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ABSTRACT

Easily establishing pairing between Internet-of-�ings (IoT)
devices is important for fast deployment inmany smart home
scenarios. Traditional pairing methods, including passkey,
QR code, and RFID, o�en require specific user interfaces,
surface’s shape/material, or additional tags/readers. �e
growing number of low-resource IoT devices without an
interface may not meet these requirements, which makes
their pairing a challenge. On the other hand, these devices
o�en already have sensors embedded for sensing tasks, such
as inertial sensors. �ese sensors can be used for limited user
interaction with the devices, but are not suitable for pairing
on their own.

In this paper, we present UniverSense, an alternative pair-
ing method between low-resource IoT devices with an iner-
tial sensor and a more powerful networked device equipped
with a camera. To establish pairing between them, the user
moves the low-resource IoT device in front of the camera.
Both the camera and the on-device sensors capture the phys-
ical motion of the low-resource device. UniverSense converts
these signals into a common state-space to generate finger-
prints for pairing. We conduct real-world experiments to
evaluate UniverSense and it achieves an F1 score of 99.9% in
experiments carried out by five participants.
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1 INTRODUCTION

�e Internet-of-�ings (IoT) requires a configured network
to perform sensing and actuation tasks. Pairing is a common
way to configure the network by authorizing a device with a
specific MAC address to transmit on the network. With the
rapid growth of IoT devices in the smart home environment,
each user will have an average of over 13 devices by 2020,
inevitably some will have significantly more [19]. Various
pairing methods have been explored to allow easy and fast
network setup, including passkeys, QR codes, and RFID tags,
and each has their limitations. For example, passkey-based
methods require I/O hardware such as a display and a keypad
[3]. QR-code based methods require the device to have a
flat surface to print or glue the QR code on. In addition,
they limit the device to using a static MAC address, which
may cause unexpected consequences for user privacy [15].
RFID-based methods require additional hardware to conduct
pairing, such as tags and readers [24].
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Figure 6: Different signal axes’ fingerprint similarity.

3.3.2 Fingerprint similarity analysis. We further analyze
the fingerprint similarity between camera and IMU signals
originating from world coordinate acceleration of the same
motion, versus those from different motions and show it
in Figure 7. �e fingerprint similarity of the same motion,
even detected by sensors of different modalities, is o�en over
0.8, which we set as the pairing threshold. On the other
hand, the fingerprint similarity across different motions are
relatively low, with an average of around 0.5. �is indicates
the feasibility of our system. We consider a successful pairing
when the fingerprint similarity between the camera and an
IMU device is above the pairing threshold. With a threshold
of 0.8, the system achieves a precision of 100%, a recall of
99.8%, and an F1 score of 99.9% in 50 trials.

4 DISCUSSION

�e previous section demonstrated the feasibility of our pair-
ing mechanism. Here we discuss some limitations and po-
tential extensions of this work.

4.1 Secure Pairing through UniverSense

UniverSense provides efficient device pairing for low-resource
IoT devices that do not have a direct interaction I/O. On the
other hand, establishing secure network is very important
considering the growing number of IoT devices. Compared
to current scan-based pairing, e.g., Samsung Smart�ings
[26], fingerprints generated by UniverSense can be used to es-
tablish shared keys for secure pairing. Prior work has been
done to achieve secure pairing through protocols that utilize
similar fingerprints generated from the sensing of shared
physical events for IoT devices and vehicles [10, 17]. �e
challenges for secure pairing through UniverSense include de-
signing a pairing protocol that can effectively defend against
a�acker models (e.g., eavesdropping, Man-in-the-Middle).

4.2 Object Recognition and Auto-Pairing

�e implementation of this work relies on color markers
to recognize the IoT device and a fixed depth to track its
motion. Various work has been done on object recognition,
single camera depth estimation, and human motion tracking
[5, 23]. With these trending new approaches for robust ob-
ject recognition and tracking, we believe the pairing can be
done without intentionally moving the device. �e camera
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Figure 7: Compare fingerprint similarity of the same
motion v.s. of different motions.

can capture the motion of the device or human hand when-
ever the human interacts with it, and then link the physical
objects/device to their virtual ID.

5 RELATED WORK

Device pairing has been explored using various sensing ap-
proaches. Traditional methods include passkey, QR code, and
RFID, all of which face certain sensing limitations. Passkey-
based methods require I/O hardware such as a display and
a keypad [3]. QR-code based methods require either a flat
surface or a screen to show the QR-code [2], but either case
requires specific types of surfaces that certain devices may
not meet. RFID relies on tags and readers specifically used
for pairing [24], adding unnecessary hardware. �ese tra-
ditional methods do not apply to our problem because the
type of low-resource IoT devices we focus on in this paper
does not have I/O or extra hardware.

Sensing shared physical phenomena through co-presented
devices has been applied under different scenarios to tackle
these limitations. �ese methods mainly fall into two differ-
ent categories: context-based and interaction-based. Context-
based pairing methods generally utilize everyday events
that can be detected by co-presented sensors [17, 31]. �ese
methods o�en require zero-interaction and establish the
secured network automatically. However, due to the ran-
domness of human activities, this process can take a very
long time (e.g., days) to identify the shared context.
Interaction-based pairingmethods o�en utilize human

intention to designate pairing devices, such as shared mo-
tions induced by human activities [13, 28] or pointing to the
targets [22]. Involving human interaction leads to reduced
pairing times (e.g., seconds). However, the state-of-the-art
either requires a specific device, the ‘wand’ [22] or provides
this type of pairing when the same motion is applied to both
devices simultaneously [13, 28], thus limiting the variety of
devices that can be paired (e.g., shaking a smart TV with an
IoT device might be difficult). UniverSense provides an alter-
native flexible pairing through conversion of multi-modal
sensing signals, which allows the pairing between IoT de-
vices of heterogeneous systems without additional devices.

Prior work has been done utilizing sensors of different
modalities to achieve various sensing tasks. Nguyen et al.
combine camera and Wi-Fi signals to localize and identify
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people in an indoor environment while they carry their
smartphones [20]. Chen et al. utilize inertial and depth sen-
sors to accurately link the detected motion on both devices
and use this information to estimate the fitness of seniors
[6]. Among these multi-modal sensing applications, to the
best of our knowledge, we are the first to apply the shared
physical-phenomena detected by sensors of different sensing
modalities on device pairing.

6 CONCLUSION

In this paper, we present UniverSense, a multi-modal sensing
based pairing method that pairs ‘powerful’ devices equipped
with a camera to low-resource IoT devices with no interface.
�e user moves the low-resource IoT device in front of the
camera so that the camera can capture the device motion.
�e low-resource IoT device, on the other hand, measures
its own motion through its embedded IMU. �ese sensed
motion signals are then converted into a common state-space
to generate pairing fingerprints. We evaluate UniverSense
through real-world experiments with multiple participants,
and it achieves a 99.9% F1 score for the pairing success rate.
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