. Thus, acquiring data is one of the key
bottlenecks for new tech startups nowadays.

This is beginning to change with the emergence of cloud
data markets, which offer a single, logically centralized point
for selling, buying and processing data. Multiple data markets
have recently emerged in the cloud, e.g., Qlik Datamarket [2],
Factual [3], InfoChimps [4], Xignite [5], IUPHAR [6], etc.
These marketplaces enable data providers to sell and upload

Manuscript received April 13, 2017, revised October 14, 2017 and
February 2, 2018; accepted February 3, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor M. Mellia. Date of publication
March 19, 2018; date of current version April 16, 2018. This work was sup-
ported in part by the National Science Foundation under Grant 1254169, Grant
1518941, Grant 1331343, and Grant 1637598, in part by the National Science
Foundation Graduate Fellowship, and in part by the Resnick Sustainability
Institute Fellowship. { Cerresponding author: Xiaoqi Ren.)

The authors are with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena, CA 01125 USA

(e-mail: xren@ecaltech.edu; plondon@ecaltech.edu; jziani@caltech.edu;
adamw{@caltech.edu).
This paper has supplementary downloadable material available at

http:/fieeexploreieee.org, provided by the authors.
Digital Object Identifier 10.1109%/TNET.2018.2811374

data and clients to request data from multiple providers (often
for a fee) through a unified query interface. Also, major
cloud service providers such as Google [7], Microsoft [8]
and Amazon [9] all host various public datasets covering
geospacial, environmental, scientific and online services as an
extra benefit for their cloud clients. Current data markets
provide a variety of basic services: (i) aggregation of data
from multiple sources, (ii) cleaning of data to ensure quality
across sources, (iii) ease of use, through a unified API, and
(iv) low-latency delivery through a geographically distributed
content distribution network. As these market places mature
they are increasingly adding other services as well. Besides
providing raw data to clients, it is an inevitable trend for data
markets to carry out value-added services built upon the data,
such as analytics and machine learning APIs.

Given the recent emergence of data markets, there are
widely differing designs in the marketplace today, especially
with respect to pricing. For example, the Qlik Datamarket [2]
sets prices with a subscription model that allows a maximum
number of queries (API calls) per month and limits the size
of records that can be retumed for a single query. Other
data markets, e.g., Google BigQuery [7] and Infochimps [4],
allow payments per query or per data set. In nearly all cases,
the data provider and the data market operator each then
get a share of the fees paid by the clients, though how this
share is arrived at can differ dramatically across data markets.
The task of pricing is made even more challenging when
one considers that clients may be interested in data with
differing levels of precision/quality and privacy may be a
coneern.

Not surprisingly, the design of pricing (hoth on the
client side and the data provider side) has received
significant attention in recent vyears, including pricing
of per-query access [10], [11] and pricing of private
data [12], [13].

In contrast, the focus of this paper is nof on the design of
pricing strategies for data markets. Instead, we focus on the
engineering side of the design of a data market, which has
been ignored to this point. Supposing that prices are given,
there are important challenges that remain for the operation
of a data market. Specifically, two crucial challenges relate to
data purchasing and data placement.*

Here we assume either the “raw” data is delivered or the computational
overhead to process the data is negligible compared to the purchasing cost
and placement cost. This is the case for the most existing data markets [2],
[71-[9], and also is consistent with [14] and [15]. We leave joint optimization
of computation, data purchasing, and data placement as future work.

1063-6692 © 2018 IEEE. Personal use is penmitted, but republication/redistribution requires IEEE permission.
See http:/Avww.icee. org/publications_standards/publications/rights/index.html for more information.

894

A. Data Purchasing

Given prices and contracts offered by data providers, which
providers should a data market purchase from to satisfy a set
of client queries with minimal cost?

B. Data Placement

How should purchased data be stored and replicated
throughout a geo-distributed data market in order to minimize
bandwidth and latency costs? And which clients should be
served from which replicas given the locations and data
requirements of the clients?

Clearly, these two challenges are highly related: data place-
ment decisions depend on which data is purchased from where,
so the bandwidth and latency costs incurred because of data
placement must be balanced against the purchasing costs.
Concretely, less expensive data that results in larger bandwidth
and latency costs is not desirable.

The goal of this paper is to present a design for a
geo-distributed data market that jointly minimizes data
purchasing and data placement costs.

The combination of data purchasing and data placement
decisions makes the task of operating a geo-distributed data
market more complex than the task of operating a geo-
distributed data analytics system [14]-[18]. Geo-analytics sys-
tems minimize the cost (in terms of latency and bandwidth)
of moving the data needed to answer client queries, replacing
the traditional operation mode where data from multiple data
centers was moved to a central data center for processing
queries. However, crucially, such systems do not consider
the cost of obtaining the data (including purchasing and
transferring) from data providers.

Thus, the design of a geo-distributed data market neces-
sitates integrating data purchasing decisions into a geo-
distributed data analytics system. To that end, our design builds
on the model used in [15] by adding data providers that offer
a menu of data quality levels for differing fees. The data
placement/replication problem in [13] is already an integer
linear program (ILP), and so it is no surprise that the addition
of data providers makes the task of jointly optimizing data
purchasing and data placement NP-hard (see Theorem 1).

Consequently, we focus on identifying structure in the
problem that can allow for a practical and near-optimal system
design. To that end, we show that the task of jointly optimiz-
ing data purchasing and data placement is equivalent to the
uncapacitated facility location problem (UFLP) [19]. However,
while constant-factor polynomial running time approximation
algorithms are known for the mefric uncapacitated facility
location problem (see [20]-[22]), our problem is a non-mefric
facility location problem, and the best known polynomial
running time algorithms achieve a O{log C') approximation
via the greedy algorithm in [23] or the randomized rounding
algorithm in [24], where C is the mumber of clients. Note
that without any additional information on the costs, this
approximation ratio is the smallest achievable for the non-
metric uncapacitated facility location unless NP has slightly
superpolynomial time algorithms [25]. While this is the
best theoretical guarantee possible in the worst-case, some

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

promising heuristics have been proposed for the non-metric
case, e.g., [26]-[31].

Though the task of jointly optimizing data purchasing and
data placement is computationally hard in the worst case,
in practical settings there is structure that can be exploited.
In particular, we provide an algorithm with polynomial running
time that gives an exact solution in the case of a data market
with a single data center (Section TV-A). Then, using this
structure, we generalize to the case of a geo-distributed data
cloud and provide an algorithm, named Datum (Section IV-B)
that is near optimal in practical settings.

Datum first optimizes data purchasing as if the data market
was made up of a single data center (given carefully designed
“transformed” costs) and then, given the data purchasing
decisions, optimizes data placement/replication. The “trans-
formed” costs are designed to allow an architectural decom-
position of the joint problem into subproblems that manage
data purchasing (external operations of the data market) and
data placement (internal operations of the data market). This
decomposition is of crucial operational importance because
it means that internal placement and routing decisions can
proceed without factoring in data purchasing costs, mimick-
ing operational structures of geo-distributed analytics systems
today.

We provide a case study in Section V which highlights
that Datum is near-optimal (within 1.6%) in practical settings.
Further, the performance of Datum improves upon approaches
that neglect data purchasing decisions by > 45%.

To summarize, this paper makes the following main confri-
butions:

1. We initiate the study of jointly optimizing data purchas-
ing and data placement decisions in geo-distributed data
markets.

2. We prove that the task of jointly optimizing data pur-
chasing and data placement decisions is NP-hard and can
be equivalently viewed as a facility location problem.

3. We provide an exact algorithm with polynomial running
time for the case of a data market with a single data
center.

4. We provide an algorithm, Datum, for jointly optimiz-
ing data purchasing and data placement in a geo-
distributed data market that is within 1.6% of optimal
in practical settings and improves by > 45% over
designs that neglect data purchasing costs. Importantly,
Datum decomposes into subproblems that manage data
purchasing and data placement decisions separately.

II. OPPORTUNITIES AND CHALLENGES

Data is now a traded commodify. It is being bought and
sold every day, but most of these transactions still happen
offline through direct negotiations for bulk purchases. This is
beginning to change with the emergence of cloud data markets
such as Qlik Datamarket [2], Factual [3], InfoChimps [4],
Xignite [5]. As cloud data markets become more prominent,
data will become a service that can be acquired and scaled
seamlessly, on demand, similarly to computing resources avail-
able today in the cloud.

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

A. The Potential of Data Markets

The emergence of cloud data markets has the potential to
be a significant disruptor for the tech industry, and beyond.
Today, since computing resources can be easily obtained and
scaled through cloud services, data acquisition has become the
bottleneck for new tech startups.

For example, consider an emerging potential competitor
for Yelp. The biggest development challenge is not algorith-
mic or computational. Instead, it is obtaining and managing
high quality data at scale. The existence of a data market with
detailed local information about restaurants, attractions, etc.,
would eliminate this bottleneck entirely. In fact, data markets
such as Factual [3] are emerging to target exactly this need.

Ancther example highlighted in [11] and [32] is language
translation. Bmerging data markets such as Infochimps sell
access to data on word translation, word [requency, etc. across
languages. This access is a crucial tool for easing the transition
tech startups face when moving into different cultural markets.

A final example considers computer vision. When tech
startups need to develop computer vision tools in house,
a significant bottleneck (in terms of time and cost) is obtaining
labeled images with which to train new algorithms. Emerging
data markets have the potential to eliminate this bottleneck
too. For example, the emerging Visipedia project [33] (while
free for now) provides an example of the potential of such a
data market.

Thus, like in the case of cloud computing, ease of access
and scaling, combined with the cost efficiency that comes with
size, implies that cloud data markets have the potential to
eliminate one of the major bottlenecks for tech startups today
— data acquisition.

B. Operational Challenges jor Data Markefs

While data pricing within cloud data markets has received
increasing attention, the engineering of the system itself has
been ignored. The engineering of such a geo-distributed “data
cloud” is complex. In particular, the system must jointly make
both data purchasing decisions and data placement, replication
and delivery decisions, as described in the introduction.

Even considered independently, the task of optimizing data
placement/replication within a geo-distributed data analytics
systemn is challenging. Such systems aim to allow queries
on databases that are stored across data centers, as opposed
to traditional databases that are stored within a single data
center. Examples include Google Spanner [34], Mesa [35],
JetStream [36], Geode [15], and Iridium [18]. The aim in
designing a geo-distributed data analytics system is to dis-
tribute the computation needed to answer queries across data
centers; thus avoiding the need to transfer all the data to a
single data center to respond to queries. This distribution of
computation is crucial for minimizing bandwidth and latency
costs, but leads to considerable engineering challenges, e.g.,
handling replication constraints due for fault tolerance and
regulatory constraints on data placement due to data privacy.
See [15] and [18] for a longer discussion of these challenges
and for examples illustrating the benefit of distributed query
computation in geo-distributed data analytics systems.

895

Importantly, all previous work on geo-distributed analytics
systems assumes that the system already owns the data. Thus,
on top of the complexity in geo-distributed analytics systeins,
a geo-distributed cloud data market must balance the cost of
data purchasing with the impact on data placement/replication
costs as well as the decisions for data delivery. For example,
if clients who are interested in some data are located close to
data center 4, while the data provider is located close to data
center B (far from data center A), it may be worth it to place
that data in data center A rather than data center B. In practice,
the problem is more complex since clients are usually geo-
graphically distributed rather than centralized and one client
may require data from several different data providers.

Additional complexity is created by versioning the data,
i.e., the fact that clients have differing quality requirements for
the data requested. For example, if some clients are interested
in high quality data and others are interested in low quality
data, then it may be worth it to provide high quality level
data to some clients that only need low quality data (thus
incurring a higher price) because of the savings in bandwidth
and replication costs that result from being able to serve
multiple clients with the same data.

C. Related Work

Our work focuses on the joint design of data purchasing
and data placement in a geo-distributed cloud data market. As
such, it is related to recent work on data pricing, content dis-
tribution networks, and geo-distributed data analytics systems.
Further, the algorithmic problem at the core of our design is
the facility location problem, and so our work builds on that
literature. We discuss related work in these areas.

1) Datq Pricing: The design of data markets has attracted
increasing interest in recent years, especially in the data-
base community, see [37] for an overview. The current lit-
erature mainly focuses on query-based pricing mechanism
designs [10], [11], [13] and seldom considers the operating
cost of the market service providers (i.e., the data cloud).
There is also a growing body of work related to data pricing
with differentiated qualities [12], [13], [38], often motivated
by privacy.

Similarly, in [39] and [40] a data pricing scheme is pro-
posed for XML frees in which data prices vary with data
quality. Quality is measured in different ways, in the form
of accuracy [39], or completeness [40]. In these works, data
providers offer prices, but clients may propose a price less than
that of the data provider, after which the quality of the data will
be decreased. Their framework is based on uniform sampling
of rooted subirees in weighted XML documents. Additionally,
Muschalle ef al. [41] and Stahl and Vossen [42], [43] consider
issues related to pricing strategies and data quality, and allow
customers to suggest prices rather than fixed prices. They
consider the Name Your Own Price mechanism [42], which
is also used in [40]. We however allow data providers to set
the price, and also allow for clients to view available quality
levels and prices before making a query.

This work relates to data pricing on the data provider side
and is orthogonal to our discussion in this paper. We assume

896

that prices are known, and are instead concermed with data
purchasing and placement choices.

2) Geo-Distributed Data Analytics Systems: As cloud
servers are increasingly located in geo-distributed systems,
analysis and optimization of data stored in geographically
distributed data centers has received increasing attention [14],
[15], [18], [44], [45]. Bandwidth constraints [14], [15] as well
as latency [18] are the two main challenges for system design,
and a number of system designs have been proposed, e.g.,
see Section II-B for more discussion. Our work builds on the
model of geo-distributed data analytics systems in [15] and
[18], but is distinct from this literature because none of the
work on geo-distributed data analytics systems considers the
costs associated with purchasing data.

3) Content Distribution Networks: Content Distribution
Networks (CDNs) [46]-[49] were originally introduced to
improve quality of Internet services to meet the challenge of
rapid growth in the intensity of the content. CDNs replicate
content and data from source servers to many other servers
that are located closer to the end customers; therefore making
it possible to process requests for content locally, saving band-
width and reducing latency [50]-[59]. As such, the algorithmns
governing CDNs are similar in spirit to those underlying data
markets. However, the novelty of data cloud design stems from
the fact that it is not enough to replicate content on a network
of data centers so as to minimize the cost of delivering the
data from sources to customers, data clouds must also consider
the fact that there is not free access to the data — it must be
purchased from providers. This cost significantly changes the
algorithmic challenge and leads us to study a framework to
simultaneously decide (i) what data to purchase from which
providers and (ii) where to place the data on the network and
how to route the data to the clients in order to minimize its
operating costs.

4) Algorithms for Facility Location: Our data cloud cost
minimization problem can be viewed as a variant of the
uncapacitated facility location problem. Though such problems
have been widely studied, most of the results, especially
algorithms with constant approximation ratios, require the
assumption of metric cost parameters [20]-[22], which is
not the case in our problem. In contrast, for the non-metric
facility location problem the best known algorithm is a greedy
algorithm proposed in [19]. Beyond this algorithm, a variety
of heuristics for solving UPFL have been proposed. However,
(i) the usual UPFL heuristics do not take into account the
added structure of our problem, and (ii) the new heuristic
that we propose, Datum, shows that you can in fact sim-
plify the intermediary’s problem by separating purchasing and
placement decisions and still provide near-optimal solutions
in practical settings. The usual UPFL heuristics do not exhibit
such a decomposition. Datum may also be valuable more
broadly for facility location problems.

III. A GE0-DISTRIBUTED DATA CLOUD

This paper presents a design for a geo-distributed cloud
data market, which we refer to as a “data cloud.” This data
cloud serves as an intermediary between data providers, which
gather data and offer it for sale, and clienss, which interact with

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

Data Providers Data Cloud Clients

PurchCost (bulk): |== ===
ol ST .

@ ﬁ-\f)(im)z(l,p)

“l OperCost: f5,a(F)yp,a(l)
\

PurchChat (por-qusty):
Fp)zao(l. p)
N/

ExecCost: 00(l, p)Za (L,)
T o e v

-

N

-..._,.—\

Fig. 1. An overview of the interaction between data providers, the data
cloud, and clients. The dotted line encircling the data centers (DC) represents
the geo-distributed data cloud. Data providers and clients interact only with
the cloud. Data provider p sends data of quality g{{, p) to data center d, and
the corresponding operation cost is 3y g ($up ¢ (1), Similarly, data center d
sends data of quality ¢(I, ») to client ¢, and the comresponding execution cost
is ag (1, p)zg o({, p). In bulk data contracting, the comesponding purchas-
ing cost is f{I,p)z(l,p). In perquery data contracting, the corresponding
purchasing cost is f({, pyag (L, 2).

the data cloud through queries for particular subsets/qualities
of data. More concretely, the data cloud purchases data from
multiple data providers, aggregates it, cleans it, stores it (across
multiple geographically distributed data centers), and delivers
it (with low-latency) to clients in response to queries, while
aiming at minimizing the eperational cost constituted of both
bandwidth and data purchasing costs.

Our design builds on and extends the contributions of recent
papers — specifically [15] and [18] — that have focused on
building geo-distributed data analytic systems but assume the
data is already owned by the system and focus solely on the
interaction between a data cloud and its clients. Unfortunately,
as we highlight in Section IV, the inclusion of data providers
means that the data cloud’s goal of cost minimization can
be viewed as a non-metric uncapacitated facility location
problem, which is NP-hard. For ease of exposition, we keep
our model simple. We note that however, it can be easily
adapted to include various pricing mechanisms on the data
provider side, different query structures and execution plans
in the data cloud, as well as different types of contracts and
payment methods between data cloud and clients.

For reference, Figure 1 provides an overview of the inter-
action between these three parties as well as some basic
notations.

A. Modeling Data Providers

The interaction between the data cloud and data providers
is a key distinction between the setting we consider and
previous work on geo-distributed data analytics systems such
as [15] and [18]. We assume that each data provider offers
distinct data to the data cloud, and that the data cloud is
a price-taker, i.e., cannot impact the prices offered by data
providers. Thus, we can summarize the interaction of a data
provider with the data cloud through an exogencus menu of
data qualities and corresponding prices.

We interpret the quality of data as a general concept that can
be instantiated in multiple ways. For categorical data, quality

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

may represent the resolution of the information provided,
e.g., for geographical attributes the resolution may be {street
address, zip code, city, county, state}. For numerical data,
quality could take many forms, e.g., the numerical precision,
the statistical precision (e.g., the confidence of an estima-
tor), or the level of neise added to the data?

Concretely, we consider a setting where there are P
data providers selling different data, provider p € P =
{1,2,...,P}.?* Bach data provider offers a set of quality
levels, indexed by level [€ £ = {1,2,...,L,}, where L, is
the number of levels that data provider p offers. We use ¢(I,)
to denote the data quality level {, offered by data provider p.
Similarly, we use f{l,p) to denote the fee charged by data
provider p for data of quality level {. Importantly, the prices
vary across providers p since different providers have different
procurement costs for different qualities and different data.

The data purchasing contract between data providers and
data cloud may have a variety of different types. For example,
a data cloud may pay a data provider based on usage, i.e., per
query, or a data cloud may buy the data in bulk in advance.
In this paper, we discuss both per-query data contracting and
bulk data contracting. See Section III-C.1 for details.

B. Modeling Clients

Clients interact with the data cloud through queries, which
may require data (with varying quality levels) from multiple
data providers.

Concretely, we consider a setting where there are C' clients,
client c € ¢ = {1,2,...,C} A client ¢ sends a guery to
the data center, requesting particular data from multiple data
providers.* Denote the set of data providers required by the
request from client query ¢ by G(e¢). The client query also
specifies a minimum desired quality level, w.(p), for each
data provider p it requests, ie, ¥p € G(g). We assume
that the client is satisfied with data at a quality level higher
than or equal to the level requested.

More general models of queries are possible, e.g., by includ-
ing a DAG modeling the structure of the query and query exe-
cution planning (see [15] for details). For ease of exposition,
we do not include such detailed structure here, but it can be
added at the expense of more complicated notation.

Depending on the situation, the client may or may not
be expected to pay the data cloud for access. If the clients
are internal to the company running the data cloud, client
payments are unnecessary. However, in many situations the
client is expected to pay the data cloud for access to the
data. There are many different types of payment structures that
could be considered. Broadly, these fall into two categories: (i)
subscription-based (e.g., Azure DataMarket [61]) or (ii) per-
guery-based (e.g. Infochimps [4]).

In this paper, we do not focus on (or model) the design
of payment structure between the clients and the data cloud.

2A commen suggestion for guaranteeing privacy is to add Laplace noise to
data provided to data markets, see e.g., [13], [60]

3We distinguish data providers based on data, ie., one data provider sells
multiple data is treated as multiple data providers.

*We distinguish clients based on queries, ie. one client sends multiple
queries is treated as multiple clients.

397

Instead, we focus on the operational task of minimizing the
cost of the data cloud operation (i.e., bandwidth and data
purchasing costs). This focus is motivated by the fact that
minimizing the operation costs improves the profit of the data
cloud regardless of how clients are charged. Interested readers
can find analyses of the design of client pricing strategies
in [10], [11], and [13].

C. Modeling a Geo-Distributed Data Cloud

The role of the data cloud in this marketplace is as
an aggregator and intermediary. We model the data cloud
as a geographically distributed cloud consisting of) data
centers, data cemter 4 € T = {1,2,...,D}. Bach data
center aggregates data from geographically separate local data
providers, and data from data providers may be (and often
is) replicated across multiple data centers within the data
cloud.
Note that, even for the same data with the same quality,
data transfer from the data providers to the data cloud is
not a one time event due to the need of the data providers
to update the data over time. Here we consider a model
where clients are enterprises and clients and data cloud sign
on contracts in advance to decide on which data and what
data quality to be transferred to the clients. Thus we tar-
get the modeling and optimization of data cloud within a
fixed time horizon, given the assumption that queries from
clients are known beforehand or can be predicted accurately.
This assumption is consistent with [15] and [18] and reports
from other organizations [62], [63]. Online versions of the
problem are also of interest, but are not the focus of this
paper.
1) Modeling Costs: Our goal is to provide a design that
minimizes the operational costs of a data cloud. These costs
include both data purchasing and bandwidth costs. In order to
describe these costs, we use the following notation, which is
summarized in Figure 1.
xd,c(l:p) = {011} -Td,c(l:p) = 1 if and Ollly
if data of quality g(f,p), originating from data
provider p, is transferred from data center 4 to
client c.

aq(l,p): cost (including bandwidth and/or latency) to
transfer data of quality (I, p), originating from data
provider p, from data center d to client ¢

ypall) € {0,1}: yp 4(l) = 1 if and only if data of quality
g(l,p) is transferred from data provider p to data
center d.

Bp.a(l): cost (including bandwidth and/or latency) to transfer
data of quality ¢({,p) from data provider p to data
center d.

z(L,p) € {0,1}: 2(I,p) = 1 if and only if data of quality
g(l,p), originating from data provider p, is trans-
ferred to the data cloud.

5Thr0ugh0ut, subscript indices refer to data transfer “from, to” a location,
and parenthesized indices refer to data characteristics (e.g., quality, from
which data provider).

898

F(l, p): purchasing cost of data with quality ¢({, p), originat-
ing from data provider p.
Given the above notations, the costs of the data cloud can
be broken into three categories:

1) The operafion cost due to fransferring data of all
quality levels from data providers to data centers
is

P Ly D

OperCost = Z Z Z Bp a(Dyp,a(D). (1)

p=11=14d=1

2) The execufion cost due to transferring data of all quality
levels from data centers to clients is

cr Ly, D
ExecCost = Z Z ZZad,c(l,p)a:d,c(l,p). (2)

e=1 pedi(e) =1 d=1

3) The purchasing cost (PurchCost) due to buying data

from the data provider could result from a variety of
differing contract styles. In this paper we consider two
extreme options: per-guery and bulk data contracting.
These are the most commonly adopted strategies for data
purchasing today.
In per-guery data contracting, the data provider charges
the data cloud a fixed rate for each query that uses
the data provided by the data provider. So, if the same
data is used for two different queries, then the data
cloud pays the data provider twice. Given a per-query
fee f(i,p) for data q(l,p), the total purchasing cost
is

o Ly, D
PurchCost(query)= Z Z Z Z Fll,p)za (L, p).

=1 pelc) &1 d=1
(3)

In bulk data contracting, the data cloud purchases the
data in bulk and then can distribute it without owing
future payments to the data provider. Given a one-time
fee f(l,p) for data ¢(l,p), the total purchasing cost
is

Ly

P
PurchCost(bulk) = > "N~ f(I,p)z(l,p). @)

Pp=1xI=1

To keep the presentation of the paper simple, we focus on
the per-query data contracting model throughout the body of
the paper and discuss the bulk data contracting model (which
is simpler) in Appendix D.

2) Cost Optimization: Given the cost models described
above, we can now represent the goal of the data cloud via
the following integer linear program (ILP), where OperCost,
ExecCost, and PurchCost are as described in equations (1), (2)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

and (3), respectively.

min OperCost + ExecCost + PurchCost (5
Ry
subject to z4.(l,p) < wpa(l) Ve,p,l,d (5a)
L, D
ZZmd,c(Z,p) =1, Ye,pe Glo) {5b)
I=1d=1
L, D
DN zaell,palp) 2 welp), Yepe Gle) (50)
I=1d=1
Fdellsp) 20, Nepdid (5d)
yp,d(l) 2 O: Vpﬁ l?d’ (56)
Td,c (ﬂ, p)u yp,d(l) € {0: 1}3 VC; B, lu d (5f)

The constraints in this formulation warrant some discussion.
Constraint (5a) states that any data transferred to some client
must already have been transferred from its data provider to
the data cloud.® Constraint (5b) ensures that each client must
get the data it requested, and constraint (5¢) ensures that the
minimum quality requirement of each client must be satisfied.
The remaining constraints state that the decision variables are
binary and nonnegative.

An important observation about the formulation above is
that data purchasing/placement decisions are decoupled across
data providers, i.e., the data purchasing/placement decision
for data from one data provider does not impact the data
purchasing/placement decision for any other data providers.
Thus, we frequently drop the index p.

Note that there is a variety of practical issues that we
have not incorporated into the formulation in (5) in order to
minimize notational complexity, but which can be included
without affecting the results described in the following. A first
example is that a minimal level of data replication is often
desired for fault tolerance and disaster recovery reasons. This
can be added to (3) by additionally considering constraints
of the form EdD=1 up.all) = kz(l,p), where k denotes the
minimum required number of copies. Similarly, privacy con-
cerns often lead to regulatory constraints on data movement.
As a result, regulatory restrictions may prohibit some data
from being copied to certain data centers, thus constraining
data placement and replication. This can be included by
adding constraints of the form wz,4(I) = 0 to (5) where
p and d denote the corresponding data provider and data
center, respectively. Finally, in some cases it is desirable to
enforce SLA constraints on the latency of delivery to clients.
Such constraints can be added by including constraints of the
form > pceo S P eac, Pz, p) < o, where
denotes the SLA requirement of client c.

We refer the reader to [14], [15], and [18] for more dis-
cussions of these additional practical constraints. Each paper
includes a subset of these factors in the design of geo-
distributed data analytics systems, but does not model data
purchasing decisions.

For bulk data contracting model, one more constraint g, 4() <
z(l,p), Ve, I, p,d is required. This constraint states that any data placed in
the data cloud must be purchased by the data cloud.

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

IV. OPTIMAL DATA PURCHASING &
DATA PLACEMENT

Given the model of a geo-distributed data cloud described
in the previous section, the design task is now to provide
an algorithm for computing the optimal data purchasing and
data placement/replication decisions, i.e., to solve data cloud
cost minimization problem in (5). Unfortunately, this cost
minimization problem is an ILP, which are computationally
difficult in general.”

A classic NP-hard ILP is the uncapacitated facility location
problem (UFLP) [19]. In the uncapacitated facility location
problem, there is a set of I clients and J potential facilities.
Facility j € J costs f; to open and can serve clients ¢ € [
with cost ¢; ;. The task is to determine the set of facilities that
serves the clients with minimal cost.

Owr first result, stated below, highlights that cost minimiza-
tion for a geo-distributed data cloud can be reduced to the
uncapacitated facility location problem, and vice-versa. Thus,
the task of operating a data cloud can then be viewed as a
facility location problem, where opening a facility parallels
purchasing a specific quality level from a data provider and
placing it in a particular data center in the data cloud.

Theorem 1: The cost minimizafion problem for a geo-
distributed data cloud given in (5) is NP-hard.

The proof of Theorem 1 (given in Appendix A of the
online supplementary material) provides a reduction both to
and from the uncapacitated facility location problem. Impor-
tantly, the proof of Theorem 1 serves a dual purpose: it both
characterizes the hardness of the data cloud cost minimization
problem and highlights that algorithms for the facility location
problem can be applied in this context. Given the large
literature on facility location, this is important.

More specifically, the reduction leading to Theorem 1 high-
lights that the data cloud optimization problem is equivalent
to the non-mefric uncapacitated facility location problem —
every instance of any of the two problems can be written
as an instance of the other. While constant-factor polynomial
running time approximation algorithms are given for the mefric
uncapacitated facility location problem in [20]-[22], in the
more general non-mefric case the best known polynomial
running time algorithm achieves a log(C)-approximation via
a greedy algorithm with polynomial running time, where '
is the mumber of clients [23]. This is the best worst-case
guarantee possible (unless NP has slightly superpolynomial
time algorithms, as proven in [23]); however some promis-
ing heuristics have been proposed for the non-mefric case,
e.g., [26]-[31].

Nevertheless, even though our problem can, in general,
be viewed as the non-metric uncapacitated facility location,
it does have a structure in real-world situations that we can
exploit to develop practical algorithms.

In particular, in this section we begin with the case of a
data cloud made up of a single data center. We show that,

"Note that previous work on geo-distributed data analytics where data
providers and data purchasing were not considered already leads to an ILP
with limited structure. For example, Vulimiri ef al. [15] suggest only heuristic
algorithms with no analytic guarantees.

899

in this case, there is a structure that allows us to design an
algorithm with polynomial running time that gives an exact
solution (Section IV-A). Then, we move to the case of a data
clound made up of geo-distributed data centers and highlight
how to build on the algorithm for the single data center
case to provide an algorithm, Datum, for the general case
(Section IV-B). Importantly, Datum allows decomposition of
the management of data purchasing (operations outside of the
data cloud) and data placement {operations inside the data
cloud). This feature of Datum is crucial in practice because
it means that the algorithm allows a data cloud to manage
internal operations without factoring in data purchasing costs,
mimicking operations today. While we do not provide analytic
guarantees for Datum (as expected given the reduction to/from
the non-metric facility location problem), we show that the
heuristic performs well in practical settings using a case study
in Section V.

A. An Exact Solufion for a Single Data Center

We begin our analysis by focusing on the case of a single
data center, which interacts with multiple data providers and
multiple clients. The key observation is that, if the execution
costs associated with transferring different quality levels of
the same data are the same, ie., ¥i,a.({) = o, then the
execution cost becomes a constant which is independent of
the data purchasing and data placement decisions as shown
in (6).

c L & L c
ExecCost = ZZ@CIC(E) = Zac (Z xc(l)) — Zac
=1 e=1

c=1{=1 c=1
(6)

The assumption that the execution costs are the same across
quality levels is natural in many cases. For example, if quality
levels correspond to the level of noise added to numerical data,
then the size of the data sets will be the same. We adopt this
assumption in Section IV-A and extend to the general case
in Section [V-B.

This assumption allows the elimination of the execution cost
term from the objective. Additionally, we can simplify notation
by removing the index d for the data center. Thus, in per-query
data contracting, the data cloud optimization problem can be
simplified to (7). (We discuss the case of bulk data contracting
in Appendix D.)

L c I
minimize » ~ B(0u(l) + > > f(H)ae(l) @)
=1 e=11I=1
subject to z.{0) < y(l}, Vel
L
Z z(l) =1, Ve
I=w,
z(0) >0, Vel
y(l) >0,
Le (l)’ y(l) = {O: 1}: VC,J (73')

Note that constraint (7a) is a contraction of (5b) and (5¢),
and simply means that any client ¢ must be given exactly one

900

quality level above w,, the minimum required quality level.®
The remaining constraints follow directly from (3) by dropping
d since we only consider one data center case in (7). While
this problem is still an ILP, in this case there is a structure
that can be exploited to provide a polynomial time algorithm
that can find an exact solution. In particular, in Appendix B
we prove that the solution to (7) can be found by solving the
linear program (L.P) given in (8).

L L i
minimize Zﬁ(l)y(l) + Z Z Sef(Dx: ()
subject to - o

i) <ul), Vil
L

=1, Vi
=i

xi(l) >0, Vi,l
y(l) >0, Vi (8)

In (8), S; is the number of clients who require a minimum
quality level of 4, and x;({) = 1 represents clients with
minimum required quality level ¢ purchase at quality level [.

Note that this LP is not directly obtained by relaxing the
integer constraints in (7), but is obtained from relaxing the
integer constraints in a reformulation of (7) described in
Appendix B. The theorem below provides a tractable, exact
algorithm for cost minimization in a data cloud made up of
a single data center. (A proof is given in Appendix B of the
online supplementary material).

Theorem 2: There exists a binary optimal solufion fo the
linear relaxiation program in (8) which is an optimal solution
of the infeger program in (1) and con be jound in polynomial
firme.

In summary, the following gives a polynomial time algo-
rithm which yields the optimal solution of (7).

Step 1: Rewrite (7) in the form given by (4).

Step 2: Solve the linear relaxation of (4), i.e., (8). If it gives
an integral solution, this solution is an optimal solution of (7),
and the algorithm finishes. Otherwise, denote the fractional
solution of the previous step by {x"(),%"({}} and continue
to the next step.

Step 3: Find m; € {4,...,n} such that 377107 (1) < 1,
and > ;" y"(1) > 1. (See Appendix B for the existence of
{m;}) And express {x;()} as a function of {y({)} based
on (6). Substitute the expressions of {x; (1)} with {x({)} in (8)
to obtain an instance of (7). Solve the linear programming
problem (7) and find an optimal solution that is also an
extreme point of (7).7 This yields a binary optimal soluticn
of (7). Use transformation (6) to get a binary optimal solution
of (8), which can be reformulated as an optimal solution of (7)
from the definition of {x;({)}.

SWhile the two constraints are equivalent for an ILP, they lead to different
feasible sets when considering its LP-relaxation; in particular, facility location
algorithms based on LP-relaxations such as randomized rounding algorithms
need to use the contracted version of the constraints to preserve the O(log C')-
approximation ratio for non-metric facility location. It is equivalent to the
reformulation given in Appendix A and does not introduce infinite costs that
may lead to numerical errors.

This step can be finished in polynomial time [64].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

B. The Design of Datum

Unlike the data cloud cost minimization problem for a
single data center, the general data cloud cost minimiza-
tion is NP-hard. In this section, we build on the exact
algorithm for cost minimization in a data cloud made up
of a single data center (Section IV-A) to provide an algo-
rithm, Datum, for cost minimization in a geo-distributed data
cloud.

The idea underlying Datum is to, first, optimize data pur-
chasing decisions as if the data market was made up of a single
data center (given carefully designed “transformed” costs),
which can be done tractably as a result of Theorem 2. Then,
second, Datum optimizes data placement/freplication decisions
given the data purchasing decisions.

Before presenting Datum, we need to reformulate the gen-
eral cost minimization ILP in (5). Recall that (5) is separable
across providers, thus we can consider independent optimiza-
tions for each provider, and drop the index p throughout. Sec-
ond, we denote the set of all possible subsets of data centers,
Ty {{dl}, {dg}, g {dl, dg}j {dlj CEB}, i g } by V.IO Further,
define 3,(1) = > e, Ba(l), and @, (1) = minge,{ g},
whete v € V. Given this change, we define v, ({) = 1 if and
only if data with quality level [is placed in (and only in)
data centers d € v and z,.(I) = 1 if and only if data with
quality level [is transferred to client ¢ from some data center
d € v. These reformulations allow us to convert (5) to (9) as
following.

L v g L Vv
minimize > > Be@u@ + D3> (D ()

I=lsu=11 c=1l1l=1v=1
c LV
YN Dz D) ©
e=1]=1v=1
subject to 2, (1) <y (), Vel (9a)
L v
>, & m el =ty Ve (9b)
I=w,v=1
1%
Zyv(l) <1, Vi (9¢)
v=1
v
% il € 1y Vel (9d)
v=1
Fuetl)> U5 Niys! 9e)
y () >0, Vol (91
IU,C (E)Jyv (l) € {03 1}3 V’U, Cul (Qg)

Compared to (5), the main difference is that (9) has two
extra constraints (9¢) and (9d). Constraint (9c) ensures that
data can only be placed in at most one subset of data centers
across V. And constraint (9d) follows from constraint (9b).
Using this reformulation Datum can now be explained in two
steps.

ONote that, in practice, the number of data centers is usually small, e.g.,
10— 20 world-wide. Further, to avoid exponential explosion of V, the subsets
included in V can be limited to only have a constant number of data centers,
where the constant is determined by the maximal number of replicas to be
stored.

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

Step 1: Solve (IV-B) while treating the geo-distributed data
cloud as a single data center. Specifically, define Y'({) =
S L we() and X, (1) = r_, 2v.0(1). Note that, ¥'({) and
X, (1) are 0—1 variables from Constaint (9c) and (9d). Further,
ignore the middle term in the objective, i.e., the ExecCost.
Finally, for each quality level [, consider a “transformed”
cost B*([). We discuss how to define 3*({) below. This
leaves the “single data center” problem (IV-B). Crucially, this
formulation can be solved optimally in pelynomial time using
the results for the case of a data cloud made up of a single
data center (Section IV-A).

¢ L

minimize B QY 1) + > FOX(D)
=1 e=1 =1
subject to X, ({) < Y (I}, Vel

ZL: X.()=1, Ve

I=w,
Xo(l) 20, Ve,
Y() >0, Vi

X.0),Y () €{0,1}, Vo, (10)

The remaining issue is to define 3* ({). Note that the reason
for using transformed costs 5*({) instead of 3,(I) is that
the optimal 3,(I) cannot be known precisely without also
optimizing the data placement. Thus, in defining 5*({l) we
need to anticipate the execution costs that result from data
placement and replication given the purchase of data with
quality level {. This anticipation then allows a decomposition
of data purchasing and data placement decisions. Note that
the only inaccuracy in the heuristic comes from the mismatch
betweep B2 and min{B,() + >.congy avzc(l)} Whell’f:
C*(1) is the set of customers who buy at quality level { in
an optimal solution — if these match for the minimizer of (3)
then the heuristic is exact. Indeed, in order to minimize the
cost of locating quality levels to data centers, and allocating
clients to data centers and quality levels, the set of data centers
v where an optimal solution chooses to put quality level { has
to minimize the cost of data transfer in the set » and allocating
all clients who get data at quality level I, ie. O (]}, to this
set of data centers v.

Many choices are possible for the transformed costs 3* ({).
A conservative choice is 3*(I) = min3,({), which results

in a solution (with Step 2) whose bperCost + PurchCost
is a lower bound to the corresponding costs in the opti-
mal solution of (5)."' However, it is natural to think that
more aggressive estimates may be valuable. To evaluate this,
we have performed experiments in the setting of the case study
(see Section V) using the following parametric form G*(I) =

min{Bu(0) + 1 ¥ 5 (e #207Y, where py and po
v Vel mp =1t

are parameters. This form generalizes the conservative choice

by providing a weighting of a, (") based on the “distance” of

the quality deviation between !’ and the target quality level [,

The idea behind this is that a client is more likely to be

U gwever the ExecCost cannot be bounded, thus we cannot obtain a bound
for the total cost. The proof of this is simple and is not included in the paper
due to space limit.

901

served data with quality level close to the requested minimum
quality level of the client. Here we use the exponential decay
term e+ to capture the possibility of serving the data
with quality level { to a client with minimum quality level
{' < [. Interestingly, in the setting of our case study, the best
design is g7 = pe = 0, ie, the conservative estimate
£*(1) = min 3, (), and so we adopt this 5*({) in Datum.
Step 2: At the completion of Step 1 the solution (X,Y)
to (IV-B) determines which quality levels should be purchased
and which quality level should be delivered to each client.
What remains is to determine data placement and data replica-
tion levels. To accomplish this, we substitute (X, Y) into (9),
which yields (11).

5 Oz [ONNNN FEE O
minimize Z Z,ﬁv (D (D + ZZ ZO@,C([)%,C ()

I=1v=1 e=1]=1v=1
[CANN PR
Y D fDmec) (11
subject to z,, C(:)1 ‘ig:;;(:li Ve, (11a)
vV
Z Zazv,c(l) =1, Ve (11b)
I=w,v=1
dMwl) =Yl (11¢)
v‘:/1
Z Iv,c('z) =X, (l) (11d)
el = 0, Vgl (11e)
yo(l) 20, Vo,l (11f)
zoc(l), yu(l) € {0,1}, Vo,q,l (11g)

The key observation is that this is no longer a compu-
tationally hard ILP. In fact, the inclusion of (X,Y) means
that it can be solved in closed form. Specifically, let ()
denote the set of clients that purchase data with quality level I,
ie., C) = {e: X (I) = 1}. Then (12) gives the optimal
solution of (11). (A proofis given in Appendix C of the online
supplementary material.)

1, if V(@) =1 and

yoll) = v = argmin{8, {{) + > .coq) @)}
0, otherwise.
(12a)
Lma)—{%ﬂL e © G (12b)
’ 0, otherwise.

V. CASE STUDY

We now illustrate the performance of Datum using a
case study of a geo-distributed data cloud running in North
America. While the setting we use is synthetic, we attempt
to faithfully model realistic geography for data centers in
the data cloud, data providers, and clients. Our focus is on
quantifying the overall cost (including data purchasing and
bandwidth/latency costs) of Datum compared to two existing

902

designs for geo-distributed data analytics systems and the
optimal. To summarize, the highlights of our analysis are

1. Datum provides consistently lower cost (> 45% lower)
than existing designs for geo-distributed data analytics
systems.

2. Datum achieves near optimal total cost (within 1.6%) of
optimal.

3. Datum achieves reduction in total cost by significantly
lowering purchasing costs without sacrificing band-
width/latericy costs, which stay typically within 20-25%
of the minimal bandwidth/latency costs necessary for
delivery of the data to clients.

A. Experimental Setup

The following outlines the setting in which we demonstrate
the empirical performance of Datum.

1) Geo-Distributed Data Cloud: We consider a geograph-
ically distributed data cloud with 10 data centers located in
California, Washington, Oregon, Illinois, Georgia, Virginia,
Texas, Florida, North Carolina, and South Carolina. The
locations of the data centers in our experiments mimic those
in [65] and include the locations of Google’s data centers in
the United States.

2) Clients: Client locations are picked randomly among US
cities, weighted proportionally to city populations. We con-
sider 100 clients. BEach client requests data from a subset
of data providers, chosen ii.d. from a Uniform distribution.
Unless otherwise specified, the average number of providers
per client request is P/2. There are 8 quality levels. The
quality level requested from each chosen provider follows a
Zipf distribution with mean L, /2 and shape parameter 30.
P and L, are defined as in Section III-A and Section III-B.
We choose a Zipf distribution motivated by the fact that
popularity typically follows a heavy-tailed distribution [66].
Results are averaged over 20 random instances. We observe
that the results of the 20 instances for the same plot are
very close (within 5%), and thus do not show the confidence
intervals on the plots.

3) Data Providers: We consider 20 data providers. We place
data providers in the second and third largest cities within
a state containing a data center. This ensures that the data
providers are near by, but not right on top of, data center and
client locations.

4) Operation and Execufion Costs: 'To set operation and
execution costs, we compute the geographical distances
between data centers, clients and providers. The operation and
execution costs are proportional to the geographical distances,
such that the costs are effectively one dollar per gigameter.
This captures both the form of bandwidth costs adopted in [14]
and the form of latency costs adopted in [18].

5) Data Purchasing Costs: The per-query purchasing costs
are drawn i.i.d. from a Pareto distribution with mean 10 and
shape parameter 2 unless otherwise specified. We choose a
Pareto distribution motivated by the fact that incomes and
prices often follow heavy-tailed distributions [66]. Results
were averaged over 20 random instances. To study the sensitiv-
ity of Datum to the relative size of purchasing and bandwidth
costs, we vary the ratio of them between (0.01,100).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

6) Baselines: We compare the performance of Datum to the
following baselines. leftmargin = *

o OptCost computes the optimal solution to the data cloud
cost minimization problem by solving the integer linear
programming (3). Note that this requires solving an NP-
hard problem, and so is not feasible in practice. We
include it in order to benchmark the performance of
Datum.

s OptBand computes the optimal solution to the bandwidth
cost minimization problem. It is obtained by minimizing
only the operation cost and execution cost in the objec-
tive of (5). Bandwidth cost minimization is commonly
considered as a primary goal for cost minimization in
geo-distributed data analytics systems [15]. Due to com-
putational complexity, heuristics are usually applied to
minimize the bandwidth cost. Here, instead of implement-
ing a heuristic algorithms, we optimistically use OptBand
in order to lower bound the achievable performance. Note
that this also requires solving an NP-hard problem and
thus is not feasible in practice.

o NearestDC is a greedy heuristic for the total cost min-
imization problem that is often applied in practice. It
serves the clients exactly what they ask for by purchasing
the data and storing it at the data center closest to the data
provider.

B. Experimental Results

1) Quantifying Cost Reductions From Datum: Figure 2(a)
illustrates the costs savings Datum provides. Across levels of
query complexity (number of providers involved), Datum con-
sistently provides > 45% savings over OptBand and > 51%
savings compared to NearestDC. Further, Datum is within
1.6% of the optimal cost in all these cases. The improve-
ment of Datum compared to OptBand comes as a result of
optimizing purchasing decisions at the expense of increased
bandwidth. TImportantly, Figure 2(h) shows that the extra
bandwidth cost incurred is small, 20 — 25%. Thus, joint
optimization of data purchasing and data placement decisions
leads to significant reductions in total cost without adversely
impacting bandwidth costs.

2) The Form of Client Queries: To understand the sen-
sitivity of the cost reductions provided by Datum, we next
consider the impact of parameters related to client queries.
Figure 2 shows that the complexity of queries has little
impact on the cost reductions of Datum. Figure 3 studies two
other parameters: the heaviness of the tail of the per-query
purchasing fee and the number of quality levels offered.

Across all settings, Datum is within 1.6% of optimal;
however both of these parameters have a considerable impact
on the cost savings Datum provides over our baselines.
In particular, the lighter the tail of the prices of different
quality levels is, the less improvement can be achieved. This is
a result of more concentration of prices across quality levels
leaving less room for optimization. Similarly, fewer quality
levels provides less opportunity to optimize data purchasing
decisions. At the extreme, with only quality level available,
the opportunity to optimization data purchasing goes away and
OptBand and OptCost are equivalent.

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

17 ga T
é - Er et

1.5}] e
by W T S e
g A4
=13 N D =, -»-NedrastDC
§ --OptBand §° Dl
g & Datim 3 OpiGost

11 : o
= - ELi.:t\gr\:r\-l_\-l\-ﬂ--f‘l:ﬂ-:ﬂ

4 B 12 16 20 4 B 12 18 20
Number of Providers per Client Request Number of Providers per Client Request
() (b)

Fig. 2. Tlustration of the near-optimality of Datum as a function of the
complexity of client requests (ie., the average number of providers data
must be procured from in order to complete a client request) (a) Total cost.
(b Bandwidth cost.

P 1.7,
51' -8-NearestDC g
o -8-OptBand
o % e 1.5 o
o 1.5 - & Datum o P S T
2 \ ""-ﬂ--‘-..'...__“ £ ."..---ll - "_.1
£ .. L o y DC
i R Y g o CptBahd
o h
3 e | § // & Datum
214 B

15 2 25 3 2 3 4.5 6 7 8
Shape Para. Pareto per Quary Fee Function Number of Quality Levels

(@) (b}

Fig. 3. Tllustration of Datum’s sensitivity to query parameters. (a) varies
the heaviness of the tail in the distribution of purchasing fees. (b) varies the
number of quality levels available. Note that Figure 2 sets the shape parameter
of the Pareto governing purchasing fees to 2 and includes 8 quality levels.

3) Data Purchasing Vs. Bandwidth Costs: The most impor-
tant determinant of the magnitude of Datum’s cost savings
is the relative importance of data purchasing costs. In one
extreme, if data is free, then the data purchasing decisions
disappear and the problem is simply to do data placement
in a manner that minimizes bandwidth costs. In the other
extreme, if data purchasing costs dominate then data placement
is unimportant. In Figure 4 we only compare total costs among
OptCost, OptBand, and Datum. NearestDC is far worse (more
than 5 times worse than OptCost in some cases) and thus
is dropped from the plots. Figure 4(a) studies the impact
of the relative size of data purchasing and bandwidth costs.
When the x-axis is 0, the data purchasing and bandwidth
costs of the data center are balanced. Positive values mean
that bandwidth costs dominate and negative values mean that
data purchasing costs dominate. As expected, Datum’s cost
savings are most dramatic in regimes where data purchasing
costs dominate. Cost savings can be 54% in extreme settings.
Data purchasing costs are expected to dominate in the future
— for some systems this is already true today. However, it is
worth noting that, in settings where bandwidth costs domi-
nates, Datum can deviate from the optimal cost by 10 — 20%
in extreme circumstances, and can be outperformed by the
MinBand benchmark. Of course, Datum is not designed for
such settings given its prioritization of the minimization of
data purchasing costs.

4) Internal Vs. Exfernal Costs: An important aspect of the
design of Datum is the decomposition of data purchasing
decisions from data placement decisions. This provides a

903

OptBand
Datum

OptBand
patum

-

-

[
I8
- |

Tot. Gost/ Tol. OptCost

a.-ﬂ‘“ﬂ

- 1 3 0 1
log({= + B}/ 1) logle/(8 + £))

(@) (b)

Fig. 4. Iustration of the impact of bandwidth and purchasing fees on
Datum’s performance. NearestDC is excluded because its costs are off-scale.
{(a) varies the ratio of bandwidth costs (summarized by o + (3) to purchasing
costs (summarized by f). (b) varies the ratio of costs internal to the data
cloud () to costs external to the data cloud (3 4 f). Note that in Figure 2
the ratios are set to log(#) =—0.5 and log(ﬁ,a?) =-1

separation between the internal and external operations (and
costs) of Datum. Given this separation, it is important to
evaluate the sensitivity of Datum’s design to the relative size
of internal and external costs.

Since Datum prioritizes the optimization of external costs
(optimizing them in Step 1, see Section IV-B), it is natural to
expect that Datum performs best when these costs dominate.
This is indeed the case, as illustrated in Figure 4(b). Like
in Figure 4(a), when the x-axis is 0, the internal and external
costs are balanced. Positive values indicate the internal costs
dominate and negative values indicate the external costs dom-
inate. In settings where external costs dominate Datum can
provide 50% cost savings and be within a few percent of
the optimal. However, in cases when internal costs dominate
Datum can deviate from the optimal cost by 10 — 30%
in extreme circumstances, and can be outperformed by the
MinBand benchmark. Note that, as data purchasing costs grow
in importance, external costs will dominate, and so we can
expect that Datum will provide near optimal performance in
practical settings.

5) Scalability: Computing the optimal solution to the ILP
as our benchmark is a NP-hard problem and can quickly
become computationally intractable as the problemn size grows.
Thus, we limit the number of clients to 100 in our evaluation.
In contrast, Datum scales well as the problem size grows, since
it only requires solving a linear program with size that scales
linearly with the problem size.

VI. CONCLUDING REMARKS

This work sits at the intersection of two recent trends: the
emergence of online data marketplaces and the emergence of
geo-distributed data analytics systems. Both have received sig-
nificant attention in recent years across academia and industry,
changing the way data is bought and sold and changing how
companies like Facebook run queries across geo-distributed
databases [14], [13]. In this paper we study the engineering
challenges that come when online data marketplaces are run
on top of a geo-distributed data analytics infrastructure. Such
cloud data markets have the potential to be a significant
disruptor (as we highlight in Section II). However, there
are many unanswered economic and engineering questions

904

about their design. While there has been significant prior
work on economic questions [10], [11], [13], [32], [37], [67],
the engineering questions have received much less attention.

In this paper, we have presented the design of a geo-
distributed cloud data market: Datum. Datum jointly optimizes
data purchasing decisions with data placement decisions in
order to minimize the overall cost. While the overall cost
minimization problem is NP-hard (via a reduction to/from
the facility location problem), Datum provides near-optimal
performance (within 1.6% of optimal) in realistic settings via
a polynomial-time algorithm that is provably optimal in the
case of a data cloud running on a single data center. Addi-
tionally, Datum provides > 45% improvement over current
design proposals for geo-distributed data analytics systems.
Datum works by decomposing the total cost minimization
problem into subproblems that allow optimization of data
purchasing and data placement separately, which provides a
practical route for implementation in real systems. Further,
Datum provides a unified solution across systems using per-
query pricing or bulk pricing, systems with data replication
constraints and/or regulatory constraints on data placement,
and systems with SLA constraints on delivery.

This paper is meant to initiate the study of data pur-
chasing and data placement for data markets; thus, there
many directions are left for future exploration. For example,
Datum assumes clients are single entities with fixed locations
and which data they need is known a priori as a result of pre-
signed coniracts with data market providers. In practice, clients
can also be geo-distributed large companies with different data
requirements in different locations. Exploring the optimal data
purchasing and data placement with a mixed types of clients
is interesting and challenging. Further, in Datum, computing
resources used to process/clean raw data are assumed to be
negligible. As data markets provide services on top of the
raw data, e.g., analytics or learning services, the amount of
computational power needed will grow and joint optimization
of computational power and data purchasing and placement
will become a crucial challenge.

REFERENCES

[

—

(2015). Study Identifies Common Pain Points in Big Data Projects.
[Online]. Available: http:/Awww. bigdataexchange.com/tag/list-of-third-
party-data-providers/

QUk. [Online]. Available: http:/fwvwwglik.comfus/products/glik-data-
market

[3] €2015). Factual. [Online]. Available: https:/Awww . factual com/

[4] €2015). Infochimps. [Online]. Available: http:/Avww.infochimps.com/
[5] €2015). Xignite. [Online]. Available: http:/Avww.xignite.com/

[6] €2015). The IUPHAR/BFS Guide to Pharmacology. [Online]. Available:
http:/Avww.guidetopharmacology.org/

2

—

[7] Geogle BigQuery Public Dafasets. [Online]. Available:
https:/fcloud. google com/bigquery/public-data/
[8] Azure Public Datasets. [Online]. Available: https://docs.microsoft.

com/en-us/azurefsql-database/sql-database-public-data-sets

AWS Public Datasefs. [Online]. Available: https://aws.amazon.

com/public-datasets/

[10] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“Query-based data pricing,” in Frec. 31st Symp. Frinciples Database
Syst., 2012, pp. 167-178.

[11] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“Toward practical query pricing with QueryMarket,” in Proc. SIGMOD,
2013, pp. 613-624.

[0

—

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 2, APRIL 2018

[12] L. K. Heischer and Y.-H. Lyu, “Approximately optimal auctions for
selling privacy when costs are correlated with data,” in Proc. 13th ACM
Conf. Electron. Commerce, 2012, pp. 568-385.

[13] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private
data,” ACM Trans. Database Syst., vol. 60, no. 12, pp. 79-86, 2014.

[14] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
Proc. CIDR, 2015, pp. 1-9.

[15] A. Vulimiri, C. Curino, P. B. Godfrey, J. Padhye, and G. Varghese,
“Global analytics in the face of bandwidth and regulatory constraints,”
in Proc. NSDI, 2015, pp. 323-336.

[16] K. Hsieh ef al, “Gaia: Geo-distributed machine learning approaching
LAN speeds,” in Prec. NSDI, 2017, pp. 1-19.

[17] R. Viswanathan, G. Ananthanaravanan, and A. Akella, “CLARINET:
WAN-aware optimization for analytics queries,” in FPrec. OSDI, 2016,
pp. 1-16.

[18] Q. Pu ef al., “Low latency geo-distributed data analytics,” in Froe.
SIGCOMM, 2015, pp. 421-434.

[19] J. Krarup and P. M. Pruzan, “The simple plant location problem: Survey
and synthesis,” Fur J. Oper. Res., vol. 12, no. 1, pp. 36-81, Jan. 1983.

[20] M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys, “A constant-factor
approximation algerithm for the k-median problem (extended abstract),”
in Proc. STOC, 1999, pp. 1-10.

[21] S. Guha and S. Khuller, “Greedy strikes back: Improved facility location
algorithms,” J. Algerithms, vol. 31, no. 1, pp. 228-248, 1999,

[22] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and
Lagrangian relaxation,” J. ACM, vol. 48, no. 2, pp. 274-296, Mar. 2001.

[23] D. S. Hochbaum, “Heuristics for the fixed cost median problem,” Mafh.
Frogram., vol. 22, no. 1, pp. 148-162, Dec. 1982.

[24] V. V. Vazirani, Approximation Algerithms. Berlin, Germany: Springer,
2001.

[25] U. Feige, “A threshold of In n for approximating set cover,” J. ACM,
vol. 45, no. 4, pp. 634-652, Jul. 1998.

[26] D. Erlenkotter, “A dual-based procedure for uncapacitated facility loca-
tion,” Oper. Res., vol. 26, no. 6, pp. 992-1009, 1978.

[27] 1. E. Beasley, “Lagrangean heuristics for location problems,” Eur [
Oper. Res., vol. 65, no. 3, pp. 383-399, Mar. 1993.

[28] K. S. Al-Sultan and M. A. Al-Fawzan, “A tabu search approach to
the uncapacitated facility location problem,” Ann. Oper. Res., vol. 86,
pp. 91-103, Jan. 1999.

[29] M. Kirkel, “On the exact solution of large-scale simple plant location
problems,” Fur J. Oper. Res., vol. 39, no. 2, pp. 157-173, Mar. 1989.

[30] D. Tuzun and L. I. Burke, “A two-phase tabu search approach to the
location routing problem,” Eur. J. Oper. Res., vol. 116, no. 1, pp. 87-99,
Jul. 1999.

[31] D. Ghosh, “Neighborhood search heuristics for the uncapacitated facility
location problem,” Eur. J. Oper Res., vol. 150, no. 1, pp. 150-162,
Oct. 2003.

[32] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“QueryMarket demonstration: Pricing for online data markets” in Proc.
VLDB Endowment, 2012, pp. 1-4.

[33] (2015). Visipedia Project. [Ounline].
vision.caltech.edu/visipedia/

[34] 1. C. Corbett et al, “Spanner: Google’s globally-distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, Aug. 2013, Art. no. 8.

[35] A. Gupta ef al, “Mesa: Geo-replicated, near real-time, scalable data
warehousing,” in Proc. VLDB Endowment, 2014, pp. 1259-1270.

[36] A.Rabkin, M. Arve, S. Sen, V. S. Pai, and M. J. Freedman, “Aggregation
and degradation in JetStream: Streaming analytics in the wide area,” in
Proc. NSDI, 2014, pp. 275-288.

[37] M. Balazinska, B. Howe, and D. Suciu, “Data markets in the cloud:
An opportunity for the database community,” in Froe. VLDE Endow-
ment, 2011, pp. 1-4.

[38] R. Cummings, K. Ligett, A. Roth, Z. S. Wu, and J. Ziani, “Accuracy
for sale: Aggregating data with a variance constraint,” in Prec. ITCS,
2015, pp. 317-324.

[39] R. Tang, H. Wu, Z. Bao, S. Bressan, and P. Valduriez, “The price is
right” in Dafabase and Expert Systems Applications. DEXA (Lecture
Notes in Business Information Processing), vol. 8056, H. Decker,
L. Lhotskda, S. Link, I. Basl, and A. M. Tjoa, Eds. Berlin, Germany:
Springer, 2013,

[40] R. Tang, A. Amarilli, P. Senellart, and S. Bressan, “Get a sample for a
discount,” in Database and Expert Systems Applications. DEXA (Lecture
Notes in Computer Science), vol. 8644, H. Decker, L. Lhotskd, S. Link,
M. Spies, and R. R. Wagner, Eds. Cham, Switzerland: Springer, 2014.

Available: http:/Avww,

REN ef al.: DATUM: MANAGING DATA PURCHASING AND DATA PLACEMENT

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

A. Muschalle, F Stahl, A. Liser, and G. Vossen, “Pricing approaches
for data markets,” in Frabling RealTime Business Intelligence.
BIRTE (Lecture Notes in Business Information Processing), vol. 154,
M. Castellanos, U. Dayal, and E. A. Rundensteiner, Eds. Berlin,
Germany: Springer, 2012.

R. Stahl and G. Vossen, “Data quality scores for pricing on
data marketplaces,” in Infelligent Information and Daitabase
Systems. ACIDS (Lecture Notes in Computer Science), vol. 9621,
N. T. Nguyen, B. Trawiiiski, H. Fujita, and T. P. Hong, Eds. Bexlin,
Germany: Springer, 2016.

R. Stahl and G. Vossen, “Name your own price on data marketplaces,”
Informatica, vol. 28, no. 1, pp. 155-180, 2017.

C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-
distributed datacenters,” in Proc. 68 ACM Symp. Cloud Compuf., 2015,
pp. 111-124.

H. Zhang et al, “Live video analytics at scale with approximation
and delay-tolerance,” in Proc. I4th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Boston, MA, USA, 2017, pp. 377-392. [Online].
Available: https:/Avww.usenix.org/conference/nsdil 7/technical-sessions/
presentation/zhang

A. Vakali and G. Pallis, “Content delivery networks: status and trends,”
IEEE Internet Comput., vol. 7, no. 6, pp. 68-74, Nov. 2003, doi:
10.1109/MIC.2003.1250586.

G. Peng. (2004). “CDN: Content distribution network.” [Online].
Available: https:/farxiv.org/abs/cs/0411069

G. Pallis and A. Vakali, “Insight and perspectives for content delivery
networks,” Commun. ACM, vol. 49, no. 1, pp. 101-106, Jan. 2006,
doi: 10.1145/1107458.1107462.

A.-M. K. Pathan and R. Buyya, “A taxonomy and survey of content
delivery networks,” Grid Comput. Distrib. Syst. Lab., Univ. Melbourme,
Parkville, VIC, Australia, Tech. Rep. 4, 2007,

J. D. Guyton and M. FE Schwartz, “Locating nearby copies of repli-
cated Intemmet servers,” in Frec. Conf Appl, Technol, Archit, Fro-
tocols Comput. Compnun. (SIGCOMM), New York, NY, USA, 1995,
pp- 288-298, doi: 10.1145/217382.217463.

Z.-M. Fei, S. Bhattachagjee, E. W. Zegura, and M. H. Ammar,
“A novel server selection technique for improving the response time
of a replicated service,” in Prec. 17tk Annu. Joint Conf. IEEE Comput.
Commun. Soc. (INFQCOM), vol. 2. Mar./Apr. 1998, pp. 783-791.

S. Jamin ef @l, “On the placement of Intemet instrumentation,” in
Froe. IEEE Conf. Comput. Commun. 19th Annu. Joint Conf IEEE
Comput. Commun. Soc. (INFOCOM), vol. 1. Mar. 2000, pp. 295-304,
doi: 10.1109/INFCOM 2000.832199.

P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Nebw., vol. 8, no. 5, pp. 568-582, Oct. 2000, doi:
10.1109/90.879344.

M. Gritter and D. R. Cheriton, “An architecture for content routing
support in the Intemet” in FProc. 3rd Conf. USENIX Symp. Internet
Technol. Syst. (USITS), vol. 3. Berkeley, CA, USA, Mar. 2001, p. 4.
[Online]. Available: http://dlacm.org/citation.cfm?id=1251440.1251444
L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of
Web server replicas,” in Frec. 20th Annu. Joint Conf IEEE Comput.
Commun. Soc. (INFOCOM), vol. 3. Apr. 2001, pp. 1587-1596.

J. Kangasharju, I. Roberts, and K. W. Ross, “Object replication strategies
in content distribution networks,” Cemput. Commun., vol. 25, no. 4,
pp. 376-383, Mar. 2002, doi: 10.1016/50140-3664(01)00409-1.

C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale con-
tent distribution,” in Prec. IEEE 24th Annu. Jeint Conf IEEE Comput.
Commun. Soc., vol. 4. Mar. 2005, pp. 2235-2245, doi: 10.110%/INF-
COM.2005.1498511.

A. FHavel ef al, “FastRoute:
routing architecture for modemn CDNs,” in Froc.
Symp. Netw. Syst. Design Implement. (NSDI), Oakland, CA,
USA, 2015, pp. 381-394. [Online]. Available: https:/Awvww.
usenix.org/conference/msdi 15/technical sessions/presentation/flavel

F. Chen, R. K. Sitaraman, and M. Tomes, “End-user mapping: Next
generation request routing for content delivery,” in Proc. ACM Conf
Special Interest Group Date Commun. (SIGCOMM), New York, NY,
USA, 2015, pp. 167-181, doi: 10.1145/2785956.2787500.

C. Dwork, “Differential privacy,” in Encyelopedia of Cryptography and
Security, New York, NY, USA: Springer, 2011, pp. 338-340.

A scalable load-aware anycast
i2th USENIX

(2015). Microsoft Azure. [Online]. Available: hitps:/azure.
microsoft.com/en-us/

J. Wiener and N. Bronson. (2014). Facebook’s Top Open
Date Froblems. [Online]. Available: https://research.facebook.

com/blog/1522692927072019facebook-s-top-open-data-problems/

[63]

[64]

[65]

[66]

[67]

905

G. Lee, 1. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified logging
infrastructure for data analytics at Twitter,” in Proc. VLDB Endowment,
2012, pp. 1771-1780.

D. Bertsimas and J. N. Tsitsiklis, Introduction te Linear Optimization,
Vol. 6. Belmont, MA, USA: Athena Scientific, 1997.

(2012). Google Data Center FAQ. [Online]. Available:
http:/fwww.datacenterknowledge.com/farchives/2012/05/15/google-data-
center-faq/

M. E. I. Newman, “Power laws, Pareto distributions and Zipf’s law,”
Contemp. Phys., vol. 46, no. 5, pp. 323-351, 2005.

M. Balazinska, B. Howe, P. Koutrs, D. Suciu, and P. Upadhyaya,
“A discussion on pricing relational data,” in Search of Elegance in the
Theory and Fractice of Computafion, Berlin, Germany: Springer, 2013,
pp. 167-173.

Xiaoqi Ren received the B.S. degree in automation
from Tsinghua University, China. She is cumently
pursuing the PhD. degree with the Department
of Computer Science, California Institute of Tech-
nology. Her research focuses on optimization of
today’s large-scale data centers, including online
scheduling, energy usage and sustainability, and new
market mechanism designs (electricity market and
data market).

Palma London received the double B.S. degree in
electrical engineering and math from the Univer-
sity of Washington. She is currently pursuing the
Ph.D. degree with the Department of Computing
and Mathematical Sciences, California Institute of
Technology. Her research interests are generally
in convex optimization, distributed algorithms, and
machine leaming.

Juba Ziani received the B.S. degree from Supelec,
France, in 2011, and the M.S. degree in operations
research from Columbia University in 2012, He is
currently pursuing the Ph.D. degree in computer
science with the California Institute of Technology.
His primary focus is to study the new challenges
posed by the generation of larger and larger amounts
of data. In particular, he is interested in mechanism
design for exchanging and drawing useful conclu-
sions from data, in the privacy and faimess concerns
that come from utilizing private data, and in the

effect that data and signaling have on optimal mechanism design.

Adam Wierman is currently a Professor with
the Department of Computing and Mathematical
Sciences, California Institute of Technology. He has
coauthored papers that received best paper
awards from the ACM SIGMETRICS, the IEEE
INFOCOM, IFIP Performance, the IEEE Green
Computing Conference, the IEEE Power and
Energy Society General Meeting, and the ACM
GREENMETRICS. His research interests center
around resource allocation and scheduling decisions
in computer systems and services. He received

the 2011 ACM SIGMETRICS Rising Star Award and the 2014 IEEE
Communications Society William R. Bennett Prize.

