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ABSTRACT

Multi-user (mu) security considers large-scale attackers (e.g., state
actors) that given access to a number of sessions, attempt to compro-
mise at least one of them. Mu security of authenticated encryption
(AE) was explicitly considered in the development of TLS 1.3.

This paper revisits the mu security of GCM, which remains to
date the most widely used dedicated AE mode. We provide new
concrete security bounds which improve upon previous work by
adopting a refined parameterization of adversarial resources that
highlights the impact on security of (1) nonce re-use across users
and of (2) re-keying.

As one of the main applications, we give tight security bounds
for the nonce-randomization mechanism adopted in the record pro-
tocol of TLS 1.3 as a mitigation of large-scale multi-user attacks.
We provide tight security bounds that yield the first validation of
this method. In particular, we solve the main open question of Bel-
lare and Tackmann (CRYPTO ’16), who only considered restricted
attackers which do not attempt to violate integrity, and only gave
non-tight bounds.
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1 INTRODUCTION

Authenticated Encryption (AE) is symmetric encryption that pro-
tects both confidentiality and integrity, and is arguably the most
widely used primitive in applied cryptography—in particular, it
protects data transmission in most in-use secure communication
protocols like TLS, IPSec, SSH, WPA-2, SRTP, etc.
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We consider an emerging concern in the Internet-wide adop-
tion of AE, namely large-scale adversaries, like state actors, which
can launch coordinated attacks against a large number u of ses-
sions (e.g., u = 220 or 23%), which all use the same cryptographic
algorithms with independent keys. The setting of multi-user (mu)
security, introduced by Biham [6] in symmetric cryptanalysis and
by Bellare, Boldyreva, and Micali [3] in public-key cryptography,
deals with such attacks. More precisely, it considers attackers who
succeed as long as they can compromise at least one out of u ses-
sions (referred to as “users”). As made evident in a series of recent
works [2, 7, 10, 11, 13, 18, 23], estimating how security degrades as u
grows is a challenging technical problem that affects the real world:
Indeed, the goal of mitigating mu attacks explicitly influenced de-
sign choices in the record protocol of TLS 1.3 [20, Appendix E.2],
which have however been adopted without full validation, as we
explain below.

OvERVIEW. This paper revisits AE, and more specifically the widely
adopted Galois Counter-Mode (GCM) scheme [17], in the mu setting.
We prove new tight bounds for GCM which improve upon existing
ones [5, 13] by considering a fine-grained setting that assumes both
(1) a bound d on the number of users re-using any particular nonce,
and (2) a bound B on the amount of data encrypted by each user.

This allows us to analyze some deployment practices for GCM
that have a positive impact on mu security. On the one hand, we
show that frequent re-keying improves AE mu security. On the
other hand, we show how mu security is affected by policies adopted
to choose nonces, e.g., combining (secret) pseudorandom values
and counters. We refer to such techniques as nonce randomization.
We show, with precise tight bounds, that nonce randomization
increases the mu security of AE, and apply this insight to GCM-
based AE, confirming an intuition initially put forward in the design
of TLS 1.3.1 We also show that already in-place nonce selection
strategies in TLS 1.2 effectively improve mu security.

Prior to this work, Bellare and Tackmann (BT) [5] were the only
ones to rigorously study the specific GCM-based approach adopted
by TLS 1.3. As we discuss below, their analysis is non-tight and only
considers adversaries attempting to break confidentiality. Here, we
complete the picture with tight bounds and full AE security, and
resolve their main open question.

1.1 Mu Security and Nonce Randomization

Here, we follow the conventional AEAD interface which allows us
to (deterministically) encrypt a plaintext M, with a nonce N and

1 As we detail below, such approaches were used before, but never was mu security
suggested as an explicit motivation for nonce randomization before TLS 1.3.
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associated data A as a ciphertext Eg (N, A, M). Security is meant to
hold as long as no two pairs (M, A) are encrypted with the same N.
(We will not discuss nonce-misuse resistance [21] in this paper.)

THE MU SECURITY OF AE. One question is what is the best we can
expect from an AE scheme in terms of its mu security. To this end,
BT adapt a well-known generic key-recovery attack by Biham [6]
to AEAD. First, fix N*, A* and M*, and obtain their encryption with
respect to u different users, which yields ciphertexts

Ci :SKi(N*,A*,M*), i=1,...,u,

where K; is the key of the i-th user. The attacker’s goal is to recover
at least one of the K;’s. To do so, it makes p key-guesses K (e.g.,
random ones), and for each guess, computes C = Eg(N*, A*, M¥).
If C = C; for some i, then K = Kj. It is not hard to see that the
probability that this attack succeeds is roughly u - p/2¥, where k
is the key-length (e.g., k = 128 in GCM based on 128-bit AES).
Therefore, the effort to succeed is only p ~ 2k-1og(t),

NoNCE RANDOMIZATION. The above generic attack is not always as
threatening in practice, as in-place policies for choosing nonces
limit its impact. Typically, an AE scheme would be invoked with
anonce N which combines a (usually public) part like a counter,
to be sent along with the ciphertext, and an implicit part, often
secret and already known by the endpoints (this could be generated
as part of a prior handshake). McGrew [15] gives an overview of
such methods in an Internet Draft, and we refer to them as “nonce
randomization” techniques.

For example, RFC 5288 [22]-which describes the GCM cipher-
suites for TLS 1.2-mandates nonces whose implicit part is a session-
dependent (pseudo)random salt generated as part of the handshake.
Thus, with u users, each nonce is re-used by (on average) u/23?
users, and in the above attack, each ciphertext C can thus be checked
against at most u/23? ciphertexts (rather than u), reducing the suc-
cess probability to roughly u - p/2'%° for a 128-bit key.

An even more effective approach (at least with respect to pre-
venting the above attack) are so-called “unpredictable nonces”, and
this is the approach taken by TLS 1.3 [20] and previously used
within the SRTP protocol [1]. Here, a secret random offset mask
J is chosen, and then, whenever we need to encrypt a message
with nonce N, it is encrypted with nonce N @ J instead. BT [5]
analyzed this method in the specific case of GCM used by TLS 1.3,
casting it as a standalone AE scheme called RGCM. They fall short
of a full analysis, however, giving merely non-tight bounds that
confirm better-than-average passive (i.e., IND-CPA) security. We
stress that integrity is even more fundamental in the mu setting -
indeed, while a single session can abort after a failed verification
attempt, mu attackers can spread forgery attempts across different
users, making uncoordinated attack detection much harder.

We note that with the exception of the standardization of TLS
1.3 [20, Appendix E.2], the treatment of mu attacks has not been
explicitly mentioned as a motivation, even though some of the
published motivating work [16] considered key-collision attacks
arising from two users having the same key, which are of course
special cases of mu attacks.

1.2 Our Results

In this paper, we complete the picture for the security of GCM in
the multi-user setting with tight and more refined bounds. These
will allow us to give precise bounds when nonce randomization
policies are applied to GCM.

THE d-BOUNDED MODEL AND RGCM. Here, we consider the mu ver-
sion of AFE security from [5], which requires indistinguishability
from random ciphertexts in presence of a verification oracle. In ad-
dition, we adopt the model by Bose, Hoang, and Tessaro (BHT) [7],
which we refer to as the d-bounded model: it postulates that each
nonce can be re-used by at most d users for encryption. More
formally, the attacker gets to ask encryption queries of the form
(i, N, A, M), which produce an encryption Eg, (N, A, M) under the
key K; of the i-th user. Here, the constraints are that (1) for every
i, no two queries with the same N are asked, and (2) for every
N, there are at most d i’s for which a query (i, N, A, M) is asked
for some M, A. However, its queries to the verification oracle are
unrestricted, and take the form (i, N, A, C) and return true if and
only if C is a valid ciphertext under K; for N and A.

The goal is to give security bounds which are parameterized by d.
Jumping ahead, this model allows us to see a nonce-randomization
policy as part of the adversary which ensures a certain d when
picking nonces.

Although we rely on the model proposed by BHT [7], we em-
phasize that our security goal is different - we consider only nonce-
respecting and do not consider misuse-resistance. While there is
some conceptual overlap due to the settings, apart from relying on
some balls-and-bins lemma from BHT our proofs proceed differ-
ently.

GCM IN THE d-BOUNDED MODEL. Our main technical result is an
analysis of CAU — a generalization of GCM presented by BT — in
the d-bounded model, assuming the underlying blockcipher is ideal.
We show that for every adversary making g encryption/verification
queries, p ideal-cipher queries, and encrypting/verifying overall o
blocks of data, the advantage of breaking CAU’s AE security is of
the order?

dp+q)+nlp+q+o0) . oB
2k n
where k and n are the blockcipher key and block length, respectively,
and B is a bound on the number of blocks encrypted per user. We
stress that our bound does not depend on the number of users u,
which can depend on adaptive choice of the adversary, and can be
as high as q.
In comparison, BT [5] show a bound for the case where d is
unbounded (i.e., d = u) of order?

u(u+p) uc?
——— + —
2k an
This bound was (somewhat implicitly) improved later by [13], es-

sentially improving the second term to g only, which is the (tight)
single-user bound [12].

WHY THIS BOUND MATTERS. Our bound is interesting for its param-
eterization: It shows that when d is small, the security increases

2We omit lower-order terms, and small constant factors.
3For ease of comparison and to their advantage, we are replacing q£ used by BT, where
€ is the maximal block length of an encrypted/verified message, with o.



substantially, and this will enable an analysis of nonce random-
ization techniques. Even for the u = d case, the parameterization
with B shows important insights: First off, if we have u users, all
transmitting roughly the same amount of data B := o /u, the term
becomes o2 /(u2"™)-much better than o2/2" as u grows. Moreover,
users normally re-key, ensuring no session transmits too much data,
and thus generally B can be fixed independently of c—moreover,
the smaller (i.e., we re-key more often), the better. If for instance,
B = 2%, n = 128, then this allows each user/session to encrypt up
to 240 bits = 232 bytes = 4.3 GB, yet the term becomes ¢ /2.

NONCE RANDOMIZATION METHODS: GENERIC TRANSFORMS. We cast
both nonce-randomization schemes discussed above as generic
transformations building an AE scheme with longer keys from one
with shorter ones. The first one implements unpredictable nonces,
as in TLS 1.3 and SRTP, and we refer to it as XN. If the underlying
scheme uses a key K of length k and nonce length r, the resulting
scheme uses a key K || J of length k + r. If we denote by & the
encryption of the given AE scheme, the encryption &* is such that

EXKI|J.N.AM) =EK N JAM).

Note that XN still has r-bit nonces. For the specific case where &
comes from GCM, BT refer to this construction as RGCM.

An alternative construction, which reflects what is adopted in
TLS 1.2, for example, is what we refer to as CN. Here, for a parameter
t < r, the key is (k + t)-bits long (and has form K || J), and the
resulting nonce length is r — t. Then, we let

E(K||J,N,AM)=EK,J|N,AM).

We are not aware of this construction having been studied explicitly.

We prove generic results that relate the security of the XN and
CN constructions to the d-bounded security of the underlying AE.
The intuition why this is possible is quite clear: For XN, for example,
every time an encryption query (i, N, A, M) is made, this reflects
itself to encrypting with & using nonce N’ = N & J;, where J; is
user i’s J-component of the key. This ensures that no N’ is re-used
across too many users—a fact that relies on the J;’s being secret,
and a balls-into-bins argument. In fact, because the J;’s are secret,
it turns out that a bound in a weaker version of the model, where
nonces are re-used for at most d users also in verification queries,
is enough. We briefly discuss below applications that require the
stronger model.

Bounbps FOR RGCM: OLD AND NEW. One main consequence when
instantiating XN with GCM and our analysis in the d-bounded
model is that we can provide a complete and tight analysis of RGCM
which substantially improves upon [5]. Their analysis only shows
RGCM is no less secure than GCM, and give an improved bound
which only considers attackers not making verification queries.
BT’s bound is of the order (parameters as above, and r is the nonce
length)

u2+40p uo? upo + upq

2k on ok+n 2k+r.

For example, if k = 128, then u can be at most 204,
We show a much stronger bound, crucially also taking into ac-
count verification queries. As long as ¢ < 2"17€) for some small

constant € > 0, our bound is of the order

2
n(p+0)+£+0' +pq )
2k on ok+n

PusLic SALTING. The XN and CN constructions reflect practical
usage, and keep the value J secret. However, as we discuss briefly
below in the paper, our result in the d-bounded model enables us
to give a much stronger result which does not require J to be secret
at all, as long as nonces are not chosen arbitrarily by the adversary.

For example, if each user encrypts using nonces J; 0, J; & 1,
Ji®2, ... and makes nonces public (thus J; is known to the adversary
for each i), we can think of this as a particular adversary attacking
AE security of GCM and using such nonces. Then, our bound on
GCM implies similar security as that of RGCM without making J
secret (thus saving on key length). In particular, our bound holds
even if the attacker attempts verification queries with arbitrary
repeating nonces.

THE IDEAL-CIPHER MODEL. This paper relies on ideal models, and
in particular, the ideal-cipher model, for its analyses. This is a
common trait of most analyses in the mu regime-one issue is that
we are particularly concerned here with how local computation
(approximated by the p ideal cipher queries) affects security, and
classical assumptions on blockciphers (PRP security) are not helpful
in making this type of statements.

2 PRELIMINARIES

NoTATION. Let ¢ denote the empty string. For a finite set S, we
let x < S denote the uniform sampling from S and assigning the
value to x. Let |x| denote the length of the string x, and for 1 <
i <j < |x|, let x[i,j] (and also x[i : j]) denote the substring from
the ith bit to the jth bit (inclusive) of x. If A is an algorithm, we let

y < A(xq, . ..;r) denote running A with randomness r on inputs
X1, . .. and assigning the output to y. We let y < A(xy, . ..) be the
result of picking r at random and letting y < A(x1,...;r). In the

context that we use a blockcipher E : {0, 1}% x {0, 1} — {0, 1}",
the block length of a string x, denoted x|, is max{l, [|x|/n—|}

2.1 Authenticated Encryption

An AE scheme II is a triple (K, &, D) with message space M and
nonce space N. The encryption scheme & takes as input a key K €
K, anonce N € N, associated data A € {0,1}", a message M € M,
and deterministically returns a ciphertext C «— Eg (N, A, M). The
decryption scheme D takes as input a key K, a nonce N, associated
data A, a ciphertext C, and returns either a message M € M, or
the error symbol L. We require that, if C « Eg (N, A, M) then
M — Dk (N, A,C), for correctness.

Mu securiTY OF AE. Let II[E] = (K, &, D) be an AE scheme on
top of an ideal cipher E : {0, 1} % {0,1}" > {0,1}". Let A be an
adversary. Define

= 1] - Pr[Rand? . = 1],

AdvE2e(A) = Pr{Real” e

T[E] [E]
where games Realr‘?[E] and Randr‘?{[E]
der each game, the adversary A is given access to three oracles
ENC, VF, and PRIM. For encryption queries ENC(i, N, A, M), we

are defined in Fig. 1. Un-



A
Game RealH[ E]
Ky, Ky, -+ < 7(; b s ﬂENC,VF,PR[M; return b’
procedure ENC(i, N, A, M)
return Eg; (N, A, M)
procedure VE(i, N, A, C)
V « Dk;(N, A, C);return (V # 1)
procedure PRIM(J, X)

if X = (+, x) then return Ej(x)
if X = (-, y) then return E}l(y)

Game Randg[ |

b —s ﬂENC,VF,P}UM; return (b' — 1)
procedure ENC(i, N, A, M)

C s {0, 1}MI+2; return C
procedure VF(i, N, A, C)

return false

procedure PRIM(J, X)

if X = (+, x) then return Ej(x)
if X = (-, y) then return E}l(y)

Figure 1: Games defining the multi-user security of an AE
scheme I1. This scheme is based on a blockcipher E : {0, 1}¥ x
{0,1}" — {0,1}". We assume that under the scheme II, the
ciphertext is always A-bit longer than the message.

require that the adversary must not repeat the pairs (i, N). The ad-
versary can repeat nonces in the verification queries VF(i, N, A, C),
but to avoid trivial wins, once the adversary queries ENC(i, N, A, M)
to receive C, it is prohibited from querying VF(i, N, A, C).

We say that an adversary is d-repeating if it never uses the same
nonce for more than d users in encryption queries. We stress that a
d-repeating adversary can still repeat nonces across different users
in verification queries as often as it wishes. The single-user setting
corresponds to d = 1.

We say that an adversary is strongly d-repeating if for both en-
cryption and verification queries, it never uses the same nonce for
more than d users. While this restriction on verification queries
seems impossible to enforce, we shall see later that the mu-security
of RGCM against a generic adversary can be reduced to the mu-
security of GCM against a strongly d-repeating adversary, for some
small constant d. Similarly, the mu-security of the GCM scheme
used in TLS 1.2 can be reduced to the mu-security of GCM against
a strongly d-repeating adversary for an appropriate choice of d.

When we consider security against (strongly) d-repeating adver-
saries, we informally refer to this as the d-bounded model.

2.2 The H-coefficient Technique

SYSTEMS AND TRANSCRIPTS. Following the notation from [10] (which
was in turn inspired by Maurer’s framework [14]), it is convenient
to consider interactions of a distinguisher A with an abstract sys-
tem S which answers A’s queries. The resulting interaction then
generates a transcript 7 = (X1, Y1), ..., (Xq, Yq)) of query-answer

pairs. It is known that S is entirely described by the probabilities
ps(7) that correspond to the system S responding with answers as
indicated by 7 when the queries in 7 are made.

We will generally describe systems informally, or more formally
in terms of a set of oracles they provide, and only use the fact that
they define corresponding probabilities ps(7) without explicitly
giving these probabilities. We say that a transcript 7 is valid for
system S if ps(z) > 0.

THE H-COEFFICIENT TECHNIQUE. We now describe the H-coefficient
technique of Patarin [8, 19]. Generically, it considers a deterministic
distinguisher A that tries to distinguish a “real” system S, from
an “ideal” system S;g.,). The adversary’s interactions with those sys-
tems define transcripts 7re,1 and Jigeal, respectively, and a bound
on the distinguishing advantage of A is given by the statistical
distance SD(Treal; Tideal)-

LEMMA 2.1. [8, 19] Suppose we can partition the set of valid tran-

scripts for the ideal system into good and bad ones. Further, suppose

T
that there exists € > 0 such that 1 — p:Ll(T) < € for every good
ideal

transcript t. Then,

SD(Tideals Treal) < € + Pr[Tigea is bad] .

3 MULTI-SECURITY OF GCM

In this section, we consider the mu security of authenticated en-
cryption (AE) construction CAU [5], which includes GCM as a
special case. CAU loosely follows the encrypt-then-MAC paradigm,
where the encryption scheme is the CTR mode on a blockcipher
E:{0,1}*x{0,1}" — {0,1}", and the MAC is the Carter-Wegman
construction via an almost XOR-universal (AXU) hash. We begin
by recalling the definition of AXU hash functions.

AXU uaAsH. Recall that for a string x, the block length |x|, of x is
defined as max{1, [|x|/n]}. We call H : K x {0,1}* x {0,1}* —
{0,1}™ ac-AXU hash if for any (M, A) # (M’, A") in {0, 1}* x {0, 1}*,
and any z € {0,1}",

Pr [Hg(M,A)®@Hg(M',A") = z]
K%K

¢ - max{|M|n + |Aln, IM’|n + |A|n}
2n '

3.1 The CAU Scheme

LetE : {0,1}%%{0,1}" — {0,1}" be ablockcipher. Let H : {0,1}" X
({0,1}* x {0,1}*) — {0,1}" be a ¢c-AXU hash. The nonce space
N of CAU is {0, 1}", for r < n, and its key space is {0, 1}*. For a
string Z € N, we write pad(Z) to refer to the string Z0"~"~11. The
message space is the set of binary strings whose block length is
strictly less than 27" — 1.

On input (K, N, A, M), the encryption scheme first encrypts M
via the CTR mode of Ex with IV pad(N) + 1, to get a ciphertext
core C (that does not include the IV). It then computes a hash
key L « Eg(0™), produces a tag T « H (A, C)®Ek (pad(N)) and
then outputs T || C as the ciphertext. On input (K, N, A, T || C), the
decryption scheme first computes the hash key L « Ex(0"). Next,
if T # Hp (A, C)®Ek (pad(N)), it outputs L. Otherwise, it uses the



procedure CAU.Enc(K, N, A, M)

/0 < |Mg| < n,and |M;| = n otherwise

Y « pad(N); My ---Mp «— M

/ Encrypt with CTR mode and IV Y + 1
fori=1tof—-1do C; «— M;®Eg(Y + i)

V «— Exg(Y+0); Cp — MpadV[1: |M¢|]; C— C1---Cp
// Use Carter-Wegman with H

L« Ex(0™); T «— HL(A, C)®Ex(Y)

return T || C

procedure CAU.Dec(K, N, A, T || C)

L « Eg(0™); Y « pad(N)

/0 < |Cp| < n,and |C;| = n otherwise

Cy---Cp— C; T — HL(A C)DEK(Y)

if T # T’ then return L

/ Decrypt with CTR mode and IVY +1
fori=1to{—1do M; « C;®Ek(Y +1i)

V — Ex(Y + £); My «— Co@V[1: |Coll: M — M, - - My
return M

Figure 2: The encryption (top) and decryption (bottom) of
the authenticated encryption scheme CAU. The scheme is
based on a blockcipher E and an AXU hash H.

decryption of CTR on Ex with IV pad(N) + 1 to decrypt C, and
outputs the corresponding message M.

See Fig. 2 for the code of CAU. For GCM, the blockcipher E is in-
stantiated by AES, and thus n = 128 and k € {128, 256}. The nonce
length r is 96 bits. The hash H is instantiated by the polynomial-
based hash function GHASH, and thus one can pick ¢ = 1.5. To see
why, recall that in the original GCM document [17], McGrew and
Viega showed that for any two distinct pairs (M, A) and (M’, A”),
and for any z € {0, 1}",

Pr  [GHASHg (M, A)®GHASHx (M, A') = 2]

K s {0,1}"

[(1 + max{|M| + |A], M| + |A’})/n]
< on

1+ max{|M|, + |Aln, IM'|n + |A’|n}
< on

1.5 - max{|M|p + |Aln, IM'|n + |A’|n}
—_ zn *

3.2 Security of CAU

Theorem 3.1 below gives a tight mu-security bound of CAU against
a d-repeating adversary. We stress that the bound ¢ in the theorem
takes into account the block length of both the message and the
associated data of an encryption/verification query.

THEOREM 3.1 (MU-SECURITY OF CAU/GCM). Let E : {0, 1}F x
{0,1}" — {0,1}" be a blockcipher that we will model as an ideal
cipher, withk > n > 128. Let H be a c-AXU hash function. Let A be a
d-repeating adversary attacking CAU[H, E| using at most p < 22
ideal-cipher queries, q encryption/verification queries of total block
length at most o, and the total number of blocks in encryption queries

of each user is at most B. Then
dp+q) +nlg+o+p) oc(2B+cn+3)
2k ’ 2n
2g+1 d) + 2
L +J(a+nc)+ pq.
22n ok+n

AdVEN i, (AD) <

DiscussIoN. It is important to note that the bound in Theorem 3.1
does not depend explicitly on the number of users, which can
become as large as q. The only dependence on users is through the

parameter d, which can be (but generally is not) as large as g. The

pd no

bound in Theorem 3.1 contains three important factors, S ok

and ‘;—nB that correspond to actual attacks. We discuss them here,
which will be instrumental for understanding the proof below.

First, for the term g—g, consider the following attack. The adver-
sary picks an arbitrary nonce N, a long enough message M, and
makes d encryption queries (1, N, A, M), ... (d,N, A, M), where A
is the empty string, to get answers Cy, . . ., Cy4 respectively. (Recall
that the adversary is d-repeating, so it cannot repeat anonce N in en-
cryption queries for more than d users.) By picking p distinct candi-
datekeys Ky, ..., Kp and comparing C; with CAU.Enc(Kj, N, A, M)
forall1 <i<dand1 < j< p, the adversary can recover one key
with probability about Z—f

For the term ’Zl—g consider the following attack. The adversary
first picks an arbitrary nonce N and p distinct candidate keys
K1,...,Kp, and makes 2p ideal-cipher queries (K;, (pad(N), +)),
(K, (0™,4)). The goal of the adversary is to make q verification
queries (j,N,A,T||C), for j = 1,...,q for associated data A and
ciphertext T || C of ¢ blocks total that it will determine later. To max-
imize its chance of winning, the adversary will iterate through all
possible tuples (A*, T* || C*) of € blocks total and compute count(A*,
T* || C*), the number of ideal-cipher queries (K;, (pad(N), +)) whose
answer is Hy,(A*,C*)®T", where L; < Eg,(0"). It then picks
(A, T|| C) to maximize count(A, T || C). Then the adversary wins
with advantage about E[count] - ¢/ 2k The proof of Theorem 3.1
shows that E[count] < nl = % with very high probability, and

thus the advantage of the adversary is at most no/2%.

For the term 0B/2", consider the following distinguishing attack.
The adversary will target u users, where u = |o/B]. Let M be an
arbitrary message of B blocks. Pick an arbitrary nonce N, and let
A be the empty string. The adversary then calls ENC(i, N, A, M) to
receive T; || C;, for every i = 1,...,u. If some ciphertext core C;
contains two identical blocks then the adversary outputs 0, oth-
erwise it outputs 1. By using appropriate data structure, one can
implement this attack using O(B) space and O(c) time. To ana-
lyze the adversary’s advantage, we need the following technical
Lemma 3.2 and Lemma 3.3. The first result states a well-known
lower bound for the birthday bound; see, for example, [9, Appendix
A] for a proof. The second result is a useful inequality whose proof
can be found in [4].

LEMMA 3.2 (LOWER BOUND FOR BIRTHDAY BOUND). Let N > 0 be
an integer. Suppose that we throw 1 < q < V2N balls into N bins

uniformly at random. Then the chance that there are two balls that

: s q(g-1)
fall into the same bin is at least +{5—.



LEMMA 3.3. [4] Letp > 1 be an integer and a > 0 a real number.
Assumeap < 1. Then (1 — a)? < 1—ap/2.

Back to the analysis, in the ideal world, each C; is a truly ran-
dom B-block string, and thus from Lemma 3.2, the chance that it
contains two identical blocks is at least Bffz;l). Hence in the ideal

world, the chance that the adversary outputs 1 is at most

(1_M)“Sl_w~ oB

on+2 on+3 ~ on+3

where the inequality is due to Lemma 3.3. In contrast, in the real

world, the adversary will always output 1. Hence the adversary

oB
on+3

wins with advantage about

The term 0B/2" also deserves some further discussion. It con-
veys an important message, and namely that as B becomes smaller,
the term becomes closer to o/2". A small B could be enforced, for
example, by ensuring that a session in a protocol only transfers
a bounded amount of data before a re-keying operation is issued.
In other words, re-keying only improves multi-user security. This
is important, when compared to the single-user security analysis,
which gives a bound of the order o2/2". (Of course, if we have one
single user, then B = 0.)

PRroOF IDEAS. The proof examines several cases but here we discuss
two illustrative ones that correspond to the two attacks above. First,
consider the event that the adversary can query PRIM(K, (x, +))
and query ENC(i, N, A, M) such that K = K; and x € {pad(N),...,
pad(N) + ¢}, where ¢ = |M|,. This case includes the first attack
above. Note that for any query PRIM(K, (x, +)), since the adversary
is d-repeating, there are at most d queries ENC(i, N, A, M) such that
x € {pad(N),...,pad(N) + ¢}, where £ = |M|,, and the chance
that some of these d latter queries satisfies K; = K is at most d/2¥.
Hence, this case happens with probability at most dp/2F.

On the other hand, in GCM, every user i derives the hash key L;
via Eg,(0™). Thus by querying PRIM(K,, (0", +)) for p keys K, the
adversary may accidentally obtain some blockcipher key K; and its
associated hash key L; with probability about pu/ 2k where u is the
number of users, and in the worst case, u can be as large as q. This
creates a problem in using the AXU-property of the hash function
H, since we can no longer treat the hash keys as independent of the
queries. This is exactly the issue in the second attack above, where
the adversary adaptively picks verification queries after seeing the
hash keys.

To make the analysis simpler, at the beginning, we will even
grant the adversary all pairs (K, Ex(0™)) for every K € {0, 1}k,
and this can only help the adversary. However, now when we pick
K; s {0,1}*, the corresponding key L; < Eg,(0") is no longer
uniformly random. To understand the distribution of the key L;,
we need the following balls-into-bins result of Bose, Hoang, and
Tessaro [7].

LEMMA 3.4 ([7]). Fix integersn > 128,{ > 2, and a > 1. Suppose
that we throw q < a - 2" balls into 2" bins. The throws may be inter-
dependent, but for each i-th throw, conditioning on the result of the
prior throws, the conditional probability that the i-th ball falls into
any particular bin is at most 21~™. Then the chance that the heaviest
bin contains [aln/2] or more balls is at most 2~ 3¢+

Now, view each granted pair (K, Ex(0™)) as throwing a ball into
bin Eg(0™). Thus we throw 2k balls uniformly at random into
2" bins. Thus using Lemma 3.4 with a = 257" and ¢ = 2, with
probability at least 1 — 278", each bin contains at most - 25" balls.
Thus for any L € {0, 1}", there are at most n - ok-n keys K such
that Ex(0™) = L. In other words, when we pick K; «s {0, 1}*, the
conditional min-entropy of L; is at least — lg(n'Zk_" J2k) = n-lg(n).

Going back to the dependency issue of the hash keys and its
inputs, a particularly tough case is to analyze the probability that
the adversary can first make a query PRIM(K, (pad(N), +)) and
obtain answer y and then query VF(i, N, A, T || C), and it happens
that K = K; and Hy,(A, C)®T = y, where K; is the blockcipher key
of user i, and L; < Eg(0™). This case includes the second attack
above. To deal with this case, we employ a trick from [7]. Specifically,
consider a fixed tuple (N*, A*,C*) and let € = |A*|,, + |C*|,. View
each query PRIM(K, (pad(N¥), +)) of answer y as throwing a ball
into bin H (A*, C*)®y, where L < Eg(0"). By Lemma 3.4 above,
with probability at least 1 — 2-6+2)n_each bin contains at most £n
balls. Thus for an adaptive T, the number count™ of matching ideal-
cipher queries is at most £n = (JA*|, + |C*|,)n, with probability at
least 1 — 2= 327 Then for any adaptive choice (N, A, T || C), the
chance that there are at most (|Al,, + |C|,) - n matching ideal-cipher
queries is at least

(o]
1— 2—(3€+2)n
=2 (i*, N*, A, C*):|A* |, +|C* |p=C
< 2
> 1- Z 22n+2£’ . 2—(3£’+2)n >1- = |
22n
(=2

Hence, the chance that the case above happens is at most no/ 2k 4
2q/2%".

Proor (oF THEOREM 3.1). Without loss of generality, assume
that o < 2 /n; otherwise the bound is moot. As mentioned earlier,
at the beginning, we will give the adversary (K, Ex(0™)) for every
K € {0,1}*, and this can only help the adversary. Because we
consider computationally unbounded adversaries, without loss of
generality, assume that A is deterministic, and never repeats a prior
query. Assume that if the adversary queries PRIM(K, (x, +)) to get
an answer y then it will not subsequently query PRIM(K, (y, —)),
since the answer would be x. Likewise, assume that if the adver-
sary queries PRIM(K, (y, —)) to get an answer x then it will not
later query PRIM(K, (x, +). Our proof is based on the H-coefficient
technique.

DEFINING BAD TRANSCRIPTS. In the real world, after the adversary
finishes querying, we will give it the blockcipher keys K; of all
users i. In the ideal world, we instead give the adversary truly
random strings K; «s {0, 1}*, independent of the transcript. Thus
the transcript implicitly includes the hash keys L; < Eg,(0").
This key revealing only helps the adversary. Thus a transcript
consists of the revealed keys, the granted ideal-cipher queries, and
the following information:

e Ideal-cipher queries: For each query PRIM(K, (x, +)) with
answer y, we associate it with an entry (prim, K, x,y, +).
Likewise, for each query PRIM(K, (y, —)) with answer x, we



associate it with an entry (prim, K, x, y, —). We stress that
we do not create prim entries for the granted ideal-cipher
queries, and thus there are at most p prim entries.

e Encryption queries: For each query ENC(i, N, A, M) with
answer T||C,let M = My ---My and C = Cy - - Cp, with
0 < [M¢| = |C¢| < n,and |[Mj| = |Cj| = nforevery j < £.For
each j < {,let V; = M;®C;j. Let Vo = Hy,(A, O)®T. If [My| =
0 then let V.« V- Vp_q, otherwise let V.« V.- Vp,
where Vp < Eg,(pad(N) + £) in the real world, and V, «
(Ce®My) || Z in the ideal world, with Z «s {0, 1377 1Mel The
string V is revealed to the adversary when it finishes query-
ing, which can only improve its advantage. Associate the
query above with the entry (enc, i, N,A,M,T || C, V).

e Verification queries: For each query VF(i, N, A, T || C), as-
sociate it with entry (vf, i, N, A, T || C). Note that we do not
need to keep track of the answers of the verification queries,
since for any valid transcript in the ideal world, the answers
of all verification queries must be false.

We say that a transcript is bad if one of the following happens:

(1) There are two entries (enc,i, N,A,M,T || C,V) and (enc,,
N, A", M, T"||C",V’) with i # j but K; = K. Eliminating
this case removes potential inconsistency due to the nonce
reuse.

(2) There is an entry (enc, i, N,A,M,T||C,Vp - - - V) and some
indices 0 < s < t < ¢ such that Vi = V;. Recall that in the
real world, Vs and V; are outputs of Eg, on different inputs
pad(N)+s and pad(N) + t. Thus in the real world, the strings
Vs and V; can’t be the same.

(3) There are two entries (enc,i, N,A,M,T||C,Vy---Vy) and
(enc,j, N, A", M, T" || C',VO' ---V2) with N # N” and with
some indices s and t such that K; = K}, and Vs = V. Again,
in the real world, V5 and Vt' are outputs of Eg;, on different
inputs pad(N) + s and pad(N’) + ¢. Thus in the real world,
the strings Vs and V/ can’t be the same.

(4) There is an entry (enc,i, N,A, M, T ||C,Vp - - - V¢) and an in-
dex t such that V; = L;. Recall that in the real world, L; =
Ek,(0™) whereas V; is the output of Eg, on input pad(N)+t #
0". Thus in the real world, the strings L; and V; must be dif-
ferent.

(5) There are two entries (enc,i, N,A,M,T | C,Vy---Vy) and
(prim,K, x,y,-) such that K = K; and x € {pad(N),...,
pad(N) + ¢}. Eliminating this case removes the potential
inconsistency due to the adversary’s accidental query of a
correct key.

(6) There are two entries (enc,i, N,A,M,T||C,Vy---Vp) and
(prim,K,x,y,-) such that K = K; and y € {Vp,...,Vp}.
Again, eliminating this case removes the potential incon-
sistency due to the adversary’s accidental query of a correct
key.

(7) There are two entries (enc,i, N,A,M,T||C,Vy---Vy) and
(vf,j,N,A’,T" || C’") such that Vy = HLj(A’, C"oT’ andK; =
Kj. This means that the adversary should have received the
answer true for this verification query, but recall that for
valid transcripts in the ideal world, the answer must be false,
leading to inconsistency.

(8) There are entries (vf,i,N,A, T || C) and (prim, K, x,y, -) such
that K = K; and Hr,(A,C)®T = y and x = pad(N). This
means that the adversary should have received the answer
true for this verification query, but recall that for valid tran-
scripts in the ideal world, the answer must be false, leading
to inconsistency.

If a transcript is not bad and is valid for the ideal system then we
say that it is good.

PROBABILITY OF BAD TRANSCRIPTS. Let 7j4eo be the random vari-
able for the transcript in the ideal system. We now bound the
probability that 7jge,) is bad. For each j € {1, ..., 8}, let Bad; be the
set of transcripts that violates the j-th constraint of badness. View
each granted query (K, Ex(0™)) as throwing a ball into bin Ex(0").
Thus we throw 2¥ balls into 2" bins uniformly at random. By ap-
plying Lemma 3.4 for a = 2k=n and € = 2, with probability at least
1-278" for every string L € {0, 1}", there are at most n- 2K~ keys
K such that Eg(0™) = L. In other words, given the queries/answers
that the adversary receives, the conditional min-entropy of each
hash key L; is at least n — 1g(n).

We first bound the probability Pr[7j4ea1 € Badi]. For each entry
(enc,i,N,-,,,-), there are at most d other entries (enc, j, N, -, -, -, )
such that j # i, and the chance that one of those d entries satisfy
K; = K;j is at most d/2¥. Summing over at most ¢ encryption
entries,

d
Pr[7igeal € Badi] < Z_Z .

Next, we bound the probability Pr[7j4ca € Badz]. Consider an en-
try (enc,i, N,A,M,T || C,Vy - - - Vp). Since we are in the ideal world,
the strings Vp, . . ., V¢ are uniformly random and independent. Thus
the chance that there are 0 < s < t < € such that V5 = V; is at most

Ll +1) < (B < M|, - B .
2”
Summing this over all encryption queries,

oB
Pr[7igeal € Badz] < 2_” .

on+l = 9n

Next, we bound the probability Pr[7ige, € Bads]. For each entry
(enc,i, N,A,M,T||C,V,---Vp), consider another entry (enc, j, N’,
A M, T || C, VO’ -+ V7). Since we are in the ideal world, the strings
Vo, ..., Ve, VO' ,...,V, are uniformly random and independent, and
thus the chance that there are s, t such that Vs = V} is at most
€+ D(u+1)/2" < (|M|n + |Aln)(M' | + |A[n)/2". We consider
the following cases.

Case 1:i = j, and thus K; = Kj. By summing over all encryption
entries of user j, we obtain a bound (|M|, + |A|,)B/2" for the
particular entry (enc,i, N,A,M,T || C,V, - - - Vy) above. Summing
this over all encryption entries, the probability corresponding to
this case is at most oB/2".

Case 2: i # j, and thus the conditional probability that K; = K;
is 2%, Summing over all pairs of encryption entries, we obtain a
bound ¢%/25*" for this case.

Summing up,

2

oB o)
Pr[Tigeal € Bads] < 2_” + W .



We now bound the probability Pr[7jge, € Bads]. For each en-
cryption entry (enc, i, N,A, M, T || C, Vp - - - V), the strings Vp, . .., Vp
are uniformly random and independent of L;, and thus the chance
that there is some Vg such that Vi = L; is at most (£ + 1)/2" <
(IM|, + |Aln)/2". Summing this over all encryption entries,

o
Pr[7igeal € Bad4] < o

Next, we bound the probability Pr[7;4e,1 € Bads]. For each en-
try (prim, K, x, y), there are at most d entries (enc, i, N,A, M, T || C,
Vo - - - Vp) such that x € {pad(N), ...,pad(N) + ¢}, and the chance
that one of those d entries satisfies K; = K is at most d/2X. Summing
over all p ideal-cipher queries,

d
Pr[ ooy € Bads] < 2—‘2 .

Next, we bound the probability Pr[74.q € Badg]. View each
entry (enc,i, N,A,M,T||C,Vp---Vp) as throwing € + 1 < |M|, +
|Al, balls into bins Vp, . . ., V. Hence totally, we throw at most o
balls into 2" bins, and the throws are uniformly random. Using
Lemma 3.4, with probability at least 1 — 2787, each bin contains at
most n balls. Thus for each entry (prim, K, x, y, -), there are at most n
entries (enc, i, N,A,M,T||C,Vy - -- V¢) such that y € {W,...,V,},
and the chance that one of those n entries satisfies K; = K is at
most n/2k. Summing over all p ideal-cipher queries,

Pr[7igeal € Badg] < 278 4 Z—Z .

We now bound the probability Pr[7jgea € Bad7]. Consider an
entry (vf,i, N,A’, T’ || C’). Since the adversary is d-repeating, there
are at most d entries (enc, j, N,A, M, T ||C,Vy - - - Vy) of the same
nonce N. We consider the following cases.

Case 1:j = i. As H is ¢-AXU and the conditional min-entropy of L;
is at least n —lg(n), the chance that Hy ,(A’,C")®T’ = Hr,(A,C)8T
is at most

ne(|C’n + A |n + [Cln + 1Aln)/2"
Summing that over all verification queries, the probability corre-
sponding to this case is at most nco/2".

Case 2: j # i. As H is c-AXU and the conditional min-entropy of L;
is at least n — lg(n), the chance that Hy,(A’,C")®T’ = Hp,,(A,C)&T
is at most
ne(|C'[n + A" [n + |Cln + |Aln)/2"

Conditioning on Hy,(A’,C")®T’ = Hy,(A, C)&T, the chance that
K; = Kj is at most 27k, Summing this over all verification queries
and all d matching encryption entries, the probability correspond-
ing to this case is at most nedo /2K+7.

Combining both cases,

nco  ncdo

Pr[7i~deal € Bad7] < on + kn

Finally, we bound the probability Pr[7ije,; € Badg]. We consider
the following cases.

Case 1: The event Tjgeq € Bads is caused by a prim entry of sign —.
View each entry (prim, K, x, y, —), as throwing a ball into bin y. Thus
we throw at most p balls into 2" bins, and while the throws can
be inter-dependent, their distribution satisfies the requirement of
Lemma 3.4 due to the hypothesis that p < 2”2, Then by Lemma 3.4,

with probability at least 1 — 2787, the heaviest bin contains at most
n balls. Hence for each entry (vf, i, N, A, T || C), there are at most n
entries (prim, K, x, y, —) such that x = pad(N), and the chance that
one of those prim entries satisfies the property K = K; is at most
nj2k. Summing over all g verification queries, the chance that this
case happens is at most 2787 + qn/2k.

Case 2: The event Tj4e, € Badg is caused by a prim entry of
sign + and a prior VF query. Consider an entry (prim, K, x, y, +).
The chance that there is a prior entry (vf, i, N, A, T || C) such that
Hp(A,O)@T = y, with L « Eg(0"), and K; = K is at most
q/2K@2" - p) < 2q/2K*™. Summing over all p ideal-cipher queries,

the chance that this case happens is at most 2pq/ ok+n

Case 3: The event Tj4o, € Badg is caused by a prim entry of
sign + and a subsequent VF query. Fix (i*, N*, A*,C*) and let
¢ = |C*|p + |A¥|n. View each entry (prim,K,x,y,+) as throw-
ing a ball into bin y®H[ (A*,C*), where L « Eg(0™). Thus we
throw at most p balls into 2" bins, and while the throws can
be inter-dependent, their distribution satisfies the requirement of
Lemma 3.4 due to the hypothesis that p < 2”72, Then by Lemma 3.4,
with probability at least 1 — 2-3¢+2)7 the heaviest bin contains
at most ¢n/2 balls. Thus for any adaptive choice of T, the en-
try (vf, i*, N*, A*, T || C*) has at most nf/2 corresponding entries
(prim, K, x,y, —) such that y®Hy (A*,C*) = T, with L « Eg(0™).
Then for any adaptive entry (vf,i, N, A, T || C), the chance that it
has at most n(|C|, + |Al,) corresponding entries (prim, K, x, y, —)
such that y®Hp (A, C) = T, with L « Eg(0"), is at least

(o]
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Moreover, the probability that one of those n(|C|, + |A|,) entries
(prim, K, x, y, +) satisfies K = K; is at most n(|C|, + |Aln)/2%. Sum-
ming over all verification queries, the chance that this case happens
is at most no /2% + 2q/2%".

Hence by the union bound,
1 .29 29  nlg+o)
Pr[7i~deal € BadS] < 28_" + 22—’1 + Sk+n + ok .
Thus totally,
8
Pr[7igeal is bad] < Z Pr[7igeal € Bad;]
i=1
dp+q)+n(g+o+p) o(2B+cn+1)
B 2k i P
2
N q+1 . o(o + ned) + 2pq '
22n ok+n

)

TRANSCRIPT RaTIO. Fix a good transcript 7. For a key K € {0, 1}¥,
let the multi-set S1(K) be the union of {(x,y) | (prim,K,x,y,-) € 7}
and the set {(0”, Ex(0™))} as indicated by 7. Next, initialize the
multi-set S2(K) as the empty set, and for every entry (enc, i, N, A, M,
T||C,Vp---Vp) € 7, if r indicates that K; = K then add the pairs
(pad(N), Vo), . . ., (pad(N) + ¢, V¢) to Sz2(K). Finally, initialize the



multi-set S3(K) as the empty set, and for every (vf,i, N,A, T | C) €
7, if 7 indicates that K; = K and there is no entry of the form
(pad(N),-) or (-, Z) in S51(K) U S2(K), where Z « Hy (A, C)eT,
then add the pair (pad(N), Z) to S3(K). Let
s= ) 1K)
Ke{0,1}k

which is at most the total number of verification queries. Thus
s <gq.

Suppose that this transcript 7 contains exactly u users. Then in
the ideal world, since 7 is good,

. 1S1(K)|-1 1S2(K)[-1
paa =2 [ T G 1] 5
Ke{0,1}k i=0 j=0

On the other hand, in the real world, the multi-sets S;(K) and S2(K)
indicate pairs (x, y) such that Eg(x) must be y, and the multi-set
S3(K) indicate pairs (u, v) such that Ex(u) must not be v. Since ¢
is good, those multi-sets contain no conflicting information, and
S51(K) and Sy(K) are disjoint. Let V(K) = |S1(K)| + |S2(K)|. Note
that V(K) + |S3(K)| < 0 + g+ p+ 1 < 2”71 Then

. 1_[ V(IIQ[—I ISa(K)I—l( 1 )
PS e (T) 2 277" T - va—3)
Ke{o,1}k =0 2 boj=0 2 VI -J
Hence
b5 () 185(K)1-1 .
real 1-—
Psldeal(f) ( 2" — V(K) _])

Ke{o,1}k Jj=0
ISs(K)I—l(1 ) 1 )
2" = V(K) = [S3(K)]

1 )
Ke{o,1}k  j=0

1 \s s q
- (1_2n—1) 21_zn—l Zl_zn—l ’ (3)

where the second last inequality is due to the fact that (1 — x)? >
1—txforanyt>1landany0 < x < 1.

\%

Ke{o,1}k  J=0
IS3(K)|-1

\%

WRaAPPING UP. From Eq. (2) and Eq. (3), by using Lemma 2.1 with
€ =2q/2" < 20/2",

dp+q)+n(g+o+p) oc(2B+cn+3)
2k ’ 2n
2 1
. q+ +cr(0'+nca')+2pq ‘
22n ok+n

Advngfﬁ g <

as claimed. |

ReMARKs. In TLS, an adversary can attempt at most one verification
query per user, because a verification failure causes termination
of the connection. One might wonder if the security of GCM can
be improved in this restricted setting. In other words, we are in-
terested in security of GCM against an adversary who, for each
user, must make at most a verification query, and this verification
query is made after all encryption queries for that particular user.

procedure K*()

K —$K(); J«${0,1} ;return K || J
procedure E*(K || J, N, A, M)

N* «— N&J; C «s E&(K, N*, A, M); return C
procedure D*(K || J, N, A, C)

N*«— N&J; M « D(K, N*, A, C); return M

Figure 3: The XN transform to turn an AE scheme II =
(K, E, D) to another AE scheme IT* = (K*, &%, D*).

However, any bound for such an adversary will continue to contain
the bottleneck terms 12)—,13 and g—f, as there are matching attacks that
only use encryption and ideal-cipher queries. Thus in the restricted

setting above, the bound can only be slightly improved at best.

4 RGCM AND THE XOR TRANSFORM

In this section, we introduce the XN transform that turns an AE
scheme IT into another AE scheme IT* by randomizing the effective
nonces via an XOR operation. The scheme RGCM can be viewed as
XN(GCM). We then reduce the mu security of IT* under a generic
adversary to that of IT under a strongly d-repeating adversary,
where d is a small constant.

TuE XN TRANSFORM. Let IT = (K, E, D) be an AE scheme of nonce
length r and key length k. Define the AE scheme IT* = (K*, &%, D*)
of nonce length r and key length k + r as in Fig. 3. For akey K || J
of IT*, we refer to the subkey K the encryption key, and the subkey
J as the nonce randomizer.

SECURITY GAIN VIA XN. We now reduce security of IT* = XN(II)
under a generic adversary to that of IT under a strongly d-repeating
adversary. This seems to be just a direct corollary of a generalized
balls-into-bins result, where one throws g inter-dependent balls
into 2" bins as follows: (1) the marginal distribution of each ball is
uniformly random, (2) balls of the same user must fall into different
bins, and (3) balls of different users are independent. This balls-into-
bins phenomenon is analyzed in Lemma 4.1 below.

LEMMA 4.1. Let0 < € < 1 be a number, and letr > 1 be an integer.
Suppose that we throw g < 21767 balls into 2" bins. Before each ball
is thrown, it is associated with a user i. The marginal distribution of
each ball is uniformly random, balls of the same user must fall into
different bins, and balls of different users are independent. Let X be
the random variable for the number of balls in the heaviest bin, and
letd = [1.5/€¢] — 1. Then

Pr[X >d] <277/ .

ProOF. Let s = d + 1 = [1.5/€]. Since we throw q balls, there

are
S

q < q

s s!

sets of s balls. For each set, if it contains two balls of the same user
then the balls in this set cannot be in the same bin. Otherwise, the
balls in this set are thrown uniformly and independently, and thus



the chance that they are in the same bin is 27751 By the union
bound, the chance that there is a bin of s or more balls is at most

qs B z(l—s)rs B 1 B 1
or(s=1) = or(s-1) - or(es=1) = or/2 °
This concludes the proof. O

Back to the security gain via the XN transform, the analysis
above however only holds if the adversary non-adaptively chooses
its nonces. If the adversary is somehow able to adaptively learn the
nonce randomizers via its queries, it can then repeat the effective
nonces as often as it wishes. Theorem 4.2 below refines the prior
naive argument to handle adaptivity.

THEOREM 4.2. Let E be a blockcipher that we will model as an
ideal cipher. Let II[E] = (K, E, D) be an AE scheme of nonce length
r, and let II*[E] = XN(II[E]). Fix 0 < € < 1. Let A be an adversary
attacking IT* using at most ¢ < 217€)" ENC queries. Then we can
construct a strongly d-repeating adversary B of the same concrete
query complexity as A, whered = [1.5/€] — 1, such that

1

AVEE(A) < AdViAB) +

IT*(E]

ProoF. Adversary 8 initializes a flag bad « false and runs A
with direct access to its ideal cipher. For each encryption query
(i, N, A, M) (respectively, verification query (i, N, A, C)) of the lat-
ter, B initializes J; «s {0, 1}" if the string J; is not defined, oth-
erwise it uses the existing J;, and then creates an effective nonce
N* « N@J;. If B8 did use N* for d other users previously, it’ll
set bad < true, terminate A, and output 1. Otherwise, 8 queries
C «— ENc(i, N*, A, M) (respectively, VF(i, N*, A, C)), and returns
the answer to A. When A finishes (without being terminated pre-
maturely) and outputs a bit b’, adversary 8 will output the same bit.
Note that B is strongly d-repeating, and for each individual user,
if A does not repeat a nonce among encryption queries then 8
also does not repeat an effective nonce among encryption queries.
Moreover,

Pr[Realg =1] > Pr[Realgi =1], (4)

[E]

because B either outputs 1, or agrees with A. Since game Rand

[E]

A
T*[E]
and the game that 8 simulates in its ideal world are identical until
bad is set,

Pr[RandIz];[E] = 1]
< Pr[Randf?[E] sets bad] + Pr[RandlﬁlEJ =1]. (5

Subtracting Eq. (5) from Eq. (4) side by side, we obtain

AdVIIERe(B) 2 AdVITES(A) - Pr[Rand3

I [E] niE] sets bad] .

It now suffices to show that Pr[Randﬁ;[E] sets bad] < 277/2. Recall
that B sets bad to true only if adversary A can force B to use
some effective nonce across more than d users. However, in game

Randﬁ;[ B the oracle answers are completely independent of the

nonce randomizers J; that 8 chooses. Hence one can view Randﬁ[ E]
as A’s throwing q balls into 2" bins where the throwing distribution

is specified in Lemma 4.1, and bad is set only if some bin contains d

procedure K*()

K «sK(); J«<s${0,1};return K || J
procedure E*(K || J, N, A, M)

N* « J||N; C «<s$ EK, N*, A, M); return C
procedure D*(K || J, N, A, C)

N* «— J||IN; M «— D(K, N*, A, C); return M

Figure 4: The CN transform to turn an AE scheme II =
(K, E, D) to another AE scheme IT* = (K*, &%, D*).

B
[
as claimed. m]

or more balls. From Lemma 4.1, Rand
r/2

E] sets bad with probability

at most 27

SEcuriTY OF RGCM. Combining Theorem 4.2 above with Theo-
rem 3.1, we immediately obtain a strong security bound for RCAU =
XN(CAU), which includes RGCM as a special case for ¢ = 1.5,
r=96,n =128 and k € {128, 256}.

THEOREM 4.3 (MU-SECURITY oF RCAU/RGCM). LetE : {0, 1} x
{0,1}"* — {0,1}" be a blockcipher that we will model as an ideal
cipher, with k > n > 128. Let H be a c-AXU hash function, and let r
be the nonce length. Fix a number0 < € < 1, and letd = [1.5/€] — 1.
Let A be an adversary attacking RCAU[H, E] using at mostp < 272
ideal-cipher queries, q < 2(1-e)r encryption/verification queries of
total block length at most o, and the encryption queries are of at most
B blocks per user. Then

dp+q) +n(g+o+p) oc(2B+cn+2)
2k i 2n
+2q+ 1 N o(o + ned) + 2pq Lorl?
22n ok+n

Advpe Ui g () <

5 THE CONCATENATION TRANSFORM

In this section, we introduce the CN transform that turns an AE
scheme IT into another AE scheme IT* by randomizing the effective
nonces by concatenating a random string. We then reduce the
mu security of IT* under a generic adversary to that of IT under
a strongly d-repeating adversary. This transformation is used, for
example, in the GCM scheme in TLS 1.2 and IPSec.

THE CN TRANSFORM. Let IT = (%, &, D) be an AE scheme of nonce
length r and key length k. For a parameter ¢ < r, define the AE
scheme IT* = (K*, &, D*) of nonce length r — t and key length
k + t as in Fig. 4. For a key K || J of IT*, we refer to the subkey K
the encryption key, and the subkey J as the nonce randomizer.

SECURITY GAIN VIA CN. We now reduce security of IT* = CN(II)
under a generic adversary to that of IT under a strongly d-repeating
adversary. To prove this theorem, we need the following lemma
whose proof is along the same lines as that of Lemma 3.4 [7] except
with the assumption that ¢ > 32 instead of ¢ > 128. We briefly recall
the proof for completeness.

LEmMA 5.1. Fix integerst > 32, and a,{ > 2. Suppose that we
throwq < a-2" balls into 2! bins. The throws may be inter-dependent,
but for each i-th throw, conditioning on the result of the prior throws,



the conditional probability that the i-th ball falls into any particular
bin is at most 217%. Then the chance that the heaviest bin contains
[alt/2] or more balls is at most 2~ 121,

PrOOF. Lets =t — 1 and r = [aft/2] > 32a. There are

.
o)<
r r!

sets of r balls out of the thrown g balls. For each set, the chance
that all the balls are in the same bin is 275("~1)_ By the union bound,
the chance that there is a bin of r or more balls is at most
q - (2a) 27 (2a)"28
M5t D = s = (r/ey

The second inequality is due to the fact that n! > (n/e)" for every
integer n > 1. Further,
(2a)" 28 - 2t
(r/e)” = (16/e)’t
The last inequality relies on the assumption that £ > 2. This
concludes the proof.

< Z—t(zf—l) )

]
We are now ready to prove Theorem 5.2.

THEOREM 5.2. Let E be a blockcipher that we will model as an
ideal cipher. Let TI[E] = (K, &E, D) be an AE scheme of nonce length
r. Let IT*[E] = CN(TI[E]) have nonce lengthr — t wherer > t > 32.
Let A be an adversary attacking IT* using at most ¢ ENC queries.
Then we can construct a strongly d-repeating adversary B of the same
concrete query complexity as A, whered = [qt/2'71], such that

AVITE (A) < Advipac(8) + 277t

PRroOOF OoF THEOREM 5.2. Adversary 8 initializes a flag bad «
false and runs A with direct access to its ideal cipher. For each en-
cryption query (i, N, A, M) (respectively, verification query (i, N, A,
0)) of the latter, B initializes J; «s {0, 1} if the string J; is not de-
fined, otherwise it uses the existing J;, and then creates an effective
nonce N* « J; || N.If B did use N* for d other users previously, it’ll
set bad « true, terminate A, and output 1. Otherwise, 8 queries
C « ENc(i, N*, A, M) (respectively, VF(i, N*, A, C)), and returns
the answer to A. When A finishes (without being terminated pre-
maturely) and outputs a bit b’, adversary B will output the same bit.
Note that 8 is strongly d-repeating, and for each individual user,
if A does not repeat a nonce among encryption queries then 8
also does not repeat an effective nonce among encryption queries.
Moreover,

Pr[Realf.?[E] = 1] > Pr[Real?l . = 1] , (6)

[E]

. . . A
because 8 either outputs 1, or agrees with A. Since game Rand; . (£]
and the game that 8 simulates in its ideal world are identical until
bad is set,

Pr[Randg[E] = 1]
< Pr[Randff[E] sets bad] +Pr[Rand§‘£[E] =1 . ()

Subtracting Eq. (7) from Eq. (6) side by side, we obtain

AV (B) 2 AdVITES(A) - Pr[Rand3

T [E] niE] sets bad] .

It now suffices to show that Pr[Ranerf[E] sets bad] < 277¢. Recall
that B sets bad to true only if adversary A can force B to use
some effective nonce across more than d users. However, in game

B
RzmdH (E]

nonce randomizers J; that 8 chooses. Hence one can view Rand

, the oracle answers are completely independent of the

B
TI[E]
as A’s throwing q balls into 2 bins and bad is set only if some bin

contains d or more balls. Then, Randli[B[ E] sets bad with probability

at most 277 by Lemma 5.1 by setting £ = 4 in the lemma. O

Combining Theorem 5.2 above with Theorem 3.1, we immedi-
ately obtain a strong security bound for CGCM which we define
as CGCM = CN(CAU).

THEOREM 5.3 (MU-SECURITY OF CN(CAU)). Let E : {0, 1} x
{0,1}"* — {0,1}" be a blockcipher that we will model as an ideal
cipher, with k > n > 128. Let H be a c-AXU hash function. Let
the key length of CGCM be k + t and nonce length be r — t with
r >t > 32 Let A be an adversary attacking CGCM[H, E] using at
most p < 2" 2 ideal-cipher queries, q encryption/verification queries
of total block length at most o, and the encryption queries are of at
most B blocks per user. Let d = [qt/2'~1]. Then

dp+q)+n(g+o+p) oc(2B+cn+2)
2k " 2n
+2q+ 1 N o(o + ned) + 2pq Lo Tt
22n ok+n

Adv?é‘é‘&m, E] A =<

CoMPARING RGCM aND CGCM. For concreteness, consider the

setting in which an adversary can encrypt at most B = 20 blocks
per user. Under TLS 1.2 and IPSec, 4 bytes of a nonce would be a ran-
dom salt and remain fixed for an entire session, whereas the remain-
ing 8 bytes would be implemented as a counter. Thus for CGCM

in TLS 1.2 and IPSec, for d = 32 - [q/23!] ~ /2% and n = 128.

2
The resulting bound is £ (21;;? + %, which is much stronger than

2
the bound £ ‘21;? in prior works [5, 13]. Still, in the same setting,
RGCM is much better: using d = 14 (meaning that g is required

to be smaller than 272), the advantage of the adversary is about
P

3+ 5%

DiscussIoN. Recall that our security definition requires that nonces
for each individual must be distinct. In TLS 1.2, however, one might
implement nonces as 64-bit random strings. To capture security
for this setting, one can relax our security definition by allowing
adversaries to repeat nonces for some users, with probability at
most ¢. In the case of TLS 1.2, one can pick ¢ = ‘2’75 Next, for any AE
scheme IT and for an adversary A who repeats nonces for some user
with probability ¢, one can easily construct an adversary 8 who
is nonce-respecting, such that Advyy*¢(A) < Adv[["*(B) + ¢.
Thus the security of CGCM with random nonces can be bounded

by the formula in Theorem 5.3 plus an additional term ‘ZTT?.

6 SECURITY WITH PUBLIC SALTING

In both the XN and CN transforms in the previous sections, the
nonce randomizer (or salt) J is part of the secret key. This reflects
transformations actually used in practice. However, in general, the
secrecy of the nonce randomized is unnecessary for mu security. We



observe here that as long as the nonces are not chosen arbitrarily by
the adversary one can guarantee mu security even when the nonces
are made public, and security of such schemes can be described in
terms of an appropriate d-repeating adversary.

AN EXAMPLE. Somewhat informally, imagine that we are in a sce-
nario where each user picks a nonce randomizer J; € {0,1}". Then,
the nonce of the c-th message sent by user i is in particular J;&®c,
and is sent along with the message. More generally, the XOR can
be replaced by any operator B such that ({0, 1}”, &) is an abelian
group.

Our formalism allows us to capture this scenario by restrict-
ing ourselves to d-repeating adversaries A (for an appropriate d)
which only invoke the encryption oracle with queries of the form
ENc(i, J; B ci, A, M), where c; is a counter increased each time a
message is encrypted for user i. Note that we allow here A to make
unrestricted verification queries, exploiting the full power of our
model - this is consistent with the fact that a person-in-the-middle
attacker may attempt to inject ciphertexts with arbitrary nonces.

In particular, by an argument similar to that of Lemma 4.1, if
such A makes at most g < 2(1=e)r encryption/verification queries,
it is d-repeating for d = [1.5/€] — 1 except with probability 277/2.
Thus, for CAU, the mu security with respect to such A follows
from Theorem 3.1, and is such that
dp+q) +n(g+o+p) N o(2B+cn +2)

2k 2n
+2q+ 1 N o(o + ned) + 2pq Lorl2

22n ok+n
This is the same bounds as that obtained for RGCM in Theorem 4.3.
In particular, this means that we can obtain the same security for
GCM without keeping any part of the nonces secret and hence
potentially saving on key length.

Adviae (7)<
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