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Abstract—Existing work in machine learning has shown that
algorithms can benefit from the use of curricula—learning first on
simple examples before moving to more difficult problems. This
work studies the curriculum-design problem in the context of
sequential decision tasks, analyzing how different curricula affect
learning in a Sokoban-like domain, and presenting the results of
a user study that explores whether non-experts generate effective
curricula. Our results show that 1) the way in which evaluative
feedback is given to the agent as it learns individual tasks does
not affect the relative quality of different curricula, 2) non-expert
users can successfully design curricula that result in better overall
performance than having the agent learn from scratch, and 3)
non-expert users can discover and follow salient principles when
selecting tasks in a curriculum. We also demonstrate that our
curriculum-learning algorithm can be improved by incorporating
the principles people use when designing curricula. This work
gives us insights into the development of new machine-learning
algorithms and interfaces that can better accommodate machine-
or human-created curricula.

Index Terms—Curriculum Design; Curriculum Learning; Se-
quential Decision Tasks; Human-Agent Interaction

I. INTRODUCTION

Humans acquire knowledge efficiently by starting from
simple concepts, and then gradually generalizing to more com-
plex ones using previously learned information. This learning
strategy has been shown to be effective by a number of
cognitive scientists, given that easier concepts can help shape
the understanding of more complex ones [1]-[4]. Similar ideas
are exploited in animal training [5]—animals can learn much
better through progressive task shaping. Recent work [6]-
[8] has shown that machine-learning algorithms can benefit
from a similar training strategy, called curriculum learning.
Rather than considering all training examples at once, the
training data can be introduced in a meaningful order based on
their apparent simplicity to the learner, such that the learner
can build up a complex model step by step. The agent can
learn faster on more difficult examples after it has mastered
simpler examples. This approach was shown to drastically
affect learning speed and generalization in supervised learning
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settings [6]-[8]. Major challenges in curriculum learning in-
clude determining how difficult a training example will be for
the agent to learn and ensuring that each example presented
to the agent is suitable given its current ability.

In most existing work, the curriculum is generated either
automatically [7]-[10], by iteratively selecting examples with
increasing difficulty tailored to the current ability of the
learner, or manually by the algorithm designer, who will
typically have specialized knowledge of the problem domain
or of the algorithm itself [11]-[17]. How non-expert humans
design curricula is currently a neglected topic.

We argue that this topic is a critical missing piece: a better
understanding of the curriculum-design strategies used by non-
expert humans may help us to 1) understand the general
principles that make some curriculum-design strategies better
than others, and 2) inspire the design of new machine-learning
algorithms and interfaces that better accommodate the natural
tendencies of human trainers. As more robots and virtual
agents are deployed, more of their users will be non-experts,
who will need to teach them new skills without programming
them. This work focuses on understanding how non-expert
human teachers design curricula and investigates how we can
adapt machine-learning algorithms to better take advantage of
this type of non-expert guidance. We believe this work is the
first to explore how non-expert humans approach the design of
curricula in sequential decision tasks and leverage its findings
to improve a curriculum-aware machine-learning algorithm.

In this work, we study how the choice of curriculum affects
an agent’s ability to learn in our Sokoban-like test domain [18].
In this domain, each task is specified by a text command,
and the agent is trained to perform the task via reward and
punishment. Existing work has shown that hand coded [13]
and agent-generated [9] curricula can speed up learning when
the final (target) task is too difficult to be learned from
scratch. In contrast, we study the effects of curricula when
the agent can learn the target task, but may require more
trainer interaction to do so. We also explore whether different
approaches to teaching individual tasks affect the relative
quality of curricula. Our results show that:

« Different curricula can have substantial impact on training

speed (i.e., the amount of data required to learn).

o Longer curricula can actually outperform shorter ones.

¢ Curriculum learning can be more beneficial as the target

task’s complexity increases.

o The relative performance of curricula is consistent across

different methods for providing feedback to the agent.

To explore how non-experts generate curricula, we ran a
human subjects experiment in which non-expert participants



designed curricula for an agent. Analysis of these curricula
shows that 1) participants can design curricula that result in
better overall agent performance than learning from scratch,
even when participants receive no feedback on the quality
of their curricula, and 2) we can identify salient principles
that participants follow when selecting tasks in a curriculum.
We demonstrate that our curriculum-learning algorithm can
be improved by incorporating some of these principles. We
believe our results will be useful for the design of new
machine-learning algorithms with inductive biases that favor
the types of curricula non-expert humans typically provide.

II. BACKGROUND AND RELATED WORK

Taylor et al. [13] first showed that curricula with differ-
ent state descriptions and action spaces can be helpful in
reinforcement learning (RL), transferring knowledge between
increasingly complex tasks. In Bengio et al. [6], curricula
were used for non-convex optimization problems in machine
learning. That work points out that the notion of simple and
complex tasks is often based on human intuition, and that there
is value in understanding how humans identify “simple” tasks.
Kumar et al. [7] and Lee et al. [8] each developed algorithms
for supervised learning problems which automatically identify
easy instances to learn from. Narvekar et al. [9] developed
multiple methods to automatically generate novel tasks for
curricula for multiagent RL domains, and Svetlik et al. [10]
used potential-based shaping [19] to construct curricula from
a set of source tasks. None of these works however look at
the way in which humans actually design curricula.

We believe that non-expert users may be able to design good
curricula by considering which examples are “too easy” or
“too hard,” given the learner’s current understanding, similar
to how humans are taught with the zone of proximal devel-
opment [20]. Along these lines, Khan et al. [21] conducted
studies in which human participants needed to teach a robot
the concept of whether an object could be grasped with one
hand. That work showed that human teachers can teach via
a form of curriculum learning, specifically by starting with
extreme instances that are far away from the decision boundary
and then gradually approaching the boundary. In contrast, this
work focuses on a somewhat different notion of curriculum
learning, where the agent must understand multiple concepts
to solve the target task, and a curriculum can be used to
teach these concepts more efficiently. Our work also focuses
specifically on sequential decision-making problems.

Finally, we note other paradigms in reinforcement learning
are closely related, but not identical to, curriculum learning.
Wilson et al. [22] explored multi-task learning in RL, where
the agent needed to solve a number of Markov Decision
Processes drawn from a common distribution. In multi-task
learning however, the agent is evaluated on its performance
across all tasks, with no specific training tasks. Transfer
learning [23] resembles curriculum learning more closely in
that knowledge from the source tasks is used to learn the target
tasks more efficiently. Transfer learning methods generally
assume that 1) the source tasks are predefined, 2) the agent
knows nothing about the target tasks when learning the source

tasks, and 3) the transfer of knowledge is a single-step process.
Curriculum learning extends transfer learning to sequences
of tasks presented in a specific order, that is, from simpler
to more complex. Sutton et al. [24] explored the idea of
lifelong learning [25] in the RL setting, considering the future
sequence of tasks the agent could encounter. While both
lifelong learning and curriculum learning involve a specific
sequence of tasks, lifelong learning considers tasks that are
not necessarily ordered so as to make learning more efficient.
Active learning [26], in which the agent attempts to select
the most informative examples for learning, has also been
applied to RL domains [27], [28]. We can view the automatic
construction of curricula as a form of active learning. Lastly,
the notion of learning options [29] is related to our work
in that it involves the learning of simpler skills that can be
progressively combined into more complex behaviors.

III. OUR DOMAIN

To study whether non-expert humans can design good
curricula, we used our Sokoban-like test domain. We choose
this domain because it connects the learning of each task with
a natural language model. Based on the language model, we
can construct more complex tasks that depend on multiple
simpler concepts that can be taught individually as part of
a curriculum. For example, if the agent needs to learn the
command “move the red bag to the yellow room,” it must
understand the concepts “red bag” and “yellow room.” These
concepts could be taught first using simpler tasks. The natural
language description also allows humans to more easily isolate
different concepts that the agent needs to learn to solve a task.

More specifically, our domain is a simple, simulated home
environment of the kind shown in Fig. 1. The domain consists
of four object classes: agent, room, object, and door. The agent
is represented visually as a dog, since people are familiar with
dogs being trained with feedback. The agent can move one unit
in the four cardinal directions and push an object by moving
into it. The objects are chairs, bags, backpacks, or baskets.
Rooms and objects can be red, yellow, green, blue, or purple.
Doors (shown in white in Fig. 1) allow the agent to move
from one room to another. Therefore, the state space in this
task includes the agent’s location; rooms’ locations and colors;
objects’ locations, colors, and shapes; and doors’ locations.

Possible commands given to the agent include moving to
a room (e.g., “move to the red room”) and taking a specified
object to a room (e.g., “move the red bag to the yellow room”).
The agent learns to follow these text commands via a human
or simulated trainer’s reinforcement and punishment feedback.
Our previous work [30], [31] found that non-expert humans are
good at training the agent to execute new commands using re-
inforcement and punishment feedback. In this work, we focus
on how humans designing curricula for an agent. Therefore,
the reinforcement and punishment feedback will be given by a
simulated trainer. As the simulated trainer teaches new tasks,
the agent will (hopefully) become better at interpreting the
language, thereby enabling the agent to successfully interpret
and carry out novel commands without further training. For
example, an agent might learn the interpretation of “red” and



Fig. 1. The target environment #1 (command: “move the bag to the yellow
room”) used in our study has a dog, five colored rooms, and three objects.

“chair” from the command “move the red chair,” and the
interpretation of “blue” and “bag” from the command “bring
me the blue bag,” thereby allowing correct interpretation of
the novel command “bring me the red bag.” The simulated
trainers are described further in Section V.

IV. LANGUAGE LEARNING FROM HUMAN FEEDBACK

To enable language learning from agents trained with reward
and punishment in our Sokoban-like test domain, we used
a probabilistic model [18] that connected the IBM Model
2 (IBM2) language model [32] with a factored generative
model of tasks, and the goal-directed Strategy-Aware Bayesian
Learning (SABL) algorithm [18] for learning from feedback.

The SABL algorithm, which we developed in previous
work [33], learns how different trainers use feedback, and
then exploits that knowledge to accelerate learning. Instead
of treating the feedback as a numerical reward signal [19],
[34], SABL interprets it as a discrete communication that
depends on both the trainer’s desired behavior, and the training
strategy they are using. SABL infers the desired behavior
from the trainer’s feedback using a probabilistic model of how
humans provide feedback. This model assumes that a trainer
will reward/reinforce (encourage), punish (discourage), or do
nothing (neutral feedback), in response to each of the agent’s
actions. Under this model, reward is more likely when the
agent takes a correct action, and punishment is more likely
when it takes an incorrect one. SABL computes and follows
a maximum likelihood estimate of the target policy given the
feedback that the trainer has provided.

In the contextual bandit setting, SABL directly learns the
policy for each state from human feedback. In large sequential
domains, however, trainers may be more interested in commu-
nicating the final goals of a task. Learning these goals allows
the agent to act correctly even in states where no feedback
has been given. Assuming the agent has the ability to plan,
the agent can simply take the action that is optimal for the
known goal. We adapt SABL to the goal-directed setting [18]
by representing goals as reward functions in an MDP, and
computing the optimal policy 79 for any goal-based reward
function g € G. A “correct action” is then defined to be an
action that is consistent with the optimal policy for the true
goal: a € 79 () where a is the action taken by the agent and
79" (s) is the set of optimal actions in state s for the true goal
g* € G. An “incorrect action” is an action that is inconsistent
with the optimal policy: a ¢ w9 (s).

V. METHODOLOGY

In our curriculum design problem, a sequence of n tasks,
My, Ms, ..., M,, must be selected. Each task M; is defined
by 1) an environment with an initial state s; and 2) a text
command e;. The agent trains on these n tasks and then on the
pre-defined target task, M,, ;. Here we define training speed
as the number of trainer feedbacks required for the agent to
learn to complete a task. A curriculum is successful if learning
on task M, is faster (fewer feedbacks required) with the
curriculum than without it. A more difficult goal is to construct
a sequence such that training on all n + 1 tasks is faster than
training directly on the final task, M,, ;.

We provide the curriculum designer with the 16 source
tasks shown in Fig. 2.! For ease of description, we number
the environments in the grid from 1 (top left) to 16 (bottom
right) in English reading order. The 16 environments are
organized along two dimensions: the number of rooms and
the number of moveable objects. The cross product of these
factors defines the overall complexity of the learning task,
since these factors determine how many possible tasks the
agent could execute in the environment and therefore how
much feedback an agent could require to master its task. For
example, Environment 1 has only a single possible task while
in Environment 16 the agent may need to reach one of 5 rooms
with 3 possible objects. Each environment includes a list of
possible commands. For example, the possible commands in
Environment 5 are “move to the red room,” and “move the
bag to the red room.” Given the 16 room layouts, and the set
of English language commands for each layout, there are 94
possible source tasks that could be included in a curriculum.

The target command is “move the bag to the yellow room.”
This command is not included for any source environment to
disallow training directly on the target command. Furthermore,
the target room layout is not one of the 16 layouts available.
To study the effect of the target task’s complexity on the
performance of curricula, we use two target task layouts (Fig. 1
and Fig. 3), with the same command. We note that even though
the number of possible tasks is the same in both environments,
the second target task is harder than the first one because there
are more competing hypotheses on the agent’s way from the
start state to the goal state in the second target task.

Our curriculum learning algorithm is shown in Algorithm 1.
The algorithm takes the designed curriculum C', given target
task M, 1, and simulated trainer as input. The algorithm
begins by initializing the IBM2 language model parameters
arbitrarily and creating an initially empty training dataset D.
Our algorithm learns each task in C in order, taking actions
and receiving feedback for one task until the simulated trainer
indicates that the agent is ready to move on to the next task.

For each task M;, the agent is given the natural language
command e;, and must learn to perform the task defined by
that command. Using the current IBM2 parameters, the prior
distribution over all possible tasks 7 is computed for the cur-
rent environment and the command e;. This task distribution

IThese 16 environments largely cover the space of possible commands.
Changing the layouts of these environments would not change how the
language model interacts with them, and so should not significantly affect
our results. The construction of source tasks is left to future work.



Fig. 2. The library of 16 environments is organized by the number of rooms and objects. There is a list of relevant commands for each environment.

Fig. 3. The target environment #2 (command: “move the bag to the yellow
room”) used in our study has a dog, five colored rooms and three objects.

is used as a prior over goals in goal-directed SABL. To learn
the correct goal, the agent first uses any “off-the-shelf” MDP
planning algorithm to find the policy for each possible task.
Next begins a behavior loop in which the agent follows the
policy of the current most likely task, receives a feedback from
the simulated trainer, and updates its belief in each task. This
behavior loop continues until the simulated trainer terminates
the session.> After completing training, for each possible
machine language command m, a training instance is added
to dataset D. Each training instance consists of the machine
language command (m), the natural language command (e;),
and the posterior probability of m given the initial command
e;, and the state, action, and feedback sequence observed
during the goal-directed SABL training process. Finally, the
IBM?2 parameters are retrained using the updated dataset D

2Training for a task ends the first time the agent stops at the goal state.

Algorithm 1 Curriculum Learning Algorithm
., M,}, target task

Input: curriculum C = {M;, Mo, ..
M, +1, simulated trainer
Initialize IBM2 parameters arbitrarily
D < {} % Initialize training data
fori=1ton+1do
(Si, €Z') = (]\/[ZS“ JV[ZGZ)
Pr (1) < Pr(7|s;, ;)
repeat
goalDirectedSABL(M;)
until simulated trainer terminates session
for m € M do
D < DU{Pr(mle;s,a, f),m,e;}
end for
retrainlBM2Parameters(D)
end for

via weakly supervised learning.> After the language model is
updated, training begins on the next task from the curriculum.

We consider three different simulated trainers, allowing us
to study whether different methods for providing feedback
to the agent influence which curricula are best. We focus
on “explicit” feedback, where a trainer provides positive or
negative feedback, as a proxy for trainer effort.

3The training algorithm for the language model is an Expectation Maxi-
mization (EM) algorithm, as in prior work [35], similar to the standard EM
algorithm for IBM Model 2, except that the contribution of each data instance
is weighted by its posterior probability given the trainer feedback.



Correct trainer: Provide explicit, correct feedback for 50%
of the agent’s actions (i.e., reinforcement for actions consistent
with optimal policy, punishment otherwise).

Error-prone trainer: Provide explicit feedback for 50% of
the agent’s actions, with 20% of this feedback being incorrect?,
representing a worst-case scenario.

Entropy-driven trainer: Use the entropy of the agent’s
policy to target its feedback. This trainer provides correct
feedback to 50% of actions where the entropy (/) of the
agent’s policy is high (H > 0.1) (i.e., it is uncertain about the
correct action in the current state). In state s, this entropy is:

H=—Y" Pr(a=a*ls,F)n(Pr(a = a*[s, F)), (1)
a€A

where A is the set of possible actions, F' is the history
of feedback from the trainer, and Pr(a = a*|s, F') is the
probability, given F, that action a is an optimal action (a*) in
state s. Actions with H < 0.1 never receive feedback.’

VI. SIMULATION RESULTS

We first look at how different curricula affect the number
of feedback signals the trainer must provide for the agent to
learn just the target task, and to learn all the tasks in the
curriculum. We hypothesized that 1) curricula could reduce
the amount of feedback required to learn target task, 2) longer
curricula would reduce the feedback required to learn more
than shorter curricula, and 3) the reduction would be greater
for more complex target tasks than for simpler ones.

As a baseline we created four sets of curricula of lengths
n = {1,2,3,4}. Each set contained 200 curricula generated
by randomly selecting a sequence from the 16 environments in
Fig. 2, and selecting a random command for each environment
to define the learning task. Repetition of environments and
tasks was allowed within a curriculum. We note that the num-
ber of possible curricula grows exponentially as the curriculum
length increases. There are 94 possible curricula of length 1,
94 x 94 = 8836 possible curricula of length 2, and so on.

Each of these 800 curricula was evaluated 20 times for
each of the three simulated trainers, and compared against
directly learning the target task with that trainer. For both of
the target tasks (shown in Figs. 1 and 3), we recorded the
average amount of feedback required to learn 1) the target task,
and 2) all tasks within the curricula (including the target task).
Fig. 4 summarizes these results. As we expected, compared
to directly learning the target tasks, all four sets of random
curricula reduced the amount of feedback required to learn the
target task itself (shown in Fig. 4(a) and Fig. 4(c)). Unpaired
two sample ¢-tests [37] show that the differences in the amount
of feedback required to learn the target task with and without
the random curricula were statistically significant (p < 0.01),
for each curriculum length and trainer combination. The
absolute reduction was greater for the second, harder target
task than for the first task, demonstrating that curricula can be
more beneficial for more complex target tasks.

4Previous work [36] with real humans found an error rate of less than 10%.
SWhen H < 0.1, the probability of the most likely action is > 99% —
additional feedback is unlikely to have much impact.
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We also found that longer curricula always reduced the
amount of feedback required in the target task, relative to
shorter curricula, in both target tasks. While we might expect
longer curricula to require more feedback overall, we see in
Fig. 4(d) that this is not always the case. Curricula of length 4
required fewer feedbacks than curricula of length 3, under the
correct trainer. This shows that longer curricula can sometimes
outperform shorter curricula in learning all tasks within the
curricula (including the target task). As we expected (see
Fig. 4), the type of simulated trainer used did not affect the
relative quality of different curricula under these metrics.

Recall that the biggest challenge in curriculum design is to
construct a sequence such that learning the entire curriculum
(including the target task) is faster than directly learning the
target task. As shown in Fig. 4(b), for the first task, none of the
four sets of random curricula actually reduced on average the
total amount of feedback required. However, Fig. 4(d) shows
that for the harder target task, all four sets of random curricula
did reduce the total amount of feedback required relative
to directly learning the target task under the correct trainer.
Unpaired two sample t-tests show that these differences were
statistically significant (p < 0.01). This implies that as the
target task’s complexity increases, we may find more curricula
which result in reduced total training time, while also reducing
training time on the target task. However, even for the harder
target task, we found that few curricula resulted in a lower
total amount of feedback required under the error-prone trainer
or entropy-driven trainer. We believe that the high probability
of incorrect feedback with the error-prone trainer makes it
difficult for the agent to fully leverage information from
previous tasks in the curricula. For the entropy-driven trainer,



the amount of feedback required was already low relative to
the other two trainers, making further improvement difficult.

VII. HUMAN SUBJECT EXPERIMENTS

To study whether non-expert humans (Amazon Mechanical
Turk workers in this case) can design good curricula, we
conducted a series of experiments in which participants were
asked to select a sequence of training tasks for the virtual dog
to help it quickly learn to complete the final target task. Before
the experiments, participants had to pass a color blindness test,
after which they completed a background survey regarding
their prior experience in training dogs. Participants then went
through a tutorial that 1) walked them through two examples
of the dog being trained to help them understand how the
dog learns to perform a command from positive and negative
feedback, and 2) taught them how to use the interface to
design a curriculum. Participants were told “In this study, your
goal is to design a curriculum (a set of assignments) for a
virtual dog to train on, so that the dog can quickly complete
the target assignment.” They were also told that they could
observe the process of the dog being trained on each task in
their curriculum, including the target task, and that they would
receive a bonus on top of their base compensation of $0.50,
depending on the quality of the curriculum they designed.

Following the tutorial, participants began the experiment
itself, in which they selected environments and commands
from a l6-environment grid (as in Fig. 2) in any order they
wished to design a curriculum. Participants were required to
include at least one source task in their curricula, but there
was no upper limit on how long the curricula could be, and
repeated tasks were allowed. The target task (Fig. 3) was
always shown on the right side of the screen to remind the
participant of what the agent ultimately needed to learn. We
chose the more difficult target task for these studies since our
previous results with random curricula suggested that curricula
would have a larger effect on learning performance with this
task, such that the effects of human-generated curricula might
be more apparent. Once a participant finished their initial
curriculum, they were shown the agent being trained (by
the correct simulated trainer) on that curriculum, after which
they were given the opportunity to redesign it to improve the
agent’s performance. Participants were required to redesign
their curriculum at least once before making it their final
submission, but could redesign it (and observe the training
process) as many times as they wished before submitting.

To study the effects of the visual ordering of source tasks
in the user interface, we conducted two experiments, each
displaying the same 16 source tasks in a different layout:

o Gradually Complex: number of rooms increase from left

to right, number of objects increase from top to bottom.

o Gradually Simple: number of rooms decrease from top

to bottom, number of objects decrease from left to right.
The layout in the gradually simple condition was the transpose
of that in the gradually complex condition, swapping Environ-
ments 1 and 16, 2 and 12, etc., such that the difficulty of the
environments gradually decreases from left to right, and top
to bottom. Our first experiment used the gradually complex
layout, while our second used the gradually simple layout.

We published these experiments on Amazon Mechanical
Turk as a set of Human Intelligence Tasks. Between the two
experiments we collected data from a total of 95 participants
(95 unique AMT workers). Of these, we identified 15 partic-
ipants whose completion time was less than 5 minutes (the
average completion time was 22 minutes 18 seconds, with
a standard deviation of 8.3 minutes) or who designed two
curricula of length one. These 15 results were removed from
the data, as the participants either did not understand the
task, or were trying to maximize their payment per time unit,
rather than attempting to design the curriculum well. Of the
remaining data, there were 40 participants from each of the
two experiments (gradually complex and gradually simple).

VIII. RESULTS WITH HUMAN SUBIJECTS

In evaluating the curricula designed by participants in our
experiments, we consider both the initial and final curricula
created by each participant (we ignore any redesigned curric-
ula other than the final submission), and combine the curricula
designed in both the first and second experiments into a single
group, for a total of 160 human-generated curricula.®

A. Participant Performance

The goal in designing a curriculum is to allow the agent
to learn the target task more quickly (with fewer trainer
feedbacks) after going through the curriculum than it could
just learning the target task directly. We therefore evaluate
each human-generated curriculum by computing the average
amount of feedback needed for the agent to learn the target
task after being trained on the tasks in that curriculum, and the
average amount of feedback required to learn the curriculum
itself. Every curriculum was evaluated 20 times, with the agent
having no knowledge from previous learning sessions.

Fig. 5(a) shows that, compared to directly learning tar-
get task #2, fewer feedbacks were required on average for
the agent to master this target task after training on the
human-generated curricula, under all three simulated trainers.
Furthermore, Fig. 5(b) shows that fewer feedbacks in total
were required for the agent to learn all tasks within the
curricula (including target task #2) than learning the target
task alone under the correct trainer. This demonstrates that
human-generated curricula can actually achieve the goal of
reducing the total effort required to teach the target task.
A two-way ANOVA [37] shows that the differences in the
amount of feedback required to learn the target task between
using the curricula or not using the curricula were statistically
significant (p < 0.01). The differences between the amount of
feedback required under the three simulated trainers were also
statistically significant (p < 0.01). Finally, interaction effects
of these two factors on curriculum quality achieved were sta-
tistically significant (p < 0.05). Simple main effects analysis
showed that significantly fewer feedbacks were required for
the agent to master the target task after training on curricula
than learning from scratch within each of the three trainer
groups. It is worth noting that in our experiments participants

The average curriculum length was 3.4, with a standard deviation of 2.0.
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were not told exactly how much feedback was required for
the agent to learn using their curricula, that is, the participants
received no explicit feedback on the quality of their curricula.

In Section VI we saw that randomly generated curricula
could lead to significant reductions in the amount of feedback
required to learn the target task, and even reduce the total
amount of feedback required to learn all the tasks in the
curriculum. We therefore compared the human-generated cur-
ricula against randomly generated curricula, to see whether our
non-expert participants could do better than simply selecting
tasks at random. Specifically, we compared the average amount
of feedback needed to learn the target task, and all the tasks
(including the target task), after being trained either on a
human-generated curriculum, or on one of the 800 randomly
generated curricula used in experiment in Section VI.

These results (Fig. 6) show that human-generated curricula
result in 1) fewer feedbacks required for the agent to mas-
ter the target task, and 2) more feedback in total required
for the agent to learn all tasks (including the target task),
than random curricula. A two-way ANOVA shows that the
differences in the amount of feedback required to learn the
target task between using the human-generated curricula or
the random curricula were statistically significant (p < 0.01).
The feedback differences between the three simulated trainers
were also statistically significant (p < 0.01). The interaction
effects of these two factors on curriculum quality were not
statistically significant (p > 0.05). This implies that non-expert
humans did better than random in terms of improving the agent
performance in learning the target task itself, but not in terms
of reducing the overall effort required to teach the target task.

B. Curriculum Design Principles

One of the main goals of this work is to understand the
general principles humans use when designing curricula, and
to understand which design principles lead to the most effec-
tive curricula. We believe that such knowledge will inspire the
development of new machine-learning algorithms which better
accommodate the ways in which humans teach with curricula.

Recall that the command for the target task in our human-
subjects experiments was “move the bag to the yellow room.”
This command itself was not available for any of the source
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Fig. 6. Average number of explicit feedback signals needed to learn (a) target
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environments to avoid curricula that simply had the agent learn
the target command in a different environment. Commands did
include the concepts “yellow room” and “bag” however, such
that the agent could learn these required concepts before mov-
ing on to the target task. We found that in 72.5% of the human-
designed curricula, more than half of the commands included
at least one of the target concepts. In contrast, in only 55.8%
of the random curricula were the target concepts present in
more than half the commands. This suggests that participants
preferred to teach the agent the target concepts, rather than
other concepts like “blue room.” In the background surveys,
67.3% of participants indicated that they had some dog training
experience, which could partly explain this behavior.

Fig. 7 compares the performance of the human-generated
curricula with more than half of the commands containing
the target concepts against those with fewer such commands,
under the correct trainer. We found that, for curricula with
more target concepts, fewer feedbacks were required for the
agent to learn 1) the final target task, and 2) all tasks (including
the target task), relative to curricula with fewer of the target
concepts. Unpaired two sample ¢-tests show that these differ-
ences were statistically significant (p < 0.01), demonstrating
that the participants’ strategy of selecting commands that
include target concepts did in fact lead to better curricula.

C. Environment Preferences

We hypothesized that participants would prefer some source
environments over others when designing their curricula. To
understand how participants designed effective curricula, we
examined these preferences by computing the fraction of
participants who selected each of the 16 environments at
least once, in either their initial or final curricula. Fig. 8
summarizes participants’ preferences for each of the 16 en-
vironments when designing their initial and final curricula,
with the ratios computed separately for the gradually complex
and gradually simple grid layouts. The locations in these
plots correspond to the positions of the environments they
represent in the gradually complex grid (such that two dots
in the same position in the two plots correspond to the same
environment). A larger dot represents a higher probability
of the corresponding environment being chosen. We found
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Fig. 7. Average number of explicit feedback signals needed to learn target
task #2 or both the entire curriculum and target task #2 with human-generated
curricula that contain more or fewer target concepts.
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that when designing initial curricula, participants were more
likely to select 1) Environments 1, 2, 6, 12, and 16 in the
gradually complex condition, and 2) Environments 1, 12,
and 16 in the gradually simple condition. This finding implies
that participants preferred to choose the simplest environments
that only contain one important concept (Environments 1 and 2
are the two simplest ones that refer to a yellow room, and
Environment 6 is one of the two simplest ones that include an
object) that the agent needed to learn for the target task, while
also choosing more complex environments that more closely
approximate the target environment. (Environments 12 and 16
are two of those most similar to the target environment.)

We also note that participants had a similar probability of
choosing the two simplest environments (1 and 2) regardless
of the layout of the user interface. Fisher’s exact test shows
that the differences in the frequencies of each of the 16 envi-
ronments being selected by participants were not significantly
different (p > 0.05) between the two experimental conditions,
suggesting that the visual ordering of source environments
does not influence participants’ preferences. We believe that
savvy participants prefer 1) isolating complexity, 2) selecting
the simplest environments they can to introduce one complex-
ity at a time, 3) choosing environments that are most similar
to the target environment, and 4) introducing complexity by
building on previous tasks rather than backtracking to intro-
duce new types of complexity. These principles can be highly

Algorithm 2 Curriculum Learning from Non-expert Humans
Input: curriculum C = {My, Ms,..., M,}, target task
M, 11, simulated trainer, bias variable b, constant B = 0.1
Initialize IBM2 parameters arbitrarily
D <+ {} % Initialize training data
K < {} % Initialize learned concepts
for i =1 ton do

(Si, €i) = (Mzsl, Mi.ei)
Pr (1) «+ Pr(7|si,e;)
repeat
goalDirectedSABL(M;)
until simulated trainer terminates session
for m € M do
D < DU{Pr(mle;,s,a, f),m,e;}
end for
K + K U{e;.concepts}
retrainlBM2Parameters(D)
end for
k* < mostFreqConcepts(K)
(8n+1s€nt1) = (Mpt1-8n41, Mpy1-€n41)
Pr (1)  Pr(7|snt1,€nt1)
b= (14 num(k* € T.concepts) x B)/num(r)
for all 7 € 7 do
if £* C T,.concepts then
Pr(r')« Pr(r ) xb
else
Pr(r') « Pr(r) x (b— B)
end if
end for
repeat
goalDirectedSABL(M,,+1)
until simulated trainer terminates session

useful for the design of new machine-learning algorithms that
better accommodate human teaching strategies.

D. Algorithm Improvement

A major goal of this work is to discover principles that
humans use when designing curricula that can be leveraged
to improve curriculum-learning algorithms. We saw in our
experiments that most participants preferred to select task
commands that include the target concepts, and that doing
so results in curricula that lead to more efficient learning.
Inspired by this, we investigated ways to bias the agent towards
learning the concepts that the trainer taught the most in their
curricula, which should have higher probability of being the
target concepts the agent needs to learn in the final task.

In particular, our improved algorithm (Algorithm 2) summa-
rizes the concepts K the agent learned in the entire curriculum
C and gets the most frequently-learned concepts k*. Then,
when the agent moves to the target environment with initial
state s,,1 and text command e, the prior probability for
each task 7 is multiplied by a bias variable b that is larger for
tasks that include the most frequently-learned concepts k* in
the curriculum than for tasks that do not include them.

We implemented this improved algorithm and re-evaluated
human-generated curricula under all three simulated trainers.



The result is shown in Fig. 9. We found that human-generated
curricula could result in better agent performance in learning
the target task using the improved algorithm versus using the
original one, under all three simulated trainers. Similar results
were found when considering the total amount of feedback
required. A two-way ANOVA shows that the differences in
the amount of feedback required to learn the target task
between using the improved algorithm or using the original
one were statistically significant (p < 0.01). The feedback
differences between the three simulated trainers were also
statistically significant (p < 0.01). The interaction effects
of these two factors on curriculum quality achieved were
statistically significant (p < 0.05). This suggests that the
agent performance in learning the final target task can be
significantly improved by biasing the final task towards the
concepts the trainer taught the most in the curriculum.

We then compared the average amount of feedback needed
for the agent to learn the target task, and all the tasks
(including the target task), after being trained on human-
generated curricula or on all four sets of random curricula
using the improved algorithm (Fig. 10). We found that human-
generated curricula resulted in fewer feedbacks required for the
agent to learn the target task than random curricula, under all
three simulated trainers. A two-way ANOVA shows that the
differences in the amount of feedback required to learn the tar-
get task between using the human-generated curricula or using
the random curricula were statistically significant (p < 0.01).
The feedback differences between the three simulated trainers
were also statistically significant (p < 0.01). The interaction
effects of these two factors on curriculum quality achieved
were statistically significant (p < 0.01). This demonstrates
that human-generated curricula can be better than random for
an agent using our improved algorithm.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the curriculum design problem
in the context of sequential decision tasks, where the goal was
to design a sequence of source tasks for an agent to train
on such that the agent can complete a pre-specified target
task quickly with minimal explicit feedback. We analyzed
how different curricula influence agent learning in a Sokoban-
like household domain. Our results show that 1) different
curricula can have substantial impact on training speed, while
longer curricula can sometimes outperform shorter curricula
in learning all tasks within the curricula (including the target
task), 2) more benefits of curricula can be found as the
target task’s complexity increases, and 3) the way in which
evaluative feedback is given to the agent as it learns individual
tasks does not affect the relative quality of different curricula.
We also present an empirical study designed to explore how
non-expert humans generate such curricula. We show that 1)
participants can successfully design curricula that result in
better overall agent performance than learning from scratch,
even when participants receive no feedback on the quality
of their curricula, and 2) we can identify salient principles
that participants follow when selecting tasks in a curriculum.
We demonstrate that our curriculum-learning algorithm can be
improved by incorporating some of these principles.
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Considering that real world tasks are likely to be harder, we
can speculate on ways of generalizing our findings to more
complex task domains. First, given the finding that the reward
feedback strategy does not change which curricula are best, we
could choose the feedback strategy that minimizes the number
of actions needed for the agent to complete the more complex
task (e.g., robot navigation tasks), where faster training time
is of critical importance. Second, we could incorporate the
salient principles (e.g., isolating complexity) we found about
humans when designing curricula into the automatic process of
generating useful source tasks in any task domain. Third, the
interface design could be improved to guide the non-experts
to design better curricula.

Future work will study curriculum design where 1) partici-
pants can create a sequence of novel source tasks for the agent
to train on, and 2) participants can see a score of the designed
curricula and use this feedback in their design process, and 3)
the learning algorithm is able to leverage more patterns used
by non-expert curricula designers.
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