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ABSTRACT

Easily establishing pairing between Internet-of-Things (IoT)
devices is important for fast deployment in many smart home
scenarios. Traditional pairing methods, including passkey,
QR code, and RFID, often require specific user interfaces,
surface’s shape/material, or additional tags/readers. The
growing number of low-resource IoT devices without an
interface may not meet these requirements, which makes
their pairing a challenge. On the other hand, these devices
often already have sensors embedded for sensing tasks, such
as inertial sensors. These sensors can be used for limited user
interaction with the devices, but are not suitable for pairing
on their own.

In this paper, we present UniverSense, an alternative pair-
ing method between low-resource IoT devices with an iner-
tial sensor and a more powerful networked device equipped
with a camera. To establish pairing between them, the user
moves the low-resource IoT device in front of the camera.
Both the camera and the on-device sensors capture the phys-
ical motion of the low-resource device. UniverSense converts
these signals into a common state-space to generate finger-
prints for pairing. We conduct real-world experiments to
evaluate UniverSense and it achieves an F1 score of 99.9% in
experiments carried out by five participants.
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1 INTRODUCTION

The Internet-of-Things (IoT) requires a configured network
to perform sensing and actuation tasks. Pairing is a common
way to configure the network by authorizing a device with a
specific MAC address to transmit on the network. With the
rapid growth of IoT devices in the smart home environment,
each user will have an average of over 13 devices by 2020,
inevitably some will have significantly more [19]. Various
pairing methods have been explored to allow easy and fast
network setup, including passkeys, QR codes, and RFID tags,
and each has their limitations. For example, passkey-based
methods require I/O hardware such as a display and a keypad
[3]. QR-code based methods require the device to have a
flat surface to print or glue the QR code on. In addition,
they limit the device to using a static MAC address, which
may cause unexpected consequences for user privacy [15].
RFID-based methods require additional hardware to conduct
pairing, such as tags and readers [24].
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Figure 1: UniverSense pairing concept.

However, more and more IoT devices are designed with
no interface [16, 21], which makes it difficult, if not im-
possible, to conduct the traditional device pairing methods
[9]. Research has been done on utilizing existing on-device
sensors to achieve pairing via detecting co-sensed events.
They mainly fall into two categories: interaction-free and
interaction-based methods. Interaction-free methods rely
the fact that co-presented devices can sense events occur-
ring in the shared physical world [17, 29]. They require no
human interaction to establish the pairing between devices
in the environment. However, this process usually takes a
long time, especially when the frequency of detected events
is low, as there is less opportunity to correlate co-sensed
events. Interaction-based methods leverage human intention
to designate pairing devices [13, 22, 28]. The state-of-the-art
approaches require either a designated device [22] or the
devices on both ends to be moved together to generate fin-
gerprints [13], which is difficult for pairing between devices
of various sizes.

We present UniverSense, an alternative pairing solution
that enables network setup of IoT devices without an inter-
face, by using their existing sensors. Our solution targets
at the pairing between 1) interactive IoT devices (e.g., smart
TVs[25]), which already have I/Os, camera, and network con-
nection, and 2) IoT devices with Inertial Measurement Units
(IMU) and no interfaces [16, 21]. Figure 1 shows a concept
scenario where a user moves an [oT device in front of the
smart TV camera to conduct pairing. Both the camera and
the IoT device itself sense the motion of the IoT device. It
is challenging to extract information comparable enough
for pairing from the 2-D image signal and the 3-D inertial
signal. UniverSense achieves this by converting the co-sensed
motion to a common state space and generating fingerprints
for pairing. The contributions of this work include:

e We introduce an IoT device pairing mechanism, Uni-

verSense, that allows devices with different sensing
modalities to pair through motion sensing.

e We present a fingerprint generating and pairing method

for heterogeneous sensing signals that extracts shared
physics representations of the motion from sensors
of different modalities.

e We conducted real-world experiment to evaluate our
pairing mechanism.

S. Pan, et al.

The rest of the paper is organized as follows. Section 2
introduce our pairing mechanism UniverSense. Then, we eval-
uate UniverSense through real-world experiments in Section
3. Next, we discuss the potential expansion of this work in
Section 4. Finally, we compare this work with related work
in Section 5 and conclude in Section 6.

2 UNIVERSENSE SYSTEM OVERVIEW

UniverSense pairs devices based on detecting shared physical
motion. Figure 2 shows the pairing process. UniverSense first
obtains the motion signals (Section 2.1), which are observed
by each device involved in the pairing. Then, UniverSense
converts each motion signal —detected by different sensor
modalities— into a common state space (Section 2.2). Next,
each device generates a fingerprint based on the converted
signal (Section 2.3). Finally, the fingerprints are used to
determine whether a successful pairing should be established
(Section 2.4).

2.1 Heterogeneous Sensing

The heterogeneity of the pairing devices allows the more
‘powerful’ IoT devices (i.e., computational power, sensors,
interface, network) to complement the low-resource IoT de-
vice with no interface, allowing for pairing between them
and potentially to the rest of the home network. The ‘pow-
erful’ devices include 1) interactive devices, such as smart
TVs equipped with camera(s) to enable user interaction [25]
and 2) ambient sensing devices, such as security cameras
[12]. These cameras capture image frames that contain the
position/movement of the IoT device. On the other hand, low-
resource IoT devices are likely to be equipped with an IMU
[16, 21]. An IMU consists of an accelerometer, a gyroscope
and a magnetometer, which measure the linear acceleration,
the rotation rate of the device, and the magnetic field respec-
tively in body coordinates of the IoT device. We assume that
in this paper the low-resource IoT device has IMU internally.

2.2 Conversion to a Common State-Space

The challenge of heterogeneous sensing-based pairing is that
the measured signals are in different sensing state-spaces
and therefore cannot be directly compared. However, if a
user moves the low-resource IoT device in front of the cam-
era, both sensors can obtain common information about the
motion (in the form of position, acceleration, etc.) of the
low-resource IoT device in world coordinates (i.e., with re-
spect to down and North). Integration or differentiation could
transform acceleration and position into a common magni-
tude. In this regard, the literature is unanimous with respect
to avoiding integration of acceleration signals measured on
devices that can move freely in space [7, 18]. Integration is
unsuitable for two main reasons that cause the error to accu-
mulate faster than linearly over time: the propagation of the
error in the orientation estimate (which is used to remove
gravity from the raw acceleration) and the drift induced by
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Figure 2: UniverSense system overview.

integration of noisy signals. Therefore, we use differentia-
tion to convert displacement into acceleration, and define
the world coordinates acceleration as the common state-
space of our camera-IMU sensor pair.

2.2.1 Converting IMU signal to device acceleration. To
obtain the acceleration of IMU in world coordinates, Uni-
verSense estimates the device orientation from a 9-axis IMU
signal and projects the raw acceleration readings to a global
frame of reference. This process basically consists of obtain-
ing a rotation matrix ‘éVR that converts Body coordinates into
‘World coordinates. Then, UniverSense utilizes ﬁ,RziE’R‘l to
project gravity into body coordinates so it can be removed
from the raw acceleration signal. Finally, the result is ex-
pressed in world coordinates by multiplying by ‘éVR [18].

2.2.2  Converting camera stream to device acceleration. To
extract the acceleration of the low-resource IoT device, Uni-
verSense first detects the device from the video stream, then
calculates the position of the device, and finally converts the
position into acceleration. Object detection methods take a
still image as the input, and provide a set of pixel coordinates
for each target found [1, 8]. Then, object tracking processes
the detection on consecutive frames and assigns a common
ID to each target found in both images. Finally, the position
of the IoT device can be tracked over time by converting
pixel coordinates to the world frame. This conversion re-
quires knowledge of the camera extrinsics (i.e., the camera’s
EVR , estimated through e.g., an IMU or a pre-calibration)
as well as intrinsics (obtained from the manufacturer) [30].
Once the camera obtains the world coordinate position of
the device, UniverSense performs a double differentiation on
the estimated 3-D position of the IoT device to obtain the
corresponding acceleration. In this work we assume the mo-
tion is performed perpendicular to the view of the camera at
a known distance; in a real implementation, the 3-D position
can be mapped into the camera view plane.

2.3 Fingerprint Generation

UniverSense generates binary fingerprints from acceleration
signals to reduce the data exchanged. It takes two main steps:
signal axis selection and fingerprint generation.

Signal axis selection Due to the noise of the sensor,
when the motion of the device is not significant on the inves-
tigated axis, the low Signal-to-Noise Ratio (SNR) may cause
low pairing success rate. UniverSense collects signals of all
axises and selects the axis that has the highest signal energy
to conduct fingerprint generation on.

Fingerprint generation UniverSense projects the accel-
eration signal into a binary signal by setting a threshold. If
the absolute value of the signal is over the threshold, the bit is
1, otherwise, the bit is 0. Since the mean acceleration signal is
close to 0, we specifically select an offset away from 0. With
a sampling rate of 30 Hz, we estimate a 5-second motion can
be used to generate a 128-bit fingerprint, and an 18-second
motion can be used to generate a 512-bit fingerprint. Figure
3 shows an example of the fingerprint generated from IMU
and camera measurements.

2.4 Pairing

To initiate the pairing, the ‘powerful” device broadcasts a
pairing request and start to generate fingerprint FP.4,,,. Once
the low-resource [oT device receives the request, it starts to
generate its fingerprint FPrpsr7. Once the fingerprint reaches
the designated length, the low-resource device sends its MAC
address with the generated fingerprint. The ‘powerful’ device
compares the received FPppy to its FP,q,, and calculates the
fingerprint similarity. If the two fingerprints have similarity
over a threshold, UniverSense considers them as paired.

3 EVALUATION

We implemented UniverSense to evaluate our pairing method
in a real-world environment (Section 3.1). We evaluate the
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Figure 3: Fingerprint generation example.
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Figure 4: Experiment settings (camera view).

motion variable (Section 3.2) and pairing performance (Sec-
tion 3.3) respectively.

3.1 Implementation

To evaluate UniverSense, we conducted real-world experi-
ments with an off-the-shelf RGB camera (ELP 3.0 MegaPixel
USB camera) for the ‘capable’ device, and IMU device from
an IoT sensing platform, CrazyFlie 2.0, as the ‘low-resource’
device [4]. We covered the CrazyFlie with an orange plastic
cap and used a color (hue) detector in OpenCV, together
with an object tracker [11] to ensure we correctly follow
the target. For real use cases, a more robust object detector
could easily replace the current simplified version, without
requiring any hardware modifications. In order to reduce
the effect of sensing noise in the visual position estimation,
we obtain good results with a traditional Savitzky-Golay
(also known as Least-Squares) smoothing differentiation fil-
ter [27]. On the CrazyFlie, we use the popular Madgwick
orientation filter [ 14] to minimize the drift in the orientation
estimation. Figure 4 shows our experiment setup from the
camera view, where the camera is 1.5m away from the mo-
tion area. Fingerprints used in the evaluation are 512 bits.

3.2 Motion Variable Analysis

We evaluate the system feasibility to match motion accelera-
tions measured by camera and IMU under different motion
variables: amplitude and velocity. We fix one parameter
when evaluating the other. We asked one participant to
conduct a designated motion 10 times and demonstrate the
similarity of the pairwise fingerprints from camera and IMU.

3.21 Motion amplitude. We evaluate four different mo-
tion amplitudes, including 10, 20, 40, and 80 cm, with the
motion velocity fixed. We control the motion velocity by
asking the participant to conduct the motion of designated
length within a given duration. We plot the fingerprint sim-
ilarity against motion amplitude in Figure 5 (a). When the
motion amplitude is 20 cm, the system achieves highest fin-
gerprint similarity 0.95. When the motion amplitudes are
40 and 80 cm, the average fingerprint similarity drops below
0.9. The reason is that when the motion is in a large range,
the velocity change is relatively small during the motion,
and therefore the acceleration signal amplitude is low.

S. Pan, et al.
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Figure 5: Motion variables’ effect on fingerprint simi-
larity. (a) shows the effects of motion amplitude. (b)

shows the effect of motion velocity.

3.2.2  Motion velocity. Since UniverSense projects differ-
ent sensing modalities into acceleration, the motion velocity
affects the acceleration signal amplitude. We mainly investi-
gate 5 different motion velocities controlled by metronome
beats: 40, 60, 80, 100, 120 beats per minute (BPM) with a
motion amplitude of 20 cm. We demonstrate the fingerprint
similarity against motion velocities in Figure 5 (b). We ob-
serve an increasing trend of the fingerprint similarity for
velocities lower than 80 BPM. However, when the velocity
increases above 80 BPM, the increase of the motion velocity
has little effect on the fingerprint similarity.

3.3 Pairing Performance

We further evaluate the pairing performance from two as-
pects: 1) human factors, and 2) the efficiency of fingerprints.
We first investigate the human factor by asking multiple
people to conduct experiment and evaluate the robustness
of UniverSense through different users. Then we evaluate the
fingerprint efficiency by analyzing the fingerprint similarity
of the same motion and across different motions, and the
pairing success rate with a selected pairing threshold.

3.3.1  Human factors. Different people may perform pair-
ing motions differently. Therefore, we conduct experiments
with multiple users and ask them to move the IoT device
within a designated area (a circle of 45 cm radius) arbitrarily
for 20s. We compare multiple users’ pairing fingerprint simi-
larity calculated from different signal axises to demonstrate
the system robustness, and the results are shown in Figure
6. The average fingerprint similarity across 5 participants
using X-axis, Y-axis, and our axis-selection approach are re-
spectively 0.845, 0.915, and 0.917, with standard deviations
0f 0.146, 0.038, and 0.036. Our approach achieves the highest
fingerprint similarity and demonstrates stable matching per-
formance. This is because different people may come up with
different pairing motions. If a fingerprint is generated using
an axis that lacks significant movement, the SNR will be low,
giving a low fingerprint similarity. Our approach uses the
axis with the highest SNR among the available signal axises
to achieve high fingerprint similarity.
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Figure 6: Different signal axes’ fingerprint similarity.

3.3.2  Fingerprint similarity analysis. We further analyze
the fingerprint similarity between camera and IMU signals
originating from world coordinate acceleration of the same
motion, versus those from different motions and show it
in Figure 7. The fingerprint similarity of the same motion,
even detected by sensors of different modalities, is often over
0.8, which we set as the pairing threshold. On the other
hand, the fingerprint similarity across different motions are
relatively low, with an average of around 0.5. This indicates
the feasibility of our system. We consider a successful pairing
when the fingerprint similarity between the camera and an
IMU device is above the pairing threshold. With a threshold
of 0.8, the system achieves a precision of 100%, a recall of
99.8%, and an F1 score of 99.9% in 50 trials.

4 DISCUSSION

The previous section demonstrated the feasibility of our pair-
ing mechanism. Here we discuss some limitations and po-
tential extensions of this work.

4.1 Secure Pairing through UniverSense

UniverSense provides efficient device pairing for low-resource
IoT devices that do not have a direct interaction I/O. On the
other hand, establishing secure network is very important
considering the growing number of IoT devices. Compared
to current scan-based pairing, e.g., Samsung SmartThings
[26], fingerprints generated by UniverSense can be used to es-
tablish shared keys for secure pairing. Prior work has been
done to achieve secure pairing through protocols that utilize
similar fingerprints generated from the sensing of shared
physical events for IoT devices and vehicles [10, 17]. The
challenges for secure pairing through UniverSense include de-
signing a pairing protocol that can effectively defend against
attacker models (e.g., eavesdropping, Man-in-the-Middle).

4.2 Object Recognition and Auto-Pairing

The implementation of this work relies on color markers
to recognize the IoT device and a fixed depth to track its
motion. Various work has been done on object recognition,
single camera depth estimation, and human motion tracking
[5, 23]. With these trending new approaches for robust ob-
ject recognition and tracking, we believe the pairing can be
done without intentionally moving the device. The camera
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can capture the motion of the device or human hand when-
ever the human interacts with it, and then link the physical
objects/device to their virtual ID.

5 RELATED WORK

Device pairing has been explored using various sensing ap-
proaches. Traditional methods include passkey, QR code, and
RFID, all of which face certain sensing limitations. Passkey-
based methods require I/O hardware such as a display and
a keypad [3]. QR-code based methods require either a flat
surface or a screen to show the QR-code [2], but either case
requires specific types of surfaces that certain devices may
not meet. RFID relies on tags and readers specifically used
for pairing [24], adding unnecessary hardware. These tra-
ditional methods do not apply to our problem because the
type of low-resource IoT devices we focus on in this paper
does not have I/O or extra hardware.

Sensing shared physical phenomena through co-presented
devices has been applied under different scenarios to tackle
these limitations. These methods mainly fall into two differ-
ent categories: context-based and interaction-based. Context-
based pairing methods generally utilize everyday events
that can be detected by co-presented sensors [17, 31]. These
methods often require zero-interaction and establish the
secured network automatically. However, due to the ran-
domness of human activities, this process can take a very
long time (e.g., days) to identify the shared context.

Interaction-based pairing methods often utilize human
intention to designate pairing devices, such as shared mo-
tions induced by human activities [13, 28] or pointing to the
targets [22]. Involving human interaction leads to reduced
pairing times (e.g., seconds). However, the state-of-the-art
either requires a specific device, the ‘wand’ [22] or provides
this type of pairing when the same motion is applied to both
devices simultaneously [13, 28], thus limiting the variety of
devices that can be paired (e.g., shaking a smart TV with an
IoT device might be difficult). UniverSense provides an alter-
native flexible pairing through conversion of multi-modal
sensing signals, which allows the pairing between IoT de-
vices of heterogeneous systems without additional devices.

Prior work has been done utilizing sensors of different
modalities to achieve various sensing tasks. Nguyen et al.
combine camera and Wi-Fi signals to localize and identify
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people in an indoor environment while they carry their
smartphones [20]. Chen et al. utilize inertial and depth sen-
sors to accurately link the detected motion on both devices
and use this information to estimate the fitness of seniors
[6]. Among these multi-modal sensing applications, to the
best of our knowledge, we are the first to apply the shared
physical-phenomena detected by sensors of different sensing
modalities on device pairing.

6 CONCLUSION

In this paper, we present UniverSense, a multi-modal sensing
based pairing method that pairs ‘powerful’ devices equipped
with a camera to low-resource IoT devices with no interface.
The user moves the low-resource IoT device in front of the
camera so that the camera can capture the device motion.
The low-resource IoT device, on the other hand, measures
its own motion through its embedded IMU. These sensed
motion signals are then converted into a common state-space
to generate pairing fingerprints. We evaluate UniverSense
through real-world experiments with multiple participants,
and it achieves a 99.9% F1 score for the pairing success rate.
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