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Abstract. Format-preserving encryption (FPE) produces ciphertexts
which have the same format as the plaintexts. Building secure FPE is
very challenging, and recent attacks (Bellare, Hoang, Tessaro, CCS ’16;
Durak and Vaudenay, CRYPTO ’17) have highlighted security deficien-
cies in the recent NIST SP800-38G standard. This has left the question
open of whether practical schemes with high security exist.
In this paper, we continue the investigation of attacks against FPE
schemes. Our first contribution are new known-plaintext message re-
covery attacks against Feistel-based FPEs (such as FF1/FF3 from the
NIST SP800-38G standard) which improve upon previous work in terms
of amortized complexity in multi-target scenarios, where multiple cipher-
texts are to be decrypted. Our attacks are also qualitatively better in that
they make no assumptions on the correlation between the targets to be
decrypted and the known plaintexts. We also surface a new vulnerability
specific to FF3 and how it handles odd length domains, which leads to
a substantial speedup in our attacks.
We also show the first attacks against non-Feistel based FPEs. Specifi-
cally, we show a strong message-recovery attack for FNR, a construction
proposed by Cisco which replaces two rounds in the Feistel construc-
tion with a pairwise-independent permutation, following the paradigm
by Naor and Reingold (JoC, ’99). We also provide a strong ciphertext-
only attack against a variant of the DTP construction by Brightwell and
Smith, which is deployed by Protegrity within commercial applications.
All of our attacks show that existing constructions fall short of achieving
desirable security levels. For Feistel and the FNR schemes, our attacks
become feasible on small domains, e.g., 8 bits, for suggested round num-
bers. Our attack against the DTP construction is practical even for large
domains. We provide proof-of-concept implementations of our attacks
that verify our theoretical findings.
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1 Introduction

A format-preserving encryption (FPE) scheme is a deterministic symmetric en-
cryption mechanism which preserves the format of the data, i.e., the ciphertext
has the same format as the plaintext. For instance, a valid SSN is encrypted
into a valid SSN, a valid credit-card number is encrypted into a valid credit-card
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number, etc. The first known constructions date back to Brightwell and Smith [6]
and Black and Rogaway [4], and a formal treatment was later given by Bellare,
Ristenpart, Rogaway, and Stegers [2]. The widespread interest in FPE from in-
dustry stems for its usage in the financial sector to encrypt credit-card numbers,
as well as its ability to add encryption to legacy databases and applications with-
out violating existing format constraints. FPE has been used and deployed by
several companies, e.g., Voltage, Veriphone, Ingenico, Protegrity, Cisco, as well
as by major credit-card payment organizations. While precise numbers are not
known, it is safe to assume that vast amounts of data are currently encrypted
with FPE in industrial settings.

However, building secure FPE is a challenging question, largely because (1)
the domain is usually non-binary, and standard cryptographic primitives, e.g.,
AES, operate on fixed-length binary domains, and (2) the domain can be small,
and it is hard to devise schemes where the domain size is not a security param-
eter. For example, the ANSI ASC X9.124 standard adopted by the financial in-
dustry envisions applications with domains as small as two decimal digits. While
provably-secure schemes do exist [11, 16, 13], they consistently fail to meet practi-
cal efficiency demands. Consequently, practical designs have been validated via
cryptanalysis only, and NIST has recently standardized [9] two constructions,
FF1 [3] and FF3 [5], both based on Feistel networks. Recent works have however
cast some doubt on the security of these constructions, which appear to be far
from the initial desiderata set by NIST’s selection process, which required 128
bits of security. (Indeed, one construction, FF2 [17], was dropped for far less
severe attacks [10] than those by now known to exist against all Feistel-based
constructions.) This state of affairs is particularly alarming, given the large-scale
usage of FPE.

In a nutshell, this paper will take FPE cryptanalysis even further, provid-
ing more evidence that practical FPE constructions with high security are still
beyond reach. This is particularly important as existing standards (NIST SP
800-38G, ANSI ASC X9.124) are being revised in view of recent attacks. We
will strengthen prior attacks, and also present new attacks against practical
constructions (employed in industry) which do not follow the Feistel paradigm.

Existing cryptanalysis. Let us first review recent cryptanalytic attacks
against FPE. Formally, an FPE scheme F is a pair of deterministic algorithms
(F.E,F.D), where F.E : F.Keys×F.Twk×F.Dom→ F.Dom is the encryption algo-
rithm, F.D : F.Keys×F.Twk×F.Dom→ F.Dom the decryption algorithm, F.Keys
the key space, F.Twk the tweak space, and F.Dom the domain. For every key
K ∈ F.Keys and tweak T ∈ F.Twk, the map F.E(K,T, ·) is a permutation over
F.Dom, and F.D(K,T, ·) reverses F.E(K,T, ·).

Bellare, Hoang, and Tessaro (BHT) [1] recently introduced a framework
for known-plaintext message-recovery attacks on FPE. More concretely, they
introduce the notion of a message sampler, an algorithm XS that returns a
tuple ((T1, X1), . . . , (TQ, XQ), Z

∗, a) that consists of Q distinct tweak-message
pairs (Ti, Xi), a target message Z∗, and (possibly) some auxiliary information
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Our attack LD BHT’s attack [1]

Advantage 1− 1/N 1− 2/N

Running time O(n2Nr−2 +Nr−2np) O(n ·Nr−2)

Total ciphertexts O(n2Nr−2 +Nr−3np) O(n ·Nr−2)

Time per target O(n ·Nr−2) O(n ·Nr−2)

Ciphertexts per target O(n ·Nr−3) O(n ·Nr−2)

Ciphertexts per tweak O(n ·N) 3

Known msg vs target No correlation Same right half

Table 1. Attack parameters and effectiveness. This is for balanced-Feistel FPE
with domain {0, 1}2n (n ≥ 3) and r rounds, with N = 2n. Our attack LD does not limit
the number of targets p, and thus p can be O(N2). In contrast, BHT’s attack can only
handle a single target. Both attacks achieve high advantage, as shown in the second
row. The third and fourth rows respectively show the running time and the number
of ciphertexts for the attacks, with a generic number p of targets for LD, and a single
target for BHT’s attack. The fifth and sixth row shows the amortized time and the
number of ciphertexts per target, if p = Ω(N2). The seventh row shows the maximum
number of ciphertexts per tweak that each attack requires, and the last row shows the
needed correlation between known messages and the target messages for each attack.

a ∈ {0, 1}∗. Then, an attacker against XS attempts to recover Z∗ given

(T1,F.E(K,T1, X1)), . . . (TQ,F.E(K,TQ, XQ)), a

for a secret key K. The attacker’s advantage is obtained by subtracting from
its success probability that of the best possible trivial attacker that only gets
T1, . . . , TQ and a. Therefore, any message sampler with a corresponding attacker
achieving substantial advantage within feasible computational constraints is ef-
fectively a break, since the scheme fails to satisfy some ideal property to be
expected.

For example, for the balanced r-round Feistel construction with domain ZN×
ZN (meaning the domain size is N2), where N = 2n, BHT provide a sampler and
an attack which succeed with O(n ·Nr−2) ciphertexts, where in particular these
ciphertexts consist of the encryption of three messages (one of which is the target
one) under O(n ·Nr−2) distinct tweaks.4 (The attack is summarized in Table 1.)
While the attack is generic, when applied to the setting of NIST’s standardized
constructions FF1/FF3, which use r = 10 and r = 8, respectively, the attack
becomes particularly threatening for small domains. The fact that the number
of ciphertexts is larger than the domain size N is no contradiction – the point
is that the number of ciphertexts per tweak is small, and this makes a generic
message recovery without the ciphertexts only possible with small probability.

4 BHT actually give three attacks with different complexity, but only one of them
can fully recover the target message; the other two can only recover a half of the
target. Since our attack can recover all target messages in their entirety, here we
only compare our attack with the Full-Message Recovery attack of BHT.
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We also point out the work by Durak and Vaudenay (DV) [8]. They give
a message-recovery attack against FF3 which uses only two tweaks, yet their
attack is due to a flaw in the tweaking mechanism used in FF3, rather than
being a generic issue of Feistel. In contrast, BHT’s attacks succeed even if the
flaw behind DV’s attack is fixed.

NIST has temporarily discouraged the use of FF3 as the result of DV’s at-
tack5, whereas a draft update of the ANSI ASC X9.124 standard additionally
suggests double encryption on small domains as a result of BHT’s attacks.

Our contributions. The BHT attacks can be mitigated by increasing the
number of rounds of the constructions. However, this raises the question of whe-
ther the attacks are the best possible, and whether new, stronger attacks, are
possible. Similarly, plain Feistel is not the only approach used in practice for
FPE. For example, Cisco presented a variant of Feistel, called FNR [7], which
appears to bypass the BHT attacks. Protegrity is another very active company
in the FPE domain and uses a different construction [12], called DTP (from
“Data-type preserving” encryption), based on Brightwell and Smith’s [6] con-
struction. It is well possible that these constructions are not affected by attacks,
and may end up being superior to NIST-standardized constructions.

Our first contribution will be new attacks against Feistel-based FPE that
improve upon BHT in settings where multiple messages can be recovered, as
well as only requiring weaker correlations in the known messages for which the
FPE construction is evaluated. We will then provide an attack against FNR, thus
showing it too fails to provide sufficient security. Finally, we provide a strong
ciphertext-only attack against DTP. In particular, while our attacks against
Feistel and FNR relies on weaknesses for small domains, our attack against
DTP works even on large domains.

We complement our attacks with proof-of-concept implementations that val-
idate experimentally our theoretical findings.

New attacks against Feistel-based FPE. We strengthen the attacks from
BHT by considering the setting where the attacker is given multiple target mes-
sages Z∗1 , . . . , Z

∗
p it is trying to recover. This captures for example an attempt

by the attacker to compromise a large fraction of an FPE-encrypted database,
as opposed to an individual record in it. Clearly, this task should be harder than
recovering a single target, and a good FPE scheme should guarantee that the
cost of recovering p messages is roughly p times that of recovering one message.
Indeed, this is true when mounting BHT’s attacks, as the only option is to apply
the attack to each target.

We will show however that for the r-round Feistel construction with domain
ZM×ZN , multiple targets can be recovered much faster, in fact with a number of
ciphertexts comparable to what is needed for a single target. As summarized in
Table 1, for the special case M = N = 2n, the amortized number of ciphertexts
per target is only O(n ·Nr−3), as opposed to O(n ·Nr−2) when using BHT re-
peatedly. A further advantage of our attack is that the known plaintexts revealed

5 https://csrc.nist.gov/News/2017/Recent-Cryptanalysis-of-FF3
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to the attacker are not correlated with the target messages – whereas BHT as-
sumed a fairly artificial setting where (partially) known plaintexts exhibit strong
correlations with the target message.

More concretely, the attacker is supplied τ known distinct messages
X1, . . . , Xτ , and we have p targets Z1, . . . , Zp. Then, the attacker gets encryp-
tions of these τ + p messages (assumed to be distinct) under q known tweaks
T1, . . . , Tq (thus, the attacker sees q× (τ +p) ciphertexts). The goal is to recover
all of Z1, . . . , Zp. The only assumptions here are that (1) The right halves of
X1, . . . , Xτ cover all of ZN , and (2) Z1, . . . , Zp have (as a tuple) sufficient min-
entropy conditioned on X1, . . . , Xτ , T1, . . . , Tq, say at least θ. Because of this,
the probability that an ideal adversary that does not learn the ciphertexts re-
covers all of Z1, . . . , Zp here is at most 2−θ. In contrast, we give an attack which
recovers them with high probability whenever q is large enough. See Table 1 for
the exact complexities when M = N = 2n.

We stress that unlike the BHT attacks, the attacker is not aware of any
correlation between the known plaintexts X1, . . . , Xτ and the target plain-
texts Z1, . . . , Zp. Of course, every right half of Z1, . . . , Zp will appear among
X1, . . . , Xτ , but the attacker does not know which of the inputs have matching
right halves. Also, we point out that the restriction of all right halves appear-
ing in X1, . . . , Xτ is not as artificial as it may at first appear. If these inputs
are drawn uniformly at random (under the constraint of being distinct), and
τ = Θ(Nn), then we can show that all right halves are going to appear with
high probability by the so-called “coupon collector” argument. Even more im-
portantly, if they do not cover all of ZN , our attacks recovers all of the Z1, . . . , Zp

whose right halves overlap with those of X1, . . . , Xτ .

The danger of asymmetry We note that the complexity of our attack is not
symmetric in M and N . In particular, the attack’s performance improves with
a smaller N and a larger M . This is particularly problematic for FF3, which in
the case of odd-length domains (e.g., {0, . . . , 9}3) would exactly create such a
convenient asymmetry, setting M = 100 and N = 10. This feature was already
present in the left-half attack of BHT, but went unobserved.

The FNR construction. Cisco proposed the FNR construction [7] as an ap-
proach to encrypt IP addresses. While we are not aware whether FNR was indeed
used, it adopts a potentially interesting idea which seemingly prevents our and
BHT’s attacks against Feistel. Essentially, it uses Naor and Reingold’s [15] idea
of replacing the two outer rounds of the Feistel construction with a pairwise
independent permutation while retaining security.

Initially, it is not clear how existing attacks against Feistel can be used when a
pairwise-independent permutation is used. We show however that this approach
too fails, and in fact, in terms of our attacks, FNR with r-rounds appear to be
as secure as plain Feistel with r + 2 rounds, somehow matching (though in a
different and unexplored context) the initial intuition by Naor and Reingold.

The DTP scheme and its insecurity. Another solution is the DTP scheme
put forward by Protegrity [12], which is a variation of the scheme by Smith and
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Brightwell [6] and which has been argued to be potentially superior to FPE.6

In particular, reframing it in our language, DTP requires a distinct tweak per
encryption, thus potentially achieving higher security by preventing detection
of equal plaintexts being encrypted. However, we give an attack that only re-
quires multiple encryptions of the same target message with different tweaks
(and is thus compatible with the envisioned usage scenario). The attack differs
from those against Feistel-based FPE, but again is in the same spirit of using
encryptions under multiple tweaks to amplify subtle statistical deviations. We
have confirmed that a variant of this scheme, called DTP-2, is still deployed by
Protegrity, even though it is being phased out to be replaced with FF1.7

Abstractly, the main issue of DTP is that it encrypts individual digits of
the plaintext x1x2 . . . xn (where xi ∈ Zd) as ci ← xi + zi (mod d), where the
zi’s are pseudorandom elements of ZD. For example, one could use d = 10
(to encrypt decimal numbers) and D = 256 (e.g., the zi’s are individual bytes
from an AES output). Then, it is not hard to see that the ci values are not
pseudorandom anymore, and there is in fact a noticeable statistical deviation.
This is because zi ∈ {0, 1, . . . , 5} is more likely to occur than zi ∈ {6, . . . , 9}.
Our recent interactions with Protegrity indicate that d = 62 is more commonly
used (to accommodate for the alphabet {a, . . . , z, A, . . . , Z, 0, . . . , 9}), and this
introduces even more important biases. As we show below in Table 4, there is
a factor 10 improvement in the number of ciphertexts required by our attack
when switching from d = 10 to d = 62.

Our attack is stronger than those against Feistel and FNR as it also works on
large input spaces – the problem being exploited here is the mapping between bi-
nary outputs (corresponding to the choice of D) to elements in another alphabet
(by reducing mod d). The observation that encryptions are biased is not novel
(cf. e.g. https://en.wikipedia.org/wiki/Format-preserving_encryption),
but our attacks highlights how such biases can be exploited for full-message
recovery in a multi-tweak scenario.

We note that the spec (as well as the original description in [6]) allow for some
key-dependent pre-processing of the plaintext which Protegrity makes explicitly
optional if tweaks are chosen uniformly at random. The version without pre-
processing is the version we attack here. With pre-processing, our attack does
not apply, but note that [6] acknowledges the pre-processing itself only suffices
to deter “casual attacks” and this is unlikely a strong countermeasure.

Errata. In the proceedings version, we used a buggy variant of the coupon-
collector argument. As a result, we incorrectly claimed that the attacks on
Feistel-based FPE and FNR need just τ = Θ(N

√
n) known random messages.

This bug is fixed in this version, by using the classical coupon-collector result [14].

6 http://www.protegrity.com/role-of-standards-nist-data-security/
7 The findings of this paper have been in particular shared with Protegrity.
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2 Preliminaries

Notation. We let ε denote the empty string. If y is a string then |y| denotes
its length and y[i] denotes its i-th bit for 1 ≤ i ≤ |y|. If X is a finite set, we let
x←$ X denote picking an element of X uniformly at random and assigning it
to x. Algorithms may be randomized unless otherwise indicated. Running time
is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let
y←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).
We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with
inputs x1, . . .. By Pr[G] we denote the probability of the event that the execution
of game G results in the game returning true. If D is a set then Perm(D) denotes
the set of all permutations on D. Let exp(x) denote ex, where e is the base of
the natural logarithm.

FPE. An FPE scheme F specifies a pair of deterministic algorithms (F.E,F.D),
where F.E : F.Keys × F.Twk × F.Dom → F.Dom is the encryption algorithm,
F.D : F.Keys×F.Twk×F.Dom→ F.Dom the decryption algorithm, F.Keys the key
space, F.Twk the tweak space, and F.Dom the domain. For every key K ∈ F.Keys
and tweak T ∈ T, the map F.E(K,T, ·) is a permutation over F.Dom, and
F.D(K,T, ·) reverses F.E(K,T, ·).
Chernoff bound. Our results heavily rely on the well-known Chernoff bounds.
We recall the details of Chernoff bounds below.

Lemma 1 (Chernoff bounds). Let Y1, . . . , Yℓ be independent Bernoulli ran-
dom variables with Pr[Y1 = 1] = · · · = Pr[Yℓ = 1] = µ. Then,

Pr
[
Y1 + · · ·+ Yℓ ≥ (1 + ǫ)ℓµ

]
≤ exp

(−ǫ2ℓµ
2 + ǫ

)
for any ǫ > 0, and

Pr
[
Y1 + · · ·+ Yℓ ≤ (1− ǫ)ℓµ

]
≤ exp

(−ǫ2ℓµ
2

)
for any 0 < ǫ < 1.

3 Message recovery framework

Here we give a new formalization of message-recovery attacks, generalizing the
definition of Bellare, Hoang, and Tessaro (BHT) [1] for attacking multiple target
messages.

A high-level intuition. Under our framework, there are τ known messages
and p target messages. An adversary A will receive the ciphertexts of those, each
under multiple tweaks, and has to recover at least d ≤ p targets to win the game,
where d is a parameter of the message-recovery game. For example d = 1 means
that as long as the adversary recovers a single target message, it wins the game,
and d = p means that the adversary has to recover all targets to win.
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Following BHT, we aim for a generalized framework that can capture BHT’s
attack, where known messages are correlated with the targets. Thus in our no-
tion, the known messages and the target messages, and also the tweaks, are
generated via a message sampler XS. The adversary A receives the tweaks and
the ciphertexts, and some auxiliary information that contains information about
the known messages, and possibly some partial information about the targets.
We stress that only the sampler knows the target messages, and the adversary A
just knows some partial information of the target messages that the auxiliary
information reveals.

The framework above allows samplers that output target messages that are
trivial to guess. Thus for any FPE scheme, there is an adversary that with high
probability can recover target messages produced by those degenerate samplers
by merely guessing, but of course this does not imply a vulnerability of the
FPE scheme. Following BHT, we define the d-target advantage Advmr

F,XS,d(A) of
adversary A against FPE scheme F and sampler XS as the difference between (i)
the chance that A can recover at least d targets, and (ii) the probability of the
best strategy of guessing that many targets given just the auxiliary information
(but not the ciphertexts). Hence for an FPE scheme F, if one can construct
an efficient adversary A and an efficient sampler XS such that Advmr

F,XS,d(A) is
large, it means that this particular FPE scheme F is indeed vulnerable.

Our notion only models non-adaptive attacks and requires adversaries to
recover at least d targets. However, recall that here we are giving an attack
notion, and thus these restrictions only make our attacks better. On the other
hand, if an FPE scheme meets our notion, it does not necessarily mean that the
scheme is secure for real-world usage. Below, we will formalize our framework.

Samplers and guessing probability. A message sampler is an algorithm
XS that returns ((T1, X1), . . . , (TQ, XQ), Z1, . . . , Zp, a) that consists of Q tweak-
message pairs (Ti, Xi), p target messages Zj , and some auxiliary information
a ∈ {0, 1}∗. Note that encryption schemes of FPEs are deterministic, and thus
it is trivial to detect repetition among the pairs (T1, X1), . . . , (TQ, XQ) given
their ciphertexts. Therefore, following BHT, we require the distinctness con-
dition that the Q pairs (T1, X1), . . . , (TQ, XQ) be distinct. Define the d-target
message-guessing (mg) advantage against a sampler XS as

Advmg
XS,d = max

S
Pr[Gmg

XS,d(S)],

where game Gmg
XS(S) is defined in the top panel of Fig. 1. This is the probability

of the best possible way at guessing at least d target messages given the tweaks
and auxiliary information. For the special case d = p, meaning that one has to
guess all target messages, we write Advmg

XS instead of Advmg
XS,p. To account for

the efficiency of attacks, besides the number of ciphertexts Q, we also consider
the number of ciphertexts per recovered target qt = Q/d. This is the amortized
data complexity.

Message-recovery notion. Let F be an FPE scheme. Let XS be a message
sampler such that T1, . . . , TQ ∈ F.Twk and X1, . . . , XQ, Z1, . . . , Zp ∈ F.Dom for
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Game Gmg
XS,d(S)

((T1, X1), . . . , (TQ, XQ), Z1, . . . , Zp, a)←$ XS

(Z∗

1 , . . . , Z
∗

p )←$ S(T1, . . . , TQ, a); t← min{d, p}

Return (∃ i1 < · · · < it such that (Zi1 = Z∗

i1
) ∧ · · · ∧ (Zit = Z∗

it))

Game Gmr
F,XS,d(A)

K←$ F.Keys; ((T1, X1), . . . , (TQ, XQ), Z1, . . . , Zp, a)←$ XS

For i = 1, . . . , Q do Yi ← F.E(K,Ti, Xi)

(Z∗

1 , . . . , Z
∗

p )←$A((T1, Y1), . . . , (TQ, YQ), a); t← min{d, p}

Return (∃ i1 < · · · < it such that (Zi1 = Z∗

i1
) ∧ · · · ∧ (Zit = Z∗

it))

Fig. 1. Games defining message-recovery notion of an FPE scheme F, pa-
rameterized by a message sampler XS.

any ((T1, X1), . . . , (TQ, XQ), Z1, . . . , Zp, a) in [XS]. Define the d-target message-
recovery (mr) advantage of A against F,XS as

Advmr
F,XS,d(A) = Pr[Gmr

F,XS,d(A)]−Advmg
XS,d .

The mr game Pr[Gmr
F,XS,d(A)] is defined in the bottom panel of Fig. 1, measuring

A’s advantage at recovering at least d target messages given the tweaks, cipher-
texts, and auxiliary information. For d = p, meaning that the adversary has to
recover all targets, we write Advmr

F,XS(A) instead of Advmr
F,XS,p(A).

Relation to BHT’s notion. BHT’s notion is the special case of the definition
above where the number of target message p is 1. However, in practice, it is not
economical to collect a lot of known message-ciphertext pairs to recover just a
single target message. If we can instead spend the same amount of resource but
recover multiple messages, the cost will be amortized by the number of recovered
targets, cheapening the attack. Thus compared to BHT’s definition, ours gives
a more realistic attack model.

Remarks. Most existing notions in the cryptanalytic literature only define
codebook-recovery attacks, but our attacks or BHT’s attack do not fit into this
category. Bellare, Ristenpart, Rogaway, and Stegers (BRRS) [2] define a message-
recovery notion for FPEs, but again (i) this notion considers just a single target
message, and (ii) more importantly, the number of ciphertexts under this notion
cannot exceed the domain size. Thus BRRS’s notion also fails to capture our
attack or BHT’s attack.

4 Attacking Feistel-based FPE

In this section, we first recall the Feistel-based FPE constructions, as in NIST
standards FF1 or FF3, and then give a message-recovery attack on a generic
FPE scheme. Compared to BHT’s attacks [1], our attack can deal with a gen-
eral number of target messages and recover all of them, and thus have better
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F.E(K,T,X)

(L,R)← X
For i = 1 to r do

If (i mod 2 = 1) then L← L⊞ Fi(K,T,R)
Else R← R⊞ Fi(K,T, L)

Return (L,R)

F.D(K,T, Y )

(L,R)← Y
For i = r to 1 do

If i mod 2 = 1 then L← L⊟ Fi(K,T,R)
Else R← R⊟ Fi(K,T, L)

Return (L,R)

L0 R0

R2

F1

R1L1

L2

ZM ZN

F2

R4

F3

R3L3

L4

F4

K, T

K, T

K, T

K, T

Fig. 2. Left: The code for the encryption and decryption algorithms of F =
Feistel[r,M,N,⊞,PL], where PL = (T ,K, F1, . . . , Fr). Right: An illustration of en-
cryption with r = 4 rounds.

amortized cost. Moreover, we do not require any correlation between the known
messages and the targets.

Feistel-based constructions. Most existing FPE schemes, including the
FF1 and FF3 standards [9], are based on Feistel networks. Following BHT, we
specify Feistel-based FPE in a general, parameterized way. This allows us to
refer to both schemes of ideal round functions for the analysis, and schemes of
some concrete round functions for realizing the standards.

We associate to parameters r,M,N,⊞,PL an FPE scheme F = Feistel[r,
M,N,⊞,PL]. Here r ≥ 2 is an integer, the number of rounds, and ⊞ is an
operation for which (ZM ,⊞) and (ZN ,⊞) are Abelian groups. We let ⊟ denote
the inverse operator of ⊞, meaning that (X ⊞ Y )⊟ Y = X for every X and Y .
Integers M,N ≥ 1 define the domain of F as F.Dom = ZM ×ZN . The parameter
PL = (T ,K, F1, . . . , Fr) specifies the set T of tweaks and a set K of keys, meaning
F.Twk = T and F.Keys = K, and the round functions F1, . . . , Fr such that
Fi : K×T ×ZN → ZM if i is odd, and Fi : K×T ×ZM → ZN if i is even. The
code of F.E and F.D is shown in Fig. 2.

Classical Feistel schemes correspond to the boolean case, where M = 2m and
N = 2n are powers of two, and ⊞ is the bitwise xor operator ⊕. The scheme is
balanced if M = N and unbalanced otherwise. For X = (L,R) ∈ ZM × ZN , we
call L and R the left segment and right segment of X, respectively. We write
Left(X) and Right(X) to refer to the left and right segments of X respectively.
For simplicity, we assume that 0 is the zero element of the groups (ZM ,⊞) and
(ZN ,⊞).
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For analysis, the round functions are modeled as truly random. Formally,
let T = {0, 1}∗, and let K be the set RF(T , r,M,N) of all tuples of functions
(G1, . . . , Gr) such that Gi : T ×ZN → ZM if i is odd, and Gi : T ×ZM → ZN if i
is even. Then for 1 ≤ i ≤ r define Fi(K, ·, ·) = Gi(·, ·), where (G1, . . . , Gr)← K.
We write Feistel[r,M,N,⊞] to denote Feistel[r,M,N,⊞,PL], for the particular
choice PL = (T ,K, F1, . . . , Fr) above.

Schemes in the standards [9] specify the round functions using AES. Using
the standard assumption that AES is a PRF, one can focus on attacking Feistel-
based schemes of ideal round functions, with small differences in the advantage.

Setup. We give a message-recovery attack on a generic Feistel-based FPE F =
Feistel[r,M,N,⊞,PL]. Like the prior work of BHT [1], we only consider the
case that r is even, as NIST standards only use r = 8 (for FF3) or r = 10
(for FF1). Under our attack, there are τ known messages X1, . . . , Xτ and p
targets Z1, . . . , Zp. The adversary is given the encryption of those τ + p distinct
messages under q tweaks T1, . . . , Tq, for an appropriately large q. Due to the
distinctness requirement, X1, . . . , Xτ , Z1, . . . , Zp must be distinct. The auxiliary
information is (X1, . . . , Xτ , p, q). The only requirement in our attack is that with
high probability, the right halves of the known messagesX1, . . . , Xτ cover at least
d of the right halves of the targets. We have no restriction on the number p of
targets or the parameter d, (except the unavoidable constraint that d ≤ p) so
potentially p can be as large as MN − τ . Our attack will recover d targets out
of Z1, . . . , Zp.

A special important case in our attack is that the right halves of X1, . . . , Xτ

cover everything in ZN ; in this case we can recover all targets. At the first glance,
this requirement seems contrived, and thus it is unclear how the adversary can
mount such an attack. However, we will show that for τ = ⌈N(ln(N)+3)}⌉, if the
known messages are sampled uniformly without replacement from ZM×ZN then
they will meet the requirement above with probability at least 0.95. Concretely,
if we want to recover PINs, meaning M = N = 100, we need to obtain 761
random known messages. In contrast, BHT’s attack needs to obtain two known
messages, but one of those must have the same right half as the target.

To explain the bound ⌈min{N(ln(N)+3)}⌉ above, note that this is the well-
known coupon collector’s problem: there are N types of coupons and a collector
wishes to collect all of them. In the classical setting, for each draw the collector
obtains a uniformly random type. In contrast, in our settings, because Z1, . . . , Zp

are distinct, each time the collector buys a coupon, its type is slightly biased
towards new types that the collector has not yet owned. This means that while
the classical bound, stated in Lemma 2 below, continues to apply to our setting,
we might need fewer coupons than what is suggested in the classical setting.

Lemma 2 (Coupon collector’s problem). [14, Chapter 3.6] Let N ≥ 1 be
an integer, and let λ > 0 be a real number. Suppose that there are N types of
coupon and a collector buys τ = ⌈N(ln(N) + λ)⌉ coupons of truly random types.
Then the chance that the collector gets all N types is at least 1− e−λ.
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From Lemma 2 above, the requirement of our attack is quite mild, yet it is
powerful, recovering as many targets as possible. In contrast, in BHT’s attack,
there is only a single target (meaning p = 1), and the first known message must
have the same right half as the target message. Of course in our attack, for each
target Zi, there is some known message Xj of the same right half as Zi, but the
adversary does not know what is j.

The attack. We formalize the attack via the message-recovery framework, by
specifying a class SC1p,q,δ,θ of samplers, and then giving a lower bound on the mr-
advantage of the attack for any sampler in this class. First, let DC1p,q,d,δ,θ be the
class of all algorithms D that outputs q distinct tweaks T1, . . . , Tq ∈ {0, 1}∗, and
distinctX1, . . . , Xτ , Z1, . . . , Zp ∈ ZM×ZN such that (1) with probability at least
1−δ, there are d or more indices k such that Zk ∈ {Right(X1), . . . ,Right(Xτ )}
and (2) given X1, . . . , Xτ , T1, . . . , Tq, for any subset {r1, . . . , rd} ⊆ {1, . . . , τ},
for any Z∗1 , . . . , Z

∗
d ∈ ZM × ZN\{X1, . . . , Xτ}, the conditional probability that

Zr1 = Z∗1 , . . . , Zrd = Z∗d is at most 2−θ.8 To any such D, we associate the sampler

Sampler XS[D]

(T1, . . . , Tq, X1, . . . , Xτ , Z1, . . . , Zp)←$ D

a← (X1, . . . , Xτ , p, q)
Return

(
{(Ti, Xj), (Ti, Zk) | i ≤ q, j ≤ τ, k ≤ p}, Z1, . . . , Zp, a

)

The sampler above returns the pairs (Ti, Xj) and (Ti, Zk) for every i ≤ q and
every j ≤ τ , and k ≤ p, where the targets are Z1, . . . , Zp. The number of
ciphertexts Q is (τ + p)q, and the number of ciphertexts per recovered target qt
is (τ+p)q/d. Let SC1p,q,d,δ,θ = {XS[D] | D ∈ DC1p,q,d,δ,θ}. We would expect that
adversaries will have low mr-advantage, even if q is big. However, the Left-half
Differential (LD) attack, given in Fig. 3, can recover d targets out of Z1, . . . , Zp

in O(pqN) time. Theorem 3 below gives a lower bound on the mr-advantage of
LD.

The bound in Theorem 3, for the special case d = p, is illustrated in Fig. 4. For
example, for FF1, the attack is only reasonably feasible in very few domains,
say one-byte strings (M = N = 16) or two-decimal strings (M = N = 10),
but recall that FF1 and FF3 are supposed to provide 128-bit security whenever
the domain size MN is at least 100. For FF3, since there are fewer rounds, the
attack is faster, and thus becomes feasible in more domains.

Theorem 3. Let M,N ≥ 4 and let p, q ≥ 1 be integer. Let r ≥ 4 be an even
integer such that N (r−2)/2 ≥ 2M , and let d be an integer such that 1 ≤ d ≤ p.

Let F = Feistel[r,M,N,⊞], and let λ =
(
1 − 1

M−1

)2(
1 − 1

MN

)
. Then for any

0 ≤ δ ≤ 1 and any θ ≥ 0, and for any sampler XS in the class SC1p,q,d,δ,θ,

Advmr
F,XS,d(LD) ≥ 1− δ − d · exp

( −λMq

12 ·Nr−2

)
−MNd · exp

( −λMq

9 ·Nr−2

)
− 2−θ .

8 For the special case where Z1, . . . , Zp are sampled uniformly without replacement
from (ZM × ZN )\{X1, . . . , Xτ}, then θ = Θ(d · log(MN)).
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Adversary LD({(Ti, Ci,j), (Ti, C
′

i,k)}i,j,k, a)

// 1 ≤ i ≤ q, 1 ≤ j ≤ τ, 1 ≤ k ≤ p

(X1, . . . , Xτ , p, q)← a; S,Dom← ∅

For j = 1, . . . , τ do

If Right(Xj) 6∈ Dom then S ← S ∪ {j}; Dom← Dom ∪ {Right(Xj)}

For k ← 1 to p do // Recover target Zk

For j ∈ S, s ∈ ZM do Vj,s ← 0

For i← 1 to q, j ∈ S do

s← Left(C′

i,k)⊟ Left(Ci,j)⊞ Left(Xj); Vj,s ← Vj,s + 1

Let Vj∗,s∗ = max{Vj,s | j ∈ S, s ∈ ZM}; Zk ← (s∗,Right(Xj∗))

Return (Z1, . . . , Zp)

Fig. 3. The Left-half Differential attack.
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Fig. 4. The mr advantage of the Left-half Differential attack for binary
strings of 8–12 bits (top) and decimal strings of 2–4 digits (bottom).
The x-axis shows the log, base 2, of the number q of tweaks (which is also
roughly qt, the number of ciphertexts per recovered target), and the y-axis shows
Advmr

Feistel[r,M,N,⊞],XS(LD), for XS that outputs τ = ⌈min{N(ln(N)+ 3)}⌉ known mes-
sages X1, . . . , Xτ and p = MN −τ targets; those MN messages are sampled uniformly
without replacement from ZM ×ZN . Here we aim to recover all targets, namely d = p.
On the left, we use the parameters of the FF1 standard. On the right, we use parameters
of FF3.

Ideas of the attack. Our attack is based on an observation by BHT that for
any two messages X and X ′ of the same right half, if we encrypt them under the
same tweak to obtain ciphertexts C and C ′ respectively, then Left(C)⊟Left(C ′)
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is most likely to be Left(X)⊟ Left(X ′). This observation is formally stated in
Lemma 4 below.

Lemma 4 ([1]). Let F = Feistel[r,M,N,⊞]. Fix distinct X,X ′ ∈ ZM ×ZN of
the same right segment, a tweak T ∈ F.Twk, and an even integer t ∈ {2, 4, . . . , r}.
Pick K←$ F.Keys. Let Lt and L′t be the the left segment of the round-t output
of X and X ′ under F(K,T, ·), respectively. Then

(a) Pr[Lt ⊟ L′t = L0 ⊟ L′0] ≥ N
MN−1 + 1−1/(M−1)

N(t−2)/2 .

(b) Pr[Lt ⊟ L′t = Z] ≤ N
MN−1 , for any Z ∈ ZM\{L0 ⊟ L′0}.

The probabilities above are taken over a sampling K←$ F.Keys.

Consider a target Zk such that Right(Zk) ∈ {Right(X1), . . . ,Right(Xτ )}.9
Among the known messages X1, . . . , Xτ , there will be some Xj∗ of the same
right segment as Zk. Suppose that somehow we know j∗. Then obviously we can
recover the right segment of Zk. To recover the left segment of Zk, we will use
the above observation of BHT. For all ciphertexts C and C ′ of Xj∗ and Zk under
the same tweak respectively, one can guess Left(Zk) as Left(C ′) ⊟ Left(C) ⊞
Left(Xj∗). However, compared to a random guessing, this is only slightly better;

the improvement in the advantage is about 1−1/(M−1)
N(r−2)/2 . To amplify the advantage,

we consider ciphertexts Ci and C ′i of Xj∗ and Zk under many tweaks Ti, and
output the majority value of those Left(C ′i)⊟ Left(Ci)⊞ Left(Xj∗).

Since the algorithm above assumes that we are given the index j∗, we are
left with the task of finding j∗. We first narrow down our search by considering
a smallest possible subset S of {1, . . . , τ} such that {Right(Xj) | j ∈ S} =
{Right(X1), . . . ,Right(Xτ )}. Such a set S will contain j∗, but we still do not
know which is the right one, among |S| possible values. Next, we try the strategy
above for every j ∈ S to see which gives us the best majority value. Specifically,
for every j ∈ S, we consider ciphertexts Ci,j and C ′i,k of Xj and Zk under
tweaks Ti respectively. For every i ∈ {1, . . . , q}, let Ui,j ← Left(C ′i)⊟Left(Ci)⊞
Left(Xj). We then find the majority value of U1,j , . . . , Uq,j together with the
number Vj of its occurrences among those q values. Finally, in the election for
j∗, each candidate j has Vj votes. The winner is the candidate of the most votes.

The code in Fig. 3 implements the algorithm above as follows. For each
s ∈ ZN and each j ∈ S, we count the number Vj,s of the occurrences of s in
U1,j , . . . , Uq,j . We then find (j∗, s∗) such that Vj∗,s∗ = max{Vj,s | j ∈ S, s ∈ ZN}.
The value s∗ is the left segment of Zk, and the right segment of Xj∗ is also the
right segment of Zk.

To justify the way we pick j∗ above, we need to understand the distribution
of Vj,s, for every j ∈ ZN\{j∗} and s ∈ ZN . Each such message Xj will have a
different right segment from Zk. The following Lemma 5 tells us that if we en-
crypt Xj and Zk under the same tweak to get ciphertexts C and C ′ respectively,

9 We stress that the adversary does not need to know that Right(Zk) ∈
{Right(X1), . . . ,Right(Xτ )}; it will blindly use the same algorithm for all targets,
but will happen to recover Zk correctly.
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Domain
Our cost qt Our cost qt BHT’s cost qt BHT’s cost qt

(for FF1) (for FF3) (for FF1) (for FF3)

{0, 1}8 236 227 238 230

{0, 1}9 244 226 246 238

{0, . . . , 9}2 231 224 234 227

{0, . . . , 9}3 258 221 262 249

Table 2. Comparison of our Left-half Differential attack, and BHT’s attack
on Feistel[r,M,N,⊞] on parameters of FF1 and FF3. The first column shows
the domain ZM × ZN . The second and third columns show estimated values of qt—
the number of ciphertexts per recovered target—needed for our attack, for FF1 and
FF3, respectively, to achieve advantage 0.9. (For our attack, qt is also approximately
q, the number of tweaks.) We use τ = ⌈N(ln(N)+3)⌉ known messages X1, . . . , Xτ and
p = MN − τ targets; those MN messages are sampled uniformly without replacement
from ZM × ZN . Our attack aims to recover all targets, namely d = p. The fourth and
fifth columns show estimated values of qt needed for BHT’s attack, for FF1 and FF3,
respectively, to achieve advantage 0.9.

then Left(C ′) ⊟ Left(C) is uniformly distributed over ZM . The proof is given
in Appendix A.

Lemma 5. Let F = Feistel[r,M,N,⊞]. Fix distinct X,X ′ ∈ ZM × ZN of dif-
ferent right segments, a tweak T ∈ F.Twk, and an even integer t ∈ {2, 4, . . . , r}.
Pick K←$ F.Keys. Let Lt and L′t be the the left segment of the round-t output
of X and X ′ under F(K,T, ·), respectively. Then for any Z ∈ ZM , we have
Pr[Lt ⊟ L′t = Z] = 1

M , where the probability is taken over a random sampling
K←$ F.Keys.

On the one hand, from Lemma 4, the expected value of Vj∗,s∗ is at least

q(µ +∆), where µ = N
MN−1 and ∆ = 1−1/(M−1)

N(t−2)/2 . On the other hand, by using
Lemma 5, the expected value of each other Vj,s is at most qµ. We will show that
it is unlikely for Vj∗,s∗ to get below the threshold q(µ+∆/2), and any other Vj,s

is unlikely to get beyond that threshold.

Discussion. A concrete comparison of our attack and BHT’s attack is shown
in Table 2. When the domain length is odd, FF1 and FF3 have different ways
to interpret what are M and N . For example, for domain {0, . . . , 9}3 (namely
3-digit numbers), FF1 uses M = 10 and N = 100, whereas FF3 uses M =
100 and N = 10. An interesting observation is that in those odd domains,
our attack does not improve BHT’s attack for FF1, but significantly improves
BHT’s attack for FF3. For example, for domain {0, . . . , 9}3 above, our attack
uses qt = 258 for FF1 and BHT’s uses qt = 262, but for FF3, our attack only
needs qt = 221, whereas BHT’s attack requires qt = 249. Thus our attack (i)
shows that FF3’s way of partitioning odd domains is inferior to that of FF1,
and (ii) underscores that for tiny domains, the round counts that FF1 and FF3
use are not enough, as BHT’s attack already pointed out. In other words, our
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Domain
Number of Recovery Time Number of Recovery Time

tweaks, q rate (min) tweaks, q rate (min)

{0, 1}7 220 100% 0.9 219 66% 0.46

{0, . . . , 9}2 223 100% 5.92 222 86% 3.06

{0, . . . , 9}3 220 100% 8.72 219 66% 5.3

Table 3. Empirical results of our Left-half Differential attack against FF3.
For each domain (shown in the first column), we run experiments with two values of q
(the number of tweaks) as indicated in the second and fifth columns. The recovery
rates corresponding to these two values of q are given in the third and sixth columns,
respectively. Finally, the average running time (in minutes) of each experiment is given
in the fourth and seventh columns.

attack surfaces weaknesses which might have eliminated these algorithms from
consideration during standardization,10 and they significantly reduce confidence
in these algorithms, which are widely deployed.

The recent FF3 attack by Durak and Vaudenay (DV) [8] can recover the en-
tire codebook for quite bigger domains, such as PINs (M = N = 100). However,
this attack is adaptive, meaning that the adversary must choose the next known
message based on prior ciphertexts, which is very hard to mount in practice.
Moreover, DV’s attack can be easily fixed without performance penalty by re-
stricting the tweak space. In contrast, to thwart our attack or BHT’s attack, for
tiny domains one has to add a few more rounds, which is widely perceived as a
drawback for performance-hungry applications.

Experiments. As a proof of concept, we implement our Left-half Differential
attack, and evaluate its message-recovery rate against FF3. Each experiment
was run using 64 threads in a server of Intel(R) Xeon(R) CPU E5-2699 v3
2.30GHz CPU and 256 GB RAM. Our implementation, written in Go, uses
FF3 source code from Capital One.11 We evaluate our attack on three domains:
{0, 1}7 (namely M = 16 and N = 8), {0, . . . , 9}2 (namely M = N = 10),
and {0, . . . , 9}3 (namely M = 100 and N = 10); each on several values of q,
the number of tweaks. For each domain ZM × ZN and each choice of q, we fix
τ known messages whose right segments cover ZN , and run the attack for 100
trials, where τ = 33 for {0, 1}7, τ = 31 for {0, . . . , 9}2, and τ = 96 for {0, . . . , 9}3.
While the known messages are fixed for all 100 trials, we use p = MN − τ target
messages, and randomly shuffle the targets for each trial. Here we aim to recover
all targets, namely d = p.

The results of our experiments, given in Table 3, are consistent with (and
even slightly better than) Theorem 3. For example, for domain {0, . . . , 9}2, the-
oretically, one would need to use about q = 224 tweaks to recover all targets with
probability nearly 1, and our experiments confirm that using q = 224 indeed gives

10 Recall that FF2 was eliminated due to a theoretical attack using 264 ciphertexts.
11 Capital One’s code is available at https://github.com/capitalone/fpe.
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100% recovery rate. However, even for q = 223, in every trial we can recover all
targets, and the average running time to recover target messages for each trial
is about 5.92 minutes. If one instead uses q = 222, then the recovery rate drops
to 86%, meaning that in 86 out of 100 trials, we can recover all targets.

Our experiments above empirically confirm the correctness of our attack for
tiny domains. Below, we will give a formal proof to rigorously justify our attack
for all domains.

Proof of Theorem 3. First we show that Advmg
XS ≤ 2−θ. Consider an arbi-

trary simulator S. To win the game, S must find the first target Z1. The simulator
is only given the tweaks and the auxiliary information (X1, . . . , Xτ , p, q), and has
to guess correctly at least d components of (Z1, . . . , Zp). From the definition of θ,
the chance that the simulator’s guess is correct is at most 2−θ. Next, we show
that

Pr[Gmr
F,XS(LD)] ≥ 1− δ − d · exp

( −λMq

12 ·Nr−2

)
−MNd · exp

( −λMq

9 ·Nr−2

)
.

Let S ⊆ {1, . . . , τ} be a set such that {Right(Xj) | j ∈ S} =
{Right(X1), . . . ,Right(Xτ )}. With probability at least 1 − δ, at least d tar-
gets will have their right halves in {Right(Xj) | j ∈ S}. Fix a target Zk such
that Right(Zk) ∈ {Right(Xj) | j ∈ S}. By union bound, it suffices to show
that the chance the adversary fails to recover Zk is at most

exp
( −λMq

12 ·Nr−2

)
+MN · exp

( −λMq

9 ·Nr−2

)
.

Recall that for every j ∈ S and every s ∈ ZN , we keep track of the number Vj,s of
the occurrences of s among the values U1,j , . . . , Uq,j , where Ui,j ← Left(C ′i,k)⊟
Left(Ci,j) ⊞ Left(Xj). Let j∗ be the element of S such that Right(Xj∗) =
Right(Zk), and let s∗ ← Left(Zk). The adversary can recover Zk if Vj∗,s∗ is the

maximum of {Vj,s | j ∈ S, s ∈ ZN}. Let µ ← N
MN−1 and ∆ ← 1−1/(M−1)

N(r−2)/2 . We
will give (i) an upper bound for the probability that Vj,s, with (j, s) 6= (j∗, s∗), is
bigger than the threshold q(µ+∆/2), and (ii) an upper bound for the probability
that Vj∗,s∗ is smaller than that threshold. Both (i) and (ii) are handled using
Chernoff bounds.

Proceeding into details, fix (j, s) 6= (j∗, s∗). For each i ≤ q, let Yi be the Bernoulli
random variable such that Yi = 1 if and only if Ui,j = s. The random variables
Y1, . . . , Yq are independent and identically distributed (as they are produced
from a Feistel network of ideal round functions, under distinct tweaks), and
Vj,s = Y1 + · · · + Yq. Let ν = Pr[Y1 = 1] ≤ µ and ǫ = ∆

2ν ≥ ∆
2µ . Note that

∆/µ ≤M/N (r−2)/2 ≤ 1/2, and ∆2/µ = λM/Nr−2. Then

ǫ2ν

2 + ǫ
=

∆

4/ǫ+ 2
≥ ∆

8µ/∆+ 2
=

∆2/µ

8 + 2∆/µ
≥ λM

9 ·Nr−2
.

Since (1 + ǫ)ν = ν +∆/2 ≤ µ+∆/2, by Chernoff bound,

Pr[Vj,s ≥ q(µ+∆/2)] ≤ Pr[Y1 + · · ·+ Yq ≥ q(1 + ǫ)ν]
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≤ exp
(−ǫ2νq
2 + ǫ

)
≤ exp

( −λMq

9 ·Nr−2

)
. (1)

Next, for each i ≤ q, let Y ∗i be the Bernoulli random variable such that Y ∗i = 1 if
and only if Ui,j∗ = s∗. Again, the random variables Y ∗1 , . . . , Y

∗
q are independent

and identically distributed, and Vj∗,s∗ = Y ∗1 + · · ·+ Y ∗q . Let ν
∗ = Pr[Y ∗1 = 1] ≥

∆+ µ and let ǫ∗ = ∆
2(µ+∆) . Then 0 < ǫ∗ < 1. Moreover,

(ǫ∗)2ν∗ ≥ ∆2q

4(µ+∆)
=

∆2/µ

4(1 +∆/µ)
≥ ∆2/µ

6
=

λM

6 ·Nr−2
.

Since (1− ǫ∗)ν∗ ≥
(
1− ∆

2(µ+∆)

)
(∆+ µ) = µ+∆/2, by Chernoff bound,

Pr[Vj∗,s∗ ≤ q(µ+∆/2)] ≤ Pr[Y ∗1 + · · ·+ Y ∗q ≤ q(1− ǫ∗)ν∗]

≤ exp
(−(ǫ∗)2ν∗q

2

)
≤ exp

( −λMq

12 ·Nr−2

)
. (2)

From Equation (1) and Equation (2), the chance that the adversary LD fails to
recover Zk is at most

Pr[Vj∗,s∗ ≤ q(µ+∆/2)] +
∑

(j,s) 6=(j∗,s∗)

Pr[Vj,s ≥ q(µ+∆/2)]

≤ exp
(
−λMq
12·Nr−2

)
+MN · exp

(
−λMq
9·Nr−2

)
.

5 Attacking FNR

In this section, we attack the Flexible Naor-Reingold (FNR) scheme proposed
by Cisco [7], which is defined only for the boolean case.12 It is based on Naor-
Reingold generalization of Feistel networks [15], using a pairwise independent
permutation and a boolean Feistel-based FPE scheme.

FNR construction. Recall that a family P of permutations on {0, 1}ℓ is pair-
wise independent if for any X,X ′, Y, Y ′ ∈ {0, 1}ℓ such that X 6= X ′ and Y 6= Y ′,

Pr
π←$ P

[(π(X) = Y ) ∧ (π(X ′) = Y ′)] =
1

2ℓ(2ℓ − 1)
.

In FNR, the family P is instantiated as Bℓ, the set of all pairs (B0, B1) such
that B0 is an invertible binary matrix of size ℓ× ℓ, and B1 is a binary vector of
length ℓ. For each π ∈ P, π(X) = (B0 ·X)⊕B1, where the input X is viewed as
a binary vector of length ℓ, (B0, B1) is the matrix representation of π, and the
multiplication B0 ·X is in GF(2).

12 While the FNR paper [7] mentions that the scheme can be used to encrypt credit-
card numbers, it is unclear how this is possible, as the specific instantiation there
only works for binary data.
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F.E(K,T,X)

(B0, B1, K̃)← K
(L,R)← U ← (B0 ·X)⊕B1

For i = 1 to r do
If (i mod 2 = 1) then

L← L⊕Fi(K̃, T,R)

Else R← R⊕Fi(K̃, T, L)
V ← (L,R); Y ← B−1

0 · (V⊕B1)
Return Y

F.D(K,T, Y )

(B0, B1, K̃)← K
(L,R)← V ← (B0 · Y )⊕B1

For i = r to 1 do
If (i mod 2 = 1) then

L← L⊕Fi(K̃, T,R)

Else R← R⊕Fi(K̃, T, L)
U ← (L,R); X ← B−1

0 · (U⊕B1)
Return X
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Fig. 5. Left: The code for the encryption and decryption algorithms of F =
FNR[r,m, n,PL], where PL = (T ,K, F1, . . . , Fr). In implementation, for (L,R)← U ,
typically L is the leftmost m-bit substring of U , and R is the rightmost n-bit substring
of U . However, in Cisco implementation, L and R are the strings obtained via the
odd and even bits of U , respectively. Right: An illustration of encryption with r = 3
rounds, where ⊙ denotes the matrix multiplication.

In an FNR scheme F = FNR[r,m, n,PL], the domain is {0, 1}m × {0, 1}n.
The parameter PL = (T ,K, F1, . . . , Fr) specifies the tweak space T and a Feistel-
based FPE scheme F = Feistel[r, 2m, 2n,⊕,PL] as defined in Section 4. The

key space is Bm+n × K. On key K = (B0, B1, K̃) and tweak T , to encrypt
a message X, one first interprets (B0, B1) as a permutation π : {0, 1}m+n →
{0, 1}m+n, computes U ← π(X) and V ← F̃.E(K̃, T, U), and returns π−1(V ). De-
cryption is defined likewise. The code of the encryption and decryption schemes
of FNR[r,m, n,PL] is given in Fig. 5. If the underlying Feistel-based FPE
scheme is Feistel[r, 2m, 2n,⊕] (meaning ideal round functions), then we write
FNR[r,m, n] for the corresponding FNR scheme. For input length ℓ, the FNR
specification only uses the m = ⌈ℓ/2⌉ and n = ℓ −m, meaning that the Feistel
network is a (near)-balanced one. The suggested instantiation in [7] uses r = 7.

The FNR spec [7] specifies the round functions using AES. Again, using the
standard assumption that AES is a good PRF, one can focus on attacking FNR
schemes of ideal round functions, with small differences in the advantage.

The attack.We now attack the scheme FNR[r,m, n] scheme for an odd integer
r ≥ 7, with |m− n| ≤ 1. This is exactly the setting specified by the FNR spec.
While FNR also uses a Feistel network, at the first glance, it is unclear how
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to use the ideas in Section 4, because the pairwise independent permutation in
FNR will hide the pairwise bias described in Lemma 4. However, we will exploit
the fact that the FNR scheme uses the same pairwise independent permutation
across different tweaks.

Under our attack, there are τ = ⌈2n(ln(2) · n+ 3)⌉ known messages
X1, . . . , Xτ sampled uniformly without replacement from {0, 1}m+n, and there
are p targets Z1, . . . , Zp. The adversary is given the encryption of those τ + p
messages under q tweaks T1, . . . , Tq, for an appropriately large q, and the aux-
iliary information is (X1, . . . , Xτ , p, q). From the distinctness requirement, these
τ + p messages must be distinct. We have no other restriction on the number p
of targets, so potentially p can be as large as 2m+n − τ . Our attack will recover
all of Z1, . . . , Zp, meaning d = p. The number of examples Q is (τ +p)q, and the
number of examples per target qt is (τ/p+ 1)q.

We formalize the attack via the message-recovery framework, by specify-
ing a class SC2p,q,θ of samplers, and then giving a lower bound on the mr-
advantage of the attack for any sampler in this class. First, let DC2p,q,θ be the
class of all algorithms D that outputs q distinct tweaks T1, . . . , Tq ∈ {0, 1}∗,
and distinct X1, . . . , Xτ , Z1, . . . , Zp ∈ {0, 1}m+n such that (1) X1, . . . , Xτ

are sampled uniformly without replacement from {0, 1}m+n, and (2) given
X1, . . . , Xτ , T1, . . . , Tq, for any fixed Z∗1 , . . . , Z

∗
p , the conditional probability that

Z1 = Z∗1 , . . . , Zp = Z∗p is at most 2−θ. To any such D, we associate the sampler

Sampler XS[D]

(T1, . . . , Tq, X1, . . . , Xτ , Z1, . . . , Zp)←$ D

a← (X1, . . . , Xτ , p, q)
Return

(
{(Ti, Xj), (Ti, Zk) | i ≤ q, j ≤ τ, k ≤ p}, Z1, . . . , Zp, a

)

The sampler above return the pairs (Ti, Xj) and (Ti, Zk) for every i ≤ q, j ≤ τ ,
and k ≤ p, where the targets are Z1, . . . , Zp. Let SC2p,q,θ = {XS[D] | D ∈
DC2p,q,θ}. The Full-message Differential (FD) attack, given in Fig. 6, can recover
all targets Z1, . . . , Zp in O(pqτ) time. Theorem 6 below gives a lower bound on
the mr-advantage of LD; the proof is postponed further below. The bound is
illustrated in Fig. 7.

Theorem 6. Let m,n ≥ 3 and q ≥ 1 be integers such that |m− n| ≤ 1, and let

r ≥ 7 be an odd integer. Let F = FNR[r,m, n]. Let λ =
(
1− 1

2n−1

)2(
1− 1

2m+n

)
.

Then for any θ ≥ 0 and for any sampler XS in the class SC2p,q,θ,

Advmr
F,XS(FD) ≥ 0.95− 2m+np · exp

( −q
32 · 23(m+n)

)
− 2m+np · exp

( −q
48 · 23(m+n)

)

−2m+np · exp
( −λq
9 · 2n+(r−2)m

)
− p · exp

( −λq
12 · 2n+(r−2)m

)
− 2−θ.

Ideas of the attack. For a random variable W ∈ {0, 1}m+n, we say that it
has a singular distribution if there is exactly one string Z ∈ {0, 1}m+n such
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Adversary FD({(Ti, Ci,j), (Ti, C
′

i,k) | i ≤ q, j ≤ τ, k ≤ p}, a)

(X1, . . . , Xτ , p, q)← a; µ← 1/2m+n; ∆← 1

2·22(m+n)

For k ← 1 to p do // Recover target Zk

For j ∈ {1, . . . , τ}, s ∈ {0, 1}m+n do Vj,s ← 0

For i← 1 to q, j ← 1 to τ do s← Ci,j⊕C
′

i,k; Vj,s ← Vj,s + 1

Find smallest j∗ s.t. there is only one s ∈ {0, 1}m+n with Vj∗,s ≤ q(µ+∆/2).

Let Vj∗,s∗ = max{Vj∗,s | s ∈ {0, 1}
m+n}; Zk ← s∗⊕Xj∗

Return (Z1, . . . , Zp)

Fig. 6. The Full-message Differential attack.
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Fig. 7. The mr advantage of the Full-message Differential attack on
FNR[r, n, n] for r = 7 and n = 4, 5, 6. This is the balanced setting m = n. The x-axis
shows the log, base 2, of the number q of tweaks (which is also roughly qt, the number
of ciphertexts per recovered target), and the y-axis shows Advmr

FNR[r,n,n],XS(FD), for

XS that outputs τ = ⌈2n(ln(2) · n+ 3)⌉ known messages and p = 22n−τ targets; those
22n messages are sampled uniformly without replacement from {0, 1}2n.

that Pr[W = Z] ≤ 1/2m+n; otherwise the distribution is non-singular. Let π =
(B0, B1) be the pairwise independent permutation in the key of the FNR scheme.
Suppose that one encrypts distinct messages X and X ′ on a tweak T . Then the
strings Y ← π(X) and Y ′ ← π(X ′) become inputs to a near-balanced, boolean
Feistel network, and let U and U ′ be the corresponding outputs of the Feistel
network. Our attack is based on the following observation that is formalized in
Lemma 7 below; see Appendix B for the proof. Specifically, if Y and Y ′ have the
different right segments then the distribution of U⊕U ′ is non-singular; in fact,
there are 2m values Z ∈ {0, 1}m+n such that Pr[U⊕U ′ = Z] ≤ 1/2m+n. Let
C and C ′ be the ciphertexts of Y and Y ′ under the FNR scheme, respectively.
Then C ← π−1(U) and C ′ ← π−1(U ′), and C⊕C ′ = B−10 · (U⊕U ′). Thus the
distribution of C⊕C ′ is also non-singular.

In contrast, suppose that Y and Y ′ have the same right segments.
Then Pr[U⊕U ′ = Z] is significantly larger than 1/2m+n for every Z ∈
{0, 1}m+n\{0m+n}, and thus the distribution of U⊕U ′, and also that of
C⊕C ′, are singular in this case. Moreover, the distribution of U⊕U ′ peaks at
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Y⊕Y ′ = B0 · (X⊕X ′), and consequently, the distribution of C⊕C ′ peaks at
B−10 ·B0 · (X⊕X ′) = X⊕X ′.

Lemma 7. Let r ≥ 7 be an odd integer and let m,n ≥ 2 be integers such that
|m − n| ≤ 1. Let F = Feistel[r, 2m, 2n,⊕]. Fix distinct X,X ′ ∈ {0, 1}m+n, a
tweak T ∈ F.Twk. Pick K←$ F.Keys. For each integer t, let Xt and X ′t be the
the round-t output of X and X ′ under F(K,T, ·), respectively. Then for any odd
integer t ≥ 7,

(a) If X and X ′ have different right segments then for any non-zero Z ∈
{0, 1}m+n,

Pr[Xt⊕X ′t = Z] =
1

2m+n
if Right(Z) = 0n ,

Pr[Xt⊕X ′t = Z] ≥ 1

2m+n
+

1

2 · 22(m+n)
otherwise .

(b) If X and X ′ have the same right segments then for any non-zero Z ∈
{0, 1}m+n,

Pr[Xt⊕X ′t = Z] ≥ 1

2m+n
+

1

2 · 22(m+n)
.

Moreover,

Pr[Xt⊕X ′t = Z] ≤ 1

2m+n − 1
+

1

(2m − 1)2(t−1)(m+n)/2
if Z 6= X⊕X ′,

Pr[Xt⊕X ′t = Z] ≥ 1

2m+n − 1
+

1− 1/(2m − 1)

2n · 2(t−1)m/2
otherwise .

The probabilities above are taken over a sampling K←$ F.Keys.

Based on the observation above, we can attack the FNR scheme as follows.
The adversary receives the encryptions of known messages X1, . . . , Xτ and tar-
gets Z1, . . . , Zp, under tweaks T1, . . . , Tq. Fix k ≤ p; we now explain how to
recover Zk. Let Ci,j and C ′i,k be the ciphertexts of Xj and Zk under tweak Ti,
respectively. To recover a target Zk, for each j ≤ τ , we plot the frequency his-
togram for the values Ci,j⊕C ′i,k, for every i = 1, . . . , q, and call it the histogram
of Xj . From the observation above, if π(Xj) and π(Zk) have different right seg-
ments and q is big enough then the histogram for Xj is non-singular, meaning
that it has multiple short columns, relative to the height q/2m+n. In contrast,
if π(Xj) and π(Zk) have the same right segments then the histogram for Xj is
singular, containing exactly one short column (of height 0). Moreover, in this
case, the tallest column corresponds to the value Xj⊕Zk.

Since X1, . . . , Xτ are sampled uniformly without replacement from {0, 1}m+n

and π is a permutation on {0, 1}m+n, the strings Y1 ← π(X1), . . . , Yτ ← π(Xτ )
are also sampled uniformly without replacement from {0, 1}m+n. From the
Coupon Collector’s problem (Lemma 2), {Right(Y1), . . . ,Right(Yτ )} = {0, 1}n
with probability at least 0.95. Hence there must be some j∗ such that Yj∗ and
π(Zk) have the same right segment. We can find such a j∗ by checking if its



New Attacks on Format-Preserving Encryption 23

histogram is singular. Let s∗ be the value for the tallest column in the histogram
of Xj∗ . We then can recover Zk by way of Zk ← s∗⊕Xj∗ .

Proof of Theorem 6. First we show that Advmg
XS ≤ 2−θ. Consider an arbi-

trary simulator S. To win the game, S must guess all targets, given the tweaks
and the auxiliary information. From the definition of θ, the chance that the
simulator’s guess is correct is at most 2−θ. Next, we show that

Pr[Gmr
F,XS(FD)]

≥ 0.95− 2m+np · exp
( −q
32 · 23(m+n)

)
− 2m+np · exp

( −q
48 · 23(m+n)

)

−2m+np · exp
( −λq
9 · 2n+(r−2)m

)
− p · exp

( −λq
12 · 2n+(r−2)m

)
.

Let Y ← π(X1), . . . , Yτ ← π(Xτ ). Since X1, . . . , Xτ are sampled uniformly with-
out replacement from {0, 1}m+n and π is a permutation on {0, 1}m+n, the strings
Y1, . . . , Yτ are also sampled uniformly without replacement from {0, 1}m+n. From
the Coupon Collector’s problem, {Right(Y1), . . . ,Right(Yτ )} = {0, 1}n, with
probability at least 0.95. By union bound, it suffices to prove that for any k ≤ p,
the FD attack fails to recover the target Zk with probability at most

2m+n · exp
( −q
32 · 23(m+n)

)
+ 2m+n · exp

( −q
48 · 23(m+n)

)

+2m+n · exp
( −λq
9 · 2n+(r−2)m

)
+ exp

( −λq
12 · 2n+(r−2)m

)
.

Let Ci,j and C ′i,k be the ciphertexts for known messages Xi and target Zk under
tweak Ti, respectively. Let Bj,i,s be the Bernoulli random variable such that
Bi,j,s = 1 if and only if Ci,j⊕C ′i,k = s. Now in the histogram for Xj , the
height of the column for each value s is Vj,s = B1,j,s + · · · + Bq,j,s. Note that
for each fixed (j, s), the random variables B1,j,s, . . . , Bq,j,s are independent and
identically distributed. Let µ ← 1/2m+n and ∆ ← 1

2·22(m+n) . From Chernoff
bound,

(i) For every (j, s), if Pr[B1,j,s = 1] ≤ µ then Vj,s ≥ q(µ+∆/2) with probability

at most exp
(

−q
32·23(m+n)

)
. That is, a supposedly short column is likely to

remain short.
(ii) For every (j, s), if Pr[B1,j,s = 1] ≥ µ +∆, we have Vj,s ≤ q(µ +∆/2) with

probability at most exp
(

−q
48·23(m+n)

)
. That is, a supposedly tall column will

be likely to remain tall.

Now, consider j such that π(Xj) and π(Zk) have different right segments. Since
Xj 6= Zk and FNR is a permutation, the histogram for Xj will surely have
one column of height 0, namely the column corresponding to π(0m+n). To cor-
rectly identify the histogram as non-singular, we need one more supposedly short
column of this histogram to remain short. From the claim (i) above and from
Lemma 7, this happens for every such j with probability at least

1− τ · exp
( −q
32 · 23(m+n)

)
≥ 1− 2m+n · exp

( −q
32 · 23(m+n)

)
.



24 Hoang, Tessaro, and Trieu

Next, consider the smallest j∗ such that π(Xj∗) and π(Zk) have the same right
segment. Since Xj∗ 6= Zk and FNR is a permutation, the histogram for Xj∗

will surely have one column of height 0, namely the column corresponding to
π(0m+n). To correctly identify the histogram as singular, we need every suppos-
edly tall column of this histogram to remain tall. From the claim (ii) above and
from Lemma 7, this happens with probability at least

1− 2m+n · exp
( −q
48 · 23(m+n)

)
.

By a union bound, we can realize j∗ via checking the singularity of histograms
with probability at least

1− 2m+n · exp
( −q
32 · 23(m+n)

)
− 2m+n · exp

( −q
48 · 23(m+n)

)
. (3)

Now, once we find j∗, we need to ensure that the peak column indeed corresponds

to the value Xj∗⊕Zk. Let µ∗ = 1
2m+n−1 + 1/(2m−1)

2(r−1)(m+n)/2 and ∆∗ = 1−1/(2m−2)
2n·2(r−1)m/2 .

From Chernoff bound and Lemma 7,

(iii) For every s 6= Zk⊕Xj∗ , Pr[B1,j∗,s = 1] ≤ µ∗, and thus the probability that

Vj∗,s ≥ q(µ∗ + ∆∗/2) is at most exp
(

−λq
9·2n+(r−2)m

)
. That is, it is unlikely

that the column corresponding to s is the peak, as it remains lower than
q(µ∗ +∆∗/2).

(iv) For s∗ = Zk⊕Xj∗ , Pr[B1,j∗,s∗ = 1] ≥ µ∗+∆∗, and thus Vj∗,s∗ ≤ q(µ∗+∆∗/2)

with probability at most exp
(

−λq
12·2n+(r−2)m

)
. That is, the column correspond-

ing to Zk⊕Xj∗ is likely to be the peak, as it remains higher than q(µ∗+∆∗/2).

From (iii) and (iv), the chance that in the histogram of Xj∗ , the peak column
indeed corresponds to Xj∗⊕Zk is at least

1− 2m+n · exp
( −λq
9 · 2n+(r−2)m

)
− exp

( −λq
12 · 2n+(r−2)m

)
. (4)

From Equation (3) and Equation (4), the chance that the attack can recover the
target Zk is at least

1− 2m+n · exp
( −q
32 · 23(m+n)

)
− 2m+n · exp

( −q
48 · 23(m+n)

)

−2m+n · exp
( −λq
9 · 2n+(r−2)m

)
− exp

( −λq
12 · 2n+(r−2)m

)
.

This completes the proof.

6 Attacking DTP

In this section, we will attack the DTP scheme, by Protegrity Corp. [12], which
resembles the seminal FPE construction by Brightwell and Smith [6].
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F.E(K,T,X)

x1 · · ·xm ← X; T1 ← T ; t← ⌊m/r⌋

For i = 1 to t do

z1 · · · zn ← FK(Ti); k ← (i− 1)r

For j = 1 to r do

yk+j ← (xk+j + zj) mod d

Ti+1 ← zr+1 · · · znxk+1 · · ·xk+r

// Encrypt the trailing digits

z1 · · · zn ← FK(Tt+1)

For j = 1 to (m mod r) do

ytr+j ← (xtr+j + zj) mod d

Return y1 · · · ym

F.D(K,T, Y )

y1 · · · ym ← Y ; T1 ← T ; t← ⌊m/r⌋

For i = 1 to t do

z1 · · · zn ← FK(Ti); k ← (i− 1)r

For j = 1 to r do

xk+j ← (yk+j − zj) mod d

Ti+1 ← zr+1 · · · znxk+1 · · ·xk+r

// Decrypt the trailing digits

z1 · · · zn ← FK(Tt+1)

For j = 1 to (m mod r) do

xtr+j ← (ytr+j − zj) mod d

Return x1 · · ·xm

Fig. 8. Code for the encryption and decryption algorithms of F =
DTP[r, d,D,m, n,PL], where PL = (K, F ).

DTP construction. The DTP scheme has several variants, but here we only
consider the simplest and also the most efficient one. Under this version, it
requires that each time we encrypt a message, we need to pick a fresh random
tweak. Thus in this setting, tweaks serve the same role as initialization vectors
in traditional modes of encryption like CBC.

The scheme F = DTP[r, d,D,m, n,PL] has message space Z
m
d and tweak space

Z
n
D, with d ≤ D and n ≥ r. The parameter PL = (K, F ) specifies the key space
K and the round function F : K×Z

n
D → Z

n
D. For example, if we want to encrypt

credit-card numbers (CCNs) then m = 16, and there are two possible values
for d:

(i) Conventionally, one views CCNs as a sequence of decimal digits, and thus
d = 10.

(ii) Protegrity prefers to interpret CCNs as a sequence of (case-senstive) al-
phanumeric characters for seemingly better security, and thus d = 62.

Under the specification in [12], one then instantiates the round function F from
AES, interpreting {0, 1}128 as Z

16
256 (meaning n = 16 and D = 256). The code

for the encryption and decryption of F is given in Fig. 8. The DTP specification
always uses D = 256 if d ≤ 256, and D = 216 if d is bigger. The parameter r
specifies how many input characters that one encrypts per one call to the round
function F . Initially, Protegrity used r = 1; this version is known internally as
DTP-1. Eventually, they moved to r = 3 for faster speed, and also claimed better
security; this is the current version, known as DTP-2.

If we consider an ideal round function then K is the set of all functions G :
Z
n
D → Z

n
D, and FK(·) is defined as the function G(·) that the key K encodes.

We write DTP[r, d,D,m, n] to denote the DTP construction of this particular
choice of PL = (K, F ). As mentioned above, since the DTP spec instantiates
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Fig. 9. Illustration of the encryption scheme of F = DTP[r, d,D,m, n,PL],
where PL = (K, F ), for r = 3 and m = 5, and ⊞ means the addition in mod d.

the round function via AES, using the standard assumption that AES is a good
PRF, one can focus on attacking DTP schemes of ideal round functions, with
small differences in the advantage.

The attack. We now give an attack on a general DTP[r, d,D,m, n] scheme
in which d is not a divisor of D. Many applications of DTP use d = 10 or
d = 62 (for examples, encrypting credit-card numbers, social-security numbers,
or PINs), and in that case, D = 256, falling into our setting. In this attack, we
consider only a single target Z. There is no known message, and the auxiliary
information is null. The adversary is given the encryption of Z under tweaks
T1, . . . , Tq, for an appropriately large q. The number Q of ciphertexts is q, and so
is the number of ciphertexts per recovered target. We assume that Z is uniformly
random, independent of the tweaks, so that the message-guessing advantage is
low.

Formally, let DC3q be the class of all algorithms D that outputs distinct
tweaks T1, . . . , Tq ∈ (ZD)n. To any such D, we associate the following sampler
XS[D]

Sampler XS[D]

(T1, . . . , Tq)←$ D; a← ⊥; Z←$ (Zd)
m

Return ((T1, Z), . . . , (Tq, Z), Z, a)

The sampler above runs D to generate the tweaks, and then samples a uni-
formly random target. Define SC3q = {XS[D] | D ∈ DC3q}. Since the target is
uniformly random and the auxiliary information is null, one would expect that
the adversary has low mr-advantage, even if q is big. However, our Digit-wise
Differential (DD) attack, given in Fig. 10, will recover the target message for any
sampler in SC3q within O(md log(d)+ qm) time. Theorem 8 below gives a lower
bound on the mr-advantage of DD; the proof is in Appendix C. The bound is
illustrated in Fig. 11.
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Adversary DD((T1, C1), . . . , (Tq, Cq), a)

For i← 1 to m do

For k ∈ Zd do Vk ← 0

For j ← 1 to q do c1 · · · cm ← Cj ; Vci ← Vci + 1

r ← D mod d

Find the r largest numbers Vs1 , . . . , Vsr in {Vk | k ∈ Zd}

Find zi ∈ Zd such that {sj | 1 ≤ j ≤ r} = {(zi + j) mod d | 1 ≤ j ≤ r}

Z ← z1 · · · zm; Return Z

Fig. 10. The Digit-wise Differential attack.
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Fig. 11. The mr advantage of the Digit-wise Differential attack on
DTP[3, 10, 256,m, 16] (left) and DTP[3, 62, 256,m, 16] (right) for m = 4, 9, 16.
These are parameter choices for PINs, social security numbers, and credit-card num-
bers. The x-axis shows the log, base 2, of the number q of ciphertexts, and the y-axis
shows Advmr

DTP[3,d,256,m,16],XS(DD) for XS ∈ SC3q.

Theorem 8. Let D > d > 1 be integers such that d is not a divisor of D. Let
m,n, r ≥ 1 be integers such that n ≥ r, and let F = DTP[r, d,D,m, n]. Let
s = D mod d. Then for any sampler XS in SC3q,

Advmr
F,XS(DD) ≥ 1− (q · ⌈m/r⌉)2

2 ·Dn−r
−ms · exp

( −q(d− s)2

2Dd(D + d− s)

)

−m(d− s) · exp
( −qs2
3Dd(D − s)

)
− 1

dm
.

Ideas of the attack. For simplicity, let us start with the special important
case d = 10 and D = 256. Let Z = z1 · · · zm, where each zi is a number in
{0, . . . , 9}. For simplicity, assume that the q · ⌈m/r⌉ inputs to F are distinct, so
that the outputs of F are independent, which holds with high probability. We
now explain how the attack can recover, say the first digit z1 of the target Z, but
the same idea works for any digit zi of Z. The way the encryption works is to pick
a random number B←$ {0, . . . , 255}, and then outputs c1 ← z1 + (B mod 10)
as the first digit of the ciphertext. The problem here is that B mod 10 is not
uniformly distributed in {0, 1, . . . , 9}. In fact, for a ∈ {0, 1, . . . , 9}, the probability
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Radix d PINs (m = 4) SSNs (m = 9) CCNs (m = 16)

10 460, 000 525, 000 575, 000

62 46, 000 51, 000 53, 000

Table 4. Comparison of security of DTP-2 over the choice of the radix d,
on PINs, social security numbers, and credit-card numbers. The first column
shows the value of d. The other columns show the estimated number of ciphertexts
needed for our attack to achieve advantage 0.9 as suggested by Theorem 8.

that B = a is exactly ⌈256/10⌉256 = 26
256 if a < 6, and this probability however is

only ⌊256/10⌋256 = 25
256 otherwise. Hence for any fixed number z1 ∈ {0, 1, . . . , 9} and

any number a ∈ {0, 1, . . . , 9}, the probability that c1 ← z1 + (B mod 10) is a
is exactly 26

256 if a ∈ {z1 mod 10, z1 + 1 mod 10, . . . , z1 + 5 mod 10}, and is 25
256

otherwise. Thus if we encrypt the target Z with a large enough number of times
and plot the frequency histogram of the first digit of the ciphertexts, then what
we obtain is a 10-column histogram, with 6 tall columns and 4 short ones. These
6 tall columns will be consecutive (possibly with a wrap-around), and the first
one corresponds to the value z1.

Now suppose that we want to deal with generic D and d, but d is not a divisor
of D. Let Z = z1 · · · zm, where each zi is a number in Zd. Consider, say the first
digit z1 of Z. The encryption works by picking a random number B←$ ZD and
then outputs c1 ← z1 + (B mod d) as the first digit of the ciphertext. Again
because d is not a divisor of D, the random variable B mod d is not uniformly

distributed in Zd. In fact, for a ∈ Zd, the probability that B = a is exactly ⌈D/d⌉
D

if a < D mod d, and this probability however is only ⌊D/d⌋
D otherwise. By the

same argument as the special case above, if we encrypt the target Z with a large
enough number of times and plot the frequency histogram of the first digit of
the ciphertexts, then what we obtain is a histogram, with D mod d tall columns.
These tall columns will be consecutive (possibly with a wrap-around), and the
first one corresponds to the value z1.

Discussion. As Theorem 8 suggests, the security of DTP-2 (namely r = 3) is
not better than that of DTP-1 (namely r = 1). Moreover, Protegrity’s decision
to prefer d = 62 over d = 10 actually makes security worse. As shown in Table 4,
if one interprets a CCN as a sequence of 16 decimal digits, then one would
need to obtain roughly 575, 000 ciphertexts to recover a CCN with advantage at
least 0.9. In contrast, if one interprets a CCN as a sequence of 16 alphanumeric
characters, then one would only need about 53, 000 ciphertexts to recover a CCN
with advantage at least 0.9.

Experiments. We implement our Digit-wise Differential attack in C++ and
evaluate its message-recovery rate against both DTP-1 and DTP-2, for domains
Z
m
d , with m ∈ {4, 9, 16} and d ∈ {10, 62}. (For DTP-1, we only use d = 10.)

Each experiment for domain Z
m
d was run using m threads in a server of Intel(R)

Xeon(R) CPU E5-2699 v3 2.30GHz CPU and 256 GB RAM. For each setting,
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Domain
Number of Recovery Time Number of Recovery Time

tweaks, q rate (ms) tweaks, q rate (ms)

Z
4
10

218
100% 2.9

217
98% 1

Z
9
10 100% 3 91% 1.49

Z
16
10 100% 3.5 83% 1.87

Table 5. Empirical results of the Digit-wise Differential attack on DTP-1.
For each domain (shown in the first column), we run experiments with two values of q
(the number of tweaks) as indicated in the second and fifth columns. The recovery
rates corresponding to these two values of q are given in the third and sixth columns,
respectively. Finally, the average running time (in milliseconds) of each experiment is
given in the fourth and seventh columns.

Domain
Number of Recovery Time Number of Recovery Time

tweaks, q rate (ms) tweaks, q rate (ms)

Z
4
10

218
100% 3

217
95% 1

Z
9
10 100% 3.08 90% 1.53

Z
16
10 100% 3.58 83% 1.97

Z
4
62

216
100% 0.01

215
91% 0.01

Z
9
62 100% 1.03 78% 0.02

Z
16
62 100% 1.17 68% 1

Table 6. Empirical results of the Digit-wise Differential attack on DTP-2.

we run our attack for several choices of q (the number of tweaks), each for 100
trials, and report the average running time and the empirical recovery rate.

Our experimental results for DTP-1, given in Table 5, are quite consistent
with Theorem 8. For example, for domain Z

16
10 (namely CCNs), theoretically one

would need q = 219 tweaks to recover the target with probability nearly 1, and
our experiments confirm that using q = 219 indeed gives 100% recovery rate.
However, empirically, we find that q = 218 is enough to achieve 100% recovery
rate, and each trial takes just 3.5 ms on average. If one instead uses q = 217, the
recovery rate drops to 83%.

The experimental results for DTP-2 are given in Table 6, confirming the
theoretical observations in Table 4: (1) DTP-2 is just as insecure as DTP-1, and
(2) Using radix d = 62 instead of d = 10 exacerbates the insecurity: for example,
for Z16

62 (namely CCNs), using q = 215 is already enough to achieve 68% recovery
rate, and using q = 216 results in 100% recovery rate.
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A Proof of Lemma 5

For each i ≤ t, let Xi and X ′i be the round-i intermediate outputs of X and X ′

respectively. Let Fi be the round function at round i, and let Gi(·, ·) = Fi(K, ·, ·).
For Z ∈ ZM , let Matcht(Z) be the event that Left(Xt) ⊟ Left(X ′t) = Z. We
now give an induction proof on t that Pr[Matcht(Z)] = 1/M ; the claimed result
in the theorem statement is the special case t = r. First consider the base case
t = 2. Note that

Left(X2) = Left(X1) = Left(X)⊞G1(T,Right(X)), and

Left(X ′2) = Left(X ′1) = Left(X ′)⊞G1(T,Right(X ′)) .

SinceRight(X) 6= Right(X ′), the random variables Left(X2) and Left(X ′2) are
independent and uniformly distributed over ZM . Hence Pr[Match2(Z)] = 1/M .

Next, suppose that the claim above holds for 2, 4, . . . , t− 2. We now prove that
it holds for t. We consider the following two cases.

Case 1: Left(Xt−3) = Left(X ′t−3). Since X and X ′ are distinct and Feistel is
a permutation, Xt−3 6= X ′t−3, and thus Right(Xt−3) 6= Right(X ′t−3). Since t is
even,

Right(Xt−2) = Left(Xi−3)⊞Gt−2(T,Right(Xt−3))

6= Left(X ′i−3)⊞Gt−2(T,Right(X ′t−3)) = Right(X ′t−2).

On the other hand, since t is even,

Left(Xt) = Left(Xt−1) = Left(Xt−2)⊞Gt−1(T,Right(Xt−2)), and

Left(X ′t) = Left(X ′t−1) = Left(X ′t−2)⊞Gt−1(T,Right(X ′t−2)) .

Since Right(Xt−2) 6= Right(X ′t−2), and Gt−1 is a truly random function, in-
dependent of Xt−2 and X ′t−2, the random variables Left(Xt) and Left(X ′t) are
independently and uniformly distributed over ZM . Consequently Left(Xt) ⊟
Left(X ′t) is uniformly distributed over ZM , and the probability that Matcht(Z)
happens is 1/M .

Case 2: Left(Xt−3) 6= Left(X ′t−3). Define Coll to be the event Right(Xt−2) =
Right(X ′t−2). If Coll does not happen then using the same argument as in Case 1,
we can show that the conditional probability that Matcht(Z) happens is 1/M .
Hence

Pr[Matcht(Z) ∧ Coll] =
1

M
Pr[Coll] .

Consider the case that Coll does happen. Recall that

Left(Xt) = Left(Xt−1) = Left(Xt−2)⊞Gt−1(T,Right(Xt−2)), and

Left(X ′t) = Left(X ′t−1) = Left(X ′t−2)⊞Gt−1(T,Right(X ′t−2)) .

Subtracting side by side, we have

Left(Xt)⊟ Left(X ′t) = Left(Xt−2)⊟ Left(X ′t−2) .
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Hence
Pr[Matcht(Z) ∧ Coll] = Pr[Matcht−2(Z) ∧ Coll] .

We claim that the right-hand side is Pr[Coll] · Pr[Matcht−2(Z)]. Summing up,

Pr[Matcht(Z)] =
1

M
(1− Pr[Coll]) + Pr[Coll] · Pr[Matcht−2(Z)]

=
1

M
+ Pr[Coll] ·

(
Pr[Matcht−2(Z)]− 1

M

)
=

1

M
.

To justify the claim above, we need only prove that Coll and Matcht−2(Z) are
conditionally independent, given Left(Xt−3) 6= Left(X ′t−3). Note that event
Matcht−2(Z) depends solely on the round functions up to round t − 3. Thus it
suffices to show that regardless of the choices of the round functions from round 1
to round t−3, as long as Left(Xt−3) 6= Left(X ′t−3) then Pr[Coll] = 1/N . Recall
that

Right(Xt−2) = Right(Xt−3)⊞Gt−2(T,Left(Xt−3)), and

Right(X ′t−2) = Right(X ′t−3)⊞Gt−2(T,Left(X
′
t−3)) .

If Left(Xt−3) 6= Left(X ′t−3) then Right(Xt−2) and Right(X ′t−2) are indepen-
dent and uniformly distributed over ZN . Hence regardless of the choices of the
round functions from round 1 to round t−3, as long as Left(Xt−3) 6= Left(X ′t−3)
then Pr[Coll] = 1/N .

B Proof of Lemma 7

Let Fi be the round function at round i, and let Gi(·, ·) = Fi(K, ·, ·). For any
strings Z ∈ {0, 1}m+n and V ∈ {0, 1}m and for any integer k ≥ 1, define
Diffk(Z) to be the event that Xk⊕X ′k = Z, and let Hitk(V ) be the event that
Left(Xk)⊕Left(X ′k) = V . Fix an odd integer t ≥ 3. We claim that for any string
V ∈ {0, 1}m\{0m},

Pr[Difft(V ‖ 0n)] =
Pr[Hitt−1(V )]

2n
. (5)

Moreover, for any strings Z and Z in {0, 1}m+n such that Right(Z) 6= 0n and
Right(Z ′) 6= 0n, we claim that

Pr[Difft(Z)]− Pr[Difft(Z
′)] =

Pr[Diff1(U)]− Pr[Diff1(U
′)]

2(t−1)m/2
, (6)

where U = 0m ‖Right(Z) and U ′ = 0m ‖Right(Z ′). These claims will be justi-
fied later. We now use these to prove our results.

Case 1: Right(X) 6= Right(X ′). For any odd integer t ≥ 3 and for any V ∈
{0, 1}m\{0m}, from Lemma 5,

Pr[Hitt−1(V )] =
1

2m
.
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Combining this with Equation (5), we have

Pr[Difft(V ‖ 0n)] =
1

2m+n
.

Next, let R0 = Right(X)⊕Right(X ′). For any R ∈ {0, 1}n\{0n}, note that
Pr[Diff1(0

m ‖R)] = 0 if R 6= R0, and Pr[Diff1(0
m ‖R)] = 1/2m otherwise.

Combining that with Equation (6), for any odd number t ≥ 3, there must
be a constant at such that Pr[Difft(Z)] = at if Right(Z) 6∈ {0n, R0}, and
Pr[Difft(Z)] = at +

1
2(t+1)m/2 if Right(Z) = R0. To find this constant at, note

that on the one hand,

∑

Z:Right(Z) 6=0n

Pr[Difft(Z)] = (2n − 1)2mat +
1

2(t+1)m/2
.

On the other hand,

∑

Z:Right(Z) 6=0n

Pr[Difft(Z)] = 1−
∑

V ∈{0,1}m

Pr[Difft(V ‖ 0n)] = 1− 2m − 1

2m+n
.

Hence

at =
1

(2n − 1)2m

(
1− 2m − 1

2m+n
− 1

2(t+1)m/2

)
.

Thus for any odd t ≥ 7,

at ≥
1

(2n − 1)2m

(
1− 2m − 1

2m+n
− 1

24m

)
≥ 1

2m+n
+

1

22(m+n)
,

where the last inequality is due to the hypothesis that m ≥ max{2, n−1}. Hence
for any Z ∈ {0, 1}m+n such that Right(Z) 6= 0n and any odd t ≥ 7,

Pr[Difft(Z)] ≥ 1

2m+n
+

1

22(m+n)
.

Case 2: Right(X) = Right(X ′). We need the following result from [1].

Lemma 9 ([1]). Suppose that Right(X) = Right(X ′). Then for any odd t ≥ 3
and for any V, V ′ ∈ {0, 1}m\{0m, L0}, where L0 = Left(X)⊕Left(X ′),

Pr[Hitt−1(V )] = Pr[Hitt−1(V
′)] .

Moreover,

Pr[Hitt−1(L0)] = Pr[Hitt−1(V )] +
1

2(t−3)n/2
, and

2n − 1

2m+n − 1
− 1

2m · 2(t−3)(m+n)/2
≤ Pr[Hitt−1(0

n)] ≤ 2n − 1

2m+n − 1
.
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For any R ∈ {0, 1}n\{0n}, note that Pr[Diff1(0
m ‖R)] = 0. Combining this with

Equation (6), this means that there is a constant bt such that Pr[Difft(Z)] = bt,
for every Z ∈ {0, 1}m+n such that Right(Z) 6= 0n. Note that on the one hand,

∑

Z:Right(Z) 6=0n

Pr[Difft(Z)] = 1−
∑

V ∈{0,1}m\{0m}

Pr[Difft(V ‖ 0n)]

= 1−
∑

V ∈{0,1}m\{0m}

Pr[Hitt−1(V )]

2n

= 1− 1−Hitt−1(0
m)

2n
.

On the other hand,

∑

Z:Right(Z) 6=0n

Pr[Difft(Z)] = 2m(2n − 1)bt .

Using the bounds for Hitt−1(0
m) as given in Lemma 9, we have

1

2m+n − 1
≤ bt ≤

1

2m+n − 1
+

1

(2n − 1)2m · 2(t−1)(m+n)/2
,

Hence for any Z ∈ {0, 1}m+n such that Right(Z) 6= 0n,

Pr[Difft(Z)] = bt ≤
1

2m+n − 1
+

1

(2n − 1)2m · 2(t−1)(m+n)/2
.

Moreover,

Pr[Difft(Z)] = bt ≥
1

2m+n − 1
≥ 1

2m+n
+

1

22(m+n)
.

Next, to estimate Pr[Difft(V ‖ 0n)], from Lemma 9, we will need to establish
both lower and upper bounds for Hitt−1(V ), for every V ∈ {0, 1}m\{0m}. Let
L0 = Left(X)⊕Left(X ′). Note that from Lemma 9, there is a constant ct such
that Pr[Hitt−1(V )] = ct for every V ∈ {0, 1}m\{0m, L0}. On the one hand,

∑

V ∈{0,1}m\{0m}

Pr[Hitt−1(V )] = 1− Pr[Hitt−1(0
m)] .

On the other hand, by Equation (6),

∑

V ∈{0,1}m\{0m}

Pr[Hitt−1(V )] = (2m − 1)ct +
1

2(t−1)m/2
.

Hence

ct =
1

2m − 1

(
1− 1

2(t−1)m/2
− Pr[Hitt−1(0

m)]
)

.
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Using the bounds of Pr[Hitt−1(0
n)] in Lemma 9 gives us

ct ≥
2n

2m+n − 1
− 1

(2m − 1)2(t−1)m/2
, and

ct ≤
2n

2m+n − 1
+

1

2m(2m − 1)2(t−3)(m+n)/2
,

Combining this with Equation (5) we have

Pr[Difft(V ‖ 0n)] ≥
1

2m+n − 1
− 1

2n(2m − 1)2(t−1)m/2
, and

Pr[Difft(V ‖ 0n)] ≤
1

2m+n − 1
+

1

(2m − 1)2(t−1)(m+n)/2
.

For t ≥ 7 and m ≥ max{2, n− 1},

1

2m+n − 1
− 1

2n(2m − 1)2(t−1)m/2
≥ 1

2m+n
+

1

2 · 22(m+n)
,

and thus

Pr[Difft(V ‖ 0n)] ≥
1

2m+n
+

1

2 · 22(m+n)
.

On the other hand,

Pr[Hitt−1(L0)] = ct +
1

2(t−1)m/2
≥ 2n

2m+n − 1
+

1− 1/(2m − 1)

2(t−1)m/2
.

Combining this with Equation (5) we have

Pr[Difft(L0 ‖ 0n)] ≥
1

2m+n − 1
+

1− 1/(2m − 1)

2n · 2(t−1)m/2
.

Justifying Equation (5). Fix an odd integer t ≥ 3 and a string V in the
set {0, 1}n\{0n}. Since t is odd, Right(Xt) is also Right(Xt−1), and the same
holds for X ′. Note that Difft(V ‖ 0n) happens if and only if Right(Xt−1) =
Right(X ′t−1) and Hitt−2(V ) happens. On the other hand, if Hitt−2(V ) happens
then Left(Xt−2) 6= Left(Xt−2), and thus Right(Xt−1) and Right(X ′t−1) are
independent random strings. Hence

Pr[Difft(V ‖ 0n)] =
Pr[Hitt−2(V )]

2n
.

Justify Equation (6). Fix an odd integer t ≥ 3 and fix a string Z ∈ {0, 1}m+n

such that Right(Z) 6= 0n. First consider the case that Hitt−2(0
m) does not

happen. Then Difft(Z) happens iff Right(Xt−1) = Right(X ′t−1)⊕Right(Z)
and Hitt(Left(Z)) happens. If Hitt−2(0

m) does not happen then Right(Xt−1)
and Right(X ′t−1) are independent random strings, and thus

Pr[Right(Xt−1) = Right(X ′t−1)⊕Right(Z) | ¬Hitt−2(0
m)] = 2−n .
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Given that Right(Xt−1) = Right(X ′t−1)⊕Right(Z) and Hitt−2(0
m) does not

happen, the strings Left(Xt) and Left(X ′t) are conditionally independent ran-
dom strings, and thus Hitt(Left(Z)) occurs with conditional probability 2−m.
Hence

Pr[Difft(Z) | ¬Hitt−2(0
m)] = 2−(m+n) .

Now consider the case that Hitt−2(0
m) happens. Then Difft(Z) happens if and

only if Difft−2(U) and Hitt(Left(Z)) happen, where U = 0m ‖Right(Z). Note
that Difft−2(U) implies that Right(Xt−1) 6= Right(X ′t−1) and Hitt−2(0

m) hap-
pens. Hence given that the event Difft−2(U) happens, Hitt(Left(Z)) happens
with conditional probability 2−m, and thus

Pr[Difft(Z) ∧Hitt−2(0
m)] =

Pr[Difft−2(U)]

2m
.

Summing up,

Pr[Difft(Z)] =
Pr[Difft−2(U)]

2m
+

Pr[¬Hitt−2(0
m)]

2m+n
.

By repeating the argument above, we will be able to express Pr[Difft−2(U)] via
Pr[Difft−4(U)] and Pr[¬Hitt−4(0

n)] and so on. Hence there is a constant dt such
that

Pr[Difft(Z)] = dt +
Pr[Diff1(U)]

2(t−1)m/2
.

Thus for any Z and Z ′ in {0, 1}m+n such that Right(Z) 6= 0n and Right(Z ′) 6=
0n, we have

Pr[Difft(Z)]− Pr[Difft(Z
′)] =

Pr[Diff1(U)]− Pr[Diff1(U
′)]

2(t−1)m/2
,

where U ′ = 0m ‖Right(Z ′). This completes the proof.

C Proof of Theorem 8

First we show that Advmg
XS ≤ 1/dm. Consider an arbitrary simulator S. To

win the game, S must find the target Z but is given only the tweaks. As Z is
uniformly distributed in (Zd)

m independent of the tweaks, the chance that the
simulator can find Z is at most 1/dm. Next, we show that

Pr[Gmr
F,XS(DD)] ≥ 1− (q · ⌈m/r⌉)2

2 ·Dn−1
−ms · exp

( −q(d− s)2

2Dd(D + d− s)

)

−m(d− s) · exp
( −qs2
3Dd(D + s)

)
. (7)

Assume that the q · ⌈m/r⌉ inputs to F are distinct, so that the outputs of F
are independently and uniformly distributed over (ZD)n. This happens with
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probability at most (q·⌈m/r⌉)2

2·Dn−1 . Now, it suffices to show that for any digit of
Z = z1 · · · zm, the attack recovers it with probability at least

1− s · exp
( −q(d− s)2

2Dd(D + d− s)

)
− (d− s) · exp

( −qs2
3Dd(D − s)

)
, (8)

since Equation (7) above then follows by a union bound. Without loss of gen-
erality, consider the first digit of Z. Let Vi,a be the Bernoulli random variable
that the first digit of the i-th ciphertext is a. Now, in the frequency histogram
of the first digit of the ciphertexts, the height of the column corresponding to
the value a is V1,a + · · ·+ Vq,a. We claim that

(i) For any number a ∈ S = {z1 mod d, z1 + 1 mod d, . . . , z1 + (D mod d) −
1 mod d},

Pr[V1,a + · · ·+ Vq,a ≤ q/d] ≤ exp
( −q(d− s)2

2Dd(D + d− s)

)
.

In other words, a supposedly tall column in the frequency histogram is un-
likely to appear short; the height of this column is likely to be bigger than
the average.

(ii) For a ∈ Zd\S,

Pr[V1,a + · · ·+ Vq,a ≥ q/d] ≤ exp
( −qs2
3Dd(D − s)

)
.

In other words, a supposedly short column in the empirical histogram is
unlikely to appear tall; the height of this column is likely to be smaller than
the average.

Equation (8) then follows (i) and (ii) by a union bound. We now justify the

claims (i) and (ii) above. First consider claim (i). Fix a ∈ S. Let µ = ⌈D/d⌉
D and

ǫ = d−s
d·⌈D/d⌉ . Note that for any i ≤ q, we have Vi,a = 1 with probability µ, and

q/d = (1− ǫ)qµ. Since V1,a, . . . , Vq,a are independent and identically distributed
Bernoulli random variables, by using Chernoff’s bound,

Pr[V1,a + · · ·+ Vq,a ≤ (1− ǫ)qµ] ≤ exp
(−ǫ2qµ

2

)
= exp

( −q(d− s)2

2Dd(D + d− s)

)
.

Next, consider claim (ii). Fix a ∈ Zd\S. Let µ∗ = ⌊D/d⌋
D and ǫ∗ = s

d·⌊D/d⌋ . Note

that for any i ≤ q, we have Vi,a = 1 with probability µ∗, and q/d = (1+ ǫ∗)qµ∗.
Since V1,a, . . . , Vq,a are independent and identically distributed Bernoulli random
variables, by using Chernoff’s bound,

Pr[V1,a + · · ·+ Vq,a ≥ (1 + ǫ∗)qµ∗] ≤ exp
(−(ǫ∗)2qµ∗

3

)
= exp

( −qs2
3Dd(D − s)

)
.

This completes the proof.


