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Cross-disciplinary evolution of the genomics revolution
Alexander M. Petersen1*†, Dinesh Majeti2*, Kyeongan Kwon2,
Mohammed E. Ahmed2, Ioannis Pavlidis2†

Born out of the Human Genome Project (HGP), the field of genomics evolved with phenomenal speed into a
dominant scientific and business force. While other efforts were intent on estimating the economic impact of
the genomics revolution, we shift focus to the social and cultural capital generated by bridging together biology and
computing—two of the constitutive disciplines of “genomics”. We quantify this capital by measuring the pervasiveness
of bio-computing cross-disciplinarity (XD) in genomics research during and after the HGP. To provide interlocking
perspectives at the career and epistemic levels, we assembled three data sets to measure XD via (i) the collaboration
network between 4190 biology and computing faculty from 155 departments in the United States, (ii) cross-
departmental affiliations within a comprehensive set of human genomics publications, and (iii) the application
of computational concepts and methods in research published in a preeminent genomics journal. Our results
show the following: First, research featuring XD collaborations has higher citation impact than other disciplinary
research—an effect observed at both the career and individual article levels. Second, genomics articles featuring XD
methods tend to have higher citation impact than epistemically pure articles. Third, XD researchers of computing
pedigree are drawn to the biology culture. This statistical evidence acquires deeper meaning when viewed against
the organizational and knowledge transfer mechanisms revealed by the data models. With cross-disciplinary initia-
tives set to dominate the agenda of funding agencies, our case study provides a framework for appreciating the
long-term effects of these initiatives on science and its standard-bearers.
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INTRODUCTION
With the coming of the 21st century, biology has emerged as the van-
guard of the scientific enterprise and computing as the epicenter of
engineering and technology (1). These two fields were primed as
complements in the Human Genome Project (HGP). The successful
completion of the HGP in the early 2000s ushered the genomics revo-
lution that continues to transform our capacity to understand, predict,
and edit life (2–5).

A significant amount of work has focused on estimating the impact
of the HGP on human health and the return on investment in the
U.S. economy (6–8). These efforts proved surprisingly difficult, high-
lighting the broader challenge of evaluating the socioeconomic impact
of science policy (9, 10).

Instead of focusing on economic and health outcomes we focus here
on the evolution of social and cultural capital within the genomics rev-
olution. To this end, we build on scholarship of epistemic (11) and
network analysis (12–16) to quantify the factors and career incentives
that contribute to the formation of new fields (17–19) in a team science
context (20–25).

The HGP (1990–2003) was a singular opportunity for scientists
from several disciplines, with biology and computing being prominent
among them. For this reason, this project serves as a rich case study for
science of science (26) to investigate the social and behavioral elements
underlying cross-disciplinary research. Consequently, we adopt amixed
methods analytic approach that focuses not only at the epistemic level
but also at the scholar level.

Specifically, we begin with a network analysis, focused on U.S. aca-
demia, of the administratively invisible or informal cross-disciplinary
biology-computing collaborations that we dub a “college,” to illustrate
the explosion of the crossdisciplinary population parallel to, and also in
thewake of, theHGP.By cross-disciplinary population,we refer to faculty
from biology and computing who achieve their research objectives via
collaboration across this disciplinary boundary. Upon further inspection,
we find that the overwhelming majority (90%) of the faculty forming
this biology-computing bridge have been active in genomics research.
Building on this insight from the descriptive analysis, we then apply cross-
sectional regression to the 4190 faculty in our data set, showing a positive
correlation between one’s inclination toward cross-disciplinary collabora-
tion and total career citation impact. Topinpoint the source of this lifetime
advantage, we implement a longitudinal panel regression, demonstrating
that, within each scholarly career, the cross-disciplinary publications
have significantly higher citation impact than the disciplinary ones.

As this scholar-centered result is based on a U.S. academic data set,
to test for its broader relevance, we analyze a comprehensive set of
human genomics publications from the international literature. We
find that, in this set, publications with joint authorship from biology
and computing scholars also have significantly higher citation impact
than publications with biology authorship only.

Finally, we analyze cross-disciplinarity from an epistemological per-
spective, operationalizing the mixing of domain knowledge rather than
themixing of scholars. To be specific, we use publication-level keywords
to identify the methods applied within research articles from a leading
genomics journal. Our results demonstrate that articles with an explicit
computational component have significantly higher citation impact
than articles without an explicit computational component.

Together, these outcomes show that cross-disciplinarity in genomics
is pervasive and impactful, creating upward mobility in morphed ca-
reers and generating dominant hybrid intellectual and social capital
that have persisted long after the end of the HGP. The legacy of the
HGP also survives in organizational capital that is fundamental to
“consortium science,”whereby teams of teams organize around cen-
tral challenges, with a common goal to share benefits equitably within
and beyond institutional boundaries.
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RESULTS
Cross-disciplinarity in genomics careers
Career data set
Weanchor our analysis on individual scholars so that we can control for
scholar-specific attributes and account for career-level decisions regard-
ing one’s orientation toward cross-disciplinary activity. A principal chal-
lenge in this endeavor was that there were no complete, validated, and
publicly available data sets for the biology-computing college.Hence,we
synthesized a large longitudinal data set using criteria that could, in
principle, be generalized to other case studies.

We focused on the biology-computing college in the United States,
because this is the source of the HGP, and it was a task that we could
practically complete. Our entry point for classifying scholars was
through their primary academic affiliation. Specifically, we accessed
the websites of 155 biology and computing departments in the United
States (table S1), matching the faculty listings to individual Google
Scholar (GS) profiles.We consider the primary departmental affiliation
of each faculty scholar to be a lifelong disciplinary trait, because while
faculty may change institutions, the likelihood that they change from a
computing department to a biology department, or vice versa, is very
low. We verified this premise by examining publicly available curricula
vitae (CVs) for many of the faculty.

As such, from this point forward, we will refer to these biology
(n = 2077) and computing (n = 2113) faculty as F , indexed by i (n =
4190 in total). We carefully examined the publication profile of each
F i, removing spurious content (for example, articles that did not in-
clude the respective scholar’s name). This process yielded a total of
413,565 publications that were incorporated into the faculty career
data set.
Collaboration network and analytical framework for the
career data set
To build the collaboration network of the biology-computing college,
we inspected each disambiguated F i profile for instances of direct
collaboration with another F i′; as a result, we identified 3900 F i who
collaboratedwith at least one otherF i′, forming 16,799 links.Within the
subset of connected F i , the size of the largest (“giant”) connected
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
component was 3869. Therefore, just 7.6% of the F i were not part of
the largest connected component, and only 6.9% of the F i were com-
pletely disconnected. Description of the name disambiguation method
and a thorough investigation of the network’s structural properties can
be found in sections S1 and S2, respectively.

We operationalized cross-disciplinarity by investigating both the
direct collaborations and indirect associations within the F network,
both of which are important to knowledge transfer and science devel-
opment. In more detail, the network’s nodes can be connected via two
types of links, as illustrated in Fig. 1: “Direct collaboration” refers to a
link between two facultyF i andF i′ who appear together in at least one
publication, and “mediated association” refers to a link between two
facultyF i andF i′ who are indirectly associated via a common non-F
coauthor. This non-F coauthor creates the link via “triadic closure”
between the twoF. Because many published researchers are not faculty
in one of the 155 listed departments, the typical F i has many more
mediated associations than direct collaborations with other faculty in
our data set (fig. S2).

We use the primary departmental affiliations, which we treat as
time-invariant traits, to define three disciplinary orientationsO for F .
IfF i collaborated with at least oneF i′ from the opposite department,
then we classify him/her as cross-disciplinary OðF iÞ≡XDF ; other-
wise, F i is classified asOðF iÞ≡BIOF , or CSF , depending on her/his
primary departmental affiliation. The group sizes are nearly equal:
BIOF , n = 1353; CSF , n = 1590; and XDF , n = 1247. We further
examined each member of the XDF group by finding their
corresponding Scopus author profile, which contains career-level
keywords derived from their publications. We found that 90% of
the XDF faculty feature the Scopus keyword “genetics” in their cu-
rated profiles, indicating that the overwhelming majority of the XDF
group have been involved in genomics research. This consistency
check confirms the soundness of our XDF classification scheme.

As mentioned earlier, there are many collaborators of F who
are not explicitly included in our starting sample, possibly because
they are not faculty in one of the listed biology or computing depart-
ments (for example, PhD students, postdocs, and other international
ust 15, 2018
Fig. 1. Construction of theF network. Schematic network, serving as an instructive example of our method for classifying the facultyF i, their pollinator coauthorsP j,
and the links between them. The network corresponds to the table on the right. Two types of links connect the faculty nodes: a direct link (F i � F i′) ifF i andF i′ are coauthors
of at least one publication together, and amediated link (F i � P j �F i′) if there is at least oneP j that has coauthored separately withF i andF i′ , therebymediating a triadic
closure between the twoF . We classified eachF i according to her/his main discipline:BIOF = biology andCDF = computing unless they have collaborated with at least oneF i′

from the other discipline, in which case the classificationXDF supersedes their original disciplinary classification. We classified the non-F coauthorsP j as bridge pollinators if
they coauthoredwith two ormore faculty; otherwise, theseP j are classified as leaf pollinators. Among the bridge pollinators, we classified thoseP j who coauthor with faculty
fromboth biology and computing as cross-pollinators. Thus, the solid link connecting A-B represents a direct cross-disciplinary link, the dashed link connecting C-A represents
a mediated cross-disciplinary link, and pollinators 7 and 8 are cross-pollinators because they have collaborated with faculty from each discipline. N/A, not applicable.
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http://advances.sciencemag.org/


SC I ENCE ADVANCES | R E S EARCH ART I C L E

 on A
ugust 15, 2018

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

researchers). These collaborators are still crucial for understanding
the role of cross-disciplinarity in the genomics revolution, as they
constitute the academic ecosystem or “invisible college” surrounding
tenure-track faculty (27). We identify these non-F collaborators as
pollinators P, indexed by j.

In contradistinction to faculty F , we do not have knowledge of the
departmental affiliations of pollinatorsP. Hence, we infer their discipli-
nary orientation by observing their coauthorship patterns with faculty
F . Specifically, (i) biology pollinators OðPjÞ≡BIOP , if they collabo-
rated withF from biology departments only; (ii) computing pollinators
OðPjÞ≡CSP, if they collaborated withF from computing departments
only; and (iii) cross-pollinators OðPjÞ≡XDP , if they collaborated
withF from both biology and computing departments. Those polli-
nators who appeared in just a single scholar profile are named “leaf
pollinators;” they are not central to our analytic framework.
HGP and evolution of cross-disciplinarity in the
biology-computing college
Figure 2A shows the evolution of the largest connected component
of the biology-computing collaboration network from the pre-HGP era
(around 1990) to the post-HGP era (beyond 2003), where nodes corre-
spond to F i and links represent only the direct collaborations. We
sized the nodes according to their relative importancewithin the network,
given by the centralityC iðtÞ calculated up to time t. We calculated three
different centrality measures: degree, PageRank, and betweenness.
The degree centralityCD

i ðtÞcounts the number of facultyF connected
to a given facultyF i. The PageRank centralityC PR

i ðtÞ self-consistently
incorporates the centrality of the neighboringF into the centrality of
F i (28, 29). The betweenness centrality C B

i ðtÞ counts the number of
shortest paths between other nodes that intersectF i and is an indicator
of between-group brokerage (30). Although these three centrality
variables quantify different properties of the nodes within the net-
work, we found them to be correlated with each other: rðCD;C PRÞ ¼
0:97, rðCD;C BÞ ¼ 0:76, and rðC B;C PRÞ ¼ 0:80. For visual compar-
ison, we illustrate these three measures simultaneously in fig. S3, which
identifies Eric Lander, one of the leaders of the HGP, as themost prom-
inent faculty according to all three measures.

In Fig. 2A, we chose to size the nodes according to the degree mea-
sureCD

i ðtÞ, which is an intuitive count variable that facilitates compar-
isons across the different networks. We colored the nodes green if F i

belonged to the BIOF group, magenta if they belonged to the CSF
group, and black if they belonged to the cross-disciplinaryXDF group.
To illustrate the evolution of cross-disciplinarity within the F network,
we initially classify (color) each faculty node according to her/his
primary departmental affiliation and only change this classification
(color) to XDF once the year of her/his first direct cross-disciplinary
collaboration is reached. As time passes by, the giant component of
the F network experiences impressive growth in size and complexity;
within it, the cross-disciplinary nodes grow in numbers and promi-
nence. Part of the giant component’s growth appears to be fueled by
the increasing assimilation of formerly less connected scholars, as the
diminishing set of nongiant components shown in fig. S4 suggests.

While Fig. 2Adepicts the emergence and centrality of cross-disciplinary
scholars in the network during and after the HGP, Fig. 2B quantifies
this evolution. We determined the overall fraction of collaborations
that are within- or cross-disciplinary, from the perspective of both the
direct (F � F ) and themediated (F � P � F ) links.More specifically,
we first disaggregated the publication data by nonoverlapping 2-year
periods. Then, for each period, we tallied the number of direct F i �
F i′ links in a given period that were within-discipline LF ;WðtÞ or
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
cross-disciplineLF ;XDðtÞ, withLF ðtÞ ¼ LF ;WðtÞ þ LF ;XDðtÞdenoting
the total number of direct links. Similarly, we constructed the total
number of mediated links realized via pollinator connections: LPðtÞ ¼
LP;WðtÞ þ LP;XDðtÞ.

Next, we estimated the fraction of collaborations that are cross-
disciplinary f∙,XD(t), with respect to two perspectives: f F ;XDðtÞ ¼
LF ;XDðtÞ=LF ðtÞ using the direct collaboration links and fP;XD(t) =
LP;XDðtÞ=LPðtÞ using the mediated links (Fig. 2B). We complement
these two estimates with a third estimation using a separate interna-
tional data set of “Human Genome” publications, reporting the frac-
tion of publications that include both CS and BIO author affiliations
(see the “Assembly of the WoS data set” section).

The relative frequency of mediated cross-disciplinary associations
shows marked growth during and in the wake of HGP, reaching
~30% of the total mediated associations by 2015. The relative fre-
quency of direct cross-disciplinary collaboration shows slower growth.
This feature may arise from the different competitive and leadership
perspectives between the faculty F and the pollinators P , leading to
different capacities to explore cross-disciplinary projects. The difference
between the mediated and direct f∙,XD(t) supports the importance of
Fig. 2. Growth of cross-disciplinary social capital. (A) Evolution of the giant
component in the U.S. biology-computing network. Green andmagenta nodes rep-
resent facultyF i with BIOF and CSF affiliation, respectively; black nodes represent
faculty F i that, by time t, published at least one cross-disciplinary publication and
joined the XDF group; node size is proportional to the logarithm of the degree
centrality, lnC D

i , of F i at time t. (B) Evolution of the fraction of collaboration links
in theF network that are cross-disciplinary. We calculated f⋅,XD(t) using direct links
F � F between faculty (blue line) [that is, fF ;XDðtÞ] or association linksF � P � F
mediated by pollinators (red line) [that is, fP;XDðtÞ]. For comparison, the black line
shows the evolution of cross-disciplinary links in the human genomics literature per
Web of Science (WoS); these values are divided by two to facilitate trend compar-
ison. The orange area marks the HGP project period.
3 of 14
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mobility in the academic ecosystem as an underlying conduit for
knowledge transfer, in addition to direct collaboration.

The impetus for this increasing rate of cross-disciplinarity is in-
triguing. Recent work identifies groundbreaking discoveries as one type
of impetus leading to the densification and emergence of scholarly com-
munities (15). However, in the case of the HGP (1990–2003), the evo-
lution of the collaboration network was likely, to some degree, pulled
ahead by the specification of a grand challenge that led to the organi-
zation of agents around a common agenda, not unlike the case of sus-
tainability science (18). This alternative type of impetus is evident in the
early growth of cross-disciplinarity XD (from the mid 1990s to early
2000s), when the HGP was in full swing, but the breakthrough of
sequencing the human genome was not yet fully realized. As such, the
co-occurrence of the start of the HGP and the increasing rate of cross-
disciplinary activity provide preliminary evidence that incentivizing this
activity around a unifying grand challenge was effective in bridging
university disciplines. However, additional data and specifically tailored
research design would be necessary to more conclusively estimate the
magnitude of the HGP’s impact on cross-disciplinary orientation in
genomics research, which we leave for future work.
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
Career benefits of cross-disciplinarity
Figure 3 presents the descriptive statistics of the career data set.
Figure 3A shows that the typical F i career in all three faculty groups
began in the early 1990s. This is ideal for studying the evolution of
genomics, as HGP—arguably the field’s constitutional project—was
formally started in 1990. Figure 3B shows the significantly higher
degree of collaboration in the XDF group (370 ± 440) with respect
to the CSF (122 ± 98) and BIOF (165 ± 175) groups.

Figure 3C shows that theXDF group exhibits a significantly high-
er degree of cross-disciplinarity (0.3 ± 0.19) than the other two
groups (0.1 ± 0.07 in both cases). The degree of cross-disciplinarity
ci ofF i is defined as the fraction of her/his collaborators who are cross-
disciplinary. Specifically, ci = ki,XD/Ki ∈ [0, 1], where Ki is the total
number of collaborators of F i, while ki,XD is the number of her/his
cross-disciplinary collaborators; the collaborators include both other
facultyF and pollinatorsP alike. We focus on one additional network
characteristic, the scholar’s PageRank centrality, which is measured re-
lative to other members of the network. We use rescaled units,
NFC PR

i ðtÞ, so that the mean centrality value across allF i is 1, which
facilitates comparison. Figure 3D shows that themean centrality of the
 on A
ugust 15, 2018
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Fig. 3. Descriptive statistics for the career data set. Vertical lines indicate distribution means for the corresponding subsets. (A) Probability distribution of the year of
first publication y0i by F i . (B) Probability distribution of Ki, the total number of collaborators for a given F i . (C) Probability distribution of ci, the fraction of the
collaborators of F i who are cross-disciplinary. (D) Probability distribution of C PR

i , the PageRank centrality of F i ; it is scaled by NF , the number of F i ; so that the
mean value of this scaled quantity across all F i , independent of the discipline subset, is 1. (E) Probability distribution of the mean impact factor (IF i) of the publication
record of F i . (F) Probability distribution of the total citations log10 Ci of F i .
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XDF group (1.4 ± 1.1) is significantly higher than themean centrality of
the BIOF (0.7 ± 0.5) and CSF (0.9 ± 0.6) groups.

Figure 3E indicates that XDF faculty have similar publishing
patterns withBIOF faculty, that is, they tend to publish in high–impact
factor (IF) journals. To be specific, we calculated the mean Journal
Citations Report (JCR) impact factor among the publication set of
each F i , denoted as IF i : The distribution of the IF i among the
BIOF faculty is 7.1 ± 3.7; for the CSF faculty, it is 2.0 ± 1.4; and
for the XDF faculty, it is 6.5 ± 4.5.

Given the relatively balanced composition of the cross-disciplinary
group (n = 724 with biology pedigree versus n = 523 with computing
pedigree), one would expect the XDF mean to be more balanced in its
distance from the BIOF and CSF mean values. Looking inside the
XDF group, we find that the cross-disciplinary subgroup with biology
pedigree has IF ¼ 8:58, manifesting a small mean shift with respect to
the core BIOF faculty (+ 20.8%). The cross-disciplinary subgroup with
computing pedigree has IF ¼ 3:55, manifesting a massive mean shift
with respect to the coreCSF faculty (+ 77.5%). Hence, on the one hand,
biology cross-disciplinary facultymaintain a publication culture that is
on par with their disciplinary norms. On the other hand, computing
cross-disciplinary faculty feature a publication culture that breaks away
from their disciplinary norms and trends in the direction of biology. As
a result, the overall mean of the XDF group remains very close to the
mean of theBIOF group and far away from themean of theCSF group,
revealing a degree of cultural assimilation.

Figure 3F shows the higher mean citation impact (in log10) in
the XDF group (3.8 ± 0.5) with respect to the BIOF (3.4 ± 0.5) and
CSF (3.6 ± 0.6) groups. Because of the importance of total citation
impact as a quantitativemeasure of career achievement (31), we begin
by modeling Ci using cross-sectional analysis. Recent studies have
demonstrated how collaboration factors can explain long-term suc-
cess at the publication and career level (25, 32, 33). Consequently, here,
we also account for the role of network attributes, reflecting the posi-
tion ofF i in the collaboration network, in addition to controlling for
standard CV attributes, such as her/his h-index, funding, and institu-
tional prestige.

Our principal interest is to test whether F i with stronger cross-
disciplinary orientation (that is, higher ci) correlate with higher Ci.
To this end, we used time-aggregated measures calculated through
2017 to estimate the parameters of the following cross-sectional ordi-
nary least squares (OLS) regression model

lnCi ¼ br lnri þ bhlnhi þ b$1ln$
NSF
i þ bN1lnN

NSF
i þ b$2ln$

NIH
i þ

bN2lnN
NIH
i þ bClnC

PR
i þ bcci þ DðOðF iÞÞ þ Dðy0i;5Þ þ bo þ D ð1Þ

where Ci is the total number of citations for F i, ri is the ranking of
her/his department, hi is her/his h-index serving here as a productivity
measure, and NNSF

i and NNIH
i are the total counts of her/his National

Science Foundation (NSF) and National Institutes of Health (NIH)
grants, while$NSF

i and$NIH
i are the total monies from the NSF and NIH

grants deflated to constant 2010 USD, C PR
i is her/his PageRank cen-

trality within theF network, and ci is the fraction of her/his total Ki co
authors who are cross-disciplinary. We include two dummy varia-
bles, the first capturing the three possible disciplinary orientations
OðF iÞ ¼ BIOF orCSF orXDF , and the second capturing age cohort
variation, wherey0i;5 is the year of the faculty’s first publication grouped
into nonoverlapping 5-year intervals. Last, D is white noise.
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
Table S2 shows the full-parameter estimates for themodel expressed
in Eq. 1, while Fig. 4 summarizes the relevant coefficient estimates for
the funding and collaboration variables. The main result of this model
shows that higher degrees of cross-disciplinary activity (bc > 0, P <
0.001) correlate with higher career citations. To be specific, our esti-
mates indicate that an increase in c by 0.1 correlates to a 10 × bc =
5.7% increase in Ci.

We tested the robustness of this cross-sectional model by exploring
several variations (table S3). In the first two variants, we replaced the
PageRankC PR

i centrality measure with one of two alternative centrality
measures, that is, the betweenness centralityC B

i and the degree centrality
CD

i . In the third variant, we removed the variables NNSF
i and NNIH

i
related to the number of grants, leaving only the variables $NSF

i and
$NIH
i related to total funding, suspecting correlation effects. In the fourth

variant, we removed the department rank variable ri, because it is based
only on the most recent university affiliation of a given F i and thus
could inaccurately represent her/his career. In all cases, the results
of the modified regression estimates are not significantly different,
indicating the robustness of our specification with respect to these
adjustments.

The results of the cross-sectional model in Eq. 1, featuring the
full set of funding variables (Fig. 4), point to a key career dilemma with
respect to the pursuance of extramural grants.While our estimates con-
firm the benefit of total NIH funding (b$2 > 0; P < 0:001), the cor-
relationwith thenumberofNIHgrants is negative (bN2

< 0; P < 0:001),
pointing to the sunk costs associated with the management of several
smaller grants (for example, R21) versus fewer bigger grants (for example,
R01). Neither of the estimates for theNSF variables is significant, suggest-
ing different levels of reliance onNIH/NSF between the biology and com-
puting faculty.
Cross-disciplinary versus disciplinary production
within careers
Motivated by the results of our pooled cross-sectional analysis, we
implemented a panel regression model that leverages the longitu-
dinal dimension of the career data disaggregated at the publication
level. This enabled us to test whether the cross-disciplinary citation
premium, indicated by bc > 0 in the cross-sectional career model,
Fig. 4. Career cross-sectional regression model. OLS parameter estimates for
the linear regression model in Eq. 1. The coefficients for the relevant covariates
split into two categories are shown, depending on whether you might find the
information in the researcher’s CV or by analyzing her/his collaboration network.
To facilitate comparison of the relative strength of the parameter estimates, the
standardized beta coefficients are shown, representing the change in the
dependent variable ln Ci that corresponds to a 1-SD shift in a given covariate.
See table S2 for the complete list of parameter estimates. The levels of statistical
significance are as follows: ***P ≤ 0.001.
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stems from the scholar’s cross-disciplinary publications rather than
other factors. In particular, we use a specification with individual
F i fixed-effects so that parameter estimates leverage the within-career
comparison of publications that are cross-disciplinary with respect to
those that are not. Hence, by identifying a clear counterfactual, this first
panel model provides an estimate of the causal link between cross-
disciplinary orientation and scientific impact.

To reduce false-positive (type I) classification errors, we do not use
the disciplinary orientation of pollinators to classify individual pub-
lications. This is because the discipline of pollinators is not directly
known and is based on inferences thatmay lead to overestimation. Con-
sequently, for the classification of publications (hereafter denoted by p),
we exclusively use the departmental affiliation of faculty, which are the
only authors for whom we have ground-truth information. Within the
profile of a facultyF i , for each p published in year tp, we assign an
indicator value IXDi;p = 0 if all of the faculty authors are from the same
discipline or, conversely, IXDi;p = 1 if there is at least one faculty author
from CSF and at least one faculty author from BIOF . For example,
a publication with three faculty authors classified as fCSF ;CSF ;F ig
withF i ¼ BIOF will have IXDi;p = 1; however, if insteadF i ¼ CSF , then
IXDi;p = 0. Using this strict rule, out of the 413,565 publications (observa-
tions) in our faculty network sample, we classify with high confidence
4207 publications, or 1% of the entire sample, as cross-disciplinary.

Critical to the panel framework is the definition of a dependent var-
iable measuring an article’s long-term citation impact, one that is com-
parable across both different years t and disciplines s. This is a common
difficulty in citation analysis and arises from a combination of three sta-
tistical biases: (i) varying citation rates across disciplines of different size,
(ii) right censoring bias in the tallying of raw citation counts from a
single census year (that is, the year in which citation data are down-
loaded from GS or another repository), and (iii) “citation inflation.”
The first bias reflects the fact that larger, more prolific disciplines pro-
duce more citations than smaller disciplines. The second bias refers to
the fact that older publications have had more time to accrue citations
than newer ones. The final bias arises from the change in the relative
significance of a single citation over time, due to increasing publication
rates and reference list lengths (34). By way of example, consider two
publications, each cited 10 times in their first 10 years: If the first was
published in 1980 and the second in 2007, in relative terms, then the first
article has higher citation impact than the second.

The citation tallies reported by GS suffer from each of these prob-
lems. To neutralize these statistical biases, we applied a normalization
formula that maps the GS citation count ci,p,s,t—for an article p that was
published in year t by a facultyF i fromdiscipline s—to a citation score
zi,p that is comparable across s and t. A detailed description of the cita-
tion normalization formula is given in Materials and Methods.

Consequently, we formulate the following hierarchical panel regres-
sion model

zi;p ¼ bi þ ba lnai;p þ btti;p þ bI I
XD
i;p þ DðtÞ þ Di;p ð2Þ

The panel data encompass publications in the period 1970–2017
for the 3900 F i that are connected within the F network, among
which 1247F i are classified asXDF. This subset of cross-disciplinary
publications is represented by the coefficient bI, which provides an
estimate for the impact of cross-disciplinarity at the publication lev-
el. By using author-specific fixed effects (bi), which capture un-
observed time-invariant researcher-specific characteristics, our model
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
effectively compares thepublications fromthe sameF iwith IXDi;p =1using
the counterfactual scenario IXDi;p =0 as a baseline, after all other factors are
held approximately constant. The other control variables in Eq. 2 in-
clude ai,p measuring the total number of coauthors listed on each pub-
lication p; the career age variable ti;p ≡ tp � y0i þ 1referring to the
number of years since the researcher’s first publication, which controls
for the career life cycle; the dummy year variable D(t) controlling for
year-specific shocks; and the residual white noise Di,p.

The parameters in Eq. 2 are estimated using Huber-White robust
SEs, which account for heteroscedasticity and serial correlation within
the publication set of each F i . Table S4 shows the OLS estimates for
models with and without F i fixed effects. The sign and significance
of the model variables are robust to the hierarchical specification, that
is, with and without F i fixed effects.

Figure 5A shows the model estimates for the three variables of
principal interest. First, and most importantly, we estimate a statisti-
cally significant positive relationship between cross-disciplinarity and
citation impact (bI = 0.145, P < 0.001), meaning the average cross-
disciplinary publication is more highly cited than the average discipli-
nary publication authored by the same F i . To translate the impact
expressed by zi,p to the citation premium ci,p, we calculate the percent
change 100Dcp/cpwhenIXDi;p goes from0 to 1, which, due to the property
of logarithms, is given by 100 Dcp/cp = 100 × st × (∂z/∂IXD) ≈ 100 ×
1.4 × bI = 20% increase, which follows because the SD st is approx-
imately constant over time.

While our model specification does not focus on the effect of team
size or author age on citation impact, the associated explanatory varia-
bles are also significant and worth discussing. Consistent with previous
research, we observe a positive relationship between team size and cita-
tion impact (ba=0.31,P< 0.001) (21, 25), which translates to ast× ba≈
0.43% increase in citations associated with a 1% increase in team size
(as ai,p enters in ln in our specification), and finally, we observe a neg-
ative relationship with increasing career age (bt = −0.01, P < 0.001),
consistent with previous studies using different career data (25, 35),
which here translates to a 100 × st × bt ≈ −1.3% decrease in ci,p as-
sociated with every additional career year.

We tested the robustness of these results by introducing progressive-
ly stricter data selection criteria in two steps. First, we refined the faculty
data set to include only theF iwithOðF iÞ ¼ XDF, that is, we excluded
from consideration the core BIOF andCSF faculty of the college (table
S5). Second, within this XDF subset, we became stricter as to what we
considered fair comparison between their cross-disciplinary versus their
other publications. Specifically, we used a matching scheme to pair
each cross-disciplinary publication p (IXDi;p = 1) with a single disciplinary
publication p′ (IXDi;p′ = 0) from the same faculty profile; the matched pair
of publications (p, p′) must also be within 2 years of one another and
feature nearly identical number of coauthors (table S6). This matching
procedure allows us to more accurately identify a counterfactual for
each cross-disciplinary publication and thus to test the causal link be-
tween cross-disciplinarity and scientific impact (see Materials and
Methods for further details on our matching procedure).

According to the Rubin causal model and potential outcomes
framework (36) (see Materials and Methods), this matching procedure
facilitates computing the average treatment effect in terms of cross-
disciplinarity. Using the entire set of matched pairs (p, p′), we calculate
the mean difference in normalized impact z corresponding to themean
treatment effect �TXDðzÞ ¼ E½zp � zp′ jOðF iÞ ¼ XDF � ¼ 0:13. An
additional sign of robustness is that this estimate is consistent with
the bI estimates for the three panel scenarioswe developed: (i) all faculty
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F (bI = 0.145), (ii) cross-disciplinary faculty OðF iÞ ¼ XDF (bI =
0.112), and (iii) cross-disciplinary faculty OðF iÞ ¼ XDF consider-
ing only their matched pairs of publications (bI = 0.135).We can also
use the matched pairs to estimate the average treatment effect in
terms of percent change in citations, which we calculate to be, on
average, a 10.6% increase in cpover the counterfactual cp′. Further-
more, by tallying the citation difference across all matched cross-
disciplinary publications for eachF i, we calculate the average treatment
effect in terms of total net citations to be 630 citations over her/his
career.

Figure 5B shows the fixed-effects model estimates for all three
approaches: (i) using all facultyF i, (ii) using only cross-disciplinary
faculty OðF iÞ ¼ XDF , and (iii) using matched publication subsets
for the cross-disciplinary faculty OðF iÞ ¼ XDF . All parameter
estimates are consistent across the three panel variants, with the ex-
ception of bt, which is positive for the specification (iii) and negative
for specifications (i) and (ii); this inconsistency is due to the fact that
the matched data in (iii) are a subset of the faculty’s longitudinal
profile, thus introducing bias in the subset selection with respect to
career age.

We also explored the possibility that spurious correlations could
give rise to the significance of IXDi;p by using a placebo randomization
scheme in which we shuffled the IXDi;p values across the data set, with-
out replacement, that is, conserving the total number of observations
with IXDi;p = 1. We ran this placebo regression 1000 times, each time
recording the value of bI. Figure 5C shows the distribution of the
placebo estimates, P(bI), when that data for all the faculty F i are
used; none (0%) of the placebo estimates were larger than the real
estimate bI = 0.145, thereby showing that it is unlikely thatwe obtained
the magnitude and significance of bI by chance alone. Figure 5D shows
similar results for the distribution of the placebo estimates, P(bI), when
the data for just the XDF faculty are used.
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
By analyzing publications clusteredwithin careers using fixed effects,
we approach the problem differently than the bulk of recent relevant
work on quantifying the correlation between interdisciplinarity and
impact (37–40). There are relatively few studies we are aware of that
use fixed-effects to net out unit-level variation (41, 42), and none that
uses the Rubin potential outcomes framework. Moreover, most rel-
evant studies use as a proxy for interdisciplinarity the diversity of
distinct journals or the diversity of distinct research areas cited within
an article’s reference list.While this is a reasonable approach, all by itself,
it would not serve us well in the case of a team science field such as
genomics, where we are preoccupied not only with mixed knowledge
but also with behaviors in mixed teams.

The genomics story behind the numbers in the
biology-computing college
Our study of the biology-computing college in the United States re-
vealed significant cross-disciplinary activity in genomics during and
after the HGP, with net career benefits for those involved, and a
cultural shift for the cross-disciplinary faculty with computing ped-
igree. Motivated by these quantitative results, we further explored the
collaboration-mediated pathways that trace knowledge transfer from
theHGP to the present day. In addition to explicit knowledge pertaining
to computing algorithms and biotechnology methods, this knowledge
transfer also includes tacit organizational know-how that is funda-
mental to the management of consortium science—a paradigm in
which teams of teams coordinate a common agenda around a single
“grand challenge.”

This emergent pattern began with the 2001 publication of the two
seminal human genome papers in Nature (43) and Science (44). These
parallel efforts, one public and one private, offer valuable insights
into the economics of science (8). Yet, more germane to our focus on
social and organizational capital formation in science is the intriguing
Fig. 5. Career panel regressionmodel. (A and B) Parameter estimates for the three principal explanatory variables included in the fixed effectsF career model defined
in Eq. 2; see table S4 for the complete list of parameter estimates. (C and D) Robustness check of panel regression model. To test the possibility of spurious correlations
leading to the significant estimates for the cross-disciplinary variables in the panel model (table S4), we ran this model using a randomized cross-disciplinary indicator
variable IXDi;p , implemented by shuffling just that variable across the observations without replacement. (C) For n = 1000 shuffled data sets, we do not observe any (0%)
coefficient estimates as large as the empirical value bI = 0.145 corresponding to the dashed vertical blue line [solid vertical blue lines indicate 95% confidence interval
(CI); see table S4, third column cluster]. (D) We repeated the same shuffling method for the panel model applied to only the 1247 F i classified with orientation
FðF iÞ≡XDF , and again, we do not observe any (0%) coefficient estimates as large as the empirical value bI reported in table S5 (third column cluster). The levels
of statistical significance are as follows: **P ≤ 0.01, ***P ≤ 0.001.
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Fig. 6. The knowledge transfer story behind the numbers. Interactions of the HGP scholars with other faculty in the F network during the 2000s, and some of the
landmark publications they produced, powering the genomics revolution. The scholar nodes bear the name initials. On the left panels, one can recognize some well-
known HGP scholars, such as Eric Lander (EL) and Bruce Birren (BB). “d” stands for the network degree of a scholar and controls with the size of her/his node. “h” stands for
the h-index of a scholar. Magenta nodes denote faculty affiliated with computing departments, while green nodes denote faculty affiliated with biology departments.
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hereditary pattern of the consortium science model, as illustrated in
Fig. 6. Namely, several of the authors in these two papers played a
quintessential role in knowledge transfer and the evolution of genomics
in the 2000s. Every year, starting from the culmination of theHGP circa
2000 and all the way to 2010 and beyond, subsets of the original HGP
authorship seeded efforts to decode the genome of important animals,
plants, and microorganisms. The faculty networkF and its pollinating
ecosystemP capture key aspects of this blooming period in genomics. In
the left panel of Fig. 6, the faculty nodes and their “hidden” pollinator
nodes thatweremembers of the originalHGP teams appear. In themid-
dle panel of Fig. 6, some landmark genomics publications that were
authored by these scholars appear, including the mouse genome (45),
the chicken genome (46), and the dog genome (47). In the right panel of
Fig. 6, the faculty nodes that were not in the original HGP teams but
contributed in these subsequent genomics efforts appear, thus establish-
ing coauthorship links with the original “HGP cohort” present in the
network. Given that the authorship in all these papers was mixed, in-
cluding authors from both biology and computing, all the coauthorship
links presented in the figure are cross-disciplinary. The citations of the
original HGP papers as well as the genomics papers that followed in
their steps are impressive and testify to their impact. For HGP cohort
members of theF network, the centrality and h-index attest to their
apostolic role and status, respectively. The centrality and h-index of
the non-HGP faculty who interacted with the HGP cohort suggest that
these “HGP offspring” followed on the steps of their scholarly fathers/
mothers, developing their own notable standing.

The sequencing of the human genome is an exemplary case of
science for the public good, wherein the culminating achievement
extended far beyond the organizational boundaries of the individuals
and institutions centrally involved. Yet, in addition to far-reaching pub-
lic health impacts, the development of the consortium approach cannot
be understated, as it has subsequently served as the organizational
model for the sequencing of other important genomes. Numerous
prominent genomics papers in the 2000s are the products of consortia
(for example, the “Mouse Genome Consortium” and the “Chicken
Genome Consortium”), that is, analogs of the “Human Genome Con-
sortium” first established in the HGP.

Finally, the evolutionary pathway depicted in Fig. 6 is not the only
way genomics knowledge evolved through scholarly interactions in
theF þ P network. For example, HGP scholars interacted with other
faculty on genomic applications to immunology, cancer, and the decod-
ing of ancient DNA, transforming medicine and evolutionary biology.
These interactions, indicative of the broad impact of the HGP and the
ever-expanding reach of genomics, are also captured in our data set and
are lumped in the “Other works” box in Fig. 6.

Cross-disciplinarity as mixed authorship in the
genomics literature
Analysis of the career data set above indicates that researchers in the
U.S. biology-computing college achieve higher citation impact—both
across andwithin faculty profiles—when they adopt a cross-disciplinary
approach. As a consistency and robustness check, we further tested
whether cross-disciplinarity, defined in this section as mixed bio-
computing authorship in genomic publications, has value that
transcends the U.S. biology-computing college.

We proceeded by collecting a comprehensive international data
set consisting of 25,466 articles from the WoS using the topic query
“Human Genome.” We classified each article as cross-disciplinary
(XDg) if its affiliation list included both biology and computing depart-
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
ments, orbiology (BIOg) if its affiliation list includedonlybiological sciences
departments. The subscript g indicates that the XD and BIO attributes
are linked to departmental affiliations of authors globally (not just U.S.-
based), who have published in human genomics. As in our panel model,
this operationalization establishes a clear counterfactual, that is, an article
is either XDg or BIOg, reflecting researcher-level orientations. Con-
sequently, the citation difference between the two publication subsets is
associated with cross-disciplinary factors, net of other likely factors,
such as funding levels or field size.

We calculated the mean citation impact�cXDg ðtÞ and�cBIOg ðtÞ for the
nonoverlapping subsets of cross-disciplinary and biology publications,
respectively (see Materials and Methods). The ratio

rcðtÞ ≡�cXDg ðtÞ=�cBIOg ðtÞ ð3Þ

measures the cross-disciplinary citation premium relative to the
baseline established by the intradisciplinary biology publications. The
value �rc = 1 corresponds to the case in which there is no difference in
citation impact between the two publication subsets.

Figure 7A shows the evolution of the citation premium rc(t) asso-
ciated with cross-departmental collaboration in the international
human genomics literature. We estimated the degree to which rc(t)
could arise by chance using a random bootstrap sampling method to
calculate the distribution of the randomized (null model) test statistic
rc,RND(t) and thus to assess the likelihood of type I (false-positive) mis-
estimation. To be specific, for a given year t, we randomly selected
NXDg ðtÞ publications, independent of their departmental affiliations,
and then calculated �cXDg ;RNDðtÞ and �cBIOg ;RNDðtÞ for this subset. We
combined these two values to obtain a nullmodel estimaterc;RNDðtÞ ≡
�cXDg ;RNDðtÞ=�cBIOgRNDðtÞ. We repeated this randomization 106 times
for each year and calculated the two-tailed 90, 95, and 99% thresholds
for each distribution of rc,RND(t). It is worth noting that this null
model, which is based on random sampling without replacement from
the underlying citation distribution, conserves the overall proportion of
publications withNXDg ðtÞ and also the total citations received by these
publications. Thus, by sampling the empirical citation distribution, this
randomization scheme demonstrates the range of rc values one could
obtain by chance.

Our results indicate significant citation premium rc(t) stemming
from mixed authorship. Specifically, since 1999, the annual rc(t)
values are significantly in excess of unity at the P = 0.01 level
(false-positive rate; see Fig. 7A), with the mean rc(t) value standing
at�rc = 1.1. Because rc(t) is calculated using the logarithm of citation
values, to temper the impact of outliers, we must convert this ratio to
fully appreciate the magnitude of the effect. We can estimate the percent
difference in raw citations drawing on the properties of the log-normal
citation distribution. By assuming that cross-disciplinarity only affects
the logarithmic mean of the citation distribution, one can estimate the
percent difference in c for the XDg group as compared to the BIOg group

as Dc(%) ¼ 100ðexp½ðrc � 1Þlnð1þ cÞ� � 1Þ. In these terms, the XDg

publications gained, on average, 37% more citations than those in the
BIOg group.

Cross-disciplinarity as mixed methods in a genomics journal
To test the value of cross-disciplinarity at the epistemic level of explicit
and tacit knowledge, we constructed a third data set by collecting the
3516 research articles published over the period 1996–2014 in Nature
Biotechnology (NB), a prestigious genomics-oriented journal. As in the
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previous analysis, it is important to verify that the cross-disciplinary
citation premium persists among research articles of similar perceived
novelty, that is, colocated in the same high–impact factor journal but
differing to the extent to which they incorporate computational
methods.

In this case, we assigned articles that featured computational
methods to the cross-disciplinary groupXDe, as specified by the paper’s
Medical Subject Headings (MeSH), which are a controlled thesaurus
of keywords implemented by PubMed (48). The remaining articles
were assigned to the BIOe group. Thus, in this NB analysis, the clas-
sification of articles as cross-disciplinarity is based on only epistemic
and not authorship criteria (thus, the subscript e for XD and BIO).
Nevertheless, statistical comparison of the two sets of research articles,
corresponding to cross-disciplinary (XDe) and biology (BIOe), followed
exactly the same method as in the case of the WoS human genomics
data set.

Our results indicate significant citation premium rc(t) stemming
from mixed research methods. Specifically, the annual rc(t) values
are significant at the P = 0.05 level since 2004 (see Fig. 7B), with
the mean rc(t) value standing at �rc = 1.22. Translating this ratio, we find
that XDe publications gained, on average, roughly 126% more citations
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
than those in the BIOe group. Because we only compare publications
withinNB, the difference in the citation impact is net of journal-specific
factors and represents the added value of computational knowledge and
methods in research with genomic applications.
DISCUSSION
The merging trend among techno-scientific disciplines is bound to
continue because of the nature of grand challenges faced by society.We
know, however, little about what works and why in a cross-disciplinary
fusion process. To start unlocking this problem in the context of team
science (21), it is imperative to analyze not only scholarly knowledge
production but also scholarly interactions that support scientific prog-
ress. To this end, the science of team science has contributed greatly to
understanding how to accelerate scientific advancement via multiscale
collaboration (49).

Less is known, however, about the factors that promote cross-
disciplinary collaboration around a central challenge. Even in the case
where the goals are well posed, agreeing on the best path forward can
become contentious, especially when groups have different social and
epistemological backgrounds. Consequently, harnessing the benefits
of team science is often not just a matter of bringing primed stake-
holders together. Recent work highlights a case of high-risk “gain-of-
function”pathogen research,where the differing expertise of biomedical
researchers affected their position around this politically charged di-
lemma (50). The issue of consensus formation acquires new urgency
with the proliferation of social media, which sometimes undermine
constructive dialogue between groups.

In general, whether between experts or nonexperts, there is a need to
understand how to foster cultural bridging around scientific topics and
narratives (51). It is within this overarching framework that we pur-
sued mixed analysis for the field of genomics and two of its key con-
stituent disciplines—biology and computing. First, we investigated
cross-disciplinary versus disciplinary careers within the biology-
computing college in U.S. universities. Strikingly, nearly all cross-
disciplinary faculty in this college (~90%) have published research
on genomics, and we show that the precipitation of this activity cor-
relates with the onset of the HGP in 1990. Furthermore, we find that
scholars with greater orientation toward cross-disciplinary collabo-
ration tend to have higher career citation impact. We use several
identification strategies, using publication-level data, to attribute this
citation premium to the scholars’ cross-disciplinary activity—net of
other factors.

Germane to this discussion is the fact that cross-disciplinary com-
puting scholars exhibit publication patterns that trend in the direc-
tion of biologists, with profiles that include papers in high-impact
science journals. This is a sign of cultural assimilation, which gives
cross-disciplinarity at the career level a fuller meaning.

Cross-disciplinarity, defined as joint authorship by biology and
computing scholars, enjoys a premium that transcends theU.S. biology-
computing college, being a feature of the international intellectual
production in human genomics, as tracked by theWoS. Looking also
at cross-disciplinarity as an epistemic fusion in the articles of a well-
known genomics-oriented journal, we found that papers with expli-
cit computational content enjoy a significant impact premium over
papers without such content. These results are in agreement with re-
cent work documenting the citation advantage that occurs when re-
searchers innovate to form new within-discipline knowledge bridges
(52) via measured combinations of novel and traditional concepts (38).
Fig. 7. Cross-disciplinarity beyond the faculty networkF. (A) Cross-disciplinarity
XDg as mixed authorship in the human genomics literature: Cross-disciplinarity is
measured using the combinations of departmental affiliations on the set of Human
Genome publications reported in the WoS. The mean value, weighted according to
the publication volume each year, is �rc ¼ 1:11. (B) Cross-disciplinarity XDe as mixed
methods in NB: Cross-disciplinarity is measured by analyzing the combinations of
computational and biological methods used within articles from the journal NB.
The mean value, weighted according to the publication volume each year, is �rc ¼
1:22. In both panels, blue dots represent the respective rc(t), calculated using real data
to measure the additional citation impact of XD publications. The curves correspond
to the respective null model test statistic distribution P(rc,RND(t)), estimated from
1 million bootstrap randomizations, in which the expected value rc,RND(t) ≡ 1 (that
is, no difference between the mean citation impact of the subsets). The red curve
and shaded region correspond to the 90% confidence interval for the respective
randomized rc,RND(t ) ≡ 1, and the outer black curves correspond to the 95% (solid)
and 99% (dashed) confidence intervals. Thus, empirical data above (or below) the
null model confidence intervals are significantly different than the expected value
rc = 1 at the given significance level and demonstrate that it is highly unlikely to
obtain these large values by chance alone.
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The latter represents a strategy that is generalizable to bridge-building in
other domains, such as stimulating proactive public discourse (51).

One wonders about the reason behind the higher impact of cross-
disciplinary publications in genomics. After all, this is what feeds the
career advantage of theXDF cohort and likely acts as a talent attractor,
although other factors reportedly play a role in the decision to pursue
cross-disciplinary collaboration (53).

Fast-paced and application-oriented techno-scientific disciplines,
such as genomics, tend to be highly utilitarian. On the basis of this
assumption, we can speculate for themoment that cross-disciplinary
genomics publications are popular primarily because they are useful.
One, however, should not underestimate the significant coordination
cost associated with bridging disciplinary gaps within mixed teams
(54). The fact that this coordination is done successfully in the biology-
computing college suggests some compatibility between the two dis-
ciplines, with the assimilation of XDF scholars of computing pedigree
into biology’s culture being a sign of it.

It is also generally true that mixed teams overcoming disciplinary
communication barriers produce publications that are well posed, well
framed, and well written, accessible to the union of the corresponding
communities; all these likely contribute to higher citation rates (55).

The statistical results reportedhere can serveas anexcellent springboard
for science studies into the particular processes, artifacts, and personal-
ities that powered genomics as well as the consortium science organi-
zationalmodel. In this direction, looking behind the numbers, we traced
the collaborative pathways captured in our data model, bringing to the
fore a key mechanism of the genomics revolution. Following the HGP,
the datamodel points to several research efforts staggered over a decade,
which led to the sequencing of important animals, plants, and organ-
isms. The outcomes of these efforts were impactful publications in iconic
journals, such as Nature and Science. The investigative teams included
new coming faculty from both biology and computing, mixed with key
members of the original HGP team in various configurations. Therefore,
these projects shaped a new generation of cross-disciplinary researchers
and helped them build their networks, their careers, and, along the way,
genomics as we know it today. The work and authorship in the relevant
genomic papers were structured around consortia, in the image of the
HGP—a practice that ushered team science into the teams-of-teams
science era.

In conclusion, as funding agencies are increasingly supporting cross-
disciplinary investigations [for example, BRAIN initiative (56)] and as-
sociated scientific activity is on the rise (42, 57), there is a growing need
for insightful quantitative evidence from past cases to aid policymaking
(8, 10). To this end, our findings show how a timely research initiative
helped create cross-disciplinary human capital between two culturally
complementary disciplines, and how inherent career incentives perpetu-
ated this capital and contributed to its epistemic dominance. In
modeling terms, science policy makers could view this as no different
from the elements needed for a flame: a spark, a combustible medium,
and a feeding system.
MATERIALS AND METHODS
The assembly of the career data set
We selected 155 biology and computing departments in the United
States following the 2014 U.S. News & World Report (table S1). We
confirmed that all the departments in the set had active PhD programs
since the conception of HGP in the 1980s. Moreover, the ranking of
academic departments is relatively rank-stable, as supported by theoretical
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
and empirical evidence drawn from various other social systems charac-
terized by positive feedback reinforcement mechanisms that temper large
rank fluctuations (58). With respect to the latter, we found no significant
differences in the ranks of these 155 departments between the 2014 and
2018 U.S. News & World Report ranking (P > 0.05, Wilcoxon test).

We accessed the home pages of these departments and recorded
the listed faculty as of spring 2017. In this master list, we identified the
faculty F i that had GS pages, forming a database with their GS IDs,
h-indices, departments, department rankings, and bibliometric data.
We also indexed their NSF andNIH grant data from the corresponding
repositories (59). We then applied a name disambiguation algorithm
to F i and their coauthors to reconcile their identities within and
across F i profiles (appendix S1). Figure 1 provides a visual example
of how we constructed the biology-computing college network from
the disambiguated F i data.

The key motivator behind our data collection methodology for
the career data set is the tendency of typical computing researchers
to publish the bulk of their work in refereed conferences from where
they receive most of their citations. Traditional bibliometric databases,
such as Scopus and WoS, do not cover citations from many refereed
conference publications, but GS does, thus emerging as the only viable
alternative for fair career assessment.

Although the career data set covers a substantial portion of the
biology-computing college in United States, it does not cover it all,
and it does not explicitly cover the international biology-computing
college. This limitation is tempered by two factors. First, it is important
to clarify that, in our analysis, we are not seeking tomeasure the impact
of the HGP on research outcomes, but rather the impact of cross-
disciplinarity on research outcomes. Because the HGP had explicit
cross-disciplinary alignment, we expect it to have had its strongest
and most direct impact on the adoption of cross-disciplinary research
orientation in the United States. Second, the construction of the
mediated association network considerably expands the reach of
the career data set, as it includes not only the faculty members in these
155 departments but all their collaborators, forming an impressive eco-
system. The representational power and validity of this ecosystem finds
confirmatory evidence in two cases during the course of our analysis:
(i) The evolution of the rate of cross-disciplinary collaborations in the
U.S. biology-computing college mirrors the rate of cross-disciplinary
collaborations gleaned via author affiliations in the human genomics
literature at large. (ii) Entrance of faculty in the U.S. biology college
crests in early 2000s, which is consistent with the doubling of NIH
research funding in the period 1998–2003 (8, 60).

Citation normalization
The citation normalization of publication p from faculty F i leverages
the universal log-normal properties of citation statistics (61), yielding a
stationary, normally distributed citation measure zi,p ∈ N(0, 1) (fig. S5)
that is well suited for identifying longitudinal patterns of citation impact
in research careers (25, 35).

To be specific, we disaggregated the articles by publication year and
removed the time-dependent trend in the location and scale of the
underlying log-normal citation distribution by defining

zi;p ≡ ½lnð1þ ci;p;s;tÞ � mt �=st ; ð4Þ

where mt≡ lnð1þ cs;tÞ is the mean and st ≡ s[ln(1 + cs,t)] is the SD of
the citation distribution, after adding 1 to each citation tally (to avoid the
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divergence of ln 0 associated with uncited publications) and applying
the natural logarithm.We calculated mt and stwithin the subset of pub-
lications for a given year t and discipline s (BIO orCS). The SD st≈ 1.4
is approximately constant across time and the two disciplines we
analyzed.

Publication matching
We used the Rubin causal model framework (36) to provide additional
evidence for a causal link between cross-disciplinary collaboration and
increasing citation impact. According to the potential outcome nota-
tion, let YXD=1 = zi,p,1 represent the outcome, that is, scientific impact
proxied by citations, of a publication drawing on cross-disciplinary
collaboration, denoted in our data set by the indicator IXDi;p = 1; con-
versely, the counterfactual Ŷ XD¼0 ¼ zi;p;0 represents the potential
outcome of the same publication but without cross-disciplinary col-
laboration (IXDi;p = 0). To obtain counterfactual pairs from our data set
(YXD¼1; Ŷ XD¼0Þ; for each XD publication p of each faculty F i with
OðF iÞ ¼ XDF , we searched through just their profile for the most
similar p′ to pair with p. More specifically, for each pwith IXDi;p = 1, we
collected all publications from the same profile within ± 2 years (|tp −
tp′| ≤ 2). From this potential match set, we then selected the p′ with
the closest number of coauthors to ap, and if ap′was larger or smaller
than ap by more than 20% (|ap − ap′| ≥ 0.2), then we rejected this
match and did not include p in the set of matched pairs. We
produced matches without replacement so that each p′ was included
only once.

We then combined these matched pairs (p, p′) into an observa-
tion subset and ran the same regression model as in Eq. 2 on this set
of faculty with Ni,XD ≥ 10 matched data pairs. Table S6 shows the
model estimates for the resulting 53F i. Using thesematched publication
pairs, we also estimated the mean cross-disciplinary “treatment effect,”
TXD;i ¼ E½Y1 � Y0jOðF iÞ ¼ XD� ≈ N�1

i;XD∑pðYp;XD¼1 � Ŷ p;XD¼0Þ.
As such, the average value, �TXD, is an estimate of the average treatment
effect on the treated (ATET). In addition to comparing the out-
come according to normalized citation impact, YXD=1 = zi,p,1, we
also report the ATET calculated using the total citation difference,
Y1 � Yo≡∑pðci;p � ci;p′Þ, and the percent citation difference, Y1 − Yo ≡
100(ci,p − ci,p′)/ci,p.

Assembly of the WoS data set
We used the topic keyword Human Genome to query the WoS
database. After excluding books and editorials, we arrived at a set of
25,466 publications, recording the total number of citations cp,t each
publication p received through November 2016. We then defined
cross-disciplinarity according to the diversity of departmental affilia-
tions associated with each publication. Publications featuring researchers
from both computing and biology departments were classified as XDg,
whereas publications featuring researchers from biology departments
only were tagged as BIOg.

Assembly of the NB data set
We downloaded from the WoS all publication records for articles
published in the journal NB as of December 2015, resulting in a data
set of 3516 items. We then used the MeSH of MEDLINE/PubMed, a
unified and controlled vocabulary system of article keywords, to
separate publications into the complementary XDe and BIOe subsets.
The typical biomedical publication has roughly 10 to 20 MeSH de-
scriptors assigned by professional MEDLINE experts and algorithms,
which can then be used to position publications in a complex conceptual
Petersen et al., Sci. Adv. 2018;4 : eaat4211 15 August 2018
space composed of 16 top-level categories and more than 27,800 MeSH
descriptors (48).

We leveraged this detailed ontology by tagging publications with at
least oneMeSHkeyword from the “Information Science” category—the
L branch—asXDe articles. Three examples ofMeSH keywords from the
L branch are “Human Genome Project” (tree number L01.453.450),
“Molecular Sequence Data” (tree number L01.453.245.667), and “Al-
gorithms” (tree number L01.224.050). Seventy-one percent of the NB
publications do not contain a singleMeSHdescriptor keyword belonging
to the L branch; we tagged these as BIOe articles. Thus, there are a
significant number of publications with and without explicit computa-
tionalmethods, and we used the latter set as our baseline for comparison.

Calculating rc
In the analysis of both the human genomics and NB articles, we
calculated the mean citations per year for the XD∙ (∙ ≡ g or e) subset,
�cXD∙ðtÞ ¼ ½NXD∙ðtÞ��1∑plnð1þ cp;tÞ;whereNXD∙ðtÞ is the total number
of articles published in year t within the XD group. Similarly, we
calculated the mean citations per year for the BIO (∙ ≡ g or e) subset,
�cBIO∙ðtÞ ¼ ½NBIO∙ðtÞ��1∑plnð1þ cp;tÞ:We applied the logarithmic
transformation to normalize the citation distribution within each year
t. Assuming that citations follow a log-normal distribution and that the
only difference between the XD and BIO groups is a multiplicative
factor rc affecting their logarithmic mean mLN, then the mean citations
for the XD group is �cXD ¼ exp½rcmLN þ s2LN=2�, and for the BIO
group is �cBIO ¼ exp½mLN þ s2LN=2�, where mLN and sLN are the loca-
tion and scale parameters of the underlying log-normal distribution.
Thus, the percent difference between the mean citations is Dc(%) ¼
100ð�cXD⋅=�cBIO⋅ � 1Þ ¼ 100ðexp½ðrc � 1ÞmLN � � 1Þ.
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