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ABSTRACT

Multi-user (mu) security considers large-scale attackers (e.g., state

actors) that given access to a number of sessions, attempt to compro-

mise at least one of them. Mu security of authenticated encryption

(AE) was explicitly considered in the development of TLS 1.3.

This paper revisits the mu security of GCM, which remains to

date the most widely used dedicated AE mode. We provide new

concrete security bounds which improve upon previous work by

adopting a refined parameterization of adversarial resources that

highlights the impact on security of (1) nonce re-use across users

and of (2) re-keying.

As one of the main applications, we give tight security bounds

for the nonce-randomization mechanism adopted in the record pro-

tocol of TLS 1.3 as a mitigation of large-scale multi-user attacks.

We provide tight security bounds that yield the first validation of

this method. In particular, we solve the main open question of Bel-

lare and Tackmann (CRYPTO ’16), who only considered restricted

attackers which do not attempt to violate integrity, and only gave

non-tight bounds.
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1 INTRODUCTION

Authenticated Encryption (AE) is symmetric encryption that pro-

tects both confidentiality and integrity, and is arguably the most

widely used primitive in applied cryptographyśin particular, it

protects data transmission in most in-use secure communication

protocols like TLS, IPSec, SSH, WPA-2, SRTP, etc.
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We consider an emerging concern in the Internet-wide adop-

tion of AE, namely large-scale adversaries, like state actors, which

can launch coordinated attacks against a large number u of ses-

sions (e.g., u = 220 or 230), which all use the same cryptographic

algorithms with independent keys. The setting of multi-user (mu)

security, introduced by Biham [6] in symmetric cryptanalysis and

by Bellare, Boldyreva, and Micali [3] in public-key cryptography,

deals with such attacks. More precisely, it considers attackers who

succeed as long as they can compromise at least one out of u ses-

sions (referred to as łusersž). As made evident in a series of recent

works [2, 7, 10, 11, 13, 18, 23], estimating how security degrades asu

grows is a challenging technical problem that affects the real world:

Indeed, the goal of mitigating mu attacks explicitly influenced de-

sign choices in the record protocol of TLS 1.3 [20, Appendix E.2],

which have however been adopted without full validation, as we

explain below.

Overview. This paper revisits AE, and more specifically the widely

adopted Galois Counter-Mode (GCM) scheme [17], in themu setting.

We prove new tight bounds for GCM which improve upon existing

ones [5, 13] by considering a fine-grained setting that assumes both

(1) a bound d on the number of users re-using any particular nonce,

and (2) a bound B on the amount of data encrypted by each user.

This allows us to analyze some deployment practices for GCM

that have a positive impact on mu security. On the one hand, we

show that frequent re-keying improves AE mu security. On the

other hand, we show howmu security is affected by policies adopted

to choose nonces, e.g., combining (secret) pseudorandom values

and counters. We refer to such techniques as nonce randomization.

We show, with precise tight bounds, that nonce randomization

increases the mu security of AE, and apply this insight to GCM-

based AE, confirming an intuition initially put forward in the design

of TLS 1.3.1 We also show that already in-place nonce selection

strategies in TLS 1.2 effectively improve mu security.

Prior to this work, Bellare and Tackmann (BT) [5] were the only

ones to rigorously study the specific GCM-based approach adopted

by TLS 1.3. As we discuss below, their analysis is non-tight and only

considers adversaries attempting to break confidentiality. Here, we

complete the picture with tight bounds and full AE security, and

resolve their main open question.

1.1 Mu Security and Nonce Randomization

Here, we follow the conventional AEAD interface which allows us

to (deterministically) encrypt a plaintext M , with a nonce N and

1As we detail below, such approaches were used before, but never was mu security
suggested as an explicit motivation for nonce randomization before TLS 1.3.

https://doi.org/10.1145/3243734.3243816
https://doi.org/10.1145/3243734.3243816


associated data A as a ciphertext EK (N ,A,M). Security is meant to

hold as long as no two pairs (M,A) are encrypted with the same N .

(We will not discuss nonce-misuse resistance [21] in this paper.)

The mu security of AE. One question is what is the best we can

expect from an AE scheme in terms of its mu security. To this end,

BT adapt a well-known generic key-recovery attack by Biham [6]

to AEAD. First, fix N ∗,A∗ andM∗, and obtain their encryption with

respect to u different users, which yields ciphertexts

Ci = EKi (N ∗,A∗,M∗) , i = 1, . . . ,u ,

where Ki is the key of the i-th user. The attacker’s goal is to recover

at least one of the Ki ’s. To do so, it makes p key-guesses K (e.g.,

random ones), and for each guess, computes C = EK (N ∗,A∗,M∗).
If C = Ci for some i , then K = Ki . It is not hard to see that the

probability that this attack succeeds is roughly u · p/2k , where k
is the key-length (e.g., k = 128 in GCM based on 128-bit AES).

Therefore, the effort to succeed is only p ≈ 2k−log(u).

Nonce randomization. The above generic attack is not always as

threatening in practice, as in-place policies for choosing nonces

limit its impact. Typically, an AE scheme would be invoked with

a nonce N which combines a (usually public) part like a counter,

to be sent along with the ciphertext, and an implicit part, often

secret and already known by the endpoints (this could be generated

as part of a prior handshake). McGrew [15] gives an overview of

such methods in an Internet Draft, and we refer to them as łnonce

randomizationž techniques.

For example, RFC 5288 [22]śwhich describes the GCM cipher-

suites for TLS 1.2śmandates nonces whose implicit part is a session-

dependent (pseudo)random salt generated as part of the handshake.

Thus, with u users, each nonce is re-used by (on average) u/232
users, and in the above attack, each ciphertextC can thus be checked

against at most u/232 ciphertexts (rather than u), reducing the suc-

cess probability to roughly u · p/2160 for a 128-bit key.
An even more effective approach (at least with respect to pre-

venting the above attack) are so-called łunpredictable noncesž, and

this is the approach taken by TLS 1.3 [20] and previously used

within the SRTP protocol [1]. Here, a secret random offset mask

J is chosen, and then, whenever we need to encrypt a message

with nonce N , it is encrypted with nonce N ⊕ J instead. BT [5]

analyzed this method in the specific case of GCM used by TLS 1.3,

casting it as a standalone AE scheme called RGCM. They fall short

of a full analysis, however, giving merely non-tight bounds that

confirm better-than-average passive (i.e., IND-CPA) security. We

stress that integrity is even more fundamental in the mu setting ś

indeed, while a single session can abort after a failed verification

attempt, mu attackers can spread forgery attempts across different

users, making uncoordinated attack detection much harder.

We note that with the exception of the standardization of TLS

1.3 [20, Appendix E.2], the treatment of mu attacks has not been

explicitly mentioned as a motivation, even though some of the

published motivating work [16] considered key-collision attacks

arising from two users having the same key, which are of course

special cases of mu attacks.

1.2 Our Results

In this paper, we complete the picture for the security of GCM in

the multi-user setting with tight and more refined bounds. These

will allow us to give precise bounds when nonce randomization

policies are applied to GCM.

The d-bounded model and RGCM.Here, we consider the mu ver-

sion of AE security from [5], which requires indistinguishability

from random ciphertexts in presence of a verification oracle. In ad-

dition, we adopt the model by Bose, Hoang, and Tessaro (BHT) [7],

which we refer to as the d-bounded model: it postulates that each

nonce can be re-used by at most d users for encryption. More

formally, the attacker gets to ask encryption queries of the form

(i,N ,A,M), which produce an encryption EKi (N ,A,M) under the
key Ki of the i-th user. Here, the constraints are that (1) for every

i , no two queries with the same N are asked, and (2) for every

N , there are at most d i’s for which a query (i,N ,A,M) is asked
for some M,A. However, its queries to the verification oracle are

unrestricted, and take the form (i,N ,A,C) and return true if and

only if C is a valid ciphertext under Ki for N and A.

The goal is to give security bounds which are parameterized by d .

Jumping ahead, this model allows us to see a nonce-randomization

policy as part of the adversary which ensures a certain d when

picking nonces.

Although we rely on the model proposed by BHT [7], we em-

phasize that our security goal is different - we consider only nonce-

respecting and do not consider misuse-resistance. While there is

some conceptual overlap due to the settings, apart from relying on

some balls-and-bins lemma from BHT our proofs proceed differ-

ently.

GCM in the d-bounded model. Our main technical result is an

analysis of CAU ś a generalization of GCM presented by BT ś in

the d-bounded model, assuming the underlying blockcipher is ideal.

We show that for every adversary making q encryption/verification

queries, p ideal-cipher queries, and encrypting/verifying overall σ

blocks of data, the advantage of breaking CAU’s AE security is of

the order2
d(p + q) + n(p + q + σ )

2k
+

σB

2n

wherek andn are the blockcipher key and block length, respectively,

and B is a bound on the number of blocks encrypted per user. We

stress that our bound does not depend on the number of users u,

which can depend on adaptive choice of the adversary, and can be

as high as q.

In comparison, BT [5] show a bound for the case where d is

unbounded (i.e., d = u) of order3

u(u + p)
2k

+

uσ 2

2n

This bound was (somewhat implicitly) improved later by [13], es-

sentially improving the second term to σ 2

2n only, which is the (tight)

single-user bound [12].

Why this bound matters. Our bound is interesting for its param-

eterization: It shows that when d is small, the security increases

2We omit lower-order terms, and small constant factors.
3For ease of comparison and to their advantage, we are replacing qℓ used by BT, where
ℓ is the maximal block length of an encrypted/verified message, with σ .



substantially, and this will enable an analysis of nonce random-

ization techniques. Even for the u = d case, the parameterization

with B shows important insights: First off, if we have u users, all

transmitting roughly the same amount of data B := σ/u, the term
becomes σ 2/(u2n )śmuch better than σ 2/2n as u grows. Moreover,

users normally re-key, ensuring no session transmits too much data,

and thus generally B can be fixed independently of σśmoreover,

the smaller (i.e., we re-key more often), the better. If for instance,

B = 233, n = 128, then this allows each user/session to encrypt up

to 240 bits = 232 bytes = 4.3 GB, yet the term becomes σ/295.
Nonce randomization methods: Generic transforms.We cast

both nonce-randomization schemes discussed above as generic

transformations building an AE scheme with longer keys from one

with shorter ones. The first one implements unpredictable nonces,

as in TLS 1.3 and SRTP, and we refer to it as XN. If the underlying

scheme uses a key K of length k and nonce length r , the resulting

scheme uses a key K ∥ J of length k + r . If we denote by E the

encryption of the given AE scheme, the encryption E∗ is such that

E∗(K ∥ J ,N ,A,M) = E(K ,N ⊕ J ,A,M) .

Note that XN still has r -bit nonces. For the specific case where E
comes from GCM, BT refer to this construction as RGCM.

An alternative construction, which reflects what is adopted in

TLS 1.2, for example, is what we refer to asCN. Here, for a parameter

t < r , the key is (k + t)-bits long (and has form K ∥ J ), and the

resulting nonce length is r − t . Then, we let

E∗(K ∥ J ,N ,A,M) = E(K , J ∥ N ,A,M) .

We are not aware of this construction having been studied explicitly.

We prove generic results that relate the security of the XN and

CN constructions to the d-bounded security of the underlying AE.

The intuition why this is possible is quite clear: For XN, for example,

every time an encryption query (i,N ,A,M) is made, this reflects

itself to encrypting with E using nonce N ′ = N ⊕ Ji , where Ji is

user i’s J -component of the key. This ensures that no N ′ is re-used
across too many usersśa fact that relies on the Ji ’s being secret,

and a balls-into-bins argument. In fact, because the Ji ’s are secret,

it turns out that a bound in a weaker version of the model, where

nonces are re-used for at most d users also in verification queries,

is enough. We briefly discuss below applications that require the

stronger model.

Bounds for RGCM: Old and new. One main consequence when

instantiating XN with GCM and our analysis in the d-bounded

model is that we can provide a complete and tight analysis of RGCM

which substantially improves upon [5]. Their analysis only shows

RGCM is no less secure than GCM, and give an improved bound

which only considers attackers not making verification queries.

BT’s bound is of the order (parameters as above, and r is the nonce

length)

u2 + 40p

2k
+

uσ 2

2n
+

upσ

2k+n
+

upq

2k+r
.

For example, if k = 128, then u can be at most 264.

We show a much stronger bound, crucially also taking into ac-

count verification queries. As long as q ≤ 2r (1−ϵ ) for some small

constant ϵ > 0, our bound is of the order

n(p + σ )
2k

+

σB

2n
+

σ 2
+ pq

2k+n
. (1)

Public Salting. The XN and CN constructions reflect practical

usage, and keep the value J secret. However, as we discuss briefly

below in the paper, our result in the d-bounded model enables us

to give a much stronger result which does not require J to be secret

at all, as long as nonces are not chosen arbitrarily by the adversary.

For example, if each user encrypts using nonces Ji ⊕ 0, Ji ⊕ 1,

Ji ⊕2, . . . and makes nonces public (thus Ji is known to the adversary

for each i), we can think of this as a particular adversary attacking

AE security of GCM and using such nonces. Then, our bound on

GCM implies similar security as that of RGCM without making J

secret (thus saving on key length). In particular, our bound holds

even if the attacker attempts verification queries with arbitrary

repeating nonces.

The ideal-cipher model. This paper relies on ideal models, and

in particular, the ideal-cipher model, for its analyses. This is a

common trait of most analyses in the mu regimeśone issue is that

we are particularly concerned here with how local computation

(approximated by the p ideal cipher queries) affects security, and

classical assumptions on blockciphers (PRP security) are not helpful

in making this type of statements.

2 PRELIMINARIES

Notation. Let ε denote the empty string. For a finite set S , we

let x ←$ S denote the uniform sampling from S and assigning the

value to x . Let |x | denote the length of the string x , and for 1 ≤
i < j ≤ |x |, let x[i, j] (and also x[i : j]) denote the substring from

the ith bit to the jth bit (inclusive) of x . If A is an algorithm, we let

y ← A(x1, . . . ; r ) denote running A with randomness r on inputs

x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the
result of picking r at random and letting y ← A(x1, . . . ; r ). In the

context that we use a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n ,
the block length of a string x , denoted |x |n , is max

{

1,
⌈

|x |/n
⌉}

.

2.1 Authenticated Encryption

An AE scheme Π is a triple (K, E,D) with message spaceM and

nonce spaceN . The encryption scheme E takes as input a key K ∈
K , a nonce N ∈ N , associated data A ∈ {0, 1}∗, a messageM ∈ M,

and deterministically returns a ciphertext C ← EK (N ,A,M). The
decryption schemeD takes as input a key K , a nonce N , associated

data A, a ciphertext C , and returns either a message M ∈ M, or

the error symbol ⊥. We require that, if C ← EK (N ,A,M) then
M ← DK (N ,A,C), for correctness.
Mu security of AE. Let Π[E] = (K, E,D) be an AE scheme on

top of an ideal cipher E : {0, 1}k × {0, 1}n → {0, 1}n . Let A be an

adversary. Define

Adv
mu-ae
Π[E] (A) = Pr[RealA

Π[E] ⇒ 1] − Pr[RandA
Π[E] ⇒ 1],

where games RealA
Π[E] and RandA

Π[E] are defined in Fig. 1. Un-

der each game, the adversary A is given access to three oracles

Enc,Vf, and Prim. For encryption queries Enc(i,N ,A,M), we



Game RealA
Π[E]

K1, K2, · · · ←$ K ; b′←$ AEnc,Vf,Prim; return b′

procedure Enc(i, N , A, M )
return EKi (N , A, M )

procedure Vf(i, N , A, C)
V ← DKi (N , A, C); return (V , ⊥)

procedure Prim(J , X )
if X = (+, x ) then return E J (x )
if X = (−, y) then return E−1

J
(y)

Game RandA
Π[E]

b′←$ AEnc,Vf,Prim; return (b′ = 1)

procedure Enc(i, N , A, M )
C ←$ {0, 1} |M |+λ ; return C

procedure Vf(i, N , A, C)
return false

procedure Prim(J , X )
if X = (+, x ) then return E J (x )
if X = (−, y) then return E−1

J
(y)

Figure 1: Games defining the multi-user security of an AE

scheme Π. This scheme is based on a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n . We assume that under the scheme Π, the

ciphertext is always λ-bit longer than the message.

require that the adversary must not repeat the pairs (i,N ). The ad-
versary can repeat nonces in the verification queriesVf(i,N ,A,C),
but to avoid trivial wins, once the adversary queriesEnc(i,N ,A,M)
to receive C , it is prohibited from querying Vf(i,N ,A,C).

We say that an adversary is d-repeating if it never uses the same

nonce for more than d users in encryption queries. We stress that a

d-repeating adversary can still repeat nonces across different users

in verification queries as often as it wishes. The single-user setting

corresponds to d = 1.

We say that an adversary is strongly d-repeating if for both en-

cryption and verification queries, it never uses the same nonce for

more than d users. While this restriction on verification queries

seems impossible to enforce, we shall see later that the mu-security

of RGCM against a generic adversary can be reduced to the mu-

security of GCM against a strongly d-repeating adversary, for some

small constant d . Similarly, the mu-security of the GCM scheme

used in TLS 1.2 can be reduced to the mu-security of GCM against

a strongly d-repeating adversary for an appropriate choice of d .

When we consider security against (strongly) d-repeating adver-

saries, we informally refer to this as the d-bounded model.

2.2 The H-coefficient Technique

Systems and Transcripts. Following the notation from [10] (which

was in turn inspired by Maurer’s framework [14]), it is convenient

to consider interactions of a distinguisher A with an abstract sys-

tem S which answers A’s queries. The resulting interaction then

generates a transcript τ = ((X1,Y1), . . . , (Xq ,Yq )) of query-answer

pairs. It is known that S is entirely described by the probabilities

pS(τ ) that correspond to the system S responding with answers as

indicated by τ when the queries in τ are made.

We will generally describe systems informally, or more formally

in terms of a set of oracles they provide, and only use the fact that

they define corresponding probabilities pS(τ ) without explicitly
giving these probabilities. We say that a transcript τ is valid for

system S if pS(τ ) > 0.

The H-coefficient techniqe.Wenowdescribe theH-coefficient

technique of Patarin [8, 19]. Generically, it considers a deterministic

distinguisher A that tries to distinguish a łrealž system Sreal from

an łidealž system Sideal. The adversary’s interactions with those sys-

tems define transcripts Treal and Tideal, respectively, and a bound

on the distinguishing advantage of A is given by the statistical

distance SD(Treal,Tideal).

Lemma 2.1. [8, 19] Suppose we can partition the set of valid tran-

scripts for the ideal system into good and bad ones. Further, suppose

that there exists ϵ ≥ 0 such that 1 − pSreal (τ )
pSideal (τ )

≤ ϵ for every good

transcript τ . Then,

SD(Tideal,Treal) ≤ ϵ + Pr[Tideal is bad] .

3 MULTI-SECURITY OF GCM

In this section, we consider the mu security of authenticated en-

cryption (AE) construction CAU [5], which includes GCM as a

special case. CAU loosely follows the encrypt-then-MAC paradigm,

where the encryption scheme is the CTR mode on a blockcipher

E : {0, 1}k ×{0, 1}n → {0, 1}n , and the MAC is the Carter-Wegman

construction via an almost XOR-universal (AXU) hash. We begin

by recalling the definition of AXU hash functions.

AXU hash. Recall that for a string x , the block length |x |n of x is

defined as max{1, ⌈|x |/n⌉}. We call H : K × {0, 1}∗ × {0, 1}∗ →
{0, 1}n a c-AXU hash if for any (M,A) , (M ′,A′) in {0, 1}∗×{0, 1}∗,
and any z ∈ {0, 1}n ,

Pr
K ←$ K

[HK (M,A)⊕HK (M ′,A′) = z]

≤ c ·max{|M |n + |A|n , |M ′ |n + |A′ |n }
2n

.

3.1 The CAU Scheme

Let E : {0, 1}k×{0, 1}n → {0, 1}n be a blockcipher. LetH : {0, 1}n×
({0, 1}∗ × {0, 1}∗) → {0, 1}n be a c-AXU hash. The nonce space

N of CAU is {0, 1}r , for r < n, and its key space is {0, 1}k . For a
string Z ∈ N , we write pad(Z ) to refer to the string Z0n−r−11. The
message space is the set of binary strings whose block length is

strictly less than 2n−r − 1.
On input (K ,N ,A,M), the encryption scheme first encryptsM

via the CTR mode of EK with IV pad(N ) + 1, to get a ciphertext

core C (that does not include the IV). It then computes a hash

key L ← EK (0n ), produces a tag T ← HL(A,C)⊕EK (pad(N )) and
then outputs T ∥C as the ciphertext. On input (K ,N ,A,T ∥C), the
decryption scheme first computes the hash key L← EK (0n ). Next,
if T , HL(A,C)⊕EK (pad(N )), it outputs ⊥. Otherwise, it uses the



procedure CAU.Enc(K, N , A, M )
// 0 ≤ |Mℓ | < n, and |Mi | = n otherwise

Y ← pad(N ); M1 · · ·Mℓ ← M

// Encrypt with CTR mode and IV Y + 1

for i = 1 to ℓ − 1 do Ci ← Mi ⊕EK (Y + i)
V ← EK (Y + ℓ); Cℓ ← Mℓ ⊕V [1 : |Mℓ |]; C ← C1 · · ·Cℓ

// Use Carter-Wegman with H

L ← EK (0n ); T ← HL (A, C)⊕EK (Y )
return T ∥C

procedure CAU.Dec(K, N , A, T ∥C)
L ← EK (0n ); Y ← pad(N )
// 0 ≤ |Cℓ | < n, and |Ci | = n otherwise

C1 · · ·Cℓ ← C ; T ′ ← HL (A, C)⊕EK (Y )
if T , T ′ then return ⊥
// Decrypt with CTR mode and IV Y + 1

for i = 1 to ℓ − 1 do Mi ← Ci ⊕EK (Y + i)
V ← EK (Y + ℓ); Mℓ ← Cℓ ⊕V [1 : |Cℓ |]; M ← M1 · · ·Mℓ

return M

Figure 2: The encryption (top) and decryption (bottom) of

the authenticated encryption scheme CAU. The scheme is

based on a blockcipher E and an AXU hash H .

decryption of CTR on EK with IV pad(N ) + 1 to decrypt C , and

outputs the corresponding messageM .

See Fig. 2 for the code of CAU. For GCM, the blockcipher E is in-

stantiated by AES, and thus n = 128 and k ∈ {128, 256}. The nonce
length r is 96 bits. The hash H is instantiated by the polynomial-

based hash function GHASH, and thus one can pick c = 1.5. To see

why, recall that in the original GCM document [17], McGrew and

Viega showed that for any two distinct pairs (M,A) and (M ′,A′),
and for any z ∈ {0, 1}n ,

Pr
K ←$ {0,1}n

[GHASHK (M,A)⊕GHASHK (M ′,A′) = z]

≤ ⌈(1 +max{|M | + |A|, |M ′ | + |A′})/n⌉
2n

≤ 1 +max{|M |n + |A|n , |M ′ |n + |A′ |n }
2n

≤ 1.5 ·max{|M |n + |A|n , |M ′ |n + |A′ |n }
2n

.

3.2 Security of CAU

Theorem 3.1 below gives a tight mu-security bound of CAU against

a d-repeating adversary. We stress that the bound σ in the theorem

takes into account the block length of both the message and the

associated data of an encryption/verification query.

Theorem 3.1 (Mu-security of CAU/GCM). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal

cipher, with k ≥ n ≥ 128. LetH be a c-AXU hash function. LetA be a

d-repeating adversary attacking CAU[H ,E] using at most p ≤ 2n−2

ideal-cipher queries, q encryption/verification queries of total block

length at most σ , and the total number of blocks in encryption queries

of each user is at most B. Then

Adv
mu-ae
CAU[H,E](A) ≤

d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 3)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

.

Discussion. It is important to note that the bound in Theorem 3.1

does not depend explicitly on the number of users, which can

become as large as q. The only dependence on users is through the

parameter d , which can be (but generally is not) as large as q. The

bound in Theorem 3.1 contains three important factors,
pd

2k
, nσ
2k

,

and σB
2n that correspond to actual attacks. We discuss them here,

which will be instrumental for understanding the proof below.

First, for the term
pd

2k
, consider the following attack. The adver-

sary picks an arbitrary nonce N , a long enough message M , and

makes d encryption queries (1,N ,A,M), . . . (d,N ,A,M), where A
is the empty string, to get answers C1, . . . ,Cd respectively. (Recall

that the adversary isd-repeating, so it cannot repeat a nonceN in en-

cryption queries for more than d users.) By picking p distinct candi-

date keysK1, . . . ,Kp and comparingCi withCAU.Enc(Kj ,N ,A,M)
for all 1 ≤ i ≤ d and 1 ≤ j ≤ p, the adversary can recover one key

with probability about
pd

2k
.

For the term nσ
2k

, consider the following attack. The adversary

first picks an arbitrary nonce N and p distinct candidate keys

K1, . . . ,Kp , and makes 2p ideal-cipher queries (Ki , (pad(N ),+)),
(Ki , (0n ,+)). The goal of the adversary is to make q verification

queries (j,N ,A,T ∥C), for j = 1, . . . ,q for associated data A and

ciphertextT ∥C of ℓ blocks total that it will determine later. To max-

imize its chance of winning, the adversary will iterate through all

possible tuples (A∗,T ∗ ∥C∗) of ℓ blocks total and compute count(A∗,
T ∗ ∥C∗), the number of ideal-cipher queries (Ki , (pad(N ),+))whose
answer is HLi (A∗,C∗)⊕T ∗, where Li ← EKi (0n ). It then picks

(A,T ∥C) to maximize count(A,T ∥C). Then the adversary wins

with advantage about E[count] · q/2k . The proof of Theorem 3.1

shows that E[count] ≤ nℓ = nσ
q with very high probability, and

thus the advantage of the adversary is at most nσ/2k .
For the term σB/2n , consider the following distinguishing attack.

The adversary will target u users, where u = ⌊σ/B⌋. Let M be an

arbitrary message of B blocks. Pick an arbitrary nonce N , and let

A be the empty string. The adversary then calls Enc(i,N ,A,M) to
receive Ti ∥Ci , for every i = 1, . . . ,u. If some ciphertext core Ci
contains two identical blocks then the adversary outputs 0, oth-

erwise it outputs 1. By using appropriate data structure, one can

implement this attack using O(B) space and O(σ ) time. To ana-

lyze the adversary’s advantage, we need the following technical

Lemma 3.2 and Lemma 3.3. The first result states a well-known

lower bound for the birthday bound; see, for example, [9, Appendix

A] for a proof. The second result is a useful inequality whose proof

can be found in [4].

Lemma 3.2 (Lower bound for birthday bound). Let N > 0 be

an integer. Suppose that we throw 1 ≤ q ≤
√
2N balls into N bins

uniformly at random. Then the chance that there are two balls that

fall into the same bin is at least
q(q−1)
4N .



Lemma 3.3. [4] Let p ≥ 1 be an integer and a ≥ 0 a real number.

Assume ap ≤ 1. Then (1 − a)p ≤ 1 − ap/2.

Back to the analysis, in the ideal world, each Ci is a truly ran-

dom B−block string, and thus from Lemma 3.2, the chance that it

contains two identical blocks is at least
B(B−1)
4·2n . Hence in the ideal

world, the chance that the adversary outputs 1 is at most

(

1 − B(B − 1)
2n+2

)u
≤ 1 − B(B − 1)u

2n+3
≈ 1 − σB

2n+3

where the inequality is due to Lemma 3.3. In contrast, in the real

world, the adversary will always output 1. Hence the adversary

wins with advantage about σB
2n+3

.

The term σB/2n also deserves some further discussion. It con-

veys an important message, and namely that as B becomes smaller,

the term becomes closer to σ/2n . A small B could be enforced, for

example, by ensuring that a session in a protocol only transfers

a bounded amount of data before a re-keying operation is issued.

In other words, re-keying only improves multi-user security. This

is important, when compared to the single-user security analysis,

which gives a bound of the order σ 2/2n . (Of course, if we have one
single user, then B = σ .)

Proof ideas. The proof examines several cases but here we discuss

two illustrative ones that correspond to the two attacks above. First,

consider the event that the adversary can query Prim(K , (x ,+))
and query Enc(i,N ,A,M) such that K = Ki and x ∈ {pad(N ), . . . ,
pad(N ) + ℓ}, where ℓ = |M |n . This case includes the first attack
above. Note that for any queryPrim(K , (x ,+)), since the adversary
isd-repeating, there are at mostd queriesEnc(i,N ,A,M) such that
x ∈ {pad(N ), . . . , pad(N ) + ℓ}, where ℓ = |M |n , and the chance

that some of these d latter queries satisfies Ki = K is at most d/2k .
Hence, this case happens with probability at most dp/2k .

On the other hand, in GCM, every user i derives the hash key Li
via EKi (0n ). Thus by querying Prim(K , (0n ,+)) for p keys K , the

adversary may accidentally obtain some blockcipher key Ki and its

associated hash key Li with probability about pu/2k , whereu is the

number of users, and in the worst case, u can be as large as q. This

creates a problem in using the AXU-property of the hash function

H , since we can no longer treat the hash keys as independent of the

queries. This is exactly the issue in the second attack above, where

the adversary adaptively picks verification queries after seeing the

hash keys.

To make the analysis simpler, at the beginning, we will even

grant the adversary all pairs (K ,EK (0n )) for every K ∈ {0, 1}k ,
and this can only help the adversary. However, now when we pick

Ki ←$ {0, 1}k , the corresponding key Li ← EKi (0n ) is no longer

uniformly random. To understand the distribution of the key Li ,

we need the following balls-into-bins result of Bose, Hoang, and

Tessaro [7].

Lemma 3.4 ([7]). Fix integers n ≥ 128, ℓ ≥ 2, and a ≥ 1. Suppose

that we throw q ≤ a · 2n balls into 2n bins. The throws may be inter-

dependent, but for each i-th throw, conditioning on the result of the

prior throws, the conditional probability that the i-th ball falls into

any particular bin is at most 21−n . Then the chance that the heaviest

bin contains ⌈aℓn/2⌉ or more balls is at most 2−(3ℓ+2)n .

Now, view each granted pair (K ,EK (0n )) as throwing a ball into

bin EK (0n ). Thus we throw 2k balls uniformly at random into

2n bins. Thus using Lemma 3.4 with a = 2k−n and ℓ = 2, with

probability at least 1−2−8n , each bin contains at most n · 2k−n balls.

Thus for any L ∈ {0, 1}n , there are at most n · 2k−n keys K such

that EK (0n ) = L. In other words, when we pick Ki ←$ {0, 1}k , the
conditional min-entropy of Li is at least− lg(n ·2k−n/2k ) = n−lg(n).

Going back to the dependency issue of the hash keys and its

inputs, a particularly tough case is to analyze the probability that

the adversary can first make a query Prim(K , (pad(N ),+)) and
obtain answer y and then query Vf(i,N ,A,T ∥C), and it happens

that K = Ki and HLi (A,C)⊕T = y, where Ki is the blockcipher key
of user i , and Li ← EK (0n ). This case includes the second attack

above. To deal with this case, we employ a trick from [7]. Specifically,

consider a fixed tuple (N ∗,A∗,C∗) and let ℓ = |A∗ |n + |C∗ |n . View
each query Prim(K , (pad(N ∗),+)) of answer y as throwing a ball

into bin HL(A∗,C∗)⊕y, where L ← EK (0n ). By Lemma 3.4 above,

with probability at least 1 − 2−(3ℓ+2)n , each bin contains at most ℓn

balls. Thus for an adaptiveT , the number count∗ of matching ideal-

cipher queries is at most ℓn = (|A∗ |n + |C∗ |n )n, with probability at

least 1 − 2−(3ℓ+2)n . Then for any adaptive choice (N ,A,T ∥C), the
chance that there are at most (|A|n + |C |n ) ·n matching ideal-cipher

queries is at least

1 −
∞
∑

ℓ=2

∑

(i∗,N ∗,A∗,C∗): |A∗ |n+ |C∗ |n=ℓ
2−(3ℓ+2)n

≥ 1 −
∞
∑

ℓ=2

22n+2ℓ · 2−(3ℓ+2)n ≥ 1 − 2

22n
.

Hence, the chance that the case above happens is at most nσ/2k +
2q/22n .

Proof (of Theorem 3.1). Without loss of generality, assume

that σ ≤ 2n/n; otherwise the bound is moot. As mentioned earlier,

at the beginning, we will give the adversary (K ,EK (0n )) for every
K ∈ {0, 1}k , and this can only help the adversary. Because we

consider computationally unbounded adversaries, without loss of

generality, assume thatA is deterministic, and never repeats a prior

query. Assume that if the adversary queries Prim(K , (x ,+)) to get

an answer y then it will not subsequently query Prim(K , (y,−)),
since the answer would be x . Likewise, assume that if the adver-

sary queries Prim(K , (y,−)) to get an answer x then it will not

later query Prim(K , (x ,+). Our proof is based on the H-coefficient

technique.

Defining bad transcripts. In the real world, after the adversary

finishes querying, we will give it the blockcipher keys Ki of all

users i . In the ideal world, we instead give the adversary truly

random strings Ki ←$ {0, 1}k , independent of the transcript. Thus
the transcript implicitly includes the hash keys Li ← EKi (0n ).
This key revealing only helps the adversary. Thus a transcript

consists of the revealed keys, the granted ideal-cipher queries, and

the following information:

• Ideal-cipher queries: For each queryPrim(K , (x ,+))with
answer y, we associate it with an entry (prim,K ,x ,y,+).
Likewise, for each query Prim(K , (y,−)) with answer x , we



associate it with an entry (prim,K ,x ,y,−). We stress that

we do not create prim entries for the granted ideal-cipher

queries, and thus there are at most p prim entries.

• Encryption queries: For each query Enc(i,N ,A,M) with
answer T ∥C , let M = M1 · · ·Mℓ and C = C1 · · ·Cℓ , with

0 ≤ |Mℓ | = |Cℓ | < n, and |Mj | = |Cj | = n for every j < ℓ. For
each j < ℓ, letVj = Mi⊕Cj . LetV0 = HLi (A,C)⊕T . If |Mℓ | =
0 then let V ← V0 · · ·Vℓ−1, otherwise let V ← V0 · · ·Vℓ ,
where Vℓ ← EKi (pad(N ) + ℓ) in the real world, and Vℓ ←
(Cℓ⊕Mℓ) ∥ Z in the ideal world, withZ ←$ {0, 1}n−|Mℓ | . The
string V is revealed to the adversary when it finishes query-

ing, which can only improve its advantage. Associate the

query above with the entry (enc, i,N ,A,M,T ∥C,V ).
• Verification queries: For each queryVf(i,N ,A,T ∥C), as-
sociate it with entry (vf, i,N ,A,T ∥C). Note that we do not

need to keep track of the answers of the verification queries,

since for any valid transcript in the ideal world, the answers

of all verification queries must be false.

We say that a transcript is bad if one of the following happens:

(1) There are two entries (enc, i,N ,A,M,T ∥C,V ) and (enc, j,
N ,A′,M ′,T ′ ∥C ′,V ′) with i , j but Ki = Kj . Eliminating

this case removes potential inconsistency due to the nonce

reuse.

(2) There is an entry (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and some

indices 0 ≤ s < t ≤ ℓ such that Vs = Vt . Recall that in the

real world, Vs and Vt are outputs of EKi on different inputs

pad(N )+s and pad(N )+t . Thus in the real world, the strings

Vs and Vt can’t be the same.

(3) There are two entries (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and
(enc, j,N ′,A′,M ′,T ′ ∥C ′,V ′0 · · ·V

′
u ) with N , N ′ and with

some indices s and t such that Ki = Kj , and Vs = V
′
t . Again,

in the real world, Vs and V
′
t are outputs of EKi on different

inputs pad(N ) + s and pad(N ′) + t . Thus in the real world,

the strings Vs and V
′
t can’t be the same.

(4) There is an entry (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and an in-

dex t such that Vt = Li . Recall that in the real world, Li =

EKi (0n )whereasVt is the output of EKi on input pad(N )+t ,
0n . Thus in the real world, the strings Li and Vt must be dif-

ferent.

(5) There are two entries (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and
(prim,K ,x ,y, ·) such that K = Ki and x ∈ {pad(N ), . . . ,
pad(N ) + ℓ}. Eliminating this case removes the potential

inconsistency due to the adversary’s accidental query of a

correct key.

(6) There are two entries (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and
(prim,K ,x ,y, ·) such that K = Ki and y ∈ {V0, . . . ,Vℓ}.
Again, eliminating this case removes the potential incon-

sistency due to the adversary’s accidental query of a correct

key.

(7) There are two entries (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) and
(vf, j,N ,A′,T ′ ∥C ′) such thatV0 = HLj (A′,C ′)⊕T ′ andKi =
Kj . This means that the adversary should have received the

answer true for this verification query, but recall that for

valid transcripts in the ideal world, the answer must be false,

leading to inconsistency.

(8) There are entries (vf, i,N ,A,T ∥C) and (prim,K ,x ,y, ·) such
that K = Ki and HLi (A,C)⊕T = y and x = pad(N ). This
means that the adversary should have received the answer

true for this verification query, but recall that for valid tran-

scripts in the ideal world, the answer must be false, leading

to inconsistency.

If a transcript is not bad and is valid for the ideal system then we

say that it is good.

Probability of bad transcripts. Let Tideal be the random vari-

able for the transcript in the ideal system. We now bound the

probability that Tideal is bad. For each j ∈ {1, . . . , 8}, let Badj be the
set of transcripts that violates the j-th constraint of badness. View

each granted query (K ,EK (0n )) as throwing a ball into bin EK (0n ).
Thus we throw 2k balls into 2n bins uniformly at random. By ap-

plying Lemma 3.4 for a = 2k−n and ℓ = 2, with probability at least

1−2−8n , for every string L ∈ {0, 1}n , there are at most n ·2k−n keys

K such that EK (0n ) = L. In other words, given the queries/answers

that the adversary receives, the conditional min-entropy of each

hash key Li is at least n − lg(n).
We first bound the probability Pr[Tideal ∈ Bad1]. For each entry

(enc, i,N , ·, ·, ·, ·), there are at most d other entries (enc, j,N , ·, ·, ·, ·)
such that j , i , and the chance that one of those d entries satisfy

Kj = Ki is at most d/2k . Summing over at most q encryption

entries,

Pr[Tideal ∈ Bad1] ≤
dq

2k
.

Next, we bound the probability Pr[Tideal ∈ Bad2]. Consider an en-
try (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ). Since we are in the ideal world,

the stringsV0, . . . ,Vℓ are uniformly random and independent. Thus

the chance that there are 0 ≤ s < t ≤ ℓ such thatVs = Vt is at most

ℓ(ℓ + 1)
2n+1

≤ ℓB
2n
≤ |M |n · B

2n
.

Summing this over all encryption queries,

Pr[Tideal ∈ Bad2] ≤
σB

2n
.

Next, we bound the probability Pr[Tideal ∈ Bad3]. For each entry

(enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ), consider another entry (enc, j,N ′,
A′,M ′,T ′ ∥C ′,V ′0 · · ·V

′
u ). Sincewe are in the ideal world, the strings

V0, . . . ,Vℓ ,V
′
0 , . . . ,V

′
u are uniformly random and independent, and

thus the chance that there are s, t such that Vs = V ′t is at most

(ℓ + 1)(u + 1)/2n ≤ (|M |n + |A|n )(|M ′ |n + |A′ |n )/2n . We consider

the following cases.

Case 1: i = j, and thus Ki = Kj . By summing over all encryption

entries of user j, we obtain a bound (|M |n + |A|n )B/2n for the

particular entry (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) above. Summing

this over all encryption entries, the probability corresponding to

this case is at most σB/2n .
Case 2: i , j, and thus the conditional probability that Ki = Kj

is 2−k . Summing over all pairs of encryption entries, we obtain a

bound σ 2/2k+n for this case.

Summing up,

Pr[Tideal ∈ Bad3] ≤
σB

2n
+

σ 2

2k+n
.



We now bound the probability Pr[Tideal ∈ Bad4]. For each en-

cryption entry (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ), the stringsV0, . . . ,Vℓ
are uniformly random and independent of Li , and thus the chance

that there is some Vs such that Vs = Li is at most (ℓ + 1)/2n ≤
(|M |n + |A|n )/2n . Summing this over all encryption entries,

Pr[Tideal ∈ Bad4] ≤
σ

2n
.

Next, we bound the probability Pr[Tideal ∈ Bad5]. For each en-

try (prim,K ,x ,y), there are at most d entries (enc, i,N ,A,M,T ∥C,
V0 · · ·Vℓ) such that x ∈ {pad(N ), . . . , pad(N ) + ℓ}, and the chance

that one of thosed entries satisfiesKi = K is at mostd/2k . Summing

over all p ideal-cipher queries,

Pr[Tideal ∈ Bad5] ≤
dp

2k
.

Next, we bound the probability Pr[Tideal ∈ Bad6]. View each

entry (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) as throwing ℓ + 1 ≤ |M |n +
|A|n balls into bins V0, . . . ,Vℓ . Hence totally, we throw at most σ

balls into 2n bins, and the throws are uniformly random. Using

Lemma 3.4, with probability at least 1 − 2−8n , each bin contains at

mostn balls. Thus for each entry (prim,K ,x ,y, ·), there are at mostn

entries (enc, i,N ,A,M,T ∥C,V0 · · ·Vℓ) such that y ∈ {V0, . . . ,Vℓ},
and the chance that one of those n entries satisfies Ki = K is at

most n/2k . Summing over all p ideal-cipher queries,

Pr[Tideal ∈ Bad6] ≤ 2−8n +
pn

2k
.

We now bound the probability Pr[Tideal ∈ Bad7]. Consider an
entry (vf, i,N ,A′,T ′ ∥C ′). Since the adversary is d-repeating, there
are at most d entries (enc, j,N ,A,M,T ∥C,V0 · · ·Vℓ) of the same

nonce N . We consider the following cases.

Case 1: j = i . As H is c-AXU and the conditional min-entropy of Li
is at least n − lg(n), the chance that HLi (A′,C ′)⊕T ′ = HLi (A,C)⊕T
is at most

nc(|C ′ |n + |A′ |n + |C |n + |A|n )/2n .
Summing that over all verification queries, the probability corre-

sponding to this case is at most ncσ/2n .
Case 2: j , i . As H is c-AXU and the conditional min-entropy of Li
is at least n − lg(n), the chance that HLi (A′,C ′)⊕T ′ = HLi (A,C)⊕T
is at most

nc(|C ′ |n + |A′ |n + |C |n + |A|n )/2n .
Conditioning on HLi (A′,C ′)⊕T ′ = HLi (A,C)⊕T , the chance that
Ki = Kj is at most 2−k . Summing this over all verification queries

and all d matching encryption entries, the probability correspond-

ing to this case is at most ncdσ/2k+n .
Combining both cases,

Pr[Tideal ∈ Bad7] ≤
ncσ

2n
+

ncdσ

2k+n
.

Finally, we bound the probability Pr[Tideal ∈ Bad8]. We consider

the following cases.

Case 1: The event Tideal ∈ Bad8 is caused by a prim entry of sign −.
View each entry (prim,K ,x ,y,−), as throwing a ball into biny. Thus
we throw at most p balls into 2n bins, and while the throws can

be inter-dependent, their distribution satisfies the requirement of

Lemma 3.4 due to the hypothesis thatp ≤ 2n−2. Then by Lemma 3.4,

with probability at least 1 − 2−8n , the heaviest bin contains at most

n balls. Hence for each entry (vf, i,N ,A,T ∥C), there are at most n

entries (prim,K ,x ,y,−) such that x = pad(N ), and the chance that

one of those prim entries satisfies the property K = Ki is at most

n/2k . Summing over all q verification queries, the chance that this

case happens is at most 2−8n + qn/2k .
Case 2: The event Tideal ∈ Bad8 is caused by a prim entry of

sign + and a prior Vf query. Consider an entry (prim,K ,x ,y,+).
The chance that there is a prior entry (vf, i,N ,A,T ∥C) such that

HL(A,C)⊕T = y, with L ← EK (0n ), and Ki = K is at most

q/2k (2n − p) ≤ 2q/2k+n . Summing over all p ideal-cipher queries,

the chance that this case happens is at most 2pq/2k+n .
Case 3: The event Tideal ∈ Bad8 is caused by a prim entry of

sign + and a subsequent Vf query. Fix (i∗,N ∗,A∗,C∗) and let

ℓ = |C∗ |n + |A∗ |n . View each entry (prim,K ,x ,y,+) as throw-

ing a ball into bin y⊕HL(A∗,C∗), where L ← EK (0n ). Thus we
throw at most p balls into 2n bins, and while the throws can

be inter-dependent, their distribution satisfies the requirement of

Lemma 3.4 due to the hypothesis thatp ≤ 2n−2. Then by Lemma 3.4,

with probability at least 1 − 2−(3ℓ+2)n , the heaviest bin contains

at most ℓn/2 balls. Thus for any adaptive choice of T , the en-

try (vf, i∗,N ∗,A∗,T ∥C∗) has at most nℓ/2 corresponding entries

(prim,K ,x ,y,−) such that y⊕HL(A∗,C∗) = T , with L ← EK (0n ).
Then for any adaptive entry (vf, i,N ,A,T ∥C), the chance that it
has at most n(|C |n + |A|n ) corresponding entries (prim,K ,x ,y,−)
such that y⊕HL(A,C) = T , with L← EK (0n ), is at least

1 −
∞
∑

ℓ=2

∑

(i∗,N ∗,A∗,C∗): |A∗ |n+ |C∗ |n=ℓ
2−(3ℓ+2)n

≥ 1 −
∞
∑

ℓ=2

22n+2ℓ · 2−(3ℓ+2)n ≥ 1 − 2

22n
.

Moreover, the probability that one of those n(|C |n + |A|n ) entries
(prim,K ,x ,y,+) satisfies K = Ki is at most n(|C |n + |A|n )/2k . Sum-

ming over all verification queries, the chance that this case happens

is at most nσ/2k + 2q/22n .
Hence by the union bound,

Pr[Tideal ∈ Bad8] ≤
1

28n
+

2q

22n
+

2pq

2k+n
+

n(q + σ )
2k

.

Thus totally,

Pr[Tideal is bad] ≤
8
∑

i=1

Pr[Tideal ∈ Badi ]

≤ d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 1)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

. (2)

Transcript Ratio. Fix a good transcript τ . For a key K ∈ {0, 1}k ,
let the multi-set S1(K) be the union of {(x ,y) | (prim,K ,x ,y, ·) ∈ τ }
and the set {(0n ,EK (0n ))} as indicated by τ . Next, initialize the

multi-set S2(K) as the empty set, and for every entry (enc, i,N ,A,M,
T ∥C,V0 · · ·Vℓ) ∈ τ , if τ indicates that Ki = K then add the pairs

(pad(N ),V0), . . . , (pad(N ) + ℓ,Vℓ) to S2(K). Finally, initialize the



multi-set S3(K) as the empty set, and for every (vf, i,N ,A,T ∥C) ∈
τ , if τ indicates that Ki = K and there is no entry of the form

(pad(N ), ·) or (·,Z ) in S1(K) ∪ S2(K), where Z ← HLi (A,C)⊕T ,
then add the pair (pad(N ),Z ) to S3(K). Let

s =
∑

K ∈{0,1}k
|S3(K)|

which is at most the total number of verification queries. Thus

s ≤ q.

Suppose that this transcript τ contains exactly u users. Then in

the ideal world, since τ is good,

pSideal (τ ) = 2−ku
∏

K ∈{0,1}k

|S1(K ) |−1
∏

i=0

1

2n − i ·
|S2(K ) |−1
∏

j=0

1

2n
.

On the other hand, in the real world, the multi-sets S1(K) and S2(K)
indicate pairs (x ,y) such that EK (x) must be y, and the multi-set

S3(K) indicate pairs (u,v) such that EK (u) must not be v . Since τ

is good, those multi-sets contain no conflicting information, and

S1(K) and S2(K) are disjoint. Let V (K) = |S1(K)| + |S2(K)|. Note
that V (K) + |S3(K)| ≤ σ + q + p + 1 ≤ 2n−1. Then

pSreal (τ ) ≥ 2−ku
∏

K ∈{0,1}k

V (K )−1
∏

i=0

1

2n − i

|S3(K ) |−1
∏

j=0

(

1− 1

2n −V (K) − j
)

.

Hence

pSreal (τ )
pSideal (τ )

≥
∏

K ∈{0,1}k

|S3(K ) |−1
∏

j=0

(

1 − 1

2n −V (K) − j
)

≥
∏

K ∈{0,1}k

|S3(K ) |−1
∏

j=0

(

1 − 1

2n −V (K) − |S3(K)|
)

≥
∏

K ∈{0,1}k

|S3(K ) |−1
∏

j=0

(

1 − 1

2n−1

)

=

(

1 − 1

2n−1

)s
≥ 1 − s

2n−1
≥ 1 − q

2n−1
, (3)

where the second last inequality is due to the fact that (1 − x)t ≥
1 − tx for any t ≥ 1 and any 0 < x < 1.

Wrapping up. From Eq. (2) and Eq. (3), by using Lemma 2.1 with

ϵ = 2q/2n ≤ 2σ/2n ,

Adv
mu-ae
CAU[H,E](A) ≤

d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 3)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

.

as claimed. �

Remarks. In TLS, an adversary can attempt at most one verification

query per user, because a verification failure causes termination

of the connection. One might wonder if the security of GCM can

be improved in this restricted setting. In other words, we are in-

terested in security of GCM against an adversary who, for each

user, must make at most a verification query, and this verification

query is made after all encryption queries for that particular user.

procedure K∗()
K ←$ K(); J ←$ {0, 1}r ; return K ∥ J

procedure E∗(K ∥ J , N , A, M )
N ∗ ← N ⊕ J ; C ←$ E(K, N ∗, A, M ); return C

procedure D∗(K ∥ J , N , A, C)
N ∗ ← N ⊕ J ; M ← D(K, N ∗, A, C); return M

Figure 3: The XN transform to turn an AE scheme Π =

(K, E,D) to another AE scheme Π∗ = (K∗, E∗,D∗).

However, any bound for such an adversary will continue to contain

the bottleneck terms
pd

2k
and σB

2n , as there are matching attacks that

only use encryption and ideal-cipher queries. Thus in the restricted

setting above, the bound can only be slightly improved at best.

4 RGCM AND THE XOR TRANSFORM

In this section, we introduce the XN transform that turns an AE

scheme Π into another AE scheme Π∗ by randomizing the effective

nonces via an XOR operation. The scheme RGCM can be viewed as

XN(GCM). We then reduce the mu security of Π∗ under a generic
adversary to that of Π under a strongly d-repeating adversary,

where d is a small constant.

The XN transform. Let Π = (K, E,D) be an AE scheme of nonce

length r and key lengthk . Define the AE schemeΠ∗ = (K∗, E∗,D∗)
of nonce length r and key length k + r as in Fig. 3. For a key K ∥ J
of Π∗, we refer to the subkey K the encryption key, and the subkey

J as the nonce randomizer.

Security gain via XN. We now reduce security of Π∗ = XN(Π)
under a generic adversary to that of Π under a strongly d-repeating

adversary. This seems to be just a direct corollary of a generalized

balls-into-bins result, where one throws q inter-dependent balls

into 2r bins as follows: (1) the marginal distribution of each ball is

uniformly random, (2) balls of the same user must fall into different

bins, and (3) balls of different users are independent. This balls-into-

bins phenomenon is analyzed in Lemma 4.1 below.

Lemma 4.1. Let 0 < ϵ < 1 be a number, and let r ≥ 1 be an integer.

Suppose that we throw q ≤ 2(1−ϵ )r balls into 2r bins. Before each ball

is thrown, it is associated with a user i . The marginal distribution of

each ball is uniformly random, balls of the same user must fall into

different bins, and balls of different users are independent. Let X be

the random variable for the number of balls in the heaviest bin, and

let d = ⌈1.5/ϵ⌉ − 1. Then

Pr[X > d] ≤ 2−r/2 .

Proof. Let s = d + 1 = ⌈1.5/ϵ⌉. Since we throw q balls, there

are
(

q

s

)

≤ qs

s!

sets of s balls. For each set, if it contains two balls of the same user

then the balls in this set cannot be in the same bin. Otherwise, the

balls in this set are thrown uniformly and independently, and thus



the chance that they are in the same bin is 2−r (s−1). By the union

bound, the chance that there is a bin of s or more balls is at most

qs

2r (s−1)
≤ 2(1−ϵ )r s

2r (s−1)
=

1

2r (ϵs−1)
≤ 1

2r/2
.

This concludes the proof. �

Back to the security gain via the XN transform, the analysis

above however only holds if the adversary non-adaptively chooses

its nonces. If the adversary is somehow able to adaptively learn the

nonce randomizers via its queries, it can then repeat the effective

nonces as often as it wishes. Theorem 4.2 below refines the prior

naive argument to handle adaptivity.

Theorem 4.2. Let E be a blockcipher that we will model as an

ideal cipher. Let Π[E] = (K, E,D) be an AE scheme of nonce length

r , and let Π∗[E] = XN(Π[E]). Fix 0 < ϵ < 1. Let A be an adversary

attacking Π
∗ using at most q ≤ 2(1−ϵ )r Enc queries. Then we can

construct a strongly d-repeating adversary B of the same concrete

query complexity as A, where d = ⌈1.5/ϵ⌉ − 1, such that

Adv
mu-ae
Π∗[E] (A) ≤ Adv

mu-ae
Π[E] (B) +

1

2r/2
.

Proof. Adversary B initializes a flag bad← false and runs A
with direct access to its ideal cipher. For each encryption query

(i,N ,A,M) (respectively, verification query (i,N ,A,C)) of the lat-
ter, B initializes Ji ←$ {0, 1}r if the string Ji is not defined, oth-

erwise it uses the existing Ji , and then creates an effective nonce

N ∗ ← N⊕Ji . If B did use N ∗ for d other users previously, it’ll

set bad← true, terminate A, and output 1. Otherwise, B queries

C ← Enc(i,N ∗,A,M) (respectively, Vf(i,N ∗,A,C)), and returns

the answer to A. When A finishes (without being terminated pre-

maturely) and outputs a bit b ′, adversary B will output the same bit.

Note that B is strongly d-repeating, and for each individual user,

if A does not repeat a nonce among encryption queries then B
also does not repeat an effective nonce among encryption queries.

Moreover,

Pr[RealB
Π[E] ⇒ 1] ≥ Pr[RealA

Π∗[E] ⇒ 1] , (4)

becauseB either outputs 1, or agrees withA. Since game RandA
Π∗[E]

and the game that B simulates in its ideal world are identical until

bad is set,

Pr[RandB
Π[E] ⇒ 1]

≤ Pr[RandB
Π[E] sets bad] + Pr[Rand

A
Π∗[E] ⇒ 1] . (5)

Subtracting Eq. (5) from Eq. (4) side by side, we obtain

Adv
mu-ae
Π[E] (B) ≥ Adv

mu-ae
Π∗[E] (A) − Pr[Rand

B
Π[E] sets bad] .

It now suffices to show that Pr[RandB
Π[E] sets bad] ≤ 2−r/2. Recall

that B sets bad to true only if adversary A can force B to use

some effective nonce across more than d users. However, in game

RandB
Π[E], the oracle answers are completely independent of the

nonce randomizers Ji thatB chooses. Hence one can view RandB
Π[E]

asA’s throwingq balls into 2r bins where the throwing distribution

is specified in Lemma 4.1, and bad is set only if some bin contains d

procedure K∗()
K ←$ K(); J ←$ {0, 1}t ; return K ∥ J

procedure E∗(K ∥ J , N , A, M )
N ∗ ← J ∥ N ; C ←$ E(K, N ∗, A, M ); return C

procedure D∗(K ∥ J , N , A, C)
N ∗ ← J ∥ N ; M ← D(K, N ∗, A, C); return M

Figure 4: The CN transform to turn an AE scheme Π =

(K, E,D) to another AE scheme Π∗ = (K∗, E∗,D∗).

or more balls. From Lemma 4.1, RandB
Π[E] sets bad with probability

at most 2−r/2 as claimed. �

Security of RGCM. Combining Theorem 4.2 above with Theo-

rem 3.1, we immediately obtain a strong security bound forRCAU =

XN(CAU), which includes RGCM as a special case for c = 1.5,

r = 96, n = 128 and k ∈ {128, 256}.

Theorem 4.3 (Mu-security of RCAU/RGCM). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal

cipher, with k ≥ n ≥ 128. Let H be a c-AXU hash function, and let r

be the nonce length. Fix a number 0 < ϵ < 1, and let d = ⌈1.5/ϵ⌉ − 1.
LetA be an adversary attacking RCAU[H ,E] using at mostp ≤ 2n−2

ideal-cipher queries, q ≤ 2(1−ϵ )r encryption/verification queries of

total block length at most σ , and the encryption queries are of at most

B blocks per user. Then

Adv
mu-ae
RCAU[H,E](A) ≤

d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 2)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

+ 2−r/2 .

5 THE CONCATENATION TRANSFORM

In this section, we introduce the CN transform that turns an AE

scheme Π into another AE scheme Π∗ by randomizing the effective

nonces by concatenating a random string. We then reduce the

mu security of Π∗ under a generic adversary to that of Π under

a strongly d-repeating adversary. This transformation is used, for

example, in the GCM scheme in TLS 1.2 and IPSec.

The CN transform. Let Π = (K, E,D) be an AE scheme of nonce

length r and key length k . For a parameter t < r , define the AE

scheme Π∗ = (K∗, E∗,D∗) of nonce length r − t and key length

k + t as in Fig. 4. For a key K ∥ J of Π∗, we refer to the subkey K

the encryption key, and the subkey J as the nonce randomizer.

Security gain via CN. We now reduce security of Π∗ = CN(Π)
under a generic adversary to that of Π under a strongly d-repeating

adversary. To prove this theorem, we need the following lemma

whose proof is along the same lines as that of Lemma 3.4 [7] except

with the assumption that t ≥ 32 instead of t ≥ 128. We briefly recall

the proof for completeness.

Lemma 5.1. Fix integers t ≥ 32, and a, ℓ ≥ 2. Suppose that we

throw q ≤ a ·2t balls into 2t bins. The throws may be inter-dependent,

but for each i-th throw, conditioning on the result of the prior throws,



the conditional probability that the i-th ball falls into any particular

bin is at most 21−t . Then the chance that the heaviest bin contains

⌈aℓt/2⌉ or more balls is at most 2−t (2ℓ−1).

Proof. Let s = t − 1 and r = ⌈aℓt/2⌉ ≥ 32a. There are
(

q

r

)

≤ qr

r !

sets of r balls out of the thrown q balls. For each set, the chance

that all the balls are in the same bin is 2−s(r−1). By the union bound,

the chance that there is a bin of r or more balls is at most

qr

r ! · 2s(r−1)
≤ (2a)

r 2r s

r ! · 2s(r−1)
≤ (2a)

r 2s

(r/e)r .

The second inequality is due to the fact that n! ≥ (n/e)n for every

integer n ≥ 1. Further,

(2a)r 2s
(r/e)r ≤

2t

(16/e)ℓt
≤ 2−t (2ℓ−1) .

The last inequality relies on the assumption that ℓ ≥ 2. This

concludes the proof.

�

We are now ready to prove Theorem 5.2.

Theorem 5.2. Let E be a blockcipher that we will model as an

ideal cipher. Let Π[E] = (K, E,D) be an AE scheme of nonce length

r . Let Π∗[E] = CN(Π[E]) have nonce length r − t where r > t ≥ 32.

Let A be an adversary attacking Π
∗ using at most q Enc queries.

Then we can construct a strongly d-repeating adversary B of the same

concrete query complexity as A, where d = ⌈qt/2t−1⌉, such that

Adv
mu-ae
Π∗[E] (A) ≤ Adv

mu-ae
Π[E] (B) + 2

−7t
.

Proof of Theorem 5.2. Adversary B initializes a flag bad ←
false and runs A with direct access to its ideal cipher. For each en-

cryption query (i,N ,A,M) (respectively, verification query (i,N ,A,
C)) of the latter, B initializes Ji ←$ {0, 1}t if the string Ji is not de-

fined, otherwise it uses the existing Ji , and then creates an effective

nonceN ∗ ← Ji ∥ N . IfB did useN ∗ ford other users previously, it’ll

set bad← true, terminate A, and output 1. Otherwise, B queries

C ← Enc(i,N ∗,A,M) (respectively, Vf(i,N ∗,A,C)), and returns

the answer to A. When A finishes (without being terminated pre-

maturely) and outputs a bit b ′, adversary B will output the same bit.

Note that B is strongly d-repeating, and for each individual user,

if A does not repeat a nonce among encryption queries then B
also does not repeat an effective nonce among encryption queries.

Moreover,

Pr[RealB
Π[E] ⇒ 1] ≥ Pr[RealA

Π∗[E] ⇒ 1] , (6)

becauseB either outputs 1, or agrees withA. Since game RandA
Π∗[E]

and the game that B simulates in its ideal world are identical until

bad is set,

Pr[RandB
Π[E] ⇒ 1]

≤ Pr[RandB
Π[E] sets bad] + Pr[Rand

A
Π∗[E] ⇒ 1] . (7)

Subtracting Eq. (7) from Eq. (6) side by side, we obtain

Adv
mu-ae
Π[E] (B) ≥ Adv

mu-ae
Π∗[E] (A) − Pr[Rand

B
Π[E] sets bad] .

It now suffices to show that Pr[RandB
Π[E] sets bad] ≤ 2−7t . Recall

that B sets bad to true only if adversary A can force B to use

some effective nonce across more than d users. However, in game

RandB
Π[E], the oracle answers are completely independent of the

nonce randomizers Ji thatB chooses. Hence one can view RandB
Π[E]

as A’s throwing q balls into 2t bins and bad is set only if some bin

contains d or more balls. Then, RandB
Π[E] sets bad with probability

at most 2−7t by Lemma 5.1 by setting ℓ = 4 in the lemma. �

Combining Theorem 5.2 above with Theorem 3.1, we immedi-

ately obtain a strong security bound for CGCM which we define

as CGCM = CN(CAU).

Theorem 5.3 (mu-security of CN(CAU)). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a blockcipher that we will model as an ideal

cipher, with k ≥ n ≥ 128. Let H be a c-AXU hash function. Let

the key length of CGCM be k + t and nonce length be r − t with
r > t ≥ 32. Let A be an adversary attacking CGCM[H ,E] using at
most p ≤ 2n−2 ideal-cipher queries, q encryption/verification queries

of total block length at most σ , and the encryption queries are of at

most B blocks per user. Let d = ⌈qt/2t−1⌉. Then

Adv
mu-ae
CGCM[H,E](A) ≤

d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 2)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

+ 2−7t .

Comparing RGCM and CGCM. For concreteness, consider the

setting in which an adversary can encrypt at most B = 240 blocks

per user. Under TLS 1.2 and IPSec, 4 bytes of a nonce would be a ran-

dom salt and remain fixed for an entire session, whereas the remain-

ing 8 bytes would be implemented as a counter. Thus for CGCM

in TLS 1.2 and IPSec, for d = 32 · ⌈q/231⌉ ≈ q/226 and n = 128.

The resulting bound is
pq+q2

2154
+

σ
286

, which is much stronger than

the bound
pq+σ 2

2128
in prior works [5, 13]. Still, in the same setting,

RGCM is much better: using d = 14 (meaning that q is required

to be smaller than 272), the advantage of the adversary is about
p

2120
+

σ
286

.

Discussion. Recall that our security definition requires that nonces

for each individual must be distinct. In TLS 1.2, however, one might

implement nonces as 64-bit random strings. To capture security

for this setting, one can relax our security definition by allowing

adversaries to repeat nonces for some users, with probability at

most ε . In the case of TLS 1.2, one can pick ε = σB
264

. Next, for any AE

schemeΠ and for an adversaryA who repeats nonces for some user

with probability ε , one can easily construct an adversary B who

is nonce-respecting, such that Advmu-ae
Π

(A) ≤ Adv
mu-ae
Π

(B) + ε .
Thus the security of CGCM with random nonces can be bounded

by the formula in Theorem 5.3 plus an additional term σB
264

.

6 SECURITY WITH PUBLIC SALTING

In both the XN and CN transforms in the previous sections, the

nonce randomizer (or salt) J is part of the secret key. This reflects

transformations actually used in practice. However, in general, the

secrecy of the nonce randomized is unnecessary for mu security. We



observe here that as long as the nonces are not chosen arbitrarily by

the adversary one can guarantee mu security even when the nonces

are made public, and security of such schemes can be described in

terms of an appropriate d-repeating adversary.

An example. Somewhat informally, imagine that we are in a sce-

nario where each user picks a nonce randomizer Ji ∈ {0, 1}r . Then,
the nonce of the c-th message sent by user i is in particular Ji⊕c ,
and is sent along with the message. More generally, the XOR can

be replaced by any operator ⊞ such that ({0, 1}r ,⊞) is an abelian

group.

Our formalism allows us to capture this scenario by restrict-

ing ourselves to d-repeating adversaries A (for an appropriate d)

which only invoke the encryption oracle with queries of the form

Enc(i, Ji ⊞ ci ,A,M), where ci is a counter increased each time a

message is encrypted for user i . Note that we allow hereA to make

unrestricted verification queries, exploiting the full power of our

model ś this is consistent with the fact that a person-in-the-middle

attacker may attempt to inject ciphertexts with arbitrary nonces.

In particular, by an argument similar to that of Lemma 4.1, if

such A makes at most q ≤ 2(1−ϵ )r encryption/verification queries,

it is d-repeating for d = ⌈1.5/ϵ⌉ − 1 except with probability 2−r/2.
Thus, for CAU, the mu security with respect to such A follows

from Theorem 3.1, and is such that

Adv
mu-ae
Π[H,E](A) ≤

d(p + q) + n(q + σ + p)
2k

+

σ (2B + cn + 2)
2n

+

2q + 1

22n
+

σ (σ + ncd) + 2pq
2k+n

+ 2−r/2 .

This is the same bounds as that obtained for RGCM in Theorem 4.3.

In particular, this means that we can obtain the same security for

GCM without keeping any part of the nonces secret and hence

potentially saving on key length.
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