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Thinking Fast and Slow: Optimization Decomposition Across Timescales

Gautam Goel

Abstracti—Many real-world control systems, such as the
smart grid and human sensorimotor control systems, have
decentralized components that react quickly using local infor-
mation and centralized components that react slowly using a
more global view. This paper seeks to provide a theoretical
framework for how to design controllers that are decomposed
across timescales in this way. The framework is analogous to
how the network utility maximization framework uses opti-
mization decomposition to distribute a global control problem
across independent controllers, each of which solves a local
problem; except our goal is to decompose a global problem
temporally, extracting a timescale separation. Our results
highlight that decomposition of a multi-timescale controller
into a fast timescale, reactive controller and a slow timescale,
predictive controller can be near-optimal in a strong sense, In
particular, we exhibit such a design, named Multi-timescale
Reflexive Predictive Control (MRPC), which maintains a per-
timestep cost within a constant factor of the offline optimal in
an adversarial setting.

I. INTRODUCTION

Modern control systems nearly always operate at multiple
timescales. In the power grid, slow timescale economic
dispatch is used to determine which baseload generators will
supply power, while fast timescale frequency regulation is
used to correct any imbalance between demand and supply
that may arise [8]. In networking, software defined networks
use a slow timescale “control plane” controller to decide
where to send data packets, whereas fast timescale “data
plane” controllers are responsible for routing the actual
data [22]. Even human sensorimotor comtrol exhibits the
same phenomenon, with slow timescale behaviors such as
trajectory planning and fast timescale behaviors such as
involuntary reflexes [19], [31], [42], [46]. In fact, such
timescale separation has consequently been proposed for the
control of robotic systems [16], [46].

Thus, the design and analysis of multi-timescale control
systems has received considerable attention. However, the
design of control policies for multi-timescale control systems
typically does not address the joint problem of designing
control policies across timescales. Instead, controllers for
each timescale are designed independently. For example, in
the power grid, the slow timescale problem of economic
dispatch is usvally studied separately from the fast timescale
problem of frequency regulation. Similarly, in software de-
fined networking, the design of the control plane and data
plane controllers are usually considered separately.
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Across these and other applications timescale separation is
assumed rather than derived, and the resulting subproblems
are then studied independently, without guarantees about
how they operate jointly. As a result, there are significant
inefficiencies that are inherent to the resulting designs, even
if each timescale problem is solved optimally. For exam-
ple, recent work jointly designing economic dispatch and
frequency regulation in the the power grid highlights signif-
icant inefficiency in designs that treated the two timescales
independently [8].

In this paper, our goal is to develop a framework for de-
riving rather than assuming a timescale separation in global
optimization problems. In particular, we adapt the idea of
optimization decomposition from the domain of distributed
control into the domain of multi-timescale control.

There is a vast literature on optimization decomposition,
in fields as diverse as Internet congestion control [28], [44],
smart grid control [8], [14], robotics [7], [16] and beyond
[11]. The idea of this approach is to decompose a global
optimization problem into smaller localized subproblems,
each of which is solved by independent controllers. See [11]
for a survey. In a similar way, our goal in this paper is to
look for decompositions of a global optimization problem in
time, as opposed to in space.

However, this goal is made challenging by the tight
coupling between the timescales due to the underlying dy-
namics of the system under consideration. Typically, spatial
optimization decomposition is performed for static optimiza-
tions, but in multi-timescale control the dynamics of the
system cannot be ignored. Any slow timescale action will
impact the future state via the dynamics and hence must
be taken into account when designing the fast controller;
conversely, any fast timescale action impacts the state seen
by a slow controller and thus impacts its design as well.
This makes it unclear whether it is possible to achieve a
clean separation between controllers at different timescales.

A. Contributions of this paper

We make three main contributions in this paper.

Firstly, we introduce a simple but general model for
studying multi-timescale optimal control. We consider a
system subject to linear dynamics which is perturbed by
noise; we make absolutely no assumptions about the nature
of the noise, ie., it may be random or even adversarial.
This system can be controlled by two controllers, one of
which is a fraditional, “fast timescale” controller that can
react immediately to the noise, and another which is a novel,
“slow timescale” controller that is only able to react slowly,

1297



but which is empowered with access to more information
than the fast controller and is potentially cheaper to use.

Secondly, we prove that one cannot expect to be able to
design near-optimal controllers for multi-timescale control
problems without the use of predictions. Our proof technique
is based on a blackbox reduction to online convex optimiza-
tion, a problem that has been intensively studied within the
online algorithms community over the past decade. We use
this reduction to describe a novel algorithm for the classic,
fast timescale problem, a result which is of interest in its
own right.

Thirdly, we introduce a new multi-timescale control policy,
MRPC, and derive strong guarantees on its performance. In
particular, we prove that the per-step cost incurred by our
algorithm is at most a constant more than that incurred by
the offline optimal. The design of our policy is motivated by
a structural result about the offline optimal control action,
which highlights a strong decomposition between fast and
slow timescale controllers. Applying this idea to the design
of the online algorithm, we are able to achieve a clean
separation between timescales. Remarkably, our decompo-
sition results in a purely reflexive, “dumb” fast controller,
which performs no optimization or lookahead. Thus, all of
the computational burden is shifted onto the slow, “smart”
controller. This property of MRPC is desirable in many
applications since the slow controller is often centralized
and able to take a global view of the system, but the fast
controllers are decentralized and myopic, e.g., the power sys-
tems, networking, and robotics examples mentioned above.

B. Related literature

This paper broadly falls into the category of optimal
control [4], [47]. Typical methods for solving optimal con-
trol problem involve Pontryagin’s principle [39], [40] and
Hamilton-Jacobi-Bellman equation [4], [5]. With the rare
exception of Linear Quadratic (L.Q) systems, optimal control
problems are generally nonlinear and do not admit analytical
solutions. It is therefore necessary to solve optimal control
problem via numerical methods. However, most existing
numerical methods for optimal control (see [38] for a survey)
do not scale well, and decomposing large scale problems
into smaller subproblems is often required. There is large of
literature on decomposition in the field of convex optimiza-
tion and distributed computing. Common approaches include
primal-dual decomposition [27], [33], alternating direction
method of multipliers [6], [13] etc. These approaches have
been crucial in developing distributed algorithms in various
applications, e.g., communication networks [11], [28], [44],
power systems [15], [34], robotics [37], [45]. However,
these approaches are focused on spatial decomposition, and
our focus in this paper is on temporal decomposition into
independent controllers at different timescales.

The most related prior work is [30], which proposes an
architectural decomposition of the optimal control problem
into two layers: a top level trajectory planning problem
that generates reference signals and a low level tracking
problem that simply follows the reference points. How-

ever [30] does not provide optimality guarantees for the
decomposition. Another related recent paper is [8], which
focuses on temporal decomposition in the context of power
systems. The work provides an optimality condition for time-
scale decomposition of optimal control in power systems.
But, note that [8] considers a problem without dynamics.
In this paper, we propose timescale decomposition for a
general optimal control problem with linear dynamics and
we provide provable performance guarantees.

II. MODEL

Our goal in this paper is to study the design of controllers
for systems that operate at multiple timescales. To this end,
we focus on a simple but general optimal control problem.

The multi-timescale problem we consider builds on the
following optimal control problem, which operates at a single
timescale:

T
min > ealme) + cr(f2) (1)
E t=1
st. x;= A.’L't_]_ +Bfft+wt
g = 0

Here x, € R™ is the state variable, f, € R™ is the control
action and w, <= R™ is the disturbance. In our technical
results, we assume that the control matrix BY is invertible;
considering the non-invertible case is an interesting direction
for future work. The cost functions ¢, {-),cs(:) are usually
assumed to be non-negative and convex. The special case
when each noise increment w, is an i.i.d. Gaussian random
variable and . (-}, ez () are positive definite quadratic forms
represents the Linear Quadratic Regulator (LQR) framework
[12], [23], [43].

To extend (1) to a multi-timescale control problems, we
introduce a “slow” controller. The slow controller reacts
much less quickly to noise than the fast controller; however
there are two potential benefits afforded by the existence of
the slow controller.

First, in many situations the slow controller is centralized,
and hence can use global information to make make better
decisions than the decentralized, localized fast controllers. In
our context, we model this by allowing the slow controller
access to predictions of future noise increments. An example
where the slow controller has this benefit is software defined
networking, where the centralized controller has access to
much more information than the local distributed controllers
that provide congestion control via simple reactive policies
[22]. Similarly, this type of interaction between a “smart”
slow controller and a “reflexive” fast controller is common
in robotics [16].

Second, in many cases the slow controller is much cheaper
to operate than the fast controller. Thus, making use of the
slow controller is crucial for minimizing cost. For example,
in the smart grid cheap “baseload” generators are used to
supply the bulk of demand, whereas fast and relatively
expensive “peaker” generators are used to quickly correct
any imbalances between supply and demand that may arise
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[29], [35], [41], [8]. A similar distinction happens between
economic dispatch and frequency regulation. In fact, a mo-
tivation for this paper comes from recent work in [8] that
highlights a timescale separation between these controllers.
Adding a slow controller to the optimal control problem
in (1) gives:
T

min Y eo(®e) +op(fo) +colse) 2

ahs

st. z;,= Az, 1+ B fi+ B®sy + wy
x5 =0

Vi g0, k2%, ...

Sz = 5¢—1

Here s, denoctes the control action of a slow controller. The
constraint on s; means that the slow controller cannot react
quickly, i.e., it can only change its action every k timesteps.

This formulation leads to a intrinsic notion of timescales:
there is a fust timescale consisting of the timesteps {1,2,...}
in which the fast controller reacts, and a slow timescale
consisting of the timesteps {1,&+ 1,25+ 1,...} at which
the slow controller reacts. Clearly one could continue to add
other timescales to this formulaticn as well, but we focus cn
the two timescale case for clarity.

The focus of this paper is the design of a set of fast
timescale and slow timescale controllers that operate inde-
pendently but, together, approximate the optimal value of (2)
without fully knowing the w,’s in advance. Motivated by the
applications mentioned above, our goal is to develop designs
where the slow controller is sophisticated and predictive, but
the fast controller is simple and reactive.

Ome of the key differences of our approach compared to
classical control theory lies in how we measure performance.
Typical results in the control theory literature focus on set-
tings with distributional assumptions about the noise vector
w (for example, i.i.d. Gaussian), and seek to minimize the
expected cost with respect to this distribution. In contrast, we
use the approach of the online algorithms community and
analyze the worst-case performance without distributional
assumptions via the competirive ratio [17], [21].

Formally, the competitive ratio is defined as follows. Let

OPT denote the optimal value of (2) and ALG the cost
incurred by a specific algorithm. Then, the competitive ratio
is defined as
ALG
OPT"
This quantity measures the worst-case performance of an
algorithm relative to the offline optimal and, in particular,
makes no distributional assumptions on w. An algorithm is
said to be constant compefitive if its competitive ratio is
bounded by a finite constant, independent of 7'

We show in Section IIT that it is impossible to design
constant competitive algorithms for (2) without using pre-
dictions of the future w,. For this reason, our results focus
on settings where algorithms have access to a limited number
of noisy predictions of future w,. In particular, we assume
that, at the start of each slow timescale interval, we have

CR(ALG) = sup

estimates 0, of the true noise increments over that slow
timescale interval. Importantly, we do not make distributional
assumptions about the predictions or prediction errors.

Finally, one note on notation: throughout this paper, we
follow the standard convention that vector valued variables
are lowercase and matrix valued values are uppercase. When
we write || 4|,, we mean the matrix norm of 4 induced by
the vector norm || - [|o. Also, we follow the convention of
the algorithms community and often abuse notation to let an
algorithm’s name denote the cost it incurs.

III. HARDNESS OF MULTI-TIMESCALE CONTROL

Before turming to the design and analysis of an online
algorithm for multi-timescale control, it is natural to ask
what performance we should expect to be able to attain. In
particular, should we expect to be able to find a constant
competitive algorithm?

We show in this section that the answer is “no” in general,
but that it becomes “yes” when the algorithm has access to
a limited number of noisy predictions. This observation is
crucial to the design and analysis of the algorithm we present
in Section IV.

Interestingly, we cannot even expect to be able to de-
sign a constant competitive algorithm for the fast control
subproblem of (2) given by (1). To show this, we prove
below that (1) can be reformulated as an online convex
optimization problem, which is a classical online algorithms
problem that has received considerable attention in the last
decade [1], [9], [10], [25], [26]. Importantly, competitive
algorithms for online convex optimization algorithms do not
exist in general, unless the algorithms are given access to
noisy predictions about the future.

Formally, the equivalence to online convex optimization is
stated as follows.

Proposition 1. Suppose both c;(-) and cg(-) are a norm,
| - |, and suppese Bf = B*. Then (1) is equivalent to (2)
and, further, (1) can be reformulated as

T
min}eru) + [(B) M — Aven), @)
=1

where yo = 0 and c¢(yz) = cx(ys + vy) for some ve.

Proof. First, we need to argue that the multi-timescale prob-
lem (2) is equivalent to the fast timescale problem in (1)
under the assumptions of the proposition. Suppose f* is an
optimal control action for (1). Then the pair (f*,0) is an
optimal pair of fast and slow control actions for (2), since it
is feasible and achieves the same cost. Conversely, suppose
(f*,s*) is an optimal pair of control actions for (2). Then
the action f* + s* is an optimal action for (1), by the same
reasoning.

The second part of the proposition is to prove the reformu-
lation of (1) as (3). To do this, we can iterate the dynamics
and apply a change of variables. Specifically, iterating the
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dynamics in (1) backwards in time, we see that

t t

Fp = ZAtiiBffi <f ZAtiiwi.

i=1 =1
Next, infroduce the change of variables

I3 I3

yo= > ATIBI fug =Y AT,

i=1 =1

This vields (3). Notice that, given the solution to (3), we
can construct the corresponding solution to (1) by setting

fo= (Bf)fl(% — Ay _1). ]

Problem (3) is a specific kind of online convex opti-
mization problem known as a “Smoothed” Online Convex
Optimization (SOCQ). Specifically, convex cost functions
ci(ye) = ex(ye + ) amrive online and the goal of the
online algorithm is to minimize the cost paid by choosing the
sequence of actions {y:}. The term ||(B¥) ™ (v — A1)l
acts as a regularizer, penalizing choices that differ from the
previous choice ;1 under the dynamics of A. Proposition
1 provides a reduction from SOCO to (2): if we had a
competitive online algorithm for (2), we would have one for
SOCO as well.

SOCO problems have been intensely studied in the past
decade due to their widespread applications in fields as
diverse as motion tracking [24], power management for large
data centers [20], geographical load-balancing for Internet
scale applications [25] [36], and video streaming [32], [20].
In general, while there exist constant competitive algorithms
for one dimensional [3], [25] and two dimensional [1]
SOCO problems, it is unknown whether there exist constant
competitive algorithms for higher dimensions. Further, it has
been shown that SOCO problems are equivalent to Convex
Body Chasing [18] in the sense that a competitive algorithm
for one implies the existence of a competitive algorithm
for the other [1]. This highlights the difficulty of obtaining
constant competitive algorithms since Convex Body Chasing
has been open for several decades.

Due to the difficulty of SOCO-style problems, much
of the work on these problems has focused on settings
where the online algorithms have access to (possibly noisy)
predictions about future cost functions. For example, given
perfect lookahead in a prediction window of length w, there
exist algorithms whose competitive ratio is 1 + O(1/w),
independent of dimension [25]. Similar positive results are
possible in cases with noisy predictions, e.g., [9], [10].

Given Proposition 1, the positive results described above
can vield effective algorithms for the single timescale, opti-
mal control with linear dynamics in (1). To highlight this, we
focus on a particularly promising algorithm from the SOCO
literature called Averaging Fixed Horizon Control (AFHC).

AFHC was introduced in [25] and has since been studied
in [2], [9], [10]. AFHC is parameterized by the size of
the prediction window it uses, which we denote by w. It
works by averaging together the control actions of w + 1
independent Fixed Horizon Control (FHC) algorithms. The

k-th FHC algorithm (5 = 1...w+ 1) starts at timestep k by
greedily choosing the set of control actions that minimize the
cost over time [k, k+w], and then repeatedly chooses control
actions to minimize cost over each consecutive length w1
window. The control action output by AFHC is the average
of the control actions of all w -+ 1 FHC algorithms.

In general, [25] proves that AFHC is 1 4+ O(1/w) com-
petitive for SOCO problems with costs bounded below by
a positive constant «y. In the setting of this paper, we can
prove a more precise result that highlights the impact of the
structure of the dynamics.

Theorem 1. Suppose each c; is m-strongly convex and
bounded below by a positive constant ¢y, Then the com-
petitive ratio of AFHC for (3) is at most

I(BF)~LA|
2miw+ Do

and in particidar is 1+ O(1/w).

This result highlights the ability of AFHC to perform well
in a classic control problem, even in the adversarial setting.
Further, the bound in the theorem highlights the impact of
the structure of the dynamics on the performance of the
algorithm. In general, as w tends to infinity the competitive
ratio of AFHC will tend to one. This is unsurprising, since
the algorithm will have access to more and more information
about the future and hence will be able to make better
decisions. However, Theorem 1 shows that even when w is
small, AFHC can attain near optimal performance provided
[(BfYy~=tA| is sufficiently small. The matrix A can be
interpreted as the gain of the system dynamics, and the
matrix B as the gain of the fast controller; hence the
expression ||(BY) 1Al is intuitively a measure of the fast
controllers ability to counteract the gain of the system.

Proof. Let p = {kk + w,k + 2w,...} be the set of
times when the &-th FHC algorithm recomputes its control
trajectory. Let y* denote the optimal frajectory for (3) and
* denote the choice of the k-th FHC algorithm. We define
a function which measures the total cost incurred by a
trajectory over [s, s 4+ w], starting from the point ¢* ,:

s+w s+w
Gosrul®) = alue) + > (B o — Ages)|
t=s t=s+1

+ 1B ys — Ayl

Notice that gs sy is itself m-strongly convex; it is the sum
of the me-strongly convex cost functions and the convex
switching costs. Hence for all s we have

9s, 54w (yk) — Os,5t+w (y*) Svgs,s—i-w (yk)T (yk - y*)
s+w

e
=5 ol - P
t=s

Notice that for all s = {2, the gradient term vanishes, since
by definition the k-th FHC algorithm chooses a trajectory
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which minimizes g, sy., at each s € (. Letting d; = Hyf =
yy|| and summing up over all s € y, gives:

s+w
e
E gs,s{»w(yk)* E gS,S‘FW(y*) Si? Z : : :df
s€Q = 9€Q; t=s

The first sum on the left hand side is the total cost incurred by
the k-th FHC algorithm, which we denote by FHC*®. Using
the definition of g, .y and the reverse triangle inequality,
we can bound the second term:

Y Gesruly) SOPT+[[(B)7HA Y dys
s€0, sEfg
from which we obtain
FHC* —0PT < ¥ (BN Allds_1 — %di,l
sEN:
Here we used the fact that —%df is always nonpositive,

so throwing away some of these terms can only increase
the righthand side. Maximizing the summands in d,_;, we

obtain DIY-14]2
FHC* —OPT < Z u
sEN 2m

We average all w + 1 FHC algorithms and apply Jensen’s
Inequality to obtain

1 iMWWMQ

w1 ot 2m
Finally we divide by O PT' and use the bound O PT' > T
to get a bound on the competitive ratio:
I(BY) A2
2m(w+ licg
which establishes the 1 + O(1/w) claim. O

AFHC — OPT <

1+

IV. ARCHITECTURAL DECOMPOSITION FOR
MULTI-TIMESCALE CONTROL

We now tum our attention to the joint multi-timescale
control problem in (2), and focus on the co-design of fast and
slow controllers. Recall that, while the slow controller cannot
act as frequently, there are two benefits it usually provides:
(i) it may have more information and computational power
than the fast controller, e.g., in software defined networking
and robotics, and (ii) it may be cheaper to operate than
the fast controller, e.g., when scheduling generation in the
smart grid. To capture these benefits of a slow controller, we
consider a setting where the slow controller has access to
noisy predictions but the fast controller does not. We also
specifically highlight the case where the slow controller is
cheaper to operate, though our results apply more generally.

Our main result in this section provides a performance
bound for a new, near-optimal algorithm — Multi-fimescale
Reflexive Predictive Conirol (MRPC) — that consists of a
simple, reflexive fast timescale controller and a predictive
slow timescale confroller. For concreteness and ease of
presentation we focus on the case where the cost functions
o arey i (2) are norms |- [ls, | - [, ] - -

A. An overview of MRPC

Informally, MRPC works as follows. Over each slow
timescale slot, the slow controller greedily plays the slow
control action which minimizes the expected cost using the
predictions @y, under the assumption that the fast controller
will keep the state at zero. As the true noise increments
wy are revealed one by one, the fast controller myopically
corrects any noise so as to keep the state at zero.

Formally, let f and & denote the fast and slow control
actions of MRPC. Then, the operation of each is as follows:

r+k—1
b =min [Kls. s+ > BB +d)ly| @)
=7

fo=—BH B, +we)

Notice that the fast controller is very simple; it uses no
predictions and performs no optimization. All of the predic-
tion and optimization is shifted onto the slow controller. This
is consistent with how the two controllers are used in many
applications, where the slow controller is often centralized,
with access to global information, but the fast controllers are
usually decentralized, localized, and computationally limited.
For example, in the smart grid a slow timescale global
optimization problem is solved {(economic dispatch) and then
localized fast timescale controllers myopically correct any
deviations that may arise (frequency regulation).

B. Performance of MRPC

Our main technical result is a performance bound for
MRPC. In particular, the following result shows that, despite
the difficulty of the multi-timescale control problem, MRPC
maintains a per-stage cost within a constant factor of the
offline optimal, even when adversarial inputs are considered.

t=r...r+k-—1 (5

Theorem 2. Assume the cost functions c,,c,,cy in (2) are
norms || - ||z, || - |lss || - |p- Then MRPC has an average per-
stage cost within a constant factor of optimal. Specifically,

-1
@Smm (1+ [ All.) (B Hj1 orrT
T c T

+2/[(BH) Y| E(@, w)

where ¢ is a constant such that |v||» > c||v| s for all v and
B, w) is the sample path average prediction ervor:

T
. 1 .
Bl w) = = > e — wil s
=1

Before moving to the proof, let us make a few remarks
about Theorem 2. To begin, recall that even the single
timescale problem could not be solved optimally by a fast
timescale controller, and so the performance bound in The-
orem 2 is surprisingly strong, especially given that the fast
time scale controller in MRPC does not use any predictions
— it is simply reflexive.

To get intuition for the bound itself, let us first look at the
second term. The second term in the bound corresponds to
the inefficiency due to noisy predictions. In particular, if we
assume perfect lookahead (i.e wy = w; for all ), then the
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second term disappears. Thus, we see that prediction error
has only an additive effect. It is important to realize that the
analysis makes no modeling assumptions on the form of the
prediction error. The error can be adversarial or stochastic
and the result still holds.

The first term bounds the per-step cost incurred by our
algorithm relative to the per-step cost incurred by the offline
optimal. To get intuition for it, consider the case where
control costs dominate the state costs. Specifically, consider
the case where ¢ > 2|(Bf)~'|, and there are no errors
in predictions. In this case, we have MRPC = OPT. It
is worth highlighting this result in words: when state cosis
dominate control costs and prediciion ervors are small, our
distributed algorithm achieves the optimal value of (2). This
is remarkable, since the offline optimal has a formidable
advantage compared to our online algorithm - it knows the
full noise vector w in advance, whereas during each slow
timescale interval our online algorithm only has access to
predictions about the noise in that interval.

Finally, it is important to note that Theorem 2 is incompa-
rable to Theorem 1 since Theorem 2 compares to the offline
optimal of the multi-timescale problem while Theorem 1
compares to the offline optimal of a single stage problem. In
settings where the slow timescale controller is much cheaper
than the fast timescale controller the cost difference between
these problems can be arbitrarily large.

We now move to the proof of Theorem 2. The proof is
technical, but also provide crucial intuition into the form of
MRPC. In particular, the proof includes a lower bound on the
offline optimal which motivates the decomposition between
the fast and slow timescales used in the design of MRPC. It
is this bound that highlights the ability to obtain timescale
separation via the optimization decomposition in MRPC.

C. Proof of Theorem 2

Recall, that we are considering the case where the convex
cost functions in (2) are norms. Further, it is convenient to
absorb the constraint on the slow controller directly into the
objective and rewrite (2) as

r4k—1
min > lkllsells+ > llmelle + 11l {6)
e res t=r
st. z;=Azr, 1+ B fi + Bs; + wy
Ip = 0

Here § = {1,k +1,2k+1,...} is the set of slow timescale
steps, i.e., when the slow controller can change its control
action.

The first step in the analysis is to establish a lower bound
on the cost incurred by the offline optimal. As mentioned
above, this lower bound highlights the decomposition be-
tween fast and slow used in the design of MRPC.

To prove the lower bound we make use of the following
technical lemma.

Lemma 1. Let v € R™, and let M = BP**™ be an invertble

matrix. Let || - |a,] - ||o Be any two norms on R”, and let

c be a constant such that |v|a > |||y for all v. For all
e, 3 > 0 we have

&cC

mine v+ Mzl + 8|zl > min (7,
@ [ M=,

6) 1Mol

Proof. We have:
mminaH'u + Mzl + Blzls
> min acHM(sc + M)l + Bzl

>m1n ||z + M 'UHbJrﬁHIHb
HM 1H
oc
in ———| llzlls — | M o ls| + Bl
[PL% A

The first inequality follows from the equivalence of norms
in finite dimensional linear spaces. The second inequality
is because [yl — M~ My| < [M~[|My], hence
|My| = WH@;H for all y. The last inequality is just
the reverse triangle inequality.

The last optimization is an optimization over the scalar
variable ||z||; and it is easy to see that it is lower bounded

by
oo
min | ———, 8 M1y b
(|M—1| >' |

Now we are ready to prove the lower bound.

Lemma 2. Letting O PT' denote the optimal solution for (6),
we have:

r4+k—1
QRT =}, {kism +C 3 BB +wt>|f}

res t=r

where

¢ = min ((1 AT |(Bf>—1|’1>

and c is a constant such that ||v||, > c|jv||y for all v.

Proof. Suppose Z, f , & are some arbitrary feasible choices of
the decision variables in (6), which incur the associated cost
C'OST. We have

r+k—1

COST =3 > lalls+ I Felly + 18- s

reS t=r
r+k—1

:Z Z | Az 1 + ijﬁt + Bsn + wyll.

resS t=r

+ [ Fell £ + 13¢5
r+k—1

>3 3 (1B 4 B vl — Al s
reS t=r
el + el

k-1
— [|A.COST +> " > | B fo+ B*S + wes

res t=r

+ (1 1AL (1l + 15 )

1296



from which we obtain the lower bound on COST' given by

k-1
> [kls%lﬁ > BIBTf + B,
t=r

redS

+ welle + Iftlf]

where § = Wﬂlfﬂ—' Since £, f,& were arbitrary feasible
values, and in particular, could be taken to be the optimal
values for (6), we obtain a lower bound on OPT given by

r+k—1

mmz [kISTls + > BB ft Bise + welle + Iftlf]
t=r

Exammmg the structure of this expression, we observe

that once each s, is fixed, the resulting optimization in

f resembles that in Lemma 1, which leads directly to the

theorem. |

The lower bound has the following interpretation. Suppose
the state is set at zero. After the slow controller has set its
action to be s,, the fast control action which corrects the
remaining deviation from zero is (B¥)~1(B%s, + w,), and
our lower bound is the sum of the resulting costs (up to
the constant C'). Notice that the fast controller is exiremely
simple - all it does is continually correct any residual noise
so that the state is always kept at zero. This is a crucial
observation: the forin of the lower bound highlights a clear
separation berween a “swmart”, slow controller that does
the planning and a “dumb” reactive fast controller. This
separation is then what we mimic in the design of MRPC,
and also guides our analysis of the algorithm, as is evident
in the following lemma, which provides an upper bound on
the cost of MRPC.,

Lemma 3.
r4k—1
MRPC <miny [k|sf|s + > BB, +wt)|f]
resS t=»
+2(1(B7)” HZHwt — wells

Proof. Plugging our control actions into the cost function
and applying the Triangle Inequality, we have

r4+k—1
> I(Bf)l(Bsf’?wwt)lf]

t=r

MRPC =) {k|§r|s +

res

b3

1"65

+Z\I(Bf)’ (e

Now we use the definition of 8, to obtain the upper bound

r+Ek—1
mlnz {k|sr| + Z

res

r+k—1

kI3l + Z (85

B, + @t)|f]

—wy)y

N 5r+wt)|f1

HIBS) Z [ede — el 7
t=1

Notice that the minimization in s depends on the estimates
wy, not the true values wy. Applying the Triangle Inequality

once again allows us to produce an upper bound where the
minimization is over the true values:

r4+k—1
mlnz {k|sr| + Z

res

HB sy 4 wi) s

+2[(BH) 7 Z i — el 7

=1

This proves the claim. |

The combination of Lemmas (2) and (3) immediately yield
Theorem 2.

V. CONCLUDING REMARKS

In this paper we present a simple and general model of
multi-timescale control problems. We prove a hardness result
using a blackbox reduction to online convex optimization,
and show that predictions are necessary to construct a
constant competitive algorithm. Further, we propose a simple
control policy with a clean separation between timescales
that uses only a small number of noisy predictions.

Our decomposition results in a sophisticated, predictive
slow controller and a simple, reactive fast controller. This
framework mirrors the architecture of many real-world con-
trol systems, where a slow, centralized controller guides the
system towards global optimality while fast, decentralized
controllers help to quickly counteract any perturbations that
may arise. Remarkably, despite the simplicity of our fast con-
troller and the fact that our policy has access to only limited
information about the future, we derive strong guarantees on
the performance of our policy. In particular, we prove that the
per-step cost incurred by our algorithm is at most a constant
more than that incurred by the offline optimal, and in some
cases our policy even matches the offline optimal costs.

There are several natural and important problems left
open by our work. Firstly, we do not consider delay in our
model, though many real-world systems feature information-
sharing constraints arising from delay. It would be natural
to add such constraints to the slow controller. Secondly,
it would be interesting to consider a hybrid model that is
distributed across both time and space, i.e one that features
both decentralization and multiple timescales. Most systems
that operate across multiple timescales, such as the smart
grid, also feature both centralized and localized controllers.
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