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Occupant identification proves crucial in many smart home applications such as automated home control and

activity recognition. Previous solutions are limited in terms of deployment costs, identification accuracy, or

usability. We propose SenseTribute, a novel occupant identification solution that makes use of existing and

prevalent on-object sensors that are originally designed to monitor the status of objects they are attached

to. SenseTribute extracts richer information content from such on-object sensors and analyzes the data to

accurately identify the person interacting with the objects. This approach is based on the physical phenomenon

that different occupants interact with objects in different ways. Moreover, SenseTribute may not rely on users’

true identities, so the approach works even without labeled training data. However, resolution of information

from a single on-object sensor may not be sufficient to differentiate occupants, which may lead to errors in

identification. To overcome this problem, SenseTribute operates over a sequence of events within a user activity,

leveraging recent work on activity segmentation. We evaluate SenseTribute using real-world experiments by

deploying sensors on five distinct objects in a kitchen and inviting participants to interact with the objects.

We demonstrate that SenseTribute can correctly identify occupants in 96% of trials without labeled training

data, while per-sensor identification yields only 74% accuracy even with training data.

CCS Concepts: • Computer systems organization→ Sensor networks;

Additional Key Words and Phrases: Occupant Identification; On-object Sensing; Sensor Fusion

1 INTRODUCTION

Occupant identification is fundamental in providing many value-added services for smart homes.
Personalized home control such as comfort adjustments for lighting and HVAC proves to be
important for user convenience as well as energy and cost savings [Balaji et al. 2013; Conte et al.
2014; Ranjan et al. 2014]. Furthermore, occupant identification supports activity recognition and/or
occupant behavior analysis [Zeng et al. 2016].

Prior works investigate the use of body-worn sensors for occupant identification [Gafurov and
Snekkenes 2009; Gafurov et al. 2007; Mantyjarvi et al. 2005]. Such solutions, however, are intrusive
and are less practical because users are required to always carry or wear the sensors. To solve
this problem, infrastructure-based solutions have also been explored. However, they make use
of sensors that may invade privacy, such as cameras and microphones [Lin et al. 1994; Stillman
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et al. 1998]. To overcome such problems, researchers also introduce solutions leveraging special
purpose sensors such as infrared or vibration sensors [Hnat et al. 2012; Khalil et al. 2016; Pan et al.
2015, 2017]. Because these solutions deploy the sensors specifically for occupant identification
purposes, the solutions come at high hardware and installation costs. Researchers also explore
existing infrastructure, such as WiFi, to help identify occupants [Zeng et al. 2016; Zhang et al. 2016].
However, they make strong assumptions – requiring a user to walk in a straight line, or to stay
within a line-of-sight between transceivers – limiting their practicality.

Hence, to overcome the aforementioned limitations of prior work and provide a more practical
and yet cost effective solution, we ask the following question – instead of building and deploying
specific sensors to provide a practical occupant identification solution, can we leverage sensing
capabilities of existing IoT devices within a smart home? To answer this question, we observe
an emerging trend in commercial on-object sensing devices [Cao Gadgets LLC 2017; Ecolink 2017;
MetaSensor 2017; Notion 2017; Samsung 2017], which are detachable wireless sensor nodes that
retrofit home objects such as doors, windows, drawers, and/or refrigerators, to monitor and report
the object status over the home network. These devices are already prevalent, and are projected to
be more ubiquitous throughout smart homes [Deloitte 2015; Murphy 2015].

On-object sensing devices are typically equipped with accelerometers and/or gyroscopes to mon-
itor object status (e.g., door opened or closed). However, we explore the possibility of re-purposing
these devices to provide more expressive data rather than just object status. Specifically, we find that
the way a person interacts with an object is rather unique and can differentiate among people. For
example, different family members tend to open a door or refrigerator in different manners, possibly
due to different physical build, strength, and habit. We present SenseTribute, a novel occupant
identification mechanism for smart home settings, which takes advantage of this physical phenom-
enon using representative features from accelerometer and gyroscope measurements to distinguish
home occupants. SenseTribute enables a�ribution of sensory measurements to the originating
user, hence the name. Figure 1 depicts an example of repeated accelerometer measurements for
two different users, highlighting the important capabilities to distinguish between users and match
subsequent user readings.
SenseTribute utilizes supervised learning techniques to first train the model using collected

bootstrapping data as training data, along with the corresponding training labels. Subsequently,
upon collecting testing data, SenseTribute performs classifications using the trained model. While
some application scenarios may ask the occupants to initially provide the training labels (e.g.,
names of persons associated with the training data) during a bootstrapping phase, such approach
may be impractical in other scenarios due to usability problems. Hence, we design SenseTribute

to be robust against this challenge, specifically, even in scenarios where the users do not provide
the training labels. In such cases, SenseTribute is still able to identify the occupants, but with
pseudo-identifiers instead of explicit identifiers such as names (e.g., Persons A and B rather than Alice

and Bob). Pseudo-identifiers still support most of smart home applications such as aforementioned
personalized home control and identifying occupants of recognized activities, and may even be
suitable for privacy-preserving applications. This is made possible because SenseTribute infers

the labels by utilizing unsupervised learning techniques to cluster the bootstrapping data into
cluster identifiers. Subsequently, SenseTribute trains the model using the training data and the
corresponding cluster identifiers as quasi-training labels. The quasi-training labels are labels that
do not have information to map the cluster identifiers to occupant identities such as names.

Evenwith this classification approach, each on-object sensing device provides limited information
content, yielding low identification accuracy. Performance degrades even further if training labels
are not provided. In order to solve this challenge, we introduce SenseTribute’s Ensemble Module to
amplify the information content across multiple on-object sensing devices, thereby boosting the
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2 BACKGROUND AND RELATED WORK

We first present on-object sensing devices and their prevalence. We then introduce activity segmenta-

tion often studied in the field of activity recognition, and how SenseTribute utilizes it. Furthermore,
we describe related work onoccupant identification.

2.1 On-Object Sensing Devices

On-object sensing devices are popular smart home gadgets that enable home owners to monitor the
status of various objects – such as doors and drawers – by simply attaching the device to each
object. An on-object device is commonly equipped with inertial sensors (e.g., accelerometer and/or
gyroscope), which sense the movement of object it is attached to. The sensor signals are then
processed to output object status – such as door or drawer open/close – and reports the events to
home owner’s smartphone over the cloud. Companies such as Notion [Notion 2017] and Samsung
SmartThings [Samsung 2017] are industry leaders, while there are many other commercial solutions
from various vendors [Cao Gadgets LLC 2017; Ecolink 2017; MetaSensor 2017]). These devices are
projected to be more prevalent in smart homes in the near future [Deloitte 2015; Murphy 2015].
We design SenseTribute to extract more expressive data than mere status of objects, namely to infer
the identities of occupants in a home. Hence, SenseTribute inherently eliminates the costly need to
build and deploy specific sensing devices for occupant identification.

2.2 Activity Segmentation

Activity segmentation – an actively studied topic in activity recognition field – segments out a
sequence of events that are performed by a single occupant. However, this is a difficult problem
because different events are performed by different persons that may be temporally overlapping
within a single stream of sensor data. Hence researchers make use of combinations of sensor
patterns and temporal information to identify a sequence of events that constitute a single activity
segment [Helaoui et al. 2013; Kodeswaran et al. 2016; Riboni et al. 2016]. For example, consider
PersonA cooking breakfast, while PersonB watching TV in the living room. The cooking breakfast
activity segment may consist of a sequence of events such as: {kitchen door opening, fridge door
opening, and pasta drawer opening}. On the other hand, watching TV activity segment may consist
of a sequence of events such as: {sitting down on sofa, taking out remote control, TV turning on}.
Each of the sequence of events belonging to the same activity segment are grouped together, even
though there may be temporal overlaps between individual events. Activity segmentation is one of
the important foundations when designing SenseTribute. Specifically, Ensemble Module exploits the
above property that a sequence of events within an activity segment is performed by the same user,
enabling SenseTribute to combine the confidence of a sequence of events (see Section 3.5).

2.3 Occupant Identification

Smart home occupant identification is an important problem. Personalized home control is gaining
much attention such as user-specific comfort adjustments for lighting and HVAC for convenience
as well as energy efficiency [Balaji et al. 2013; Conte et al. 2014; Ranjan et al. 2014]. Due to
potentially significant cost-savings, this is a real-world problem that are heavily studied by appliance
manufacturers as well. Furthermore, occupant identification supports many activity recognition
applications. This is because understanding who is performing the recognized activity is a building
block to associating activities to individual occupants, rather than just knowing that someone at
home has performed the activity [Zeng et al. 2016] (e.g., splitting costs between roommates based
on individual energy consumption or even simply providing feedback to which family member
consumes most energy).
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3.1 SenseTribute Overview

SenseTribute’s goal is to identify the occupants by leveraging signals of on-object sensors utilizing
supervised learning techniques. SenseTribute is divided into two phases – a Bootstrapping and
Identification Phases. First, during the Bootstrapping Phase, SenseTribute trains a classification
model from the collected sensor data (i.e., history data). Subsequently, in its Identification Phase,
SenseTribute tests newly collected sensor data, to finally identify the occupant.

In order to train the model for classification, the system requires training labels (i.e., ground truth
occupant identity corresponding to the collected history data). However, it may be more practical
for certain applications to not collect user provided training labels (e.g., to increase usability). We
account for this problem, and design SenseTribute to automatically adapt its training scheme based
on the availability of user-provided labels.
We present the flow chart diagrams to depict the overall SenseTribute design as shown in

Figure 2(a). Specifically, when the training labels are provided to the system by the users (i.e.,
known labels scenario), SenseTribute utilizes the traditional supervised learning techniques, by
taking as input for the Training Module, the (1) training label and (2) data. For the training label,
SenseTribute utilizes the user-provided ground truth labels. For the training data, SenseTribute first
processes the collected history data in Pre-processing Module), and then extracts necessary features
in Feature Extraction Module. Finally, at the end of the Identification Phase, the Testing Module

outputs the Predicted Occupant Label, along with the classification probabilities of all the potential
classes.
However, SenseTribute is also capable of operating even when users do not provide the ground

truth labels (i.e., unknown labels scenario), by utilizing a hybrid approach of unsupervised and
supervised learning techniques. Similar to known labels scenario, the history data are used to process
and extract features. However, the features are now input to Clustering Module, which computes
and outputs the clustered indices. We use these indices as quasi-labels that substitute the ground
truth labels. Quasi-labels represent different clusters, or groups, corresponding to the history data.
However, as opposed to the ground truth labels, quasi-labels (1) do not carry information to be
directly mapped to specific occupant’s explicit identities such as names; and (2) are prone to some
amount of error due to clustering. Finally, the Testing Module outputs the predicted pseudo-identifier
labels, along with the classification probabilities of all the potential classes. Similar to quasi-labels,
pseudo-identifiers do not carry information to be directly mapped to the specific occupant identities
such as names, but are still valuable because they can be used to sufficiently distinguish different
occupants (e.g., PersonA vs. PersonB ). While clustering algorithms such as K-Means provide linear
decision boundaries, we design SenseTribute using classification as the backbone framework for the
simplicity of integrating both known and unknown labels scenarios.

Since the information content from a single object may not be sufficient to accurately identify the
occupants, we introduce SenseTribute’s Ensemble Module subsequent to the Identification Module of
each object, to “ensemble” the classification probabilities to arrive at a higher occupant identification
accuracy. Figure 2(b) depicts the corresponding flowchart diagram.

3.2 Pre-processing and Feature Extraction

3.2.1 Pre-processing. Prior to extracting the features from the raw sensor data, we first perform
noise reduction to increase the Signal-to-Noise Ratio (SNR) and the subsequent classification and
clustering performance. We make use of spectral subtraction [Boll 1979], used in speech recognition
to remove background noise, because the ambient noise is similar to inherent sensor noise. Spectral
subtraction performs the operation S(ω) = Y (ω) − N (ω), where Y (ω), S(ω), and N (ω), are the
frequency-domain spectra of the noisy sensor reading, desired signal, and noise, respectively. We
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Fig. 3. We use spectral subtraction to increase the Signal-to-Noise Ratio (SNR). (a) depicts raw time-series

gyroscope signal; and (b) depicts the resulting spectral subtraction.

Feature Domain Expression
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∑N
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Median time median(xp )

Table 1. Features used in SenseTribute, where vectors, xp and yq are time and frequency domain representa-

tions of the pre-processed data, respectively. N andM are the number of elements in x and y, respectively.

estimate the noise spectrumN (ω) by sampling the ambient noise, which can be performed by sensor
nodes, in practice, prior to the Pre-processing Module. Figure 3 depicts an example of single-axis
gyroscope signal corresponding to opening and closing a drawer.

3.2.2 Feature Extraction. SenseTribute then performs feature extraction on the pre-processed
signal. We extract features from both time and frequency domains as characteristics of the induced
signal. We list the features used in this work in Table 1. Vectors xp and yq are time and frequency
domain representations of the data, respectively, and N and M are the number of elements in
x and y, respectively. The Root Mean Square (RMS) (in time or frequency domains as RMS and
FFTRMS , respectively) reflects the variation within a signal segment, a relatively widely used feature
that effectively describes the signal. The peak-to-RMS ratio of time domain signal, Peak2RMS ,
measures more detailed signal distribution in addition to RMS . For example, a person with thicker
finger bones knocking on the door may trigger an impulse signal with a sharp waveform, which
may lead to a higher Peak2RMS value. We also compute the log energy entropy [Coifman and
Wickerhauser 1992; Mathworks 2017], Enerдy, which measures the signal distribution. Signal
magnitude area [Bersch et al. 2014; Bouten et al. 1997], SMA, measures the average of the signal
amplitude. The maximum value of frequency domain signal, FFTmax , provides the peak amplitude
of yq . Finally, we use the common statisticalmean andmedian of xp as measurements of central
tendency.
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Fig. 4. We plot feature pairs for knock and fridge door open/close event types for comparison. Knock plot

depicts sufficient separation of features across Persons A, B, D, and E, while Person C has a large overlapping

area. Fridge plot depicts sufficient separation for Persons A, B, and E, while Persons C and D have large

overlapping areas.

Furthermore, we compare the feature distributions of different occupants by plotting feature
pairs. Figure 4 depicts two examples of feature pairs (Peak2RMS vs. SMA) from two distinct sensors
on a door (capturing knocking events) and refrigerator (capturing refrigerator opening and closing
events). Each marker represents a feature comparison per occupant (i.e., PersonA to PersonE ). We
make the following two observations. First, we observe that within each sensor, the feature pair
provides information to distinguish different occupants at a fairly sufficient manner. For example,
for knocking event, PersonA, PersonB , PersonD , and PersonE exhibits sufficient separation, while
PersonC exhibits large overlapping area with other occupants. Second, we also observe that across
the two events from different objects, different feature pairs contribute to separating the occupants.
For example, the feature pairs performed well in distinguishing PersonD for knocking on a door
but poorly for opening and closing a refrigerator.

3.3 Known Labels Scenario

In the application scenario where the user provides the ground truth labels for the training label,
we leverage supervised learning techniques to perform occupant identification. We implement
SenseTribute’s classification modules (i.e., Training and Testing Modules) with Support Vector Ma-
chines (SVM) [Bennett and Campbell 2000] using Radial Basis Function (RBF) kernel. We choose
SVM because it requires relatively small amount of training data to achieve high classification
accuracy, compared to other classification methods such as neural networks. We implement the
modules using publicly available LIBSVM [Chang and Lin 2011]. We use multi-class SVM classifica-
tion to classify n occupants in smart home settings, where n ≥ 2. First, the Training Module takes
as input aforementioned feature vector of the training data and the training label to compute the
trained model. This module concludes the end of Bootstrapping Phase.
Second, the Testing Module in the Identification Phase takes as input the trained model and

the feature vector of the testing data. This module performs the SVM classification to output
the following: (1) classification probabilities, Pr [O = oi ], of all possible classes (i.e., occupants),
o1, ...,on ; and (2) final predicted label which is the occupant, oi that yields highest Pr [O = oi ].
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3.4 Unknown Labels Scenario

When he user does not provide any training labels, we leverage a hybrid approach of supervised
and unsupervised learning techniques to perform occupant identification. The unknown and
known labels scenarios are equivalent in computing the feature vector. However, it differs in that
the system no longer has the given training labels to be input to the classification modules. Hence,
we infer the training labels using the unsupervised learning techniques.

Specifically, we implement the Clustering Module with K-Means clustering [Kanungo et al. 2002;
Lloyd 1982], which takes a feature vector from the history data and the number of cluster groups
K . We assume that K , i.e., number of occupants in a home is known (see Section 5.2). K-Means
clustering algorithm groups each of the input observations intoK clusters with the smallest distance
to the corresponding computed centroid. This module outputs the clustered indices, which will be
subsequently used as the training label, in the TrainingModule. We note that the clustered indices are
quasi-labels, which does not map directly to occupants’ explicit identifiers (e.g., occupants’ names
such as Amy vs. Bob). However, quasi-labels provide adequate information to identify occupants to
their pseudo-identifiers (e.g., PersonA vs. PersonB ) at the end of the Identification Phase.

3.5 Ensemble Module

Each object’s identification accuracy (output from Figure 2(a)) are limited because each object has
either low resolution of information, or same occupant may occasionally interact with the object in
slightly different manner. Furthermore, for the case of the unknown labels, accumulated errors from
clustering contributes to lower per-object identification accuracy. Hence, we design EnsembleModule

to amplify the occupant identification accuracy. SenseTribute ensembles identification probabilities
of individual objects, as depicted in the flow chart diagram in Figure 2(b). Specifically, this module
takes as input the resulting classification probabilities, Pr [O = oi ], where i = 1, ...,n (indicating
n potential classes, i.e., n occupants), from each of the Testing Modules belonging tom different
sensors each interfaced with different objects, defined as Sj , where j = 1, ...,m. Subsequently, this
module outputs the final predicted occupant identity, o∗, which has an amplified identification
accuracy, which we evaluate in Section 4.

To implement the ensemble algorithm, we formulate this problem as the conditional probability
depicted in Equation 1:

o∗ = argmax
oi

Pr [O = oi | S1, ...,Sm], (1)

This finds the most likely occupant o∗ given sensor data S1, . . . ,Sm . We assume independence
across each sensor, Sj , and use Bayes’ theorem to rewrite this formulation as shown in Equation 2:

o∗ = argmax
oi

m
∏

j=1

Pr [O = oi | Sj ], (2)

where each of the probabilities, Pr [O = oi | Sj ], is equivalent to the output probabilities, Pr [O = oi ],
of each sensor.

4 EVALUATION

In this section, we first present the experiment setup and evaluate SenseTribute’s performance.

4.1 Experiment Setup

4.1.1 Apparatus. We conduct our experiment by facilitating five objects in a kitchen each
with a sensor node. The objects include – door, fridge door, drawer, towel dispenser, and window.
Each sensor node comprises of an Arduino Uno [Arduino 2017] interfaced with ADXL335 tri-axis
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Fig. 6. Figure depicts classification accuracy by varying number of occupants of each event type (for known

labels scenario). Each data point is an average accuracy of all combinations within each number of occupants.

As the number of occupants increases, classification accuracy decreases. The average accuracy of different

event types for five occupants case yields 74%. (b) Figure depicts classification accuracy due to different

occupants. Certain pair of event types yield contradicting accuracy across different occupants. SenseTribute

takes advantage of such phenomenon to amplify the final accuracy in its Ensemble Module.

We further note that different event types result in different accuracy, due to certain objects being
more distinctive. We observe that objects that provide relatively consistent interaction yielded
better classification accuracy. For example, knocking on door and opening and closing a drawer leads
to more information to sufficiently distinguish occupants, while dispensing towel did not produce
sufficient information on its own.

Predicted as:

Person A Person B Person C Person D Person E
Classification

Accuracy

G
ro
u
n
d
T
ru
th Person A 7 0 2 1 0 7/10

Person B 0 5 1 1 3 5/10
Person C 1 0 4 4 1 4/10
Person D 2 1 5 1 1 1/10
Person E 2 4 1 1 2 2/10

Table 3. Table depicts a confusion matrix of towel event type for the five occupant scenario from Figure 6(a).

As highlighted, Persons C and D are o�en misclassified to each other. Similarly, Persons B and E are also

misclassified to each other. This can be explained when considering similar physical built between the

occupant pairs.

To understand the reason for such low accuracy for certain event types such as dispensing towel

event type, we also report the classification accuracy per occupant (Person A through E), per event
type (Figure 6(b)). As depicted from this figure, the accuracy across towel event is generally low
for certain persons such as Persons D and E. To further understand the reason, we analyze the
confusion matrix for the five person scenario depicted in Table 3. From the matrix, we note that
Person D is often misclassified with Person C and vice versa (as highlighted ), while Person E is often
misclassified as Person B and vice versa (as highlighted). To further analyze the misclassifications,
we present the raw accelerometer data of the four occupants in Figure 7. From visual inspections,
signals from Persons C and D are similar together, while those of Persons B and E are also similar
to each other. This phenomena can possibly be explained when considering similar physical built
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Fig. 7. Figure illustrates raw accelerometer signals of Persons B, C, D and E, when dispensing towel. The

signals depict high similarities between Persons C and D, as well as Persons B and E. This can be possibly

explained when considering similar physical built between the occupant pairs.

Predicted as:

Person A Person B Person C Person D Person E
Classification

Accuracy

G
ro
u
n
d
T
ru
th Person A 7 0 1 1 1 7/10

Person B 0 10 0 0 0 10/10
Person C 1 0 6 1 1 6/10
Person D 2 0 2 6 0 6/10
Person E 1 0 0 2 7 7/10

Table 4. Table depicts a confusion matrix of door event type for the five occupant scenario from Figure 6(a).

Average classification accuracy for Person B is highest. Similarly, all other occupants did not misclassify to

Person B. This can be explained by Person B’s unique motion of opening and closing the door. SenseTribute

eventually benefits from such unique occupant-object pair when performing ensemble across different objects.

between Persons C and D, and Persons B and E as described in Table 2. The similarities between the
physical built is correlated to the similarities of the raw signals when dispensing towels. However,
in general the towel event type proves to yield poor classification accuracy for all five occupants. This
can be understood when noticing that the towels often got ripped during dispensing in multiple
trials, and consequently yielded different interactions even within same subject.
Furthermore, from Figure 6(b), we note another interesting point about classification accuracy

across different occupants. Even though the average classification accuracy were relatively high for
certain event types (as depicted in Figure 6(a)), different occupants have varying results. For example,
while door yielded relatively high accuracy, we find that only Person B’s result is particularly good
compared to other occupants. To understand this phenomenon better, we plot the raw accelerometer
signals of Persons A, B, and C in Figure 8. From visual inspection, it is sufficient to differentiate
Person B’s signal (colored in red) from the rest, while Person A and Person B yielded similar signals
(colored in blue). This is also depicted in Table 4 as a confusion matrix. Notice that Person B is
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Fig. 8. Figure illustrates raw accelerometer signals of Persons A, Persons B, and C, when opening and closing

a door. The signals depict high similarities between Person A and C, while Person B is relatively unique. Such

uniqueness yields high classification accuracy for Person B with the door event type.

uniquely and correctly classified to himself, while the accuracy is lowered for other occupants.
Furthermore, other occupants were never incorrectly classified to Person B (as highlighted ). 1 These
results demonstrate how different people interact with certain objects uniquely, but interact rather
similarly with other objects. This is one of the reasons why SenseTribute benefits from its Ensemble

Module to fuse across classification probabilities from different objects. In addition, for certain
event types, the classification accuracy is flipped across a pair of occupants on two different event
types. For example, Knock and Door event types yield relatively high and low classification accuracy
for Person A, respectively. However, the two event types conversely yield relatively low and high
accuracy for Person B, respectively.

4.3 Unknown Labels Scenario

We now evaluate SenseTribute when the training labels are not provided by the user. As presented
in Section 3.4, SenseTribute utilizes a hybrid approach of unsupervised and supervised learning –
i.e., using clustering result as quasi-labels, to replace the unknown training labels. To provide a
comprehensive view of how clustering accuracy affects the classification accuracy, we set clustering
accuracy artificially from 25% to 100%, for each event type, as depicted in Figure 9. For example, a

1We further present confusion matrices of other event types in Appendix A.
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Fig. 9. Figure depicts how varying clustering accuracy affects classification accuracy by artificially se�ing

clustering accuracy from 25% to 100% for each event type (for five occupants case). Classification accuracy

increases as clustering accuracy increases for all event types.

clustering accuracy of 50% indicates that half of the training labels selected at random are made
incorrect on purpose. We repeat this process a thousand times and report the average for each data
point in this figure. We show the result of five occupants case as an example. This figure illustrates
that as the clustering accuracy increases, the corresponding classification accuracy also increases
(with 100% corresponding to known labels).

We now evaluate the performance of the Clustering Module. The clustering accuracy is computed
as Rand Index [Rand 1971], which is defined as Equation 3:

Clustering Accuracy (Rand Index) =
TP +TN

TP +TN + FP + FN
, (3)

where TP, TN, FP, and FN, are True Positive and Negative, and False Positive and Negative, respec-
tively. Figure 10(a) depicts the clustering accuracy (i.e., Rand Index), when we vary the number
of occupants i = 2, ..., 5. Each of the data points is an average of all possible combinations of i

occupants,
(5
i

)

. Furthermore, we report the average of a thousand iterations for all instances. We
note that the clustering accuracy decreases as the number of occupants increase for Knock and
Drawer event types. However, the rest of the event types yield results that have increasing clustering
accuracy as the number of occupants increase. This is because Knock and Drawer, which yield high
classification accuracy for Known Labels scenario, have features that are sufficiently differentiable,
while the rest of the event types do not follow this trend. Hence, during clustering of two occupants
case, the two centroids may be very close to each other, yielding low clustering accuracy. However,
when the number of occupants increase, more centroids are introduced, yielding higher clustering
accuracy.
Finally, we evaluate the classification accuracy of SenseTribute’s Unknown Labels scenario (i.e.,

output of Testing Module). We compute the classification accuracy in a similar manner to the
aforementioned Figure 9, namely purposely degrading the correctness of the training label. Only
this time, we take the actual empirical results of clustering accuracy from Figure 10(a) instead of the
artificial numbers. We apply this strategy rather than directly applying the output of the clustering
indices as the training label. This is because Clustering Module outputs clustered indices, which is
at times difficult to map to corresponding ground truth labels. However, this is necessary when
computing the final classification accuracy for evaluation purposes. While improving clustering
algorithm would certainly help to solve this issue, we concentrate on evaluating the effects of
clustering accuracy on classification accuracy. Figure 10(b) depicts the effect of the classification
accuracy as we vary the number of occupants, where each data point, again depicts an average

of all possible
(5
i

)

combinations, and each combination is an average of 10-fold cross validation
(i.e., Leave-One-Out). We make two interesting observations. First, similar to Figure 6(a) of the
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Fig. 10. (a) Figure depicts clustering accuracy when varying number of occupants for each event type (for

unknown labels scenario). Knock and Drawer yield decreasing accuracy while other event types yield increasing

accuracy, as the number of occupants increase. (b) Figure depicts the classification accuracy when varying

number of occupants for each event type, for the unknown labels scenario. As number of occupants increases,

corresponding accuracy also decreases.

Known Labels scenario, this figure depicts an intuitive trend of decreasing classification accuracy
as the number of occupants increase. This trend exists even for the event types that have increasing
clustering accuracy with number of occupants from Figure 10(a). This is because the effect of
increasing the number of SVM classes outweighs the effect of correct labels. Second, we also
observe that classification accuracy are relatively lowered compared to Figure 6(a) of Known Labels

scenario due to the incorrect labels.

4.4 Ensemble Classification Accuracy

We now evaluate SenseTribute’s Ensemble Module for both the known and unknown labels scenarios.
To provide a comprehensive view of how the number of ensemble event types, and availability of
training labels affect the classification accuracy, we present Figure 11(a). We report the classification
accuracy when varying number of events to ensemble from j = 2, ..., 6, where each variation is an

average of all
(6
j

)

combinations. Again, each combination is an average of 10-fold cross valuation

(i.e., Leave-One-Out). We artificially assign equal clustering accuracy per event type, again by
artificially degrading the correctness of training label accordingly. We degrade different training
label at random, and repeat this process for a thousand times to report an average value. Each of
the lines plots depict different clustering accuracy – 25%, 50%, 75%, and 100% – assigned per event
type. The 100% clustering accuracy line graph represents the known labels scenario. We observe the
trend of increasing classification accuracy as we ensemble more event types. This is intuitive as we
have more information content to amplify the confidence of occupant identification. The 25% per
event type curve does not follow this trend, however, due to the fact that most of the training labels
are incorrect, which would actually hurt the performance as the number of event types increases.
Noting the effects of number of event types and availability of training labels on classification

accuracy, we now evaluate the performance of ensemble for both known and unknown labels

scenarios, as depicted in Figure 11(b). From these two plots, we make the following two observations.
(1) We observe that the classification accuracy increases as we ensemble more event types for both
known and unknown labels scenarios. For example, we observe for the unknown labels scenario, an
increase from 84% to 96%. This is intuitive, and in fact, one of the main contributions of SenseTribute,
as increasing information content ultimately amplifies the accuracy of occupant identification. (2)
We observe only a small difference in the resulting classification accuracy between the known and
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Fig. 11. (a) Figure depicts how (1) number of ensemble event types; and (2) availability of training labels affect

classification accuracy. We artificially assign equal clustering accuracy per event type. As number of ensemble

event types increases, accuracy increases, except for the 25% case. Also, lower per event type clustering accuracy

yields lower classification accuracy due to more mislabeled training data. (b) This figure depicts increasing

classification accuracy as we ensemble more number of event types, for both Known and Unknown Labels

scenarios. We observe high classification accuracy even if the training labels are not known.

unknown labels scenarios. We further observe that the difference reduces as we ensemble more
event types. This important observation means that SenseTribute provides a practical solution that
does not require users to provide manual labels with no significant impact on occupant identification.
We also present the classification accuracy per occupant for different number of event types.

Again, we report the average over all combinations. Figures 12(a) and 12(b) depict the corresponding
results for known and unknown labels scenarios, respectively. For both figures, we observe the similar
trend as we ensemble more number of event types, we achieve higher classification accuracy. This
trend is more evident with Persons C, D, and E, as these occupants depict low average classification
accuracy when we ensemble two events, compared to Persons A and B. This can be explained by
revisiting Figure 6(b). Recall that the accuracy for dispensing towel event type were extremely low
for these three occupants (as explained from Table 3 and Figure 7). However, the low accuracy of
one particular event type gets compensated by performing ensemble with other event types, hence
demonstrating how SenseTribute benefits from the ensemble process.
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Fig. 12. (a) Figure depicts classification accuracy of ensemble of event types for different occupants when

labels are known. As the number of ensemble event types increases, the accuracy also increases. (b) Figure

depicts classification accuracy of ensemble of event types for different occupants when labels are unknown. As

the number of ensemble event types increases, the accuracy also increases.
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5 DISCUSSION

In this section, we further discuss practical considerations and directions for further study with re-
spect to activity segmentation, unsupervised learning techniques, sensor calibration, and correlation
with prior work.

5.1 Additional Contextual Information

We highlight two additional contextual information that may potentially be helpful for SenseTribute,
namely order and time of events. In this work, we design SenseTribute to perform occupant identi-
fication based on the results of activity segmentation, which provides a sequence of events that
are performed by a single person. In Section 4, we evaluate scenarios where the order of events
(in an activity segment) are same across different participants. However, in practice, there is a
high probability that the order may vary. For example, when making a bowl of cereal, PersonA
may take out a bowl from cabinet, milk from fridge, and cereal from cupboard, while PersonB may
perform the same activity in an opposite order. In addition, different occupants may conduct the
same activity at different times of the day. For example, PersonA usually makes cereal around 8
a.m., while PersonB does the same at 10 a.m. Taking the above two observations into account,
we hint at the possibility of a hybrid approach of solving both the activity segmentation and
occupant identification problem simultaneously. This hybrid approach would potentially increase
the performance with the additional contextual information. Furthermore, the hybrid approach
may even increase the identification accuracy despite inconsistencies in different interactions by
the same user over time, or similar interactions by different users.

5.2 Unsupervised Learning

Recall that when the training labels are not provided by the user, SenseTribute utilizes clustering
to infer the quasi-training labels. We evaluate our results by clustering the history data during
bootstrapping phase. When SenseTribute is deployed in practice, we can utilize online learning
techniques [Charikar et al. 1997; Choromanska and Monteleoni 2011; Liang and Klein 2009] to
improve the results of clustering. This is because, over time, the clustering accuracy would increase
as the system collects more data, ultimately leading to potentially higher identification accuracy.

Furthermore, in our evaluation, we assume the knowledge of “K” (i.e., number of occupants) in
the K-means clustering algorithm. We make such assumptions because it is practical to have such
prior knowledge of how many people live at home. Granted, we note that if guests are introduced to
smart home, it may lead to less accurate results. In practice, however, there are clustering methods
to estimate the optimal “K”, such as Elbow method [Ketchen and Shook 1996]. Also, there are other
clustering algorithms that do not require the number of clusters [Ester et al. 1996]. However, we
leave this study for future work.

5.3 Sensor Calibration

Recall from our evaluation that we deploy sensors on different objects with consistent orientation
of accelerometers and gyroscopes as presented in Section 4.1. While we conducted the experiment
as a proof-of-concept, in practice, we cannot assume such deployment. Hence, the system would
need a simple but important calibration phase, to identify the axes that have relatively richer
information content. SenseTribute may benefit from the calibration phase, as identifying a specific
set of features and axes per object and/or event type would ultimately increase the identification
performance. For example, Figure 13 depicts the signals from X, Y, and Z-axes of the accelerometer
when a participant opens and closes a fridge door. It is evident that the Z-axis contains richer
information content as opposed to X and Y-axes. This is because of the way that the accelerometer
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Fig. 13. Figure illustrates the raw accelerometer signals of X, Y, and Z-axes when a participant opens and

closes a fridge door. Due to the orientation of accelerometer installed on the fridge door during the experiment

(as described in Section 4.1.1), the Z-axis captures rich information content of the fridge door opening and

closing motion, while the other two axes does not add additional information when classifying occupants.

is attached to the fridge. Recall from Figure 5 in Section 4.1.1 that the Z-axis is perpendicular, while
X and Y-axes are parallel to the surface of the fridge door. Hence, when the fridge door opens and
closes, the Z-axis will capture more information content. Thus, the calibration phase would analyze
the information content of the three axes to find that the X and Y-axes do not contain additional
information than the Z-axis in identifying the occupants. Specifically, the analysis could entail
simple time or frequency domain analysis to determine the axis that contain sufficient information
for SenseTribute.

5.4 Correlating with Prior Work

In this work, we design SenseTribute to specifically leverage existing on-object sensing devices to
eliminate the need for deployment of sensors specifically for home occupant identification. However,
we envision that in the near future, smart homes will be equipped with more built-in sensors. This
is an opportunity for us as well because SenseTribute can take advantage of more pervasive sensors
that are already deployed to potentially further increase the identification accuracy. For example,
vibration sensors such as geophones and accelerometers are emerging as common solutions for
structural health monitoring to monitor conditions of structural buildings [Kim et al. 2007; Ulusoy
et al. 2012]. Given the availability of such vibration sensors at home, we could take advantage by
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Fig. 14. Figure illustrates raw signals of footsteps from two participants captured by a geophone. The

signals depict high correlation between trials from the same participant. However, the signals are sufficiently

differentiable across the two participants due to differing gait movements.

extracting information of home occupants by differentiating induced footsteps similar to prior
work [Pan et al. 2014, 2015]. Such information could then extend SenseTribute by performing
ensemble together with the existing on-object sensors. Footstep is especially attractive for the
following two reasons. First, footstep information could lead to more accurate activity segmentation
as people often walk in between different activities (e.g., open a door, walk to a fridge, then open
the fridge). Second, footstep signals can also compensate signals from on-object sensors due to
different sources of error. While a person’s walking pattern is known to be relatively consistent,
identifying a person via gait is difficult due to other factors such as different type of shoes or
location to the sensor. On the contrary, events sensed by on-object sensors usually do not have
errors due to locations but has higher variations in the way that occupants interact with the object
(e.g., door opening).

Envisioning the deployment of vibration sensors in a home, we conducted a preliminary ex-
periment to test the feasibility of differentiating different occupants. Figure 14 depicts footstep
signals collected by a vibration sensor (specifically a geophone) sampled at 1 KHz. In particular,
two participants were each asked to walk in a straight line for two separate trials. As depicted, the
signals are similar between the two trials of the same person, while the signals can be sufficiently
differentiated across the two participants.

6 CONCLUSION

We present SenseTribute, a smart home occupant identification system that leverages existing
and prevalent on-object sensing devices equipped with inertial sensors, which are traditionally
designed to monitor status of objects such as doors. SenseTribute re-purposes these devices, and
exploits machine learning techniques to provide a low-cost, non-intrusive, and practical occupant
identification system in a smart home with high accuracy, even when training labels are unavailable.
Furthermore, SenseTribute combines information from multiple sensors on different objects to
amplify the identification accuracy. We evaluate SenseTribute using real-world experiments with
five on-object sensors deployed on distinct objects. Compared to an average of 74% per-object
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classification when the training labels are known, SenseTribute achieves an accuracy of 96% even
when the labels are unknown.

A EVALUATION DETAILS

We now provide details of some of the evaluations. In particular, we present tables that describe
the confusion matrices of classification of Persons A to E interacting with different objects for the
five occupant scenario depicted in Figure 6(a) in Section 4.2.

Predicted as:

Person A Person B Person C Person D Person E
Classification
Accuracy

G
ro
u
n
d
T
ru
th Person A 10 0 0 0 0 10/10

Person B 0 9 0 0 1 9/10
Person C 0 0 9 0 1 9/10
Person D 0 0 0 10 0 10/10
Person E 1 0 0 0 9 9/10

Table 5. Table depicts a confusion matrix of knock event type for the five occupant scenario from Figure 6(a).

Predicted as:

Person A Person B Person C Person D Person E
Classification

Accuracy

G
ro
u
n
d
T
ru
th Person A 10 0 0 0 0 10/10

Person B 1 9 0 0 0 9/10
Person C 0 0 8 0 2 8/10
Person D 0 0 0 8 2 8/10
Person E 0 0 2 2 6 6/10

Table 6. Table depicts a confusion matrix of fridge event type for the five occupant scenario from Figure 6(a).

Predicted as:

Person A Person B Person C Person D Person E
Classification
Accuracy

G
ro
u
n
d
T
ru
th Person A 10 0 0 0 0 10/10

Person B 0 9 0 1 0 9/10
Person C 0 0 7 2 1 7/10
Person D 0 1 1 8 0 8/10
Person E 0 0 1 0 9 9/10

Table 7. Table depicts a confusion matrix of drawer event type for the five occupant scenario from Figure 6(a).
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Predicted as:

Person A Person B Person C Person D Person E
Classification
Accuracy

G
ro
u
n
d
T
ru
th Person A 6 0 1 2 1 6/10

Person B 1 8 0 1 0 8/10
Person C 2 0 8 0 0 8/10
Person D 1 2 0 7 0 7/10
Person E 2 0 0 0 8 8/10

Table 8. Table depicts a confusion matrix of window event type for the five occupant scenario from Figure 6(a).
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