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Abstract

Contemporary climate change in Alaska has resulted in amplified rates of press and

pulse disturbances that drive ecosystem change with significant consequences for

socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes

to change, little has been done to characterize landscape change and associated drivers

across northern high-latitude ecosystems. Here we characterize the historical sensitiv-

ity of Alaska’s ecosystems to environmental change and anthropogenic disturbances

using expert knowledge, remote sensing data, and spatiotemporal analyses and model-

ing. Time-series analysis of moderate—and high-resolution imagery was used to

characterize land- and water-surface dynamics across Alaska. Some 430,000

interpretations of ecological and geomorphological change were made using historical

air photos and satellite imagery, and corroborate land-surface greening, browning, and

wetness/moisture trend parameters derived from peak-growing season Landsat ima-

gery acquired from 1984 to 2015. The time series of change metrics, together with cli-

matic data and maps of landscape characteristics, were incorporated into a modeling

framework for mapping and understanding of drivers of change throughout Alaska.

According to our analysis, approximately 13% (~174,000 � 8700 km2) of Alaska has

experienced directional change in the last 32 years (�95% confidence intervals). At

the ecoregions level, substantial increases in remotely sensed vegetation productivity

were most pronounced in western and northern foothills of Alaska, which is explained

by vegetation growth associated with increasing air temperatures. Significant browning

trends were largely the result of recent wildfires in interior Alaska, but browning trends

are also driven by increases in evaporative demand and surface-water gains that have

predominately occurred over warming permafrost landscapes. Increased rates of pho-

tosynthetic activity are associated with stabilization and recovery processes following

wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling

and drainage events. Our results fill a critical gap in the understanding of historical and

potential future trajectories of change in northern high-latitude regions.
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1 | INTRODUCTION

Arctic and boreal ecosystems have recently seen dramatic changes

in vegetation characteristics (Beck & Goetz, 2011; Goetz, Bunn,

Fiske, & Houghton, 2005; Ju & Masek, 2016; Myers-Smith et al.,

2011), surface water area (Carroll, Townshend, DiMiceli, Loboda, &

Sohlberg, 2011), and disturbance regimes, such as wildland fire

(Kasischke et al., 2010), permafrost degradation (Jorgenson, Racine,

Walters, & Osterkamp, 2001; Lara et al., 2016), and insect/disease

infestation (Berg, Henry, Fastie, De Volder, & Matsuoka, 2006; Par-

ent & Verbyla, 2010; Verbyla, 2011), that can have a substantial

impact on socio-ecological systems (Chapin et al., 2006). Growth in

high-latitude vegetation and disturbance regimes are widely

expected to increase with rising atmospheric CO2 and air tempera-

ture (Chapin et al., 2006; Genet et al., 2018; Pastick et al., 2017),

which may trigger transitions in ecosystem trajectories that will

affect biological and physical processes at a multitude of scales

(Hinzman et al., 2013).

Earth observation satellite and suborbital data are invaluable for

quantifying land- and water-surface dynamics across the globe (Han-

sen et al., 2013; Pekel, Cottam, Gorelick, & Belward, 2016). Recent

studies have made use of dense time stacks of moderate resolution

imagery to characterize trends in land-surface features throughout

Arctic and boreal ecosystems of North America and Eurasia (Fraser,

Olthof, Carri�ere, Deschamps, & Pouliot, 2011; Fraser et al., 2014;

Hermosilla, Wulder, White, Coops, & Hobart, 2015; Ju & Masek,

2016; Nitze et al., 2017; Olthof & Fraser, 2014), but these studies

did not focus on attribution of the drivers of observed changes man-

ifested in these datasets at regional scales. Despite a legacy of stud-

ies documenting recent changes across northern ecosystems, a large

challenge remains to quantify ecological change and associated dri-

vers across heterogeneous high-latitude regions (Jorgenson, Marcot,

Swanson, Jorgenson, & DeGange, 2015).

Here, we quantify contemporary landscape dynamics in Alaska

related to environmental change and anthropogenic disturbances

(e.g., road and infrastructure development, natural resource extrac-

tion and exploration) using manual-image interpretations and the

historical (1984–2015) 30 m Landsat archive. Spectral change met-

rics, climatic data, topographical and soils information, and exam-

ples of change were used to develop statistical models for the

prediction and understanding of drivers of change throughout

Alaska. In so doing, we address the following questions: (1) How

do environmental changes and anthropogenic disturbances manifest

themselves within trends maps derived from Landsat imagery? (2)

What is the spatial extent of changes that have occurred across

the landscape in the last 32 years? (3) Which environmental factors

(e.g., climate, biophysical) appear to be associated with land- and

water-surface dynamics at the regional scale? (4) Based on observa-

tions of historic change in Alaska, which regions are most vulnera-

ble to change during the 21st century? The results from this study

fill a critical gap in understanding the historical—and potential

future—face of Alaska.

2 | MATERIALS AND METHODS

2.1 | Spatiotemporal extent of the study

The study area included terrestrial and aquatic ecosystems (as defined

by Nowacki, Spencer, Fleming, Brock, & Jorgenson, 2003) of Alaska,

excluding the Alaskan Peninsula and Bering Sea Islands due to data

constraints, totaling 1.4M km2, or the equivalent of 1.6B 30 m Land-

sat pixels (Figure 1). For this study, change was defined as an alter-

ation to surface conditions due to disturbance, or ecological or

geomorphological processes (i.e., fluvial, coastal, and lacustrine dynam-

ics, erosion and deposition, wildland fires, insect damage, succession,

glacial retreat and expansion, shrub expansion, thermokarst, human

impacts) at the Landsat pixel scale. Areas with no change are defined

as the lack of alteration to surface features at the 30 m pixel scale.

The overall workflow for data processing and change modeling

consisted of 10 steps, which can be assembled into three groups: (1)

automated Landsat preprocessing; (2) trend analyses and geo-

database development; and; (3) classifier and map development.

Automated Landsat preprocessing included: (1) image filtering; (2)

conversion of raw digital values (DN) to top of atmosphere (TOA)

reflectance; (3) cloud/shadow screening; (4) image stacking, and; (5)

data normalization. Time-series analyses includes (1) manual image

interpretation to assess change drivers, which made use of historical

air photos and high-resolution satellite imagery (1980s, 1990s,

2000s, 2010s), and (2) linear regression models fit to Landsat ima-

gery (i.e., Thematic Mapper [TM], Enhanced Thematic Mapper Plus

[ETM+], and Operational Land Imager [OLI]) Level 1T) and (3) esti-

mates of annual permanent surface water area derived from Landsat

imagery (Pekel et al., 2016). A detailed description of each process-

ing step, data layers, and analyses are discussed below.

2.2 | Landsat preprocessing, time-series analyses,
and spectral change metrics

Landsat image processing and trend calculations were performed

within Google’s Earth Engine (GEE) JAVASCRIPT API (Gorelick et al.,

2017). A Javascript program was developed within the GEE API to

ingest and preprocess imagery, and for trend analyses of spectral

indices derived from Landsat imagery. Landsat (i.e., Thematic Mapper

[TM], Enhanced Thematic Mapper Plus [ETM+], and Operational

Land Imager [OLI]) Level 1T) calibrated top-of-atmosphere (TOA)

reflectance data was filtered using cloud cover metrics (less than

80%) and image acquisition dates (1984–2016) corresponding to

summer (May 1st–September 30th) and peak-growing season

months (July 1st–August 31st). Images acquired in the growing sea-

son were used as inputs into linear regression models because con-

straining the time range to peak greenness eliminates seasonal

variations in reflectance values that increase errors associated with

phenological phases between different ecozones. A statistical-trans-

formation function was used to calibrate spectral indices (see

descriptions below) derived from Landsat OLI data (Roy et al., 2016),
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to improve temporal continuity between other Landsat sensor data,

although calculation of sensor-specific TOA reflectance values results

in a highly normalized dataset with minor differences occurring due

to slight differences in radiometric bandwidths of each sensor (Ju &

Masek, 2016; Markham & Helder, 2012). Calibrated TOA reflectance

data were used instead of surface reflectance (SR) data because of

the lack of MODIS data needed to constrain atmospheric correction

models for a portion of the time series (1984–2000) and known

uncertainties associated with Landsat SR data over high latitudes

(above 65°N).

A large number (n = 13,000–34,000) of Landsat scenes were

available in our study area, using our filtering criteria, with the

majority coming from 2000 to 2015 (Supporting Information Fig-

ure S1). The FMask algorithm (Zhu & Woodcock, 2014) was used to

mask 30 m pixels identified to be clouds and shadows. Top-of-atmo-

sphere reflectance values were transformed into Normalized Differ-

ence Vegetation Index (NDVI), Normalized Difference Infrared Index

(NDII7), Normalized Difference Moisture Index (NDMI), Normalized

Difference Water Index (NDWI) spectral indices, for each unob-

structed pixel, which serve as a proxy for vegetation productivity

and status, surface moisture, and water content (Gao, 1996; Goetz

& Prince, 1999; Ji et al., 2012). Because studies have shown that

there is little difference between NDMI and NDWI values derived

from different Landsat sensors (Holden & Woodcock, 2016), a sta-

tistical-calibration function was only used to correct for potential

(but slight) biases in NDVI values calculated from Landsat OLI

data.

Linear trends were calculated for each spectral index using non-

parametric, Theil–Sen Regression (TSR) models within GEE. TSR was

calculated for each 30 m pixel by determining the slope between

every pairwise combination of images in time and then finding the

median value. TSR is insensitive to outliers with a breakdown point

of approximately 29% and, thus, can outperform ordinary least

square regression analysis (Fernandes & Leblanc, 2005). The preci-

sion of the TSL parameters at any location improves as the number

of valid observations increases. The heat map shown in Figure 1

Content may not reflect National Geographic's current map policy. Sources: National Geographic, Esri, DeLorme, HERE,
UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, increment P Corp.
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F IGURE 1 Interpretation sites, ecozone boundaries (Nowacki et al., 2003), and design-based sample grids draped over the number of valid
Landsat observations (Thematic Mapper [TM], Enhance Thematic Mapper Plus [ETM+], Operational Land Imager [OLI]) from 1984 and 2015 in
Alaska. Inset shows Alaska High Altitude Aerial Photograph (AHAP) and high-resolution imagery (copyright DigitalGlobe, Inc.) used to delineate
change processes (e.g., thermokarst, infrastructure development) occurring across the landscape
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documents the number of peak-growing season observations for

each pixel location, which can serve a measure of confidence,

although these numbers could be considered inflated where WRS-2

rows overlap.

Synthetic image stacks of late-season multispectral indices were

generated from harmonic models that were fit to the filtered Landsat

archive using a 3 year sliding window approach (2000–2015; January

1st–December 31st). Per-cell metrics (i.e., standard deviation, range)

were generated from each image stack, for inclusion in the change

detection model, to identify ephemeral disturbances (assuming that

volatility is a proxy for change) that would not be captured using

TSR. Multiyear, 90th percentile mosaics (1984–1999) were also gen-

erated from summer Landsat TM imagery, because of the dearth of

imagery in the 80s and 90s, to help characterize changes that might

have happened early in the study period.

The amount and direction of changes in annual permanent sur-

face water area was quantified by performing linear regression analy-

sis on estimates made by Pekel et al. (2016) from 1984 to 2015.

Derived trend parameters (e.g., Pearson’s r, slope, p-value) were

computed using years where the unobserved area of the maximum

water extent (any pixel that has ever been identified as permanent

water across the study period) was less than 5%, because gaps in

the observation record could result in underestimation of the

reported areas. Linear regression analysis was conducted using a grid

system (5 9 5 km), because the unobserved component of the maxi-

mum water extent is likely to be much greater when summarizing

trends across large areas (e.g., ecozones), and trend parameters from

each grid were summarized by ecozone. Note, that the solar illumi-

nation threshold (30°) used when developing the annual surface

water layers (v1.0) results in a lower number of valid observations

within higher latitude regions, particularly above 65°N.

2.3 | Drivers and attribution of change

2.3.1 | Interpretations of land-surface change

Photo-interpretation techniques were used to quantify ecological

and geomorphic change drivers across 262 change grids (Jorgenson

& Brown, 2015; Jorgenson et al., 2001, 2015; Swanson, 2013) using

the system described in Jorgenson et al. (2015). Change grids were

systematically or randomly distributed across the Arctic Network

(ARCN) of national parks, Selawik National Wildlife Refuge, Arctic

National Wildlife Refuge (ANWR), Tanana-Kuskokwim Lowlands, and

Yukon-Tanana Uplands. At each grid, 2–4 high-resolution aerial and

satellite images, from different times periods (1980s, 2000s, 2010s),

were acquired and georectified using a publicly available statewide

SPOT mosaic or IKONOS imagery. Approximately 40–100 locations

were systematically sampled along each change grid for time-series

analysis, for approximately 13,000 expert interpretations. Change

drivers were assessed at the middle of each point location.

Historical (1984–2015) Landsat data and high-resolution imagery

(i.e., Alaska High-Altitude Photography [AHAP], WorldView-2 and 3,

GeoEye-1) were used to make additional interpretations

(n = 390,000) outside the extent of the change grids. Since collecting

reliable interpretations is a costly and time-consuming task, easily

acquired interpretations from other sources (e.g., Monitoring Trends

and Burn Severity Data [MTBS]; Eidenshink et al., 2007) were also

used (n = 25,000), which may be less reliable than expert interpreta-

tion. In total, approximately 430,000 interpretations were used to

calibrate empirical models discussed in the predictive modeling and

mapping portion of the paper. Note that manual interpretation of

thermokarst occurrence in bedrock-controlled terrain, which covers

approximately 30% of Alaska (Jorgenson et al., 2008), was not feasi-

ble in most instances because of the lack of a surface deformation

from thawing permafrost in ice-poor soils.

2.3.2 | Attribution of spectral index changes

Trends in growing season remotely sensed vegetation productivity

and wetness indices (i.e., Normalized Difference Vegetation Index,

NDVI; Normalized Difference Water Index, NDWI) were analyzed

with respect to ecological and geomorphological change (or no

change), identified from time series of high-resolution imagery of

surface water (Jones et al., 2011), coastal areas (Arp, Jones, Schmutz,

Urban, & Jorgenson, 2010; Jones et al., 2009), thermokarst (Jones

et al., 2016; Swanson, 2014), glacial areas (Loso, A. Arendt, & J. Rich,

2014), and geomorphic and vegetation change studies discussed in

the previous section. Student’s t tests and Wilcoxon—Mann–

Whitney U-tests were used to test the significance of differences in

mean trend values between sample locations of change and no

change. Diagnostic plots were used to assess normality and

homoscedasticity.

To evaluate the relative impacts of wildfires, insects, and timber

harvesting and subsequent recovery of vegetation, we employed a

space-for-time design (Pickett, 1989), where slope values (i.e.,

NDVI/year) were averaged within disturbance perimeters, and the

relationship between time since disturbance and changes in late-

season vegetation productivity were assessed using Generalized

Additive Models (GAM; Wood, 2006). The main assumption of this

method is that observing locations of varying time since disturbance

would produce similar results to observing locations through time.

To generate our chronosequence, we used historical fire (1940–

2015), insect damage (1997–2015), and timber harvest (1950–2015)

perimeter data, as obtained from the Bureau of Land Management

(http://www.fire.ak.blm.gov) and the United States Forest Service

(http://foresthealth.fs.usda.gov; https://catalog.data.gov/dataset/u-s-

forest-service-timber-harvests). We excluded areas identified to

have been impacted by multiple disturbances (i.e., repeatedly

burned, insect damage and harvested) and sampled the remaining

locations within the perimeters. Note, that we assumed that the

survey years reported in the insect/disease datasets were fair

approximations for the timing of disturbance, as this information

was not available, and acknowledge that disturbances may not have

impacted all areas within the disturbance perimeters. Selection of

the best-fit models to describe the studied relationships were based

on Akaike’s Information Criteria (AIC) and Generalized Cross
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Validation (GCV) scores derived from a leave-one-out cross valida-

tion estimation process. Model residuals were inspected to ensure

that selection of the best-fit model was not adversely impacted by

outliers and noise. Residual error was modeled using a first order

autoregressive (AR1) model to explicitly account for temporal auto-

correlation in trend values, where appropriate. GAM models were

developed using the mgcv package in R (https://cran.r-project.org/

web/packages/mgcv/), with a cubic regression spline, which are well

suited to depict nonlinear trends associated with stand age and veg-

etation productivity.

2.4 | Regional analysis of vegetation and surface-
water dynamics

Regional controllers of vegetation productivity and surface-water

dynamics were assessed using a spatial framework of ecozone

boundaries (Nowacki et al., 2003; Figure 1). The effect of climatic

indices, topographic information, modeled permafrost presence/ab-

sence data, and mapped soil texture extents were evaluated using

regression models.

Climate variables representing energy and demand were con-

structed from monthly mean temperature, air vapor pressure, and

total precipitation data from the climate research unit (CRU; Harris,

Jones, Osborn, & Lister, 2014). Historical CRU TS 4.0 data were sta-

tistically downscaled via the delta method (Hayhoe, VanDorn, Croley,

Schlegal, & Wuebbles, 2010) using PRISM (Parameter-elevation Rela-

tionships on Independent Slopes Model; http://www.prism.oregon

state.edu) 1961–1990 two km resolution climate normal (monthly

temperature and precipitation) and CRU climate normal (monthly

humidity) as the baseline climate (Daly et al., 2008). These coarse-

resolution anomalies were then interpolated to the spatial resolution

of the respective climate normal via a spline technique, and then

added to (temperature) or multiplied by (precipitation and vapor

pressure) the climate normals. The downscaled climate data were

then interpolated to a 1 km resolution. The data and additional infor-

mation on calculations are available from the Scenarios Network for

Alaska and Arctic Planning (SNAP) data download website (https://

www.snap.uaf.edu/tools/data-downloads). TSR was then used to

model changes in annual and summer (i.e., June, July, and August) air

temperature (TANN/year and TJJA/year), precipitation (PANN/year and

PJJA/year), and vapor pressure deficit (VPDJJA/year) from 1984 to

2015.

To account for potential topographic controls, we used elevation

information from the National Elevation Dataset (NED; 60 m spatial

resolution; http://ned.usgs.gov/) and computed a topographic

ruggedness (TR) index (Riley, DeGloria, & Elliot, 1999). TR values clo-

ser to one represent rugged landscapes, while smaller TR values rep-

resent flatter landscapes. Information on the presence–absence of

near-surface (within 1 m) permafrost (NSPEXT; Pastick et al., 2015),

excluding areas where permanent surface water has been observed,

and soil texture (Jorgenson et al., 2008) were introduced because

soil properties and conditions exert strong controls on vegetation

and hydrology.

Overall, 16 environmental covariates were chosen based on our

knowledge of factors likely to be associated with vegetation and sur-

face-water dynamics, and data availability in Alaska (Table 1). Aver-

age trend and covariate values were determined for each ecozone

(n = 29), and nonparametric Locally Weighted Scatterplot Smoothers

(LOWESS) were used to visually examine the nonlinear shape of

response functions in a flexible manner. This information was then

used to structure a variable and model selection procedure based on

generalized additive modeling, using R (R Core Team, 2015). We

focused our analysis on explanatory variables that had low correla-

tion (|r| ≤ 0.5) with each other and those significantly (p-

value < 0.05) correlated with trends in vegetation productivity and

surface-water dynamics.

2.5 | Predictive modeling and mapping of areas
vulnerable to change

Classifier and map development consisted of data exploratory analy-

ses, decision tree model calibration, and map assessments and strati-

fied estimation of change extents. A boosted decision tree model

(Quinlan, 1993) was used to estimate change/no-change occurrence

using spectral change metrics (e.g., regression coefficients), a digital

elevation model, and expert interpretations of land-surface change

using time series of moderate and high-resolution imagery

(n = 430,000). Decision tree classifiers are nonparametric classifiers

that recursively partition a dataset into more homogenous subsets

(i.e., nodes), while minimizing a cost function (e.g., Entropy), to pre-

dict class membership (e.g., change, no change). For the change and

no-change product, a boosted decision tree methodology was

employed using a commercial version (See5) of the C4.5 algorithm

TABLE 1 List of the 16 environmental covariates originally
considered for inclusion in the models of regional controls on
vegetation productivity and surface-water dynamics

Variable Unit Description

Elev. m Elevation

TR m Topographic ruggedness

NSPEXT % Near-surface (within 1 m) permafrost extent

Silty % Silty soil extent

Sandy % Sandy soil extent

Rocky % Rocky soil extent

PANN mm Total annual precipitation

PANN/year mm/year Change in total annual precipitation

PJJA mm Total summer precipitation

PJJA/year mm/year Change in total summer precipitation

TANN °C Mean annual temperature

TANN/year °C/year Change in mean annual temperature

TJJA °C Mean summer temperature

TJJA/year °C/year Change in mean summer temperature

VPDJJA kPa Mean summer vapor pressure deficit

VPDJJA/year kPa/year Change in summer vapor pressure deficit
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(Quinlan, 1993). Ensemble learning methods are robust to the pres-

ence of noise (e.g., incorrect class labels, feature [attribute] noise),

especially when methods for avoiding overfitting are employed.

Thus, pre- and postpruning techniques (i.e., case constraints and sta-

tistical confidence pruning) were used to prevent model overfitting

tendencies (Quinlan, 1986), and overfitting avoidance was assumed

to be sufficient to deal with potential label and feature noise.

Feature attribute selection was done using domain knowledge,

impurity measures, and interpretations of change type. Model accu-

racies were assessed using f-fold cross validation. Decision tree

models were applied to useful predictor variables to produce maps

of change occurrence throughout Alaska. A two-stage sampling

design was used to independently assess map accuracies, improve

precision of change extent estimates, and provide associated confi-

dence intervals. In the first stage of our two-stage sampling design,

50 primary sampling units were selected randomly from grids

(5 9 5 km) covered with aerial photographs and high-resolution ima-

gery (Figure 1). In the second stage, sample pixels were selected

within each grid and distributed between mapped change (n = 2452)

and no change (n = 635) strata to interpret change type and meet

our specified margin of overall error (SE = 0.01). Validation samples

are independent of model training samples described above. The

map and reference data were used in conjunction to generate error

matrices for accuracy assessment as well as for estimating area of

change and confidence intervals using estimators described in Olofs-

son et al. (2014) and Gallaun et al. (2015).

3 | RESULTS

3.1 | Attribution of spectral index changes

To assign change causation at the local scale, we compared trends in

late-season multispectral indices (Figure 2) to interpretations of eco-

logical and geomorphological change (or no change) mapped with

high-resolution imagery. Here, we highlight a portion of the major

change processes that occur across a diverse suite of ecosystems in

Alaska. Detected changes include, but are not limited to, shrub and

tree expansion, fluvial, coastal, and lacustrine dynamics (i.e., flood-

ing/expansion, drying/drainage), thermokarst, glacial retreat and

expansion, vegetation and geomorphic succession, wildfires, insect

damage, and anthropogenic disturbances.

3.2 | Shrub and tree expansion

Shrub expansion on tundra and wetland communities was observed

at 15 sites (145 interpretations) within the Arctic Network of Parks

(ARCN) and resulted in an average increase in vegetation productiv-

ity index (0.002 � 0.0002 Standard Error (SE) NDVI/year), which

was significantly (p < 0.0001) higher than the average change in veg-

etation productivity (0.0001 � 0.0 NDVI/year) for the other 447

interpretations of no change at the same sites (Supporting Informa-

tion Figure S2a). Reduction in shrub extent due to floodplain erosion

was only observed at one site (21 interpretations) within the ARCN

and resulted in an average decrease in vegetation productivity

(�0.0043 � 0.0007 NDVI/year), which was not significantly differ-

ent than the average value (�0.0046 � 0.0012 NDVI/year) at 16

locations of no change at the same site.

Shrub expansion was also observed at two sites (23 interpreta-

tions) within the boreal zone of the Arctic National Wildlife Refuge

(ANWR) and resulted in an average increase in vegetation productiv-

ity index (0.002 � 0.0002 NDVI/year), which was not significantly

(p = 0.13) different than the average trend (0.001 � 0.0002 NDVI/

year) for the other 147 interpretations of no change at the same sites.

Likewise, tree expansion was observed at one site (22 interpretations)

within the boreal region of ANWR and resulted in an average green-

ing trend (0.002 � 0.0002 NDVI/year) that was not significantly dif-

ferent than the average trend (0.002 � 0.0001 NDVI/year) for the

other 70 interpretations of no change at the same site. Identifying

shrub and tree expansion at the Landsat pixel scale can be challeng-

ing, because expansion can result in sparsely distributed patches of

vegetation with low stand densities, and greening trends may be asso-

ciated with enhanced tree growth in forested stands that would be

difficult to manually detect from two dates of high-resolution

imagery.

3.3 | Fluvial, coastal, and lacustrine dynamics

Erosion and depositional processes resulted in distinct wetting and

drying trends within riverine, lacustrine, and coastal areas of Alaska.

For example, coastal erosion and deposition along the Alaskan Arctic

coastline of the Northern Teshekpuk Lake Special Area (Jones et al.,

2009) resulted (on average) in a large decrease (�0.007 � 0.0 NDWI/

year) and increase (0.014 � 0.0 NDWI/year) in NDWI values, respec-

tively. Furthermore, river erosion was observed at two sites (10 inter-

pretations) within the Tanana-Kuskokwim Lowlands (Jorgenson, Shur,

& Pullman, 2006) and resulted in an average wetting trend

(0.01 � 0.002 NDWI/year), which was significantly different than

slope values (�0.0004 � 0.0 NDWI/year) observed at 153 locations

with no change at the same sites (Supporting Information Figure S2b).

Likewise, thermokarst lake expansion and drainage events that have

been observed on the Bering Land Bridge National Preserve (Jones

et al., 2011) resulted (on average) in wetting (0.007 � 0.0002 NDWI/

year) and drying (�0.03 � 0.0002 NDWI/year) trends, respectively.

3.4 | Thermokarst

Thermokarst associated with the collapse of permafrost plateaus was

observed at three sites (10 interpretations) within the Tanana Flats

and resulted in an average wetting trend (0.0014 � 0.001 NDWI/

year), which was significantly different (p < 0.005) than the average

slope values (�0.0009 � 0.0 NDWI/year) for the other 178 inter-

pretations of no change at the same sites (Supporting Information

Figure S2c). Thermokarst occurrence due to ice-wedge degradation

was observed at 12 sites (122 interpretations) within the Arctic

National Wildlife Refuge (ANWR) (primarily occurring in coastal

and lowland areas) and resulted in an average increase
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(0.003 � 0.0001 NDVI/year) in vegetation productivity, which was

significantly (p < 0.005) different than the average change in vegeta-

tion productivity (0.002 � 0.0 NDVI/year) for the other 978 inter-

pretations of no change at the same sites (Supporting Information

Figure S2d). Note that while trends can be statistically different,

there can be a substantial amount of overlap between class values

and the chance of finding significant differences increases as the

number of observations increase.

Larger thermokarst features and ecological responses are well

depicted within the Landsat-based trend and change products. Ret-

rogressive thaw slumps (RTS) and active-layer detachments slides

(ALDs) having occurred in the ARCN (n = 2,970), as mapped by

Swanson (2014), resulted (on average) in significantly (p < 0.0001)

different browning (�0.001 � 0.0 NDVI/year) and greening trends

(0.001 � 0.0 NDVI/year), respectively (Supporting Information Fig-

ure S2e). Divergent trends likely reflect differences in the time of

initiation, duration, and associated ecological response. That is, both

RTS and ALDs exposed bare soil, but ALDs are rapid, narrow, one-

time events allowing recovery to be initiated quickly, whereas, RTS

tend to broader and remain active over many years.

3.5 | Glacier retreat and expansion

Glacial cover has diminished on approximately 3,725 km2 of Alaskan

national parks over the last-half century (Loso et al., 2014) and the

spectral signatures associated with these changes are evident within

our trend analysis. Accumulation of vegetation on glacial till, typically

occurring near the terminus after glacial retreat in Alaska, results (on

average) in distinct greening trends (0.0025 � 0.0 NDVI/year).

Proglacial lake formation (as identified using data from Pekel et al.,

2016 and Loso et al., 2014) results (on average) in clear wet-

ting trends (0.008 � 0.0009 NDWI/year). Recent transitions from

perennial ice to debris cover appears to result in both decreasing

and increasing trends (Supporting Information Figure S3), but

detailed land-cover conversion and timing information is not avail-

able so we cannot provide a quantitative summary. While glacial

expansion may have occurred over a smaller area of Alaska, we do

not summarize trend values here because these changes are mostly

artifacts of unmapped glaciers due to inadequate historical imagery.

However, glacial expansion would result in trends inverse of those

discussed above, the magnitudes of which would depend on the

type of land-cover conversion (e.g., debris cover to perennial ice,

water to perennial ice). Lastly, stable glaciers had (on average) no

trend.

3.6 | Wildfires, insects, and timber harvesting

Fire is the dominant landscape-scale disturbance operating on annual

timescales in Alaska, having occurred on approximately 240,000 km2

of the landscape from 1950 to 2015 according to the Bureau of

Land Management (BLM) Large Fire Database. The impacts of fire

on vegetation productivity are clearly demonstrated within our trend

analyses at the regional scale (Supporting Information Figure S4).

Postfire recovery patterns, as depicted by our successional

chronosequence (Adjusted R2 = 0.79; p < 0.0001; Figure 3a), are

nonlinear and suggest a rapid increase in vegetation productivity

until 20 years after fire occurrence (a period associated with estab-

lishment of productive deciduous vegetation), a slight decrease in
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F IGURE 2 Trend slope (left) and offset
(right) maps (30 m spatial resolution)
produced from peak-growing season (July
and August) Landsat-based multispectral
indices (i.e., Normalized Difference
Vegetation Index [NDVI], Normalized
Difference Wetness Index [NDWI]). Offset
represents model estimates of spectral
indices in 1984
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increasing productivity levels after 30 years (a period associated with

deciduous/coniferous mixing), and another decrease around 60 years

after fire (a period associated with increased dominance of mature

spruce forest). Fires (on average) resulted in an overall increase in

photosynthetic activity (0.13 NDVI) over 75 years, as determined by

calculating the integral of the response function in Figure 3a. The

response of vegetation productivity after fire may also be associated

with soil conditions, where large greening trends appear to be most

prevalent within nutrient-loess soils, in addition to time of burning,

fire severity, and prefire vegetation composition.

Insect-induced mortality has been observed on approximately

14,000 km2 of Alaska since 1997, according to the United States

Department of Agriculture’s National Insect and Disease Survey

Database, occurring in both the interior boreal forests as well as the

Alaska Range taiga regions and transition forests near the southern

Alaska coast. Spruce beetle infestation generally reduces canopy

densities and vegetation productivity shortly after occurrence, as is

reflected in our chronosequence model (Adjusted R2 = 0.78;

p < 0.001), but increases in vegetation productivity are also associ-

ated with forests recovering from insect damage (Figure 3b). In some

cases, productivity levels after insect outbreaks can exceed preout-

break levels. For example, recovery from insect damage (primarily

caused by spruce bark beetles) observed within the wilderness area

of the Kenai National Wildlife Refuge during the late 1980s and

1990s resulted in an average increase in vegetation productivity

(0.001 � 0.0 NDVI/year), which was significantly higher (p < 0.0001)

than the average rates (�0.0004 � 0.0 NDVI/year) at locations with

no change (Supporting Information Figure S2f).

Forest harvesting impacts in Alaska resulted in substantial changes

to vegetation productivity, and are estimated to have occurred on

approximately 2,200 km2 of the Tongass and Chugach National For-

ests from 1950 to 2015 according to the United States Forest Service

timber harvest database. Browning trends are largely associated with

areas that have been recently (<7 years) harvested and greening

trends correspond to stands that are regenerating (>7 years) (Fig-

ure 3c). In this chronosequence model (Adjusted R2 = 0.93;

p < 0.0001), vegetation productivity rapidly increased until 15–

20 years after harvest and then increased at a decreasing rate and

leveled off thereafter. Forest harvesting (on average) results in an

overall increase in vegetation productivity (0.19 NDVI) over the

observed period. Compared to fires and insects, at time zero there is

typically no residual biomass to confound the time series, and the time

series (age of the stand) is more easily established. In all cases the

chronosequences clearly demonstrate the effect of disturbances on

changes in vegetation productivity levels, despite confounding issues

associated with site-specific factors (e.g., soil properties) and shifts in

the climate which were not included in the experimental design.

3.7 | Regional patterns and drivers of change

3.7.1 | Terrestrial surface dynamics

The Arctic Tundra ecoregion has seen the largest increases in TANN

during the 32 year period (0.06 °C/year), followed by the Bering

Tundra (0.05 °C/year), Intermontane Boreal (0.04 °C/year), Bering

Taiga and Alaska Range Transition (0.03 °C/year), Coastal
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F IGURE 3 Mean change in vegetation productivity (NDVI/year) as a response of year since (a) fire (b) spruce beetle damage, and (c) harvest.
Data were fit with a generalized additive model (GAM) using cubic regression splines through the mean value of each year. Data points at “Year
since disturbance” 0 represent stands where disturbance occurred at year 2015, according to the Bureau of Land Management (BLM) Large Fire
Database, United States Department of Agriculture’s National Insect and Disease Survey data, and United States Forest Service timber harvest
dataset. Shaded areas represents confidence interval (a = 0.05) of the GAM

8 | PASTICK ET AL.



Rainforests, and the Pacific and Coast Mountain Transition ecoregion

(<0.025 °C/year). Trends in late-season vegetation productivity

(NDVIJA/year), however, best correlate with changes in mean sum-

mer air temperatures and change in vapor pressure deficit (Support-

ing Information Figure S5). That is, TJJA/year and VPDJJA/year

contribute to changes in vegetation productivity, where increases in

summer temperature and vapor pressure deficit correspond well to

linear and nonlinear increases and decreases in vegetation productiv-

ity, respectively (Figure 4). These variables explain 75% of the varia-

tion in changing vegetation productivity levels, suggesting that

regional, late-season vegetation productivity trends are largely driven

by climatic change throughout Alaska.

3.7.2 | Surface-water dynamics

The total area of permanent surface water has generally increased

throughout Alaska, with a significant amount of interannual and spa-

tial variability reflecting complex interplays among topography, geo-

morphology, and hydro-climatic factors (Figure 5 and Supporting

Information Figure S5). Of the 47,258 summary grids, approximately

15,000 and 4,000 have significant (p < 0.05) increasing and decreas-

ing trends with time, respectively. Distinct clusters of increasing

trends correspond to surface-water gains that have generally

occurred in lowlands and areas underlain by permafrost that have

experienced the largest increases in TANN (Figure 6). Conversely,

areas with surface-water loss are generally isolated, although there is

notable clustering in rocky uplands in southern Alaska, the western

tip of the Seward Peninsula, the southeastern portion of the Yukon-

Kuskokwim Delta, and along sand sheets of the Yukon-Old Crow

Basin.

3.8 | Change type classification and validation

A total of 29 environmental covariates were used during change

detection model development (Supporting Information Table S1).

Overall training and cross-validation accuracies for the calibrated

change model were 99% and 98%, respectively. The decision tree

model was applied to useful environmental predictor variables to

construct a map of the probability of change occurrence (Figure 7;

Pastick et al., 2018) based on decision tree ensemble estimates of

change occurrence and posterior confidence estimates. Independent

interpretations and the change map were used to construct a confu-

sion matrix and calculate area class estimates and associated confi-

dence intervals. In addition to overall accuracy (95.8%), the
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F IGURE 4 Surface (a) and cross-sectional plots (b, c) showing the relationships between mean changes in late-season vegetation
productivity (NDVIJA/year), mean summer temperature (TJJA; °C/year), and vapor pressure deficit (VPDJJA; kPa/year) for ecozones of Alaska
(Nowacki et al., 2003; n = 29), as described by a generalized additive model (GAM) using cubic regression splines (Adjusted R2 = 0.72). Cross-
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estimated confusion matrix (Table 2) depicts distinct errors or accu-

racies as they relate to each class prediction. Map estimates of the

no change class (probability <50%) had much higher user accuracies

than those of the change class (97.6% vs. 83.5%), and lower pro-

ducer’s accuracies for areas having undergone some change (97.6%

vs. 83.7%). According to our best estimate, approximately 13%

(~174,000 km2; 95% CI = 165,000 km2, 182,000 km2) of Alaska has

undergone some change during 1984–2015. The majority of change

processes occurred in lowlands and coastal, riverine, and boreal

ecosystems. The ecoregion with the highest vulnerability to change

is the Intermontane Boreal (29%), followed by the Pacific Mountain

Transition (9.9%), Bering Taiga (8.6%), Alaska Range Transition

(5.9%), Coastal Rainforest (5.9%), Bering Tundra (2.5%), Coast Moun-

tains Transition (2.5%), Arctic Tundra (2.2%) (Table 3).

4 | DISCUSSION

4.1 | Vegetation expansion and growth

Our observations of vegetation growth are in agreement with histor-

ical increases in vegetation productivity and expansion inferred from

field and remote sensing studies (Loranty et al., 2016; Myers-Smith

et al., 2011; Beck & Goetz, 2011; Walker et al., 2009; Figure 4a).

Tundra shrubification can lower surface reflectance, increase evapo-

transpiration, and affect snow redistribution and aboveground car-

bon stocks (Loranty & Goetz, 2012; Sturm, Douglas, Racine, &

Liston, 2005), which may result in regional air/ground temperature

increases and active layer thickening associated with permafrost

degradation (Bonfils et al., 2012; Euskirchen et al., 2016; Lawrence

& Swenson, 2011). Expansion of boreal forest into Arctic and alpine

ecosystems has also been attributed to high-latitude warming and

can increase the amount of atmospheric heating that occurs (Chapin,

Eugster, McFadden, Lynch, & Walker, 2000), which may provide

feedbacks to regional and global climates depending on the rate and

extent of treeline advance (Euskirchen et al., 2016; Pearson et al.,

2013; Zhang et al., 2013).

Warming has also indirectly promoted vegetation growth through

the formation of terrestrial land surfaces for example, as the result

of glacier retreat (Supporting Information Figure S3) where
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vegetation succession influences sediment availability, ground water

runoff, and soil properties (Klaar et al., 2015). If Alaska continues to

warm as expected, wildfire and thermokarst may also increase in fre-

quency and extent, which can create mineral-rich seedbeds that are

conducive for shrub colonization (Lantz, Kokelj, Gergel, & Henry,

2009). Our results (Figure 4a) confirm the idea that continued warm-

ing will increase aboveground biomass throughout portions of Alaska

(Ackerman, Griffin, Hobbie, & Finlay, 2017), which may partly help

curb carbon emissions from thawing permafrost (Abbott et al.,

2016). In contrast, our results (Figure 4c) also suggest that plant pro-

ductivity may decline in warming regions due to drought stress

which would predispose woody vegetation to the risk of disease,

fire, and mortality (Rogers et al., 2018; Trugman, Medvigy, Anderegg,

& Pacala, 2018). Further research is needed to better understand cli-

mates impact on short and long term shifts in vegetation phenology,

as well as to identify and quantify higher order interactions among

environmental factors (e.g., climate, soil moisture) that influence veg-

etation productivity at a multitude of scales.

4.2 | Fluvial, coastal, lacustrine, and surface-water
dynamics

This study also provides evidence for substantial changes in ecosys-

tem structure as the result of erosion and deposition processes that
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F IGURE 7 Predictions of the probability (%) of change occurrence (30 m spatial resolution), derived from a boosted decision tree model using
spectral change metrics, a digital elevation model, and manual-image interpretations (Figure 1) of change type. Insets show fire boundaries from
the Bureau of Land Management (BLM) Large Fire Database and Landsat 8 imagery (bottom right; 2016) north of Fairbanks, Alaska

TABLE 2 Estimated error matrix (percent of area) and associated
accuracy statistics and standard errors (p-value < 0.5). Column totals
correspond to estimated area proportions calculated using reference
and mapped data

Reference
Row
total

User’s
accuracyNo change Some change

Map

No change 85 2.1 87.1 97.6 � 0.6

Some change 2.1 10.8 12.9 83.5 � 2.8

Column total 87.1 12.9 – –

Producer’s accuracy 97.6 � 3 83.7 � 1 – –

Overall accuracy – – – 95.8 � 2
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have occurred throughout coastal and riverine ecosystems in Alaska.

In our analysis, approximately 700 km2 of the study area within

200 m of the coastline (modified from Nowacki et al., 2003), and

where permanent surface water has ever been observed, experi-

enced change (mainly coastal erosion and accretion), with the major-

ity of change occurring along permafrost-dominated coastlines of

the Beaufort Coastal Plains and Yukon-Kuskokwim Delta. Increasing

coastline erosion rates (Jones et al., 2011) have been attributed to a

number of factors, such as shifts in storm winds, record declines in

Arctic sea ice (Stroeve et al., 2008), sea-level rise (Steele, Ermold, &

Zhang, 2008), and terrestrial permafrost degradation (Jorgenson

et al., 2006). Coastal transgression can result in increased sediment

and carbon flux to oceans (Hayes, Guo, & McGuire, 2007; Jorgenson

& Brown, 2005), changes to wildlife habitat (Flint et al., 2008; Tape,

Flint, Meixell, & Gaglioti, 2013), loss of historical and cultural sites

(Jones, Hinkel, Arp, & Eisner, 2008), and damage to infrastructure

(Houseknecht & Bird, 2006).

Surface-water gains can occur through erosion of lake shorelines,

thermokarst, and flooding events. Our finding of significant surface-

water gains in warming tundra ecozones (Figure 6) is consistent with

reports of increasing rates of thermokarst and lake expansion in

these areas (Jorgenson et al., 2001), where thaw is dominated by lat-

eral heat fluxes at the margins of water bodies, which have not seen

significant increases in precipitation over the last three decades

(Supporting Information Figure S5). Conversely, surface-water losses

can be caused by degrading permafrost leading to gradual or catas-

trophic drainage of lakes and other fluvial geomorphological pro-

cesses as observed in our analyses (Figure 5). Surface-water declines

in Arctic lowlands have been attributed to lateral surface drainage

events (Hinkel et al., 2007; Jones et al., 2011), which results in

water being redistributed to surrounding low points on the land-

scape, subsurface drainage (Yoshikawa & Hinzman, 2003), and ter-

restrialization of lake surfaces that have likely been enhanced by a

warming climate (Figure 4a).

Surface-water gains in boreal regions of Alaska are largely driven

by ice-jam flooding events, as is captured in our trend analysis (Fig-

ure 5), which have recharged lake basins within riverine and lowland

flood plains along the Yukon River (Duguay, Bernier, Gauthier, &

Kouraev, 2015; Jepsen, Walvoord, Voss, & Rover, 2016). Increases in

groundwater discharge, as a result of enhanced permafrost thaw, are

likely a contributing factor to surface-water gains in riverine corri-

dors (Walvoord, Voss, & Wellman, 2012). Surface-water loss has also

occurred in isolated patches throughout boreal landscapes and is

indicative of exogenetic processes, such as subterraneous drainage,

paludification (Jorgenson & Osterkamp, 2005), and lake infilling and

tapping. Surface-water loss leading to (or promoted by) terrestrial

(aquatic) vegetation colonization and increasing rates of lake surface

loss may be due to recent warming trends and evaporative loss

(Roach, Griffith, & Verbyla, 2013; Roach, Griffith, Verbyla, & Jones,

2011), which can impact the local climate, wildlife habitat, and socio-

economics (Hinzman et al., 2005).

The decline in surface water areas in south-central Alaska co-

occurs with long-term declines in annual precipitation (Supporting

Information Figure S5) that can substantially reduce precipitation

runoff and mean annual water balances. Spatially homogenous sur-

face-water trends are typically the result of temporal trends in

hydro-climatic factors (Karlsson, Lyon, & Destouni, 2012), consis-

tent with observations made in the Kenai Peninsula over the last

half century (Klein, Berg, & Dial, 2005), but also likely reflect the

influence of glaciers in southern Alaska. Observed surface water

trends do not support the generalization of surface water extents

increasing and decreasing in continuous and discontinuous per-

mafrost regions (Smith, Sheng, & MacDonald, 2007), respectively,

and suggest that trends are substantially moderated by local condi-

tions and processes. This finding is consistent with previous

research (Karlsson, Jaramillo, & Destouni, 2015) and highlights com-

plexities associated with better understanding mechanisms that

influence surface-water dynamics across heterogeneous permafrost

landscapes.

4.3 | Thermokarst

Recent increases in the rate of thermokarst occurrence in tundra

and boreal ecozones of Alaska have been linked to unusually warm

summer weather and heavy rainfall (Balser, Jones, & Gens, 2014;

Jorgenson et al., 2015; Lara et al., 2016). Our finding of increased

rates of vegetation productivity after ice-wedge degradation may

reflect colonization of thermokarst troughs by highly productive

sedges (Supporting Information Figure S2c), whereas browning

trends associated with thermokarst (e.g., permafrost plateau collapse)

are likely caused by increasing wetness due to water pooling (Ray-

nolds & Walker, 2016). Identification and attribution of mechanisms

responsible for thermokarst disturbance is nevertheless difficult

because of the fine-spatial scale at which this phenomenon occurs

(generally smaller than a Landsat pixel), co-occurrence with other

disturbances, poor understanding of geology (e.g., ice content), and

modest changes in reflectance values associated with thermokarst

and water impoundment that can be obscured by vegetation. Thus,

identification of certain thermokarst features typically requires high-

resolution spectral or topographic (e.g., LiDAR) data that can be used

TABLE 3 Change statistics within major ecoregions (Nowacki
et al., 2003) of Alaska

Ecoregion
Land
area (km2)

Mapped change
area (km2) Lc (%)

Intermontane Boreal 469,206 135,040 28.8

Bering Taiga 201,985 17,425 8.6

Coastal Rainforests 179,673 10,546 5.9

Alaska Range Transition 159,905 9,405 5.9

Arctic Tundra 300,850 6,698 2.2

Pacific Mountains Transition 18,829 1,880 9.9

Bering Tundra 60,481 1,526 2.5

Coast Mountains Transition 19,315 481 2.5

Lc = change area fraction = (total change area/total land area) 9 100.
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to directly or indirectly resolve changes in land-surface features

(Jones et al., 2015, 2016). It is important to point out that shifts in

subsurface hydrology due to permafrost thaw could also result in

browning trends, where soil moisture declines can result in the dry-

ing of plants; however, we are not aware of any widespread reports

of such changes and attribution would require field data.

4.4 | Glacial retreat and expansion

Rising temperatures, declining snowfall, and mechanical processes

(e.g., calving glacier dynamics) have driven a reduction in the area and

volume of the majority of glaciers in Alaska (Berthier, Schiefer, Clarke,

Menounos, & R�emy, 2010; Larsen, Motyka, Arendt, Echelmeyer, &

Geissler, 2007; Larsen et al., 2015), which has led to the formation of

proglacial lakes, ruby moraines, and outwash floodplains that are colo-

nized by pioneer species (Chapin, Walker, Fastie, & Sharman, 1994;

Sommaruga, 2015; Supporting Information Figure S2), a trend that is

expected to continue over the 21st century (McGrath, Sass, O’Neel,

Arendt, & Kienholz, 2017). Our areal estimates of change in histori-

cally glaciated regions of Alaska are in global concordance with previ-

ous estimates made by Loso et al. (2014) (R2 = 0.90; p < 0.005;

Supporting Information Figure S6), although differences in study peri-

ods result in substantially lower estimates within our analysis. Reced-

ing glaciers and declining snow cover promote upward migration of

species and communities in mountains (Gottfried et al., 2012), as is

observed in our analysis, as well as influence downstream aquatic

ecosystems by governing flow regimes (Brown & Mote, 2009), ero-

sion rates, sediment and nutrient flux (Hallet, Hunter, & Bogen,

1996), and water quality and temperature (Brown & Milner, 2012;

Fellman et al., 2015). Seasonal water releases from alpine glaciers

provide vital ecosystem services and resources that are essential for

human welfare, and are expected to increase (decrease) in the short

term (medium to long term) with rising air temperatures, lengthening

of the snow-free season, decreasing snow-to-rain ratios, and

increased radiative forcing (Huss et al., 2017).

Glacier changes documented in Alaska serve as an indicator of

climatic change and reemphasize the need to develop automated

approaches for characterizing glacial advance/retreat and associated

areal coverage. While manual interpretation of aerial and satellite

imagery has frequently been used for glacier change analysis, the

use of large, multitemporal stacks of optical satellite data has only

recently been explored (Winsvold, Kaab, & Nuth, 2016). Given the

distinct spectral response of stable perennial ice, glacier retreat, and

associated ecological processes (e.g., succession), our results further

demonstrate that Landsat-based trend maps are a useful tool for

mapping glacial change and ecosystem response, although we recog-

nize the problem of debris accumulation over glacial ice remains a

persistent problem in defining the lower boundaries of glaciers.

Holistic data fusion approaches that effectively leverage information

obtained from passive, active, and geophysical sensors (e.g., Landsat,

Sentinel, ICESat-2) will improve our ability to fingerprint glacial

change, and image-segmentation techniques could be applied to mul-

titemporal products to explicitly incorporate contextual information

that pixel-based classifiers typically neglect or implicitly account for

(Robson et al., 2015).

4.5 | Wildfires, insects, and timber harvesting

Recent climate warming has been linked to changes in the fire

regime in Alaska (Calef, Varvak, McGuire, Chapin, & Reinhold, 2015;

Duffy, Walsh, Graham, Mann, & Rupp, 2005; Rocha et al., 2012),

and wildfires play a major role in determining the rates, trajectories,

and duration of successional development in Arctic tundra and bor-

eal forests (Figure 3a). Results of our chronosequence model aligns

with the findings of others (e.g., Bond-Lamberty, Wang, & Gower,

2004; Kasischke & French, 1997), where establishment of woody

vegetation and peak productivity rates occurred approximately

20 years after a fire in black spruce stands, the prevailing fuel load

in boreal regions of Alaska, and spruce trees were expected to domi-

nate the forest canopy approximately 30–40 years after fire.

Whether this mean rate of postfire succession, or changes to alter-

native trajectories with more deciduous trees, will continue in a

warming environment is largely contingent on future fire severity

(e.g., amount of residual organic soil layer remaining after fire), fire

return intervals, permafrost, and site moisture (Alexander, Mack,

Goetz, Beck, & Belshe, 2012; Beck et al., 2011; Johnstone, Hollings-

worth, Chapin, & Mack, 2010).

Wildfires also play an important role in the rate and extent of

vegetation growth and productivity of a site. Analysis of vegetation

productivity trends and estimates of aboveground biomass postfire,

as derived from remote sensing (Margolis et al., 2015), indicate a

potential relation between postfire productivity and biomass that

warrants further investigation (Supporting Information Figure S7).

Fire-induced changes have substantial implications for feedbacks to

climate, in addition to physical structure where thinning may create

more shadows and browning trends, and biophysical processes. For

example, wildland fires often reduce albedo shortly after occurrence,

result in a pulse of nutrients (e.g., nitrogen) that become available

for uptake by plants, and provide the opportunity for deciduous for-

ests to develop (as is reflected in our successional chronosequence),

which generally raises surface albedo and increases the proportion

of energy released to the atmosphere as latent heat (Chapin et al.,

2010; Johnstone, Rupp, Olson, & Verbyla, 2011). A shift from a

spruce to deciduous dominated landscape could act as a negative

feedback to climate warming and increasing fire activity in boreal

forests (Pastick et al., 2017; Rogers, Randerson, & Bonan, 2013).

Climate warming in boreal Alaska has also resulted in increased

woody vegetation mortality from insects over recent decades (Berg

et al., 2006; Soja et al., 2007), and projected warming is expected to

increase outbreaks in western North America (Bentz et al., 2010).

Biotic disturbance agents, such as bark beetle species (e.g.,

Dendroctonus rufipennis) and defoliators, can cause tree mortality or

injure trees and predispose them to mortality from other stresses

(Malmstr€om & Raffa, 2000). While insect damage generally reduces

vegetation productivity shortly after occurrence, by causing mortality

or reducing canopy density, our findings suggest that areas
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recovering from insect-induced mortality generally have higher pro-

ductivity levels than preoutbreak conditions (Figure 3b). This could

partly be in response to timber salvage postinfestation (Jones, 2008),

but our results are corroborated by previous studies where vegeta-

tion productivity in beetle-affected stands either returned to preout-

break levels following a brief recovery period (10–15 years), or

exceeded preoutbreak conditions (Hicke, Johnson, Hayes, & Preisler,

2012; Romme, Knight, & Yavitt, 1986), which could reflect a shift in

forest age class. However, additional work is needed to characterize

the magnitude and extent of insect damage because of difficulties

related to establishing time of occurrence and co-occurrence with

other stresses (e.g., drought stress).

Logging in southern coastal Alaska has led to extensive changes

to land-surface properties and biological processes (Zhou, Schroder,

McGuire, & Zhu, 2016). Rapid tree regeneration is thought to result

in canopy closure 15–25 years after clearcutting on productive for-

est soils (Sigman, 1985), corresponding to peak rates of vegetation

productivity in our chronosequence model (Figure 3c), followed by a

long-lasting stage of stem exclusion (Alaback, 1982; Deal & Farr,

1994) that generally has negative consequences for biodiversity and

wildlife habitat (Dellasala et al., 1996). While harvesting reduces

aboveground carbon stocks by removing wood from the ecosystem,

it can increase photosynthetic activity, the amount of solar radiation

that reaches the forest floor, soil temperatures, and rates of decom-

position of soil organic matter (Sigman, 1985).

4.6 | Future directions and current limitations

Our approach to quantify change processes has the advantage over

simple image differencing/thresholding, automated change detection

algorithms, and postclassification techniques by characterizing press

(gradual) and pulse (rapid) disturbances, providing spatially explicit

estimates of uncertainty, and calibrating models using expert know-

ledge and a large dataset. As additional interpretations of change

become available, the accuracy of change maps can be further

assessed and models may be refined to account for change pro-

cesses that may be underrepresented within the model training data-

set. Current limitations include uncertainties of error propagation by

various parameters, mapping issues associated with scale (e.g., mixed

pixel effects), a paucity of Landsat data during the 1990s, and a lack

of contemporaneously acquired ground-truth data. Future work may

benefit by using techniques that explicitly account for autocorrela-

tion and provide timing of disturbance information. However, recent

work suggests that automated change detection algorithms typically

need to be calibrated using training data and can be heavily

impacted by noise (Cohen et al., 2017). Integration of vertical change

data (e.g., Alonzo et al., 2017) would be beneficial for characterizing

changes in ecosystem structure (due to thermokarst, e.g.,) that may

not be apparent from optical imagery alone.

Despite these limitations, our results serve as a first step toward

a comprehensive integration of diverse drivers and characterization

of dramatic changes that have occurred across Alaska over the

last 32 years. This comprehensive assessment of change drivers is

unique in that it attributes changes observed in remotely sensed

data to climatic, ecological, and geomorphological processes that

have occurred throughout Alaska. By integrating observations of

change processes with geospatial data and statistical models, we

identified regional factors driving ecosystem dynamics and identify

areas most vulnerable to change. According to our analysis, approxi-

mately 13% of Alaska has experienced change over the last three

decades, with the majority of change occurring in boreal regions

due to the residual effects of fires that are still apparent after

60 years. Our findings suggest that Landsat-based trend and change

maps will be useful inputs for a suite of Earth System models; for

example, by providing information that can constrain understanding

of the trajectories, rates, and patterns of vegetation growth and

succession. It is important to continue to detect land- and water-

surface changes, and determine causation at a multitude of scales,

to better understand how northern high-latitude ecosystems will

respond to further perturbations and influence socio-ecological

systems.
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