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Abstract

As the volume of data collected by various IoT sensors used in smart farm applications increases, the storing and processing of
big data for agricultural applications become a huge challenge. The insight of this paper is that lossy compression can unleash the
power of compression to IoT because, as compared with its counterpart (a lossless one), it can significantly reduce the data volume
when the spatiotemporal characteristics of IoT sensor data are properly exploited. However, lossy compression faces the challenge
of compressing too much data thus losing data fidelity, which might affect the quality of the data and potential analytics outcomes.
To understand the impact of lossy compression on IoT data management and analytics, we evaluated four classification algorithms
with reconstructed agricultural sensor data based on various energy concentration. Specifically, we applied three transformation-
based lossy compression mechanisms to five real-world weather datasets collected at different sampling granularities from IoT
weather stations. Our experimental results indicate that there is a strong positive correlation between the concentrated energy of
the transformed coefficients and the compression ratio as well as the data quality. While we observed a general trend where much
higher compression ratios can be achieved at the cost of a decrease in quality, we also observed that the impact on the classification
accuracy varies among the data sets and algorithms we evaluated. Lastly, we show that the sampling granularity also influences the
data fidelity in terms of the prediction performance and compression ratio.

Keywords: Smart farm, lossy compression, IoT, signal processing, data fidelity.

1. Introduction1

The advent of IoT revolutionizes the knowledge discovery2

paradigm for various domains (Ludena and Ahrary (2013); Al-3

Fuqaha et al. (2015)). Suggestive actionable knowledge can be4

extracted from a continuous stream of raw data collected from5

IoT devices. This paper is particularly interested in IoT enabled6

smart farming. In short, smart farming with data analytic capa-7

bilities can provide more precise forecasts and thus could po-8

tentially improve crop yields as well as reduce production costs9

by removing the use of non-essential pesticides or fertilizers.10

Recent years have witnessed a plethora of IoT solutions ben-11

eficial to agricultural domains. In the agriculture industry, ad-12

vanced decision support systems through IoT technologies are13

increasingly gaining attention because they enable precision14

farming. After processing the collected data, they provide fore-15

cast services to farmers and growers so that they can make16

smarter decisions. The three major features that can affect17

weather-based predictions are as follows:18

• A smart greenhouse is a facility that helps in the steady19

production of high-quality plants all year round by arti-20

ficially controlling the cultivation environment. Different21

kinds of plants require different conditions (e.g., tempera-22

ture, humidity, etc.) for their growth. If proper growth en-23

vironments were provided, it would enable one to control24

plant growth rate (e.g., either promote or prevent flower-25

ing), thereby bringing huge economic benefits to framers26

and growers. An IoT enabled greenhouse control sys-27

tem collects information for managing plant growth and28

controls the facilities promoting optimal growth environ-29

ments.30

• Frost and freeze damage to flowers and buds at or near the31

bloom stage could result in significant crop failures (Jara-32

dat et al. (2008); Matzneller et al. (2016)). For example,33

Chung et al. (2004) forecasted frost using global climate34

and weather data. If there were an accurate frost forecast,35

it would prevent damages from frost proactively, e.g., by36

moving a frost fan around the crop.37

• Plant pathogens and pests including insects, mites, weeds38

and fungi can negatively affect crop productivity and prof-39

itability. Tripathy et al. (2013) reported on the interrela-40

tionship of weather, crops, and pests. Crop pest are also41

sensitive to particular weather condition such as humidity.42

One of the key challenges to enable IoT smart farming is how43

to manage big data collected from various sensors efficiently44

(Ukil et al. (2015)). One solution for handling a large volume45

of data is to apply data compression techniques such that the46

storage and communication overheads are reduced (Bose et al.47

(2016); Huiibbe et al. (2013)). Various compression algorithms48

have been applied to satisfy different application needs, and49

many of them considered lossy algorithms with examples be-50

ing ZFP, SZ, ISABEL, and wavelet-based (Li et al. (2017a,b)).51
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Lossy compression (Chou and Piegl (1992)) can help reduce52

the data size significantly, but error rates and thus loss of data53

quality are not easy to bound. Several recent approaches have54

proposed techniques to bound the error introduced by applying55

lossy compression methods (Sustika and Sugiarto (2016); Abo-56

Zahhad et al. (2015); Tao et al. (2017)). In Tao et al. (2017), it57

focuses on the scientific applications where often exhibits fairly58

sharp or spiky data changes in small data regions. Sustika and59

Sugiarto (2016); Abo-Zahhad et al. (2015) exploit sparse data60

pattern.61

Nevertheless, as reported in several prior studies such as62

analyses of turbulent flow data (Li et al. (2015)) and climate63

data(Baker et al. (2014)), data reconstructed from lossy com-64

pression still allows meaningful analysis to be carried out. In65

(Baker et al. (2014)), the reconstructed data were able to re-66

veal the same mean climate as the original data because climate67

data with compression rates of up to 5:1 can be reconstructed68

to be statistically indistinguishable from the original. However,69

lossy compression techniques are subjective to data fidelity is-70

sues (Li et al. (2017b)). Often data fidelity is dependent on spe-71

cific application domain because acceptable information loss72

varies among variables of interest (Baker et al. (2014)).73

In our previous paper (Moon et al. (2017b,a)), we showed74

that transformation based lossy compressions are useful for75

minimizing data reconstruction errors as well as important for76

maintaining errors within a tolerable range. Furthermore, we77

have studied the effect of lossy data compression on data fi-78

delity before and after applying IoT analytics. However, from79

the viewpoint of data fidelity, there is a lack of verification for80

the relationship with the data collection or sampling frequency.81

To manage IoT data efficiently and reliably, we collect, com-82

press, and store climate data, and then reconstruct them for83

later analysis. We evaluate the fidelity of the reconstructed84

weather sensor data using lossy compression algorithms based85

on three transformations, namely, the Discrete Cosine Trans-86

form (DCT) (Razzaque et al. (2013)), Fast Walsh-Hadamard87

Transform (FWHT) (Fino and Algazi (1976)), and Discrete88

Wavelet Transform (DWT) (Abo-Zahhad et al. (2015)). Our89

objective was to evaluate the impact of the lossy compression90

and restoration on data reliability. Our experimental results us-91

ing five sensor datasets show that lossy data compression can92

achieve 30x-100x compression ratios with marginal informa-93

tion loss. We collected weather sensors data using two sam-94

pling granularities (every minute and every hour) to evaluate95

how the sampling rate affects the amount of data reduction and96

quality of the data analysis.97

Our compression mechanism is also simple in that it does98

not require complex quantization methods. In our comparison99

of the four classification algorithms for predicting frost, we ob-100

served that the prediction accuracy using compressed data con-101

taining only 90% of the total energy from the transformed co-102

efficients did not drop much compared with that using the orig-103

inal data. In most cases, the frost prediction performance based104

on the reconstructed data is comparable with the performance105

based on the original data. Interestingly, in some cases, the pre-106

diction performance improves when the reconstructed data are107

used. These results clearly demonstrate that lossy compression108

leads to efficient management of big IoT data by reducing the109

data storage and transmission time while still maintaining the110

data quality.111

2. Materials and Methods112

2.1. Design of the Transform-Based Lossy Compression113

Many of the lossy compression techniques exploit the fact114

that, while individual data values in the dataset might show115

some randomness, their overall patterns are spatiotemporally116

smooth. Because of this, compression techniques in conjunc-117

tion with data transformation can be more effective because118

the transformed data usually reveal the correlation of the data119

explicitly. For example, let us consider the temperature data120

(shown in Figure 1a) which is one of the datasets we evaluated121

in this paper. The details about the dataset we collected and122

evaluated will be described in Section 3.1. As shown in the123

figure, the data measured every minute exhibited diurnal tem-124

perature variations over the period of the measurement.125

Figure 1b shows the CDF (cumulative density function) for126

the energy of the DCT coefficients after applying the DCT to the127

original temperature data for which each value is transformed128

to a DCT coefficient. As we can see, most of the energy is129

concentrated on a small number of low-frequency DCT coeffi-130

cients and the remaining high-frequency coefficients are close131

to zero. Once the data is represented in the frequency domain,132

we can easily find the relationship between the percentage of133

informative DCT coefficients (i.e., low-frequency ones) and the134

amount of energy carried by them. To demonstrate the effect135

of this relationship on data compression, we chose DCT coef-136

ficients containing 99.9% of the energy attained by the original137

data, which accounts for only 3.16% (245 out of 77,590 total138

data points) of the entire data points. We then apply the in-139

verse DCT to these selected coefficients to evaluate the differ-140

ence between the reconstructed and the original data. As shown141

in Figure 1d, the difference is small, thus confirming that one142

can reconstruct IoT data like temperature data by maintaining a143

very small fractions of the original data. It should be noted that144

this error can be reduced even further if a proper quantization145

method is applied.146

In signal processing theory, data in one domain (or basis) are147

transformed to another domain so that a signal is represented in148

a more concise format. The outcome of such a transformation149

can help reduce storage and data transmission overheads. If a150

sufficiently small number of non-zero coefficients from the data151

transformation can represent the characteristics of the original152

data, high compression ratios can be achieved (Abo-Zahhad153

et al. (2015)). Many transformation methods for representing154

signals in a compact format and minimizing errors during the155

reconstruction phase have been proposed by Chaturvedi and Ya-156

dav (2013). For example, in Sustika and Sugiarto (2016), DCT,157

DWT, and WHT (Walsh-Hadamard Transform) were evaluated158

using weather data. Their simulation results show that us-159

ing DCT-transformed data as a basis has a better performance160

on weather data recovery compared with other transformation161

methods such as the WHT and DWT. However, they showed162
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Figure 1: The variation of “temperature” values. (a) Original data. (b) Cu-
mulative density function (CDF) of the energy concentrated in DCT coefficient
sequences. (c) Reconstructed data from the inverse DCT of coefficients con-
taining 99.9% energy of the original data. All other coefficients are set to zero,
thus eliminating quantization on high-frequency data for higher data fidelity.
(d) Difference between the reconstructed and the original data.

that the compressed signal is reconstructed with some error163

(Chaturvedi and Yadav (2013)). Bicer et al. (2013) proposed164

an online compression algorithm for climate data by exploiting165

spatial and temporal characteristics exhibited in climate data,166

thereby improving data the retrieval performance.167

This section describes three lossy algorithms based on spatial168

data characteristics, which we evaluated as data transformation169

methods. To describe each transformation in detail, let us con-170

sider a one-dimensional discrete-time data x of length N, which171

is denoted as N×1 column vector with the elements x[n], where172

n = 1, 2, . . . ,N.173

Discrete Cosine Transform (DCT)174

We first considered the discrete cosine transformation175

(DCT), which transforms data from the spatial domain into the176

frequency domain. A signal in the DCT is represented as a sum177

of varying magnitudes and frequencies, and DCT has been used178

in the lossy compression of audio and images (Razzaque et al.179

(2013)). DCT is defined as follows:180

y(k) = w(k)
∑N

n=1 x(n)cos( π(2n−1)(k−1)
2N ), k = 1, 2, . . . ,N,

w(k) =


1√
N
, k = 1√

2
N , 2 ≤ k ≤ N,

where x(n), y(k), N denote the original data, the transformed181

data, and the length of x, respectively.182

Discrete Wavelet Transform (DWT)183

We next considered the DWT. Wavelet transforms have been184

widely adopted in various compression algorithms because185

of its high-energy compaction properties (Abo-Zahhad et al.186

(2015)). In one-level DWT, two sets of coefficients are com-187

puted: approximated coefficients (C1) and detailed coefficients188

(D1). These two vectors are obtained by convolving x with the189

low-pass filter h0 for C1 and with the high-pass filter h1 for D1.190

The ↓ 2 represents the down sampling operator by a factor of 2.191

The length of each filter is equal to 2L. For a signal of length192

N, the signal F and G are of length N + 2L− 1, and then the co-193

efficients C1 and D1 are of length N−1
2 + L. A single-level DWT194

is denoted below, and this process can be applied recursively.195

C1 = (x ∗ h0) ↓ 2,
D1 = (x ∗ h1) ↓ 2.

Fast Walsh-Hadamard Transform (FWHT)196

FWHT is a faster implementation of the Walsh-Hadamard197

Transform (WHT). The FWHT requires only N log N addi-198

tions or subtractions whereas a naive implementation of the199

WHT would have a time complexity of O(N2) (Fino and Algazi200

(1976)). The FWHT for a signal x(n) of length N is calculated201

as follows:202

yn =
1
N

N∑
i=1

xiWAL(n, i),

where i = 1, 2, . . . ,N and WAL(n, i) is Walsh functions.203

2.2. Requirements for IoT Enabled Smart Farming204

Weather stations with the purpose of performing predictive205

analytics collect climate and weather data from various sensors.206

In those predictive stations, gathering time-based climate data is207

particularly essential for making analytics and predictions more208

accurate because such data indicate changes in certain weather209

conditions at particular locations over time, thereby enabling210

one to evaluate climate and weather patterns and to perform211

short- and long-term forecasts. However, because the sensor212

nodes typically have a limited storage space, the sensors need213

to periodically send data to the cloud, which is expensive in214

terms of time and energy.215

AgWeatherNet1, for example, uses 177 stations installed216

since 1988 to collect climate data for providing agricultural217

services. AgWeatherNet collects various sensor data such as218

air temperature, relative humidity, dew point temperature, soil219

temperature, rainfall, wind speed, wind direction, solar radia-220

tion, leaf wetness, etc. Some stations also measure atmospheric221

pressure. A data logger collects these data every 5 seconds and222

summarizes them every 15 minutes. The number of stations is223

constantly increasing, thus increasing the amount of data dra-224

matically. The IoT smart farm application itself is constrained225

in terms of bandwidth, energy and storage. As such, these data226

needs to be managed efficiently such that the storage and trans-227

mission costs can be reduced (Bose et al. (2016)).228

To efficiently manage and transmit data, we need to use229

compression techniques on the data, especially a lossy one to230

1http://weather.wsu.edu/
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achieve a comparably higher compression ratio. However, the231

reconstructed data in the cloud needs to be analyzed later. In232

other words, without careful considerations, lossy compression233

could filter potentially important information critical to analytic234

workloads running on the cloud. To explain the need for deter-235

mining acceptable quality requirements for the climate data and236

analytics, let us consider the following two IoT smart farm use-237

cases. First, plum pocket is a fungal disease that causes plum238

fruit to become hollow and irregularly shaped or to drop early,239

thereby resulting in a crop loss. Cool and wet spring weather240

is known to significantly promote the development of such fruit241

diseases. Weather conditions are important not only in early242

season diseases but also during the harvest where excess mois-243

ture can cause several rot diseases (Johnson (1975)). Second,244

frost can cause heavy losses in agricultural production; thus, it245

is important to minimize potential frost damage. Frost refers246

to the formation of ice crystals on surfaces or a meteorological247

event when crops and other plants experience freezing injury.248

For both plant diseases and frost, when weather conditions249

are in favor of their occurrence, an instant warning is required250

to successfully control them. Therefore, it would be necessary251

to send, store and process all surrounding climate data for sev-252

eral regions to determine the possibility of their occurrence. For253

example, if we collect 5 climate data variables and assume each254

data variable is a real type every minute at N weather stations,255

the total amount of data that need to be transmitted per day is256

1,440 × 5 × 4 × N bytes. To predict more accurately, one might257

want to include more diverse sensors or increase the number258

of weather stations or sensor nodes. All these will increase the259

amount of data that need to be transmitted and analyzed. We260

already know that data compression works for highly efficient261

data management. However, what lacks is a comparative eval-262

uation that establishes the criteria for selecting the degree of263

compromise in data quality yet still makes reasonably accurate264

forecast services.265

2.3. Design of the Predictive Weather Platform266

Our predictive weather platform, depicted in Figure 2, pe-
riodically collects climate information similar to other weather
platforms, but performs data analysis for a frost forecast service
using four machine learning (ML) algorithms: decision tree,
boosted tree, random forest, and regression. Details about how
we applied the individual MLs are as follows. Given a set of
features xi and a label yi ∈ {0, 1}, logistic regression interprets
the probability that the label is in one class as a logistic function
of a linear combination of the features, which is represented as
follows:

fi(θ) = p(yi = 1|x) =
1

1 + exp(−θγx)
. (1)

The decision tree and boosted tree can also be used as a clas-267

sifier for our purposes. In contrast to linear models like logistic268

regression, these algorithms can model nonlinear interactions269

between the features and the target values. Boosted tree is based270

on a collection of base learners, i.e., decision tree classifiers,271

and combines them using gradient boosting. It should be noted272

that our focus in this paper is to evaluate four widely used ML273
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Figure 2: The architecture of IoT based predictive weather platform.

algorithms on their classification performance for predicting the274

presence/absence of frost.275

The proposed platform’s overall goal is to provide web and276

mobile services so that farmers and plant growers can subscribe277

to agricultural services, frost prediction in this study, to help278

them make farming decisions. Our platform makes the frost279

forecast every night at 11 PM based on our frost prediction280

models built on top of the climate collected throughout the day.281

We make this forecast data available on the web and to mobile282

services so that the subscribers (farmers) can proactively im-283

plement preventive actions. For farmers who subscribe to push284

services, they are automatically notified with updated, more ac-285

curate frost forecast information at 1 AM. Moreover, it pro-286

vides an interface for farmers to easily provide the system feed-287

back for more accurate data collection. The location of ob-288

servation stations are displayed on the map, and frost predic-289

tion/occurrence information, micro-weather information, etc.290

are displayed in real time on our project website2
291

3. Results and Discussion292

3.1. Datasets293

We evaluated the effectiveness of the compression algorithms294

discussed in Section 2.1 on climate data. In our evaluation, we295

used a real-world dataset from the wireless climate stations lo-296

cated in a small orchard in Youngcheon, South Korea. We chose297

the following five most important variables, namely tempera-298

ture, humidity, solar radiation, wind direction and wind speed,299

from the climate data collected during October 2015 at the de-300

ployed weather station. The data were continuously monitored301

and collected using two measuring (or sampling) periods: every302

minute and every hour. The reason that we had two sampling303

periods is to evaluate how different sampling rates affect the304

amount of data reduction and quantify its impact on the data305

analysis. In our evaluation, there were 77,590 data points for306

the collection period consisting of every minute and 1,294 data307

points for the collection period consisting of every hour, respec-308

tively. The entire duration of the sampling period was about 54309

days. The original data samples for both measuring periods are310

shown in Figure 3.311

Table 1 presents the statistical properties of the original data312

in terms of the standard deviation (STD), normalized standard313

deviation (NSTD), skewness, and kurtosis. The NSTD is cal-314

culated as S T D(x)
Mean(x) . Skewness is a measure of data asymmetry315

2http://183.106.117.219/. (Korean website)

4



0 10000 20000 30000 40000 50000 60000 70000 80000
-20

0

20

40

C
e
ls

iu
s

Temperature

0 10000 20000 30000 40000 50000 60000 70000 80000
0

50

100

%

Humidity

0 10000 20000 30000 40000 50000 60000 70000 80000
0

10

20

30

M
J
/m

2

Solar Radiation

0 10000 20000 30000 40000 50000 60000 70000 80000
0

200

400

d
e
g
re

e

Wind Direction

0 10000 20000 30000 40000 50000 60000 70000 80000

Sample index(n)

0

2

4

6

m
/s

e
c

Wind Speed

(a) every minute

0 200 400 600 800 1000 1200 1400
-20

0

20

40

C
e
ls

iu
s

Temperature

0 200 400 600 800 1000 1200 1400
0

50

100

%

Humidity

0 200 400 600 800 1000 1200 1400
0

10

20

30

M
J
/m

2

Solar Radiation

0 200 400 600 800 1000 1200 1400
0

200

400

d
e
g
re

e

Wind Direction

0 200 400 600 800 1000 1200 1400

Sample index(n)

0

2

4

6

m
/s

e
c

Wind Speed

(b) every hour

Figure 3: Data value variations exhibited in the original dataset (temperature, humidity, solar radiation, wind direction, and wind speed) during the entire sampling
period (54 days or 7.7 weeks). The x-axis in each graph represents sampling points.

around the mean value. Normal distribution, which is symmet-316

ric around its mean, gives zero skewness. Negative skewness317

values mean that more data are scattered to the left of the mean318

whereas positive skewness values mean more data are scattered319

to the right. The measures of kurtosis in Table 1 indicate how320

outlier-prone a distribution is. As the kurtosis of any normal321

distribution is 3, distributions with a kurtosis higher than 3 are322

more outlier-prone. The distributions of a kurtosis lower than323

3, on the other hand, are less outlier-prone. Solar radiation and324

wind speed show a higher STD than that of the other datasets.325

Table 1 shows the characteristics of the data collected using dif-326

ferent sampling periods (every minute and every hour). In both327

sampling periods, we observe similar data characteristics for328

all metrics (deviation, skewness, and kurtosis). In the case of329

the skewness, solar radiation, wind speed, and wind direction330

have a positive value. Solar radiation, wind direction and wind331

speed also have a higher STD compared to the other datasets.332

For those three datasets, the kurtosis is also more deviated from333

3 when compared with the other two datasets. Because the kur-334

tosis for wind speed is higher than 3, distribution of the wind335

speed data has a heavier tail and a sharper peak than that of the336

normal distribution. However, the kurtosis for wind direction337

and solar radiation is lower than 3, which indicates that the dis-338

tribution for wind speed has lighter tails and flatter peak than339

the normal distribution.340

We used the following three metrics to evaluate the perfor-341

mance of each compression algorithm: compression ratio, the342

Normalized version of Root Mean Square Error (NRMSE) and343

the Peak Signal-to-Noise Ratio (PSNR).344

• Compression Ratio: The compression ratio achievable by345

5



Table 1: The evaluated datasets and their characteristics.

Sampling Standard Normalized Skewness Kurtosis
Period Deviation Standard Deviation

Temperature 1 min 5.6807 0.4659 -0.0907 3.0002
1 hour 5.6843 0.4663 -0.0848 2.9999

Humidity 1 min 20.3439 0.2548 -0.9132 2.5916
1 hour 20.3855 0.2553 -0.9180 2.5917

Solar Radiation 1 min 5.9199 1.1748 0.8546 2.2679
1 hour 5.9772 1.1393 0.7969 2.1666

Wind Direction 1 min 112.6286 1.0666 0.5782 1.8434
1 hour 113.7976 1.0364 0.5224 1.7903

Wind Speed 1 min 0.7574 1.2284 1.3920 4.5762
1 hour 0.7805 1.2233 1.4652 5.0640

each compression method, RM , is given by:346

RM =
|D| − |D′|
|D|

× 100%,

where |D| is the size of D, |D′| is the reduced size, and M is347

the individual compression method. Consequently, in the348

case of the DCT, DWT, and FWHT transformations, we349

compute k, which is reduced to (n − k)/n.350

• NRMSE: Let x = x1, x2, x3, ..xn be the original data and351

x̂ = x̂1, x̂2, x̂3, ...x̂n be the reconstructed data. Then, the352

NRMSE for each compression method M can be defined353

as:354

NRMS EM =
RMS EM

Mean(x)
=

1
x̄

√∑N
n=1(x(n) − x̂(n))2

N
,

where N is the number of data points and x̄ is mean of the355

original data x, and x̂ is the reconstructed value of x.356

• PSNR: For evaluating the effectiveness of our lossy com-
pression method, we measured the peak signal-to-noise ra-
tio (PSNR), a commonly used average error metric, espe-
cially in visualization (Tao et al. (2017)). It is calculated
as follows:

PS NRM = 20log10(
Max(x) − Min(x)

RMS EM
)

3.2. Evaluation357

We first describe how we compress the evaluated dataset us-358

ing the DCT, DWT and FWHT transformations. For the DWT359

wavelet transform, we used the Daubechnies d4 wavelet (or db4360

wavelet). The specific steps for calculating the compression ra-361

tio for each algorithm are as follows (Moon et al. (2017b)):362

1. Decompose the original data into the DCT, DWT, and363

FTWH basis vectors, i.e., coefficient vectors.364

2. Sort the coefficient vector |S | in descending order of coef-365

ficient values. The sorted coefficient vector is denoted as:366

S S = S S 1, S S 2, ...S S n.367

3. Find k, which determines how many coefficients are re-368

quired to represent the δ amount of the energy in the sig-369

nal, where 0.0 ≤ δ ≤ 1.0 or 0% ≤ δ ≤ 100%. The norm is370
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Figure 4: Compression ratio for the temperature dataset.

computed by the Euclidean norm (p-norm, p=2) of vectors371

S S .372

norm(S S (1 : k))
norm(S S )

< δ. (2)

We note that the sum of the energy stored in the entire373

DCT coefficient is 1.0 (or 100%).374

4. Coefficients smaller than the threshold value δ are set to375

zero. In other words, those nonsignificant values are dis-376

carded.377

In our evaluation, we use δ = 0.9 (90%), 0.99 (99%) and378

0.999 (99.9%) in Equation 2 and compress the five data vari-379

ables with 77,590 data points each. Assuming that each data380

has a real value of 4 bytes, so the total size of data nearly be-381

come 1.52 MB. Note that, the data size is per sensor node, and382

we expect the data volume will increase as we deploy more sen-383

sors and nodes. For DCT, DWT, and FWHT, each compression384

time takes about 0.014, 0.031, and 0.02 seconds, respectively.385

Each decompression time of DCT, DWT and FWHT are 0.006,386

0.014 and 0.011 seconds each. Overall, we were able to achieve387

the compression speed of 108, 49 and 76 MB/s and the decom-388

pression speed of 253, 108 and 138 MB/s, respectively.389

Figure 4 shows the compression ratio for the temperature390

dataset with the different data collection periods, i.e., every391

minute and hourly. Each clustered row combines all compres-392

sion ratios using different transforms and different amounts of393

energy concentrations. In the case of the hourly data, the num-394

ber of data points is reduced to 1,294 from a total of 77,590395

data points. Therefore, in the case of ‘Period (hour)’, the num-396

ber of data points is basically decreased from 77,590, and the397

final compression ratio is close to 99.9%. The last bar, denoted398

as ‘Hour’, is the compression ratio calculated using the 1,294399

data points. In this case, the compression ratio is lower than the400

data collected every minute, denoted as ‘Period (min)’. In other401

words, the compression ratio of ’Period (min)’ is increased by402

10% compared to ‘Hour’.403

Table 2 shows the compression ratio for the data collected404

every minute when δ = 0.9 (90%), 0.99 (99%) and 0.999405

(99.9%) in Equation 2, respectively. As shown in Table 2, DCT406

and FWHT show higher compression ratios than DWT. DWT407
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Table 2: Comparison of the compression ratios (min).

Algorithm Threshold Temperature Humidity Solar Wind Wind
(δ) Radiation Direction Speed

DCT 0.9 99.9987 99.9987 99.9897 99.3479 99.8170
0.99 99.9459 99.9794 99.8015 62.1098 70.5877

0.999 99.6842 99.7306 97.8142 30.2513 35.1708
DWT 0.9 74.2106 68.8065 88.5707 84.8808 89.0282

0.99 58.4483 54.6797 80.1057 70.1315 72.9952
0.999 53.4760 50.8158 73.8459 56.7818 55.0419

FWHT 0.9 99.9954 99.9977 99.9390 99.0959 99.6643
0.99 99.7902 99.8970 99.2340 60.8818 68.5310

0.999 99.0524 99.2844 95.2011 29.537 46.8398

shows the lowest compression ratios because we used a 1-level408

wavelet transformation, and therefore, k in Equation 2 is in-409

creased. In the case of the DCT and FWHT, compression ratios410

vary depending on the characteristics of data. The compres-411

sion rates of the wind direction using the DCT are about 1.4412

times and 2.8 times decreased according to threshold (δ). As413

previously shown in Table 1, in the the case of the kurtosis,414

the degree of deviation from 3 in those datasets (wind direc-415

tion, wind speed, and solar radiation) is high. Additionally,416

the NSTD showed relatively high values for the wind speed,417

solar radiation, and wind direction. Combining those observed418

data characteristics with the compression ratios, we can see that419

there is a clear correlation between those two. The compression420

ratios of the wind direction data in the DCT are about 1.5 times421

and 3.2 times is decreased according to threshold (δ). Addition-422

ally, the compression ratios of the wind speed data in the DCT423

are about 1.4 times and 2.8 times decreased according to the424

threshold (δ). In the case of the hourly collected data, because425

the collection period itself already reduces the amount of data426

significantly compared with the data gathered per minute, the427

compression rate is close to 99%. This is because the compres-428

sion ratio is calculated from all the data points (77,590).429

To measure how much the reconstructed data deviate from430

the original data, we evaluated the normalized version of RMSE431

(NRMSE), a frequently used distortion estimate. The recon-432

structed data from our lossy compression method are shown in433

Tables 3 and 4. Overall, an the error threshold of 90% shows434

a slightly higher error rate than that of 99% (or 0.99), but the435

effect of the error rate varies depending on the datasets. Specif-436

ically, the error rates for wind speed, wind direction and solar437

radiation increase in the case of the DCT, DWT, and FWHT438

compared to that for the temperature. From these tables, we can439

see that the reconstructed data almost coincide with the original440

data in the case representing 99.9% (or 0.999). In the humid-441

ity data, the DWT shows higher variances than that of the other442

algorithms although it is still similar to the other reconstructed443

data. These results clearly demonstrate that the data can be re-444

covered by using a small number of measurements or a small445

sampling rate. It shows the importance of the compression co-446

efficients being within a range tolerable by the application.447

Tables 3 and 4 show the error rates between the original data448

and the reconstructed data from our lossy compression method449

for ‘Period (hour)’ and ‘Period (min)’, respectively. To better450

understand the error rates, Figure 5 shows the cumulative errors451

for each compression algorithm and each dataset (Wind Speed,452

Wind Direction, Solar Radiation, Humidity, and Temperature).453

Table 3: Comparison of the error rates in Period (min).

Algorithm Threshold Temperature Humidity Solar Wind Wind
(δ) Radiation Direction Speed

DCT 0.9 0.4659 0.2548 0.6672 0.6372 0.6900
0.99 0.1555 0.1445 0.2171 0.2062 0.2234
0.999 0.0493 0.0460 0.0690 0.0654 0.0708

DWT 0.9 0.4809 0.4498 0.6724 0.6373 0.6904
0.99 0.1556 0.1456 0.2176 0.2062 0.2234
0.999 0.0493 0.0461 0.0690 0.0654 0.0.0708

FWHT 0.9 0.4521 0.3951 0.6489 0.6267 0.6750
0.99 0.1460 0.1335 0.2089 0.1735 0.1950
0.999 0.0459 0.0431 0.0676 0.0511 0.0561

Table 4: Comparison of error rates in Period (hour)

.

Algorithm Threshold Temperature Humidity Solar Wind Wind
(δ) Radiation Direction Speed

DCT 0.9 0.4661 0.2552 0.6598 0.6274 0.6874
0.99 0.1552 0.1456 0.2135 0.2027 0.2224
0.999 0.0491 0.0461 0.0677 0.0643 0.0703

DWT 0.9 0.4814 0.4509 0.6567 0.6279 0.6853
0.99 0.1555 0.1447 0.2117 0.2034 0.222
0.999 0.0493 0.0462 0.0671 0.0644 0.0701

FWHT 0.9 0.4693 0.3768 0.6313 0.5854 0.6423
0.99 0.1442 0.1337 0.1986 0.1669 0.183
0.999 0.0431 0.0401 0.0611 0.0526 0.056

      








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   

Figure 5: Clustered stacked chart of the error rates for datasets collected in
different sampling periods.

Period (hour) is denoted by h and Period (min) is denoted by454

m. As shown in this figure, Wind Speed, Wind Direction, and455

Solar Radiation show higher error rates than the other datasets.456

Specifically, in the case of the wind speed, the error rate of ‘Pe-457

riod (m)’ is 0.1x greater than the error rate of ‘Period (h)’. The458

error rate is also affected by the characteristics of the data. For459

those three datasets with high error rates, the kurtosis also ex-460

hibited a relatively high deviation from 3 compared with the461

other two datasets. The skewness of those datasets has a posi-462

tive value only.463

Because PSNR measures the size of the RMSE relative to the464

peak size of the signal, a higher value of PSNR represents less465

error whereas lower values of RMSE/NRMSE indicate better466

quality. Figure 6 shows the PSNR for each compression algo-467

rithm. Overall, an error threshold of 90% shows a slightly lower468

PSNR than that of 99% (or 0.99), but the effect of the error rate469

varies depending on the datasets. Specifically, the error rates470
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Figure 6: PSNR in different sampling periods.

for wind speed, wind direction and solar radiation increase in471

the case of the DCT, DWT, and FWHT compared to that for the472

temperature.473

3.3. Data Fidelity474

For the evaluation of data fidelity, we also collected frost data475

from four regions of Yeoungcheon, South Korea from October476

1 to November 23, 2015. The number of actual frost occur-477

rences is 19 out of entire 216 observed data points (54 days per478

each station). We predict the possibility of frost the next morn-479

ing using the microclimate data. We used machine learning480

toolkits available on the GraphLab website3 to train and evalu-481

ate five machine learning algorithms. We use 80% of the data482

for training and the remaining 20% for the testing.483

We used the following two metrics to evaluate the impact of484

fidelity on the prediction accuracy: P (Precision) and R (Re-485

call). In the case of the frost forecast, it is important to pre-486

dict which days are likely to have frost occur, so we chose per-487

formance indicators that can calculate the fraction of the rele-488

vant instances. Precision is referred to as the positive predictive489

value while Recall in this context is referred to as the true pos-490

itive rate. Precision is the number of correct results divided by491

the number of all returned results. Recall, on the other hand, is492

the number of correct results divided by the number of results493

that should have been returned. In other words, the recall value494

means the probability of predicting the actual event, a frost day495

in our study. Similarly, the precision value means the possibil-496

ity of an actual frost day among the predicted frost days. For497

example, if the recall value is 0.9, it means that 90% of the ac-498

tual frost was predicted. In this case, 1 out of 10 means that a499

frost day cannot be predicted. A precision value of 0.9 means500

that when it predicts 10 frost days, 1 out of 10 is not correct. In501

other words, suppose that we forecast 10 frost days; there must502

3https://turi.com/products/create/docs/graphlab.

toolkits.classifier.html

be frost for 9 days; however, 1 day may not have frost. There-503

fore, in the case of the frost forecast, the recall value is more504

important, and we chose to evaluate algorithms that generate505

higher recall values for this reason.506

Precision =
T P(TruePositive)

T P(TruePositive) + FP(FalsePositive)
(3)

Recall =
T P(TruePositive)

T P(TruePositive) + FN(FalseNegative)
(4)

Tables 5-7 show the results of the four classification algo-507

rithms, namely the Decision Tree (DT), Logistic Regression508

(LR), Random Forest (RF), and Boosted Tree (BT) used on our509

evaluated datasets. To evaluate the performance of the predic-510

tion for our evaluated datasets, we did experiments for three511

cases: data collected every minute, data collected every hour,512

and averaged data per hour collected data every minute. For513

the predictive performance shown in Figure 8, the first case,514

i.e., running classification algorithms on the data collected ev-515

ery minute, is better than all the other algorithms used. For516

example, in the case of the FWHT999 (99.9%) in conjunction517

with the DT, the data collected per minute is about 10% and518

50% better than the hourly collected data and time-averaged519

data, respectively.520

Both the DCT and FWHT based lossy compressions can521

achieve significantly higher compression ratios with a tolera-522

ble loss of data quality. Especially, it is interesting to observe523

that in the case of the FWHT, the prediction performance us-524

ing the reconstructed data is better than that using the original525

data. The reason for this is that, for the days where frost is526

highly likely to occur, the prediction algorithm predicts better527

if the data value is represented more accurately. For example,528

as investigated in several prior studies (Kwon et al. (2008); Han529

et al. (2009)), the possibilities of frost are higher when the wind530

speed is below a certain level. Figure 7 shows the tempera-531

ture, humidity, wind speed, and amount of solar radiation using532

the FWHT. We excluded the wind direction because it does not533

have much influence on frost. Among the four variables, a drop534

in the temperature is an important factor for frost conditions.535

For example, when the average temperature difference is over536

12 degree Celsius, there is a higher possibility of frost. The537

average of the lowest temperature, e.g., below -0.4 degrees Cel-538

sius, also indicates a higher possibility of frost. Lastly, higher539

solar radiation, for example, 12 MJ/m2,is another key indicator540

of higher chances of frost.541

Our evaluation using the original and reconstructed data from542

the compression shows that the classification models can effec-543

tively predict the possibility of frost in advance such that farm-544

ers can proactively take preventive actions to protect their crops545

from frost damage. More specifically, Figure 8 the compari-546

son of the classifiers with different data sampling granularity.547

In each chart, M means ‘Period (minute)’; H means ‘Period548

(hour)’, and HA means time-average per hour. P and R denote549

precision and recall values, respectively, as shown in Equation550

3 and 4. Again, in the case of frost forecast, Recall is the more551
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Figure 7: Comparison of frost and no-frost day for four weather variables: (a) temperature, (b) humidity, (c) solar radiation, and (d) wind speed. The reconstructed
data is based on FWHT with 99% of energy.

Table 5: Comparison of original and reconstructed data for Period (min)

.

DT(P) DT(R) LR(P) LR(R) RF(P) RF(R) BT(P) BT(R)
Original 0.862 0.619 0.774 0.577 0.983 0.555 0.927 0.751
DCT90 0.678 0.084 NaN 0 1 0.061 1 0.095
DCT99 0.876 0.704 0.716 0.699 0.932 0.685 0.926 0.862
DCT999 0.936 0.581 0.744 0.546 0.98 0.492 0.963 0.761
DWT90 0.884 0.225 0.525 0.23 1 0.198 0.839 0.311
DWT99 0.885 0.61 0.771 0.569 0.95 0.553 0.939 0.772
DWT999 0.861 0.614 0.78 0.564 0.912 0.615 0.952 0.786
FWHT90 0.971 0.996 0.878 1.0 0.971 0.996 1 1
FWHT99 0.861 0.797 0.707 0.55 0.91 0.796 1 0.997
FWHT999 0.918 0.665 0.767 0.555 0.925 0.614 0.989 0.906

important value. As shown in Figure 8, M-R is greater than H-552

R and HA-R. In the case of the DT and FWHT90, M-R is about553

2.2x better than H-R and 1.8x better than HA-R. Therefore, in554

terms of the prediction performance, it is better to use data with555

a finer sampling granularity for both compression and analysis556

of the reconstructed data.557

It should be noted that, for a more precise forecast, a predic-558

tive weather platform needs to carefully monitor the numerical559

stability and consistency of the results because it evaluates com-560

Table 6: Comparison of original and reconstructed data for Period (hour)

.

DT(P) DT(R) LR(P) LR(R) RF(P) RF(R) BT(P) BT(R)
Original 0.684 0.361 0.778 0.389 0.889 0.222 0.923 0.667
DCT90 0.2 0.028 NaN 0 NaN 0 0.667 0.056
DCT99 0.52 0.361 0.731 0.528 0.857 0.333 0.552 0.444
DCT999 0.609 0.389 0.778 0.389 0.5 0.028 0.704 0.528
DWT90 NaN 0 NaN 0 NaN 0 0.5 0.111
DWT99 0.45 0.25 0.6 0.25 1 0.056 0.56 0.389
DWT999 0.706 0.333 0.684 0.361 0.583 0.194 0.704 0.528
FWHT90 0.696 0.444 0.8 0.111 0.883 0.278 0.864 0.528
FWHT99 0.615 0.444 0.684 0.361 0.688 0.306 0.615 0.444
FWHT999 0.824 0.389 0.824 0.389 0.933 0.389 0.741 0.556

pression artifacts. Most IoT big data will likely require lossless561

compression methods. However, compression schemes might562

be useful if they are applied to the more compressible variables563

ensuring data reliability.564

4. Conclusion565

Emerging IoT-based smart farming produces a large volume566

of diverse data, which needs to be stored efficiently and re-567
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Figure 8: Comparison of the classifiers. (a) DT (Decision Tree) (b) LR (Logistic Regression) (c) RF (Random Forest) (d) BT (Boosted Tree). Note that some bars,
e.g., all DCT90 bars in the LR classifier, do not appear because the result (Precision and Recall) is NaN.

Table 7: Comparison of original and reconstructed data on average.

DT(P) DT(R) LR(P) LR(R) RF(P) RF(R) BT(P) BT(R)
Original 0.7 0.389 0.789 0.417 0.944 0.472 0.792 0.528
DCT90 0.333 0.028 NaN 0 0.333 0.028 0.333 0.028
DCT99 0.48 0.333 0.724 0.583 0.737 0.389 0.727 0.444
DCT999 0.667 0.5 0.8 0.444 0.778 0.194 0.864 0.528
DWT90 NaN 0 NaN 0 NaN 0 0.375 0.083
DWT99 0.45 0.25 0.667 0.222 0.667 0.222 0.588 0.278
DWT999 0.72 0.5 0.706 0.333 0.706 0.333 0.6 0.5
FWHT90 0.905 0.528 0.875 0.194 1 0.333 0.8 0.667
FWHT99 0.596 0.778 0.706 0.333 0.8 0.333 0.75 0.667
FWHT999 0.583 0.389 0.727 0.444 0.692 0.25 0.679 0.528

liably. In this paper, we evaluated the effectiveness of data568

compression on five of the most important variables in real cli-569

mate/weather data as an exemplar of IoT applications. Specifi-570

cally, we compared the performance of the predictive analytics571

on the reconstructed data using the DCT, FWHT, and DWT to572

evaluate the feasibility of applying lossy compression to IoT big573

data. Our experimental results show that lossy compressions574

based on the DCT and FWHT can achieve significantly higher575

compression ratios with a marginal loss of data quality. In-576

terestingly, the prediction performance using the reconstructed577

data based on the FWHT achieved better results than that of578

the original data. We also observed that the reconstructed data579

from the DCT and FWHT almost coincide with the original data580

for all five datasets. Overall, our results are promising in that581

the compression schemes might be useful if they are applied582

to more compressible variables ensuring data reliability. Addi-583

tionally, in terms of the prediction performance, it is better to584

use data with a finer sampling granularity for both compression585

and analysis of the reconstructed data. Therefore, it is impor-586

tant to select compression coefficients and data sampling gran-587

ularity within a range tolerable by the application with reliable588

precision.589
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