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Abstract

As the volume of data collected by various IoT sensors used in smart farm applications increases, the storing and processing of
big data for agricultural applications become a huge challenge. The insight of this paper is that lossy compression can unleash the
power of compression to IoT because, as compared with its counterpart (a lossless one), it can significantly reduce the data volume
when the spatiotemporal characteristics of IoT sensor data are properly exploited. However, lossy compression faces the challenge
of compressing too much data thus losing data fidelity, which might affect the quality of the data and potential analytics outcomes.
To understand the impact of lossy compression on IoT data management and analytics, we evaluated four classification algorithms
with reconstructed agricultural sensor data based on various energy concentration. Specifically, we applied three transformation-
based lossy compression mechanisms to five real-world weather datasets collected at different sampling granularities from IoT
weather stations. Our experimental results indicate that there is a strong positive correlation between the concentrated energy of
the transformed coefficients and the compression ratio as well as the data quality. While we observed a general trend where much
higher compression ratios can be achieved at the cost of a decrease in quality, we also observed that the impact on the classification
accuracy varies among the data sets and algorithms we evaluated. Lastly, we show that the sampling granularity also influences the

data fidelity in terms of the prediction performance and compression ratio.

Keywords: Smart farm, lossy compression, 10T, signal processing, data fidelity.

1. Introduction 27

The advent of IoT revolutionizes the knowledge discovery z:
paradigm for various domains (Ludena and Ahrary (2013); Al- "
Fuqaha et al. (2015)). Suggestive actionable knowledge can be
extracted from a continuous stream of raw data collected from 5
IoT devices. This paper is particularly interested in IoT enabled 5,
smart farming. In short, smart farming with data analytic capa- s
bilities can provide more precise forecasts and thus could po- 4
tentially improve crop yields as well as reduce production costs ;5
by removing the use of non-essential pesticides or fertilizers.

Recent years have witnessed a plethora of IoT solutions ben- 4
eficial to agricultural domains. In the agriculture industry, ad-
vanced decision support systems through IoT technologies are *
increasingly gaining attention because they enable precision *
farming. After processing the collected data, they provide fore-
cast services to farmers and growers so that they can make *
smarter decisions. The three major features that can affect

weather-based predictions are as follows:
43

e A smart greenhouse is a facility that helps in the steady 4
production of high-quality plants all year round by arti- 4
ficially controlling the cultivation environment. Different
kinds of plants require different conditions (e.g., tempera- «
ture, humidity, etc.) for their growth. If proper growth en- s
vironments were provided, it would enable one to control «
plant growth rate (e.g., either promote or prevent flower- so
ing), thereby bringing huge economic benefits to framers s

Preprint submitted to Elsevier

and growers. An IoT enabled greenhouse control sys-
tem collects information for managing plant growth and
controls the facilities promoting optimal growth environ-
ments.

e Frost and freeze damage to flowers and buds at or near the
bloom stage could result in significant crop failures (Jara-
dat et al. (2008); Matzneller et al. (2016)). For example,
Chung et al. (2004) forecasted frost using global climate
and weather data. If there were an accurate frost forecast,
it would prevent damages from frost proactively, e.g., by
moving a frost fan around the crop.

o Plant pathogens and pests including insects, mites, weeds
and fungi can negatively affect crop productivity and prof-
itability. Tripathy et al. (2013) reported on the interrela-
tionship of weather, crops, and pests. Crop pest are also
sensitive to particular weather condition such as humidity.

One of the key challenges to enable IoT smart farming is how
to manage big data collected from various sensors efficiently
(Ukil et al. (2015)). One solution for handling a large volume
of data is to apply data compression techniques such that the
storage and communication overheads are reduced (Bose et al.
(2016); Huiibbe et al. (2013)). Various compression algorithms
have been applied to satisfy different application needs, and
many of them considered lossy algorithms with examples be-
ing ZFP, SZ, ISABEL, and wavelet-based (Li et al. (2017a,b)).
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Lossy compression (Chou and Piegl (1992)) can help reduceios
the data size significantly, but error rates and thus loss of dataio
quality are not easy to bound. Several recent approaches haver
proposed techniques to bound the error introduced by applying
lossy compression methods (Sustika and Sugiarto (2016); Abo-
Zahhad et al. (2015); Tao et al. (2017)). In Tao et al. (2017), it'*
focuses on the scientific applications where often exhibits fairly
sharp or spiky data changes in small data regions. Sustika and'"
Sugiarto (2016); Abo-Zahhad et al. (2015) exploit sparse datass
pattern. 115
Nevertheless, as reported in several prior studies such asis
analyses of turbulent flow data (Li et al. (2015)) and climater
data(Baker et al. (2014)), data reconstructed from lossy com-1s
pression still allows meaningful analysis to be carried out. Inie
(Baker et al. (2014)), the reconstructed data were able to re-12o
veal the same mean climate as the original data because climaterar
data with compression rates of up to 5:1 can be reconstructedizz
to be statistically indistinguishable from the original. However,zs
lossy compression techniques are subjective to data fidelity is-1z«
sues (Li et al. (2017b)). Often data fidelity is dependent on spe-1zs
cific application domain because acceptable information lossizs
varies among variables of interest (Baker et al. (2014)). 127
In our previous paper (Moon et al. (2017b,a)), we showed1zs
that transformation based lossy compressions are useful forizs
minimizing data reconstruction errors as well as important foriso
maintaining errors within a tolerable range. Furthermore, wers:
have studied the effect of lossy data compression on data fi-1s
delity before and after applying [oT analytics. However, fromiss
the viewpoint of data fidelity, there is a lack of verification foriss
the relationship with the data collection or sampling frequency.rss
To manage IoT data efficiently and reliably, we collect, com-1ss
press, and store climate data, and then reconstruct them foris
later analysis. We evaluate the fidelity of the reconstructediss
weather sensor data using lossy compression algorithms basediss
on three transformations, namely, the Discrete Cosine Trans-o
form (DCT) (Razzaque et al. (2013)), Fast Walsh-Hadamarda1
Transform (FWHT) (Fino and Algazi (1976)), and Discreteis
Wavelet Transform (DWT) (Abo-Zahhad et al. (2015)). Ouris
objective was to evaluate the impact of the lossy compressionias
and restoration on data reliability. Our experimental results us-1s
ing five sensor datasets show that lossy data compression caniss
achieve 30x-100x compression ratios with marginal informa-is
tion loss. We collected weather sensors data using two sam-s
pling granularities (every minute and every hour) to evaluatess
how the sampling rate affects the amount of data reduction andiso
quality of the data analysis. 151
Our compression mechanism is also simple in that it doesis2
not require complex quantization methods. In our comparisonsss
of the four classification algorithms for predicting frost, we ob-1ss
served that the prediction accuracy using compressed data con-iss
taining only 90% of the total energy from the transformed co-1ss
efficients did not drop much compared with that using the orig-1s,
inal data. In most cases, the frost prediction performance based:ss
on the reconstructed data is comparable with the performancess
based on the original data. Interestingly, in some cases, the pre-iso
diction performance improves when the reconstructed data aress:
used. These results clearly demonstrate that lossy compressionsez

2

leads to efficient management of big IoT data by reducing the
data storage and transmission time while still maintaining the
data quality.

2. Materials and Methods

2.1. Design of the Transform-Based Lossy Compression

Many of the lossy compression techniques exploit the fact
that, while individual data values in the dataset might show
some randomness, their overall patterns are spatiotemporally
smooth. Because of this, compression techniques in conjunc-
tion with data transformation can be more effective because
the transformed data usually reveal the correlation of the data
explicitly. For example, let us consider the temperature data
(shown in Figure 1a) which is one of the datasets we evaluated
in this paper. The details about the dataset we collected and
evaluated will be described in Section 3.1. As shown in the
figure, the data measured every minute exhibited diurnal tem-
perature variations over the period of the measurement.

Figure 1b shows the CDF (cumulative density function) for
the energy of the DCT coefficients after applying the DCT to the
original temperature data for which each value is transformed
to a DCT coefficient. As we can see, most of the energy is
concentrated on a small number of low-frequency DCT coeffi-
cients and the remaining high-frequency coefficients are close
to zero. Once the data is represented in the frequency domain,
we can easily find the relationship between the percentage of
informative DCT coefficients (i.e., low-frequency ones) and the
amount of energy carried by them. To demonstrate the effect
of this relationship on data compression, we chose DCT coef-
ficients containing 99.9% of the energy attained by the original
data, which accounts for only 3.16% (245 out of 77,590 total
data points) of the entire data points. We then apply the in-
verse DCT to these selected coefficients to evaluate the differ-
ence between the reconstructed and the original data. As shown
in Figure 1d, the difference is small, thus confirming that one
can reconstruct [oT data like temperature data by maintaining a
very small fractions of the original data. It should be noted that
this error can be reduced even further if a proper quantization
method is applied.

In signal processing theory, data in one domain (or basis) are
transformed to another domain so that a signal is represented in
a more concise format. The outcome of such a transformation
can help reduce storage and data transmission overheads. If a
sufficiently small number of non-zero coefficients from the data
transformation can represent the characteristics of the original
data, high compression ratios can be achieved (Abo-Zahhad
et al. (2015)). Many transformation methods for representing
signals in a compact format and minimizing errors during the
reconstruction phase have been proposed by Chaturvedi and Ya-
dav (2013). For example, in Sustika and Sugiarto (2016), DCT,
DWT, and WHT (Walsh-Hadamard Transform) were evaluated
using weather data. Their simulation results show that us-
ing DCT-transformed data as a basis has a better performance
on weather data recovery compared with other transformation
methods such as the WHT and DWT. However, they showed



163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

09 187

188

08
07
' 189
06
w\f‘ 8 s 190
‘ 0.4 191
03 192
2

193

Celsius

(\ ] il I (m

0 4 5 7 0 1 2 3 4 5 6 7 8
Samp\e Index(n) me Sample Index(n) w10t 194

(a) (b) 195

196
0
! 197

198

M

Celsius
Celsius

. ‘“
\H “m ‘L M \‘ i “‘FHM. n

199

0 1 2 3 4 5 6 7 8 “o 1 2 3 4 5 6 7 8 200
Sample Index(n) «10¢ Sample Index(n) «10*

(©) (d) 2

202
Figure 1: The variation of “temperature” values. (a) Original data. (b) Cu-
mulative density function (CDF) of the energy concentrated in DCT coefficient
sequences. (c) Reconstructed data from the inverse DCT of coefficients con-
taining 99.9% energy of the original data. All other coeflicients are set to zero,
thus eliminating quantization on high-frequency data for higher data fidelity.

(d) Difference between the reconstructed and the original data. 203

. . . 204
that the compressed signal is reconstructed with some error

(Chaturvedi and Yadav (2013)). Bicer et al. (2013) proposed?*
an online compression algorithm for climate data by exploiting?®
spatial and temporal characteristics exhibited in climate data,?”
thereby improving data the retrieval performance. 208
This section describes three lossy algorithms based on spatial?*®
data characteristics, which we evaluated as data transformation?®
methods. To describe each transformation in detail, let us con-2"
sider a one-dimensional discrete-time data x of length N, which?'?
is denoted as N x 1 column vector with the elements x[n], where?'?
n=1,2,...,N. 2
215

Discrete Cosine Transform (DCT) 216

We first considered the discrete cosine transformation®?
(DCT), which transforms data from the spatial domain into the?'s
frequency domain. A signal in the DCT is represented as a sum?'®
of varying magnitudes and frequencies, and DCT has been used??°
in the lossy compression of audio and images (Razzaque et al.?*!

(2013)). DCT is defined as follows: 222
223
y(k) = w(k) z | x(mcos(FEDEDy j = 1,2, N, 224
k=1 225
w(k) = \/> 226
N, 2<k<N,

227
where x(n), y(k), N denote the original data, the transformed,,,

data, and the length of x, respectively. 229

230

Discrete Wavelet Transform (DWT)
‘We next considered the DWT. Wavelet transforms have been
widely adopted in various compression algorithms because

of its high-energy compaction properties (Abo-Zahhad et al.
(2015)). In one-level DWT, two sets of coeflicients are com-
puted: approximated coefficients (C;) and detailed coefficients
(Dy). These two vectors are obtained by convolving x with the
low-pass filter i for C| and with the high-pass filter h; for D;.
The | 2 represents the down sampling operator by a factor of 2.
The length of each filter is equal to 2L. For a signal of length
N, the signal F and G are of length N + 2L — 1, and then the co-
efficients C; and D are of length % + L. A single-level DWT
is denoted below, and this process can be applied recursively.

Ci=(xxhy)l2,
= (xxhy) L2,

Fast Walsh-Hadamard Transform (FWHT)

FWHT is a faster implementation of the Walsh-Hadamard
Transform (WHT). The FWHT requires only NlogN addi-
tions or subtractions whereas a naive implementation of the
WHT would have a time complexity of O(N?) (Fino and Algazi
(1976)). The FWHT for a signal x(n) of length N is calculated
as follows:

N
1

= Zl WAL(n, i),

wherei = 1,2,...,N and WAL(n, i) is Walsh functions.

2.2. Requirements for loT Enabled Smart Farming

Weather stations with the purpose of performing predictive
analytics collect climate and weather data from various sensors.
In those predictive stations, gathering time-based climate data is
particularly essential for making analytics and predictions more
accurate because such data indicate changes in certain weather
conditions at particular locations over time, thereby enabling
one to evaluate climate and weather patterns and to perform
short- and long-term forecasts. However, because the sensor
nodes typically have a limited storage space, the sensors need
to periodically send data to the cloud, which is expensive in
terms of time and energy.

AgWeatherNetl, for example, uses 177 stations installed
since 1988 to collect climate data for providing agricultural
services. AgWeatherNet collects various sensor data such as
air temperature, relative humidity, dew point temperature, soil
temperature, rainfall, wind speed, wind direction, solar radia-
tion, leaf wetness, etc. Some stations also measure atmospheric
pressure. A data logger collects these data every 5 seconds and
summarizes them every 15 minutes. The number of stations is
constantly increasing, thus increasing the amount of data dra-
matically. The IoT smart farm application itself is constrained
in terms of bandwidth, energy and storage. As such, these data
needs to be managed efficiently such that the storage and trans-
mission costs can be reduced (Bose et al. (2016)).

To efficiently manage and transmit data, we need to use
compression techniques on the data, especially a lossy one to

"http://weather.wsu.edu/
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achieve a comparably higher compression ratio. However, the
reconstructed data in the cloud needs to be analyzed later. In
other words, without careful considerations, lossy compression
could filter potentially important information critical to analytic
workloads running on the cloud. To explain the need for deter-
mining acceptable quality requirements for the climate data and
analytics, let us consider the following two IoT smart farm use-
cases. First, plum pocket is a fungal disease that causes plum
fruit to become hollow and irregularly shaped or to drop early,
thereby resulting in a crop loss. Cool and wet spring weather,
is known to significantly promote the development of such fruit275
diseases. Weather conditions are important not only in early276
season diseases but also during the harvest where excess mois-
ture can cause several rot diseases (Johnson (1975)). Second,278
frost can cause heavy losses in agricultural production; thus, it279
is important to minimize potential frost damage. Frost refers
to the formation of ice crystals on surfaces or a meteorological281
event when crops and other plants experience freezing injury. w2
For both plant diseases and frost, when weather conditions_
are in favor of their occurrence, an instant warning is required
to successfully control them. Therefore, it would be necessary,
to send, store and process all surrounding climate data for sev-_
eral regions to determine the possibility of their occurrence. For, |
example, if we collect 5 climate data variables and assume each
data variable is a real type every minute at N weather stations,
the total amount of data that need to be transmitted per day is,
1,440 x 5 x 4 x N bytes. To predict more accurately, one might,_
want to include more diverse sensors or increase the number
of weather stations or sensor nodes. All these will increase the
amount of data that need to be transmitted and analyzed. Weze2
already know that data compression works for highly efficient
data management. However, what lacks is a comparative eval->*
uation that establishes the criteria for selecting the degree ofzss
compromise in data quality yet still makes reasonably accurateass
forecast services. 206
297
2.3. Design of the Predictive Weather Platform 208

Our predictive weather platform, depicted in Figure 2, pe-z::

riodically collects climate information similar to other weather,_
platforms, but performs data analysis for a frost forecast service_,
using four machine learning (ML) algorithms: decision tree,,
boosted tree, random forest, and regression. Details about how304
we applied the individual MLs are as follows. Given a set of_,
features x; and a label y; € {0, 1}, logistic regression interprets306
the probability that the label is in one class as a logistic function_
of a linear combination of the features, which is represented as,

follows: | w00

(1)310
311
The decision tree and boosted tree can also be used as a clas-s:

sifier for our purposes. In contrast to linear models like logisticss

regression, these algorithms can model nonlinear interactionsss
between the features and the target values. Boosted tree is basedais
on a collection of base learners, i.e., decision tree classifiers,
and combines them using gradient boosting. It should be noted
that our focus in this paper is to evaluate four widely used ML

fi®) = p(yi = 1lx) = 1+ exp(—07x)°

& _g
A A

Climate Stations

Control System

Data

Data Collection Forecast Model

r —

Figure 2: The architecture of IoT based predictive weather platform.
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algorithms on their classification performance for predicting the
presence/absence of frost.

The proposed platform’s overall goal is to provide web and
mobile services so that farmers and plant growers can subscribe
to agricultural services, frost prediction in this study, to help
them make farming decisions. Our platform makes the frost
forecast every night at 11 PM based on our frost prediction
models built on top of the climate collected throughout the day.
We make this forecast data available on the web and to mobile
services so that the subscribers (farmers) can proactively im-
plement preventive actions. For farmers who subscribe to push
services, they are automatically notified with updated, more ac-
curate frost forecast information at 1 AM. Moreover, it pro-
vides an interface for farmers to easily provide the system feed-
back for more accurate data collection. The location of ob-
servation stations are displayed on the map, and frost predic-
tion/occurrence information, micro-weather information, etc.
are displayed in real time on our project website?

3. Results and Discussion

3.1. Datasets

We evaluated the effectiveness of the compression algorithms
discussed in Section 2.1 on climate data. In our evaluation, we
used a real-world dataset from the wireless climate stations lo-
cated in a small orchard in Youngcheon, South Korea. We chose
the following five most important variables, namely tempera-
ture, humidity, solar radiation, wind direction and wind speed,
from the climate data collected during October 2015 at the de-
ployed weather station. The data were continuously monitored
and collected using two measuring (or sampling) periods: every
minute and every hour. The reason that we had two sampling
periods is to evaluate how different sampling rates affect the
amount of data reduction and quantify its impact on the data
analysis. In our evaluation, there were 77,590 data points for
the collection period consisting of every minute and 1,294 data
points for the collection period consisting of every hour, respec-
tively. The entire duration of the sampling period was about 54
days. The original data samples for both measuring periods are
shown in Figure 3.

Table 1 presents the statistical properties of the original data
in terms of the standard deviation (STD), normalized standard
deviation (NSTD), skewness, and kurtosis. The NSTD is cal-

STD(x) .
culated as Mean(y)" Skewness is a measure of data asymmetry

*http://183.106.117.219/. (Korean website)
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Figure 3: Data value variations exhibited in the original dataset (temperature, humidity, solar radiation, wind direction, and wind speed) during the entire sampling
period (54 days or 7.7 weeks). The x-axis in each graph represents sampling points.

around the mean value. Normal distribution, which is symmet-ss2
ric around its mean, gives zero skewness. Negative skewnessas
values mean that more data are scattered to the left of the meanss
whereas positive skewness values mean more data are scatteredass
to the right. The measures of kurtosis in Table 1 indicate howass
outlier-prone a distribution is. As the kurtosis of any normalss
distribution is 3, distributions with a kurtosis higher than 3 aresss
more outlier-prone. The distributions of a kurtosis lower thanss
3, on the other hand, are less outlier-prone. Solar radiation ands«
wind speed show a higher STD than that of the other datasets.

Table 1 shows the characteristics of the data collected using dif-""
ferent sampling periods (every minute and every hour). In both™*
sampling periods, we observe similar data characteristics for’
all metrics (deviation, skewness, and kurtosis). In the case of™
the skewness, solar radiation, wind speed, and wind direction

have a positive value. Solar radiation, wind direction and wind
345

5

speed also have a higher STD compared to the other datasets.
For those three datasets, the kurtosis is also more deviated from
3 when compared with the other two datasets. Because the kur-
tosis for wind speed is higher than 3, distribution of the wind
speed data has a heavier tail and a sharper peak than that of the
normal distribution. However, the kurtosis for wind direction
and solar radiation is lower than 3, which indicates that the dis-
tribution for wind speed has lighter tails and flatter peak than
the normal distribution.

We used the following three metrics to evaluate the perfor-
mance of each compression algorithm: compression ratio, the
Normalized version of Root Mean Square Error (NRMSE) and
the Peak Signal-to-Noise Ratio (PSNR).

e Compression Ratio: The compression ratio achievable by
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Table 1: The evaluated datasets and their characteristics.

Sampling | Standard Normalized Skewness | Kurtosis

Period | Deviation | Standard Deviation
Temperature 1 min 5.6807 0.4659 -0.0907 | 3.0002
1 hour 5.6843 0.4663 -0.0848 | 2.9999
Humidity 1 min 20.3439 0.2548 -0.9132 | 2.5916
1 hour 20.3855 0.2553 -0.9180 | 2.5917
Solar Radiation | 1 min 5.9199 1.1748 0.8546 | 2.2679
1 hour 5.9772 1.1393 0.7969 2.1666
Wind Direction | 1 min 112.6286 1.0666 0.5782 1.8434
1hour | 113.7976 1.0364 0.5224 1.7903
Wind Speed 1 min 0.7574 1.2284 1.3920 | 4.5762
1 hour 0.7805 1.2233 1.4652 | 5.0640

each compression method, Ry, is given by:

|D| - |D'|

Ry =
DI

X 100%,

371

where |D| is the size of D, |D’| is the reduced size, and M is*7
the individual compression method. Consequently, in the
case of the DCT, DWT, and FWHT transformations, we
compute k, which is reduced to (n — k)/n.

e NRMSE: Let x = xi, x2, X3, ..X,, be the original data anda
X = X1, X, X3,...%, be the reconstructed data. Then, the,,
NRMSE for each compression method M can be defined,,,
as: 376

377

RMSE
NRMSEy = ——
Mean(x)

378
1 \/ N () - 2R
x N ’ 380
381
where N is the number of data points and X is mean of theg,
original data x, and ¥ is the reconstructed value of x. 383

e PSNR: For evaluating the effectiveness of our lossy com-"
pression method, we measured the peak signal-to-noise ra-:::
tio (PSNR), a commonly used average error metric, espe-
cially in visualization (Tao et al. (2017)). It is calculated::;

as follows:
389
Max(x) — Min(x) 390
PSNRy =201 _
M 0g10( RMSEy, ) »
392
3.2. Evaluation 303

We first describe how we compress the evaluated dataset us-**
ing the DCT, DWT and FWHT transformations. For the DWT*®
wavelet transform, we used the Daubechnies d4 wavelet (or db4*®
wavelet). The specific steps for calculating the compression ra-**

tio for each algorithm are as follows (Moon et al. (2017b)):  **
399

1. Decompose the original data into the DCT, DWT, and,,,
FTWH basis vectors, i.e., coefficient vectors. 01
2. Sort the coeflicient vector |S| in descending order of coef-.
ficient values. The sorted coeflicient vector is denoted as:.g;s
§§=85.,55,,..5S,. 404
3. Find k, which determines how many coefficients are re-ss
quired to represent the 6 amount of the energy in the sig-«s
nal, where 0.0 <6 < 1.0 0or 0% < 6 < 100%. The norm is4or

6

Period (hour) -

Period () - .._

Four - ._

0 100 200 300 400 500 600 700 800 900
=DCT9 DCT99 DCT999 = DWT9 = DWT99
=DWT999 mFWHT9 m=mFWHT99 = FWHT999

Figure 4: Compression ratio for the temperature dataset.

computed by the Euclidean norm (p-norm, p=2) of vectors
SS.

norm(S S (1 : k)) <

norm(SS) 0. @)

We note that the sum of the energy stored in the entire
DCT coeflicient is 1.0 (or 100%).

4. Coeflicients smaller than the threshold value ¢ are set to
zero. In other words, those nonsignificant values are dis-
carded.

In our evaluation, we use 6 = 0.9 (90%), 0.99 (99%) and
0.999 (99.9%) in Equation 2 and compress the five data vari-
ables with 77,590 data points each. Assuming that each data
has a real value of 4 bytes, so the total size of data nearly be-
come 1.52 MB. Note that, the data size is per sensor node, and
we expect the data volume will increase as we deploy more sen-
sors and nodes. For DCT, DWT, and FWHT, each compression
time takes about 0.014, 0.031, and 0.02 seconds, respectively.
Each decompression time of DCT, DWT and FWHT are 0.006,
0.014 and 0.011 seconds each. Overall, we were able to achieve
the compression speed of 108, 49 and 76 MB/s and the decom-
pression speed of 253, 108 and 138 MB/s, respectively.

Figure 4 shows the compression ratio for the temperature
dataset with the different data collection periods, i.e., every
minute and hourly. Each clustered row combines all compres-
sion ratios using different transforms and different amounts of
energy concentrations. In the case of the hourly data, the num-
ber of data points is reduced to 1,294 from a total of 77,590
data points. Therefore, in the case of ‘Period (hour)’, the num-
ber of data points is basically decreased from 77,590, and the
final compression ratio is close to 99.9%. The last bar, denoted
as ‘Hour’, is the compression ratio calculated using the 1,294
data points. In this case, the compression ratio is lower than the
data collected every minute, denoted as ‘Period (min)’. In other
words, the compression ratio of "Period (min)’ is increased by
10% compared to ‘Hour’.

Table 2 shows the compression ratio for the data collected
every minute when 6 = 0.9 (90%), 0.99 (99%) and 0.999
(99.9%) in Equation 2, respectively. As shown in Table 2, DCT
and FWHT show higher compression ratios than DWT. DWT
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Table 2: Comparison of the compression ratios (min).

Algorithm | Threshold | Temperature | Humidity |  Solar Wind Wind
) Radiation | Direction| Speed
DCT 0.9 99.9987 | 99.9987 | 99.9897 | 99.3479 [99.8170
0.99 99.9459 | 99.9794 | 99.8015 | 62.1098 |70.5877
0.999 99.6842 | 99.7306 | 97.8142 | 30.2513 |35.1708
DWT 0.9 74.2106 | 68.8065 | 88.5707 | 84.8808 |89.0282
0.99 58.4483 | 54.6797 | 80.1057 | 70.1315 |72.9952
0.999 53.4760 | 50.8158 | 73.8459 | 56.7818 |55.0419
FWHT 0.9 99.9954 | 99.9977 | 99.9390 | 99.0959 |99.6643
0.99 99.7902 | 99.8970 | 99.2340 | 60.8818 |68.5310
0.999 99.0524 | 99.2844 | 95.2011 | 29.537 |46.8398

shows the lowest compression ratios because we used a 1-level
wavelet transformation, and therefore, k in Equation 2 is in-
creased. In the case of the DCT and FWHT, compression ratios
vary depending on the characteristics of data. The compres-
sion rates of the wind direction using the DCT are about 1.4
times and 2.8 times decreased according to threshold (). As
previously shown in Table 1, in the the case of the kurtosis,
the degree of deviation from 3 in those datasets (wind direc-
tion, wind speed, and solar radiation) is high. Additionally,
the NSTD showed relatively high values for the wind speed,
solar radiation, and wind direction. Combining those observed
data characteristics with the compression ratios, we can see that
there is a clear correlation between those two. The compression
ratios of the wind direction data in the DCT are about 1.5 times
and 3.2 times is decreased according to threshold (¢). Addition-
ally, the compression ratios of the wind speed data in the DCT
are about 1.4 times and 2.8 times decreased according to the
threshold (0). In the case of the hourly collected data, because
the collection period itself already reduces the amount of data
significantly compared with the data gathered per minute, the
compression rate is close to 99%. This is because the compres-
sion ratio is calculated from all the data points (77,590).

To measure how much the reconstructed data deviate from
the original data, we evaluated the normalized version of RMSE
(NRMSE), a frequently used distortion estimate. The recon-
structed data from our lossy compression method are shown in
Tables 3 and 4. Overall, an the error threshold of 90% shows
a slightly higher error rate than that of 99% (or 0.99), but the
effect of the error rate varies depending on the datasets. Specif-
ically, the error rates for wind speed, wind direction and solarsss
radiation increase in the case of the DCT, DWT, and FWHT4ss
compared to that for the temperature. From these tables, we cansss
see that the reconstructed data almost coincide with the originalssz
data in the case representing 99.9% (or 0.999). In the humid-sss
ity data, the DWT shows higher variances than that of the othersso
algorithms although it is still similar to the other reconstructedsso
data. These results clearly demonstrate that the data can be re-s:
covered by using a small number of measurements or a smallssz
sampling rate. It shows the importance of the compression co-4es
efficients being within a range tolerable by the application. 464

Tables 3 and 4 show the error rates between the original datasss
and the reconstructed data from our lossy compression methodass
for ‘Period (hour)’ and ‘Period (min)’, respectively. To bettersss
understand the error rates, Figure 5 shows the cumulative errorsass
for each compression algorithm and each dataset (Wind Speed,ss
Wind Direction, Solar Radiation, Humidity, and Temperature).«7o

7

Table 3: Comparison of the error rates in Period (min).

Algorithm | Threshold | Temperature | Humidity | ~ Solar Wind Wind
%) Radiation | Direction| Speed
DCT 0.9 0.4659 0.2548 | 0.6672 | 0.6372 | 0.6900
0.99 0.1555 0.1445 | 0.2171 | 0.2062 | 0.2234
0.999 0.0493 0.0460 | 0.0690 | 0.0654 | 0.0708
DWT 0.9 0.4809 0.4498 | 0.6724 | 0.6373 | 0.6904
0.99 0.1556 0.1456 | 0.2176 | 0.2062 | 0.2234
0.999 0.0493 0.0461 | 0.0690 | 0.0654 |0.0.0708
FWHT 0.9 0.4521 0.3951 | 0.6489 | 0.6267 | 0.6750
0.99 0.1460 0.1335 | 0.2089 | 0.1735 | 0.1950
0.999 0.0459 0.0431 | 0.0676 | 0.0511 | 0.0561
Table 4: Comparison of error rates in Period (hour)
Algorithm | Threshold | Temperature | Humidity |  Solar Wind | Wind
(9) Radiation | Direction | Speed
DCT 0.9 0.4661 0.2552 | 0.6598 | 0.6274 |0.6874
0.99 0.1552 0.1456 | 0.2135 | 0.2027 |0.2224
0.999 0.0491 0.0461 | 0.0677 | 0.0643 [0.0703
DWT 0.9 0.4814 0.4509 | 0.6567 | 0.6279 [0.6853
0.99 0.1555 0.1447 | 0.2117 | 0.2034 | 0.222
0.999 0.0493 0.0462 | 0.0671 | 0.0644 [0.0701
FWHT 0.9 0.4693 0.3768 | 0.6313 | 0.5854 [0.6423
0.99 0.1442 0.1337 | 0.1986 | 0.1669 | 0.183
0.999 0.0431 0.0401 | 0.0611 | 0.0526 | 0.056
Wind S.(m) I I
Wind S.(h) I I
Wind D.(m) I I
Wind D.(h) I I I
Solar(m) I . ]
Solar(h) I I I
Humidyty(m) N ]
Humidyty(h) I I
Temp.(m) I
Temp.(h) I NN
0 0.5 1 1.5 2 25 3
uDCT9 DCT99 DCT999 DWT9 = DWT999

=DWT999 mFWHT9 =FWHT99 =FWHT999

Figure 5: Clustered stacked chart of the error rates for datasets collected in
different sampling periods.

Period (hour) is denoted by h and Period (min) is denoted by
m. As shown in this figure, Wind Speed, Wind Direction, and
Solar Radiation show higher error rates than the other datasets.
Specifically, in the case of the wind speed, the error rate of ‘Pe-
riod (m)’ is 0.1x greater than the error rate of ‘Period (h)’. The
error rate is also affected by the characteristics of the data. For
those three datasets with high error rates, the kurtosis also ex-
hibited a relatively high deviation from 3 compared with the
other two datasets. The skewness of those datasets has a posi-
tive value only.

Because PSNR measures the size of the RMSE relative to the
peak size of the signal, a higher value of PSNR represents less
error whereas lower values of RMSE/NRMSE indicate better
quality. Figure 6 shows the PSNR for each compression algo-
rithm. Overall, an error threshold of 90% shows a slightly lower
PSNR than that of 99% (or 0.99), but the effect of the error rate
varies depending on the datasets. Specifically, the error rates
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514
for wind speed, wind direction and solar radiation increase in,,,

the case of the DCT, DWT, and FWHT compared to that for the,,,
temperature. 517

518
3.3. Data Fidelity 519

For the evaluation of data fidelity, we also collected frost data™

from four regions of Yeoungcheon, South Korea from October™'
1 to November 23, 2015. The number of actual frost occur->**
rences is 19 out of entire 216 observed data points (54 days per™
each station). We predict the possibility of frost the next morn-**
ing using the microclimate data. We used machine learning®®
toolkits available on the GraphLab website? to train and evalu-*°
ate five machine learning algorithms. We use 80% of the data™
for training and the remaining 20% for the testing.

We used the following two metrics to evaluate the impact of ™
fidelity on the prediction accuracy: P (Precision) and R (Re-**
call). In the case of the frost forecast, it is important to pre-*"
dict which days are likely to have frost occur, so we chose per->*
formance indicators that can calculate the fraction of the rele-**
vant instances. Precision is referred to as the positive predictive™
value while Recall in this context is referred to as the true pos-**
itive rate. Precision is the number of correct results divided by™*
the number of all returned results. Recall, on the other hand, is™
the number of correct results divided by the number of results™
that should have been returned. In other words, the recall value™
means the probability of predicting the actual event, a frost day®*
in our study. Similarly, the precision value means the possibil-**
ity of an actual frost day among the predicted frost days. For’*
example, if the recall value is 0.9, it means that 90% of the ac-*
tual frost was predicted. In this case, 1 out of 10 means that a™*
frost day cannot be predicted. A precision value of 0.9 means™
that when it predicts 10 frost days, 1 out of 10 is not correct. In**

other words, suppose that we forecast 10 frost days; there must™
548

528

9

4

5

549

3https://turi.com/products/create/docs/graphlab. 550
toolkits.classifier.html 551

8

be frost for 9 days; however, 1 day may not have frost. There-
fore, in the case of the frost forecast, the recall value is more
important, and we chose to evaluate algorithms that generate
higher recall values for this reason.

o T P(T ruePositive)
Precision = — " 3
T P(TruePositive) + F P(FalsePositive)

T P(TruePositive)
Recall = — - )
T P(TruePositive) + FN(FalseNegative)

Tables 5-7 show the results of the four classification algo-
rithms, namely the Decision Tree (DT), Logistic Regression
(LR), Random Forest (RF), and Boosted Tree (BT) used on our
evaluated datasets. To evaluate the performance of the predic-
tion for our evaluated datasets, we did experiments for three
cases: data collected every minute, data collected every hour,
and averaged data per hour collected data every minute. For
the predictive performance shown in Figure 8, the first case,
i.e., running classification algorithms on the data collected ev-
ery minute, is better than all the other algorithms used. For
example, in the case of the FWHT999 (99.9%) in conjunction
with the DT, the data collected per minute is about 10% and
50% better than the hourly collected data and time-averaged
data, respectively.

Both the DCT and FWHT based lossy compressions can
achieve significantly higher compression ratios with a tolera-
ble loss of data quality. Especially, it is interesting to observe
that in the case of the FWHT, the prediction performance us-
ing the reconstructed data is better than that using the original
data. The reason for this is that, for the days where frost is
highly likely to occur, the prediction algorithm predicts better
if the data value is represented more accurately. For example,
as investigated in several prior studies (Kwon et al. (2008); Han
et al. (2009)), the possibilities of frost are higher when the wind
speed is below a certain level. Figure 7 shows the tempera-
ture, humidity, wind speed, and amount of solar radiation using
the FWHT. We excluded the wind direction because it does not
have much influence on frost. Among the four variables, a drop
in the temperature is an important factor for frost conditions.
For example, when the average temperature difference is over
12 degree Celsius, there is a higher possibility of frost. The
average of the lowest temperature, e.g., below -0.4 degrees Cel-
sius, also indicates a higher possibility of frost. Lastly, higher
solar radiation, for example, 12 MIJ/m?,is another key indicator
of higher chances of frost.

Our evaluation using the original and reconstructed data from
the compression shows that the classification models can effec-
tively predict the possibility of frost in advance such that farm-
ers can proactively take preventive actions to protect their crops
from frost damage. More specifically, Figure 8 the compari-
son of the classifiers with different data sampling granularity.
In each chart, M means ‘Period (minute)’; H means ‘Period
(hour)’, and HA means time-average per hour. P and R denote
precision and recall values, respectively, as shown in Equation
3 and 4. Again, in the case of frost forecast, Recall is the more
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Figure 7: Comparison of frost and no-frost day for four weather variables: (a) temperature, (b) humidity, (c) solar radiation, and (d) wind speed. The reconstructed

data is based on FWHT with 99% of energy.

Table 5: Comparison of original and reconstructed data for Period (min)

[ [ DT(P) [ DT(R) | LR(P) [ LR(R) | RE(P) [ RER) | BT(P) | BTR) |

Original 0.862 | 0.619 | 0.774 | 0.577 | 0.983 | 0.555 | 0.927 | 0.751
DCT90 0.678 | 0.084 | NaN 0 1 0.061 1 0.095
DCT99 0.876 | 0.704 | 0.716 | 0.699 | 0.932 | 0.685 | 0.926 | 0.862
DCT999 0.936 | 0.581 | 0.744 | 0.546 | 0.98 | 0.492 | 0.963 | 0.761
DWT90 0.884 | 0.225 | 0.525 | 0.23 1 0.198 | 0.839 | 0.311
DWT99 0.885 | 0.61 | 0.771 | 0.569 | 0.95 | 0.553 | 0.939 | 0.772
DWT999 | 0.861 | 0.614 | 0.78 | 0.564 | 0.912 | 0.615 | 0.952 | 0.786
FWHT90 | 0.971 | 0.996 | 0.878 1.0 ] 0971 | 0.996 1 1

FWHT99 | 0.861 | 0.797 | 0.707 | 0.55 0.91 | 0.796 1 0.997
FWHT999 | 0.918 | 0.665 | 0.767 | 0.555 | 0.925 | 0.614 | 0.989 | 0.906

important value. As shown in Figure 8, M-R is greater than H-*"
R and HA-R. In the case of the DT and FWHT90, M-R is about™*
2.2x better than H-R and 1.8x better than HA-R. Therefore, in**
terms of the prediction performance, it is better to use data with®**
a finer sampling granularity for both compression and analysis

of the reconstructed data. 565

It should be noted that, for a more precise forecast, a predic-
tive weather platform needs to carefully monitor the numericalsss
stability and consistency of the results because it evaluates com-ses

9

Table 6: Comparison of original and reconstructed data for Period (hour)

[ [ DT(P) [ DTR) | LR(P) [ LR(R) | RE(P) [ RER) | BT(P) | BTR) |

Original 0.684 | 0.361 | 0.778 | 0.389 | 0.889 | 0.222 | 0.923 | 0.667
DCT90 0.2 0.028 | NaN 0 NaN 0 0.667 | 0.056
DCT99 0.52 | 0.361 | 0.731 | 0.528 | 0.857 | 0.333 | 0.552 | 0.444
DCT999 0.609 | 0.389 | 0.778 | 0.389 0.5 0.028 | 0.704 | 0.528
DWT90 NaN 0 NaN 0 NaN 0 0.5 0.111
DWT99 0.45 0.25 0.6 0.25 1 0.056 | 0.56 | 0.389
DWT999 | 0.706 | 0.333 | 0.684 | 0.361 | 0.583 | 0.194 | 0.704 | 0.528
FWHT90 | 0.696 | 0.444 0.8 0.111 | 0.883 | 0.278 | 0.864 | 0.528
FWHT99 | 0.615 | 0.444 | 0.684 | 0.361 | 0.688 | 0.306 | 0.615 | 0.444
FWHT999 | 0.824 | 0.389 | 0.824 | 0.389 | 0.933 | 0.389 | 0.741 | 0.556

pression artifacts. Most IoT big data will likely require lossless
compression methods. However, compression schemes might
be useful if they are applied to the more compressible variables
ensuring data reliability.

4. Conclusion

Emerging IoT-based smart farming produces a large volume
of diverse data, which needs to be stored efficiently and re-
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Figure 8: Comparison of the classifiers. (a) DT (Decision Tree) (b) LR (Logistic Regression) (c) RF (Random Forest) (d) BT (Boosted Tree). Note that some bars,
e.g., all DCTI0 bars in the LR classifier, do not appear because the result (Precision and Recall) is NaN.

Table 7: Comparison of original and reconstructed data on average. 577

| [DT(P) [ DT(R) | LR(P) | LR(R) | RE(P) | RE(R) | BT(P) | BT(R) |

Original 0.7 0.389 | 0.789 | 0.417 | 0.944 | 0.472 | 0.792 | 0.528 | 57
DCT90 0.333 | 0.028 | NaN 0 0.333 | 0.028 | 0.333 | 0.028 | 5g
DCT99 0.48 | 0.333 | 0.724 | 0.583 | 0.737 | 0.389 | 0.727 | 0.444
DCT999 0.667 0.5 0.8 | 0.444 | 0.778 | 0.194 | 0.864 | 0.528 | '
DWT90 NaN 0 NaN 0 NaN 0 0.375 | 0.083 | sg2
DWT99 0.45 0.25 | 0.667 | 0.222 | 0.667 | 0.222 | 0.588 | 0.278 ses
DWT999 0.72 0.5 0.706 | 0.333 | 0.706 | 0.333 | 0.6 0.5
FWHT90 | 0.905 | 0.528 | 0.875 | 0.194 1 0.333 | 0.8 0.667 | 584
FWHT99 | 0.596 | 0.778 | 0.706 | 0.333 | 0.8 | 0.333 | 0.75 | 0.667 | oo
FWHT999 | 0.583 | 0.389 | 0.727 | 0.444 | 0.692 | 0.25 | 0.679 | 0.528

586

587

588
liably. In this paper, we evaluated the effectiveness of datass
compression on five of the most important variables in real cli-
mate/weather data as an exemplar of IoT applications. Specifi-_
cally, we compared the performance of the predictive analytics
on the reconstructed data using the DCT, FWHT, and DWT toss
evaluate the feasibility of applying lossy compression to IoT bigss
data. Our experimental results show that lossy compressionssss
based on the DCT and FWHT can achieve significantly higherss
compression ratios with a marginal loss of data quality. In-ses

10

terestingly, the prediction performance using the reconstructed
data based on the FWHT achieved better results than that of
the original data. We also observed that the reconstructed data
from the DCT and FWHT almost coincide with the original data
for all five datasets. Overall, our results are promising in that
the compression schemes might be useful if they are applied
to more compressible variables ensuring data reliability. Addi-
tionally, in terms of the prediction performance, it is better to
use data with a finer sampling granularity for both compression
and analysis of the reconstructed data. Therefore, it is impor-
tant to select compression coefficients and data sampling gran-
ularity within a range tolerable by the application with reliable
precision.
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