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Abstract 

Femtosecond two-dimensional (2D) Fourier transform spectroscopy generates and probes several 

types of coherence that characterize the couplings between vibrational and electronic motions. 

These couplings have been studied in molecules with Jahn–Teller conical intersections, pseudo-

Jahn–Teller funnels, dimers, molecular aggregates, photosynthetic light harvesting complexes, 

and photosynthetic reaction centers. All have closely related Hamiltonians and at least two types 

of vibrations, including one that is decoupled from the electronic dynamics and one that is 

nonadiabatically coupled. Polarized pulse sequences can often be used to distinguish these types 

of vibrations. Electronic coherences are rapidly obscured by inhomogeneous dephasing. The 

longest-lived coherences in these systems arise from delocalized vibrations on the ground 

electronic state that are enhanced by a nonadiabatic Raman excitation process. These 

characterize the initial excited-state dynamics. 2D oscillation maps are beginning to isolate the 

medium lifetime vibronic coherences that report on subsequent stages of the excited-state 

dynamics. 
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INTRODUCTION 

Very soon after the the first two-dimensional Fourier transform (2DFT) electronic spectra(1) and 

theory(1a) were reported, it was recognized that  electronic coupling to the vibrational and 

environmental motions (2-4) that lie at the heart of chemistry (5–7) posed challenges for their 

interpretation. The challenges arise because 2DFT spectroscopy uses femtosecond pulses (8–11), 

which are faster than the vibrational and environmental motions that broaden electronic 

transitions. Interpretation (2, 4, 12) required extending the framework of 2DFT NMR 

spectroscopy (13) in order to incorporate the femtosecond capture of these motions, essential for 

chemical reactivity, as frozen (14–17).  In electronic spectroscopy and dynamics, vibrations can 

be separated into two types on the basis of whether or not they are involved in coupling different 

electronic states together. The nonlinear optical response theory developed by Mukamel (18) and 

coworkers was used to treat the effects of vibrations and environmental motions that do not 

couple electronic states together in 2D electronic spectroscopy (4, 12, 19, 20). Reviews since that 

time cover purely electronic theory (21) and experimental approaches (22). This review 

emphasizes nonadiabatically coupled vibrations that drive changes in electronic state and their 

manifestations in 2DFT electronic spectra. 

A great deal of work in this broad area has been concerned with electronic coupling and 

electronic energy transfer between light absorbing chromophores, but similar questions arise in 

charge transfer and internal conversion. Many charge transfer processes depend on absolute 

electronic energies, so that determination of the fundamental energetics can require 

electrochemical measurements. Internal conversion processes often involve spectroscopically 

dark states that are similarly challenging to characterize. The energetics of electronic energy 

transfer are more readily and precisely accessible because they depend on intramolecular energy 

gaps of donor and acceptor that can be measured spectroscopically. This allows more stringent 

tests of theory. It has long been known that Jahn–Teller effects involve related Hamiltonians, for 

which analysis can be further simplified by symmetry. 

The basic framework of energy transfer theory is due to Förster (23), and has well-

understood strong coupling and weak coupling limits. However, many very efficient energy 

transfer processes (including much of photosynthetic energy transfer) operate in a less-

understood intermediate coupling regime(23a) between these limits. In all of these processes, 

there is a complex interplay between electronic energies, electronic couplings, environmental 
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motions, and intramolecular vibrations. Experimentally, this is further complicated by time 

averaging over fluctuations or ensemble averaging over disorder (or both). Single-molecule 

spectroscopy removes the ensemble average but always averages over slow fluctuations during 

repeated measurements (24–26). Ensemble-averaged 2DFT spectroscopy correlates frequencies 

within each molecule at a precisely defined time delay (2) and is uniquely sensitive to coherent 

dynamics. 

Beneath this averaging, the role of the environment in the dynamics is intrinsically 

complicated because each system interacts with its environment before stabilizing products and 

reaching thermal equilibrium. For measurements that probe only part of a system directly, a 

reduced description can be useful. Because part of an interacting system does not even have a 

wavefunction (27), such a description starts from the density matrix ρ̂ ψ ψ=  and eliminates 

the bath degrees of freedom by taking a partial trace over them (27, 28). This reduced density 

matrix can be used to calculate any measurement that depends only on the system degrees of 

freedom. However, through system–bath interactions, the evolution of the reduced density matrix 

makes a transition from coherent quantum dynamics to dissipative level kinetics in some 

preferred basis [the pointer basis (29) preferred by the interacting system, bath, and 

measurement]. Coherence decay or decoherence (30–32) quantifies this transition in the 

evolution of the system we can measure (see the sidebar titled decoherence). 

The decoherence timescale decτ  matters for chemical reaction rates because it breaks up the 

coherent quantum evolution into chunks of length decτ . For a two-level system, coherent 

quantum dynamics is characterized by cosinusoidal Rabi flopping back and forth between basis 

states under the influence of a coupling (33). Through constructive interference, the small 

quantum population transfer is proportional to 2t ,  so each coherent chunk of time has a quantum 

population transfer proportional to 2
decτ , with the consequence that the rate constant is 

proportional to decτ as long as decτ  is much less than the coherent Rabi flopping frequency (23). 

For longer decτ , the rate constant has a Rabi maximum (34) when the product energy relaxation 

rate is matched to the Rabi flopping frequency (35). Much richer dynamics are possible (36, 37). 

Theoretical studies often use a definition of electronic coherence that traces over all 

vibrational degrees of freedom (32, 38, 39). Experimentally, this definition corresponds to the 

nonselective polarization dephasing measured by detection of the two-pulse photon echo energy 
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using transform-limited excitation pulses with spectra that span the absorption transition (40). 

For room-temperature molecular electronic transitions in condensed phases, this timescale is 

typically dominated by vibrational broadening of the electronic band and can be on the order of 

10 fs or less. This fast decay arises from destructive interference among a sum of oscillations 

with a broad span of frequencies. The decay of interference between the electronic ground and 

excited state measured by 2DFT spectroscopy is slower because one frequency is selected within 

the electronic band, but interference still typically survives for only about 100 fs (3). This is the 

electronic decoherence timescale most often reported from 2DFT experiments.This optical 

decoherence timescale is not necessarily the same as the corresponding timescale for 

decoherence between two excited electronic states (1a, 21). Vibronic decoherence will be slower 

because it involves a more complete specification of the system states (41). Finally, molecular 

vibrational coherence on a single electronic state typically survives for over 1 ps (15). 

The questions that have arisen in the studies reviewed here concern the dynamics of 

spontaneous transitions between electronically excited states, with emphasis on the role of 

vibrations and the environment. The most important questions concern the mechanism for 

spontaneous electronic transitions in Jahn–Teller dynamics, internal conversion, energy transfer, 

and charge transfer. Resolving these requires an understanding of how electronic, vibrational, 

and environmental motions are reflected in 2DFT spectra and obscured by disorder. 

Nonadiabatic coupling between vibrational and electronic motions can lead to deceptively 

similar vibrational 2DFT signatures that were initially misinterpreted as long-lived (picosecond) 

electronic coherence in many coupled electronic systems, especially photosynthetic antenna 

complexes. The similarities include complete sequences of frequencies and polarizations, as well 

as parts of the patterns for which 2D peaks have quantum beats. However, electronic coherence 

and nonadiabatically excited vibrations require different regimes for molecular parameters that 

can be independently measured and also produce differences in the overall 2D quantum beat 

patterns. Evidence has been rapidly accumulating that nonadiabatic couplings enhance particular 

vibrations in 2DFT spectra, which readily explains the picosecond decoherence. This raises new 

questions about nonadiabatic energy transfer mechanisms. 

2D FOURIER TRANSFORM ELECTRONIC SPECTRA 

2DFT spectra are recorded by exciting the sample with systematically varied sequences of short 
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pulses of light (3,4,22). For each pulse sequence, the measured signal must arise from a 

nonlinear response to all of the pulses in that pulse sequence. The nonlinear response is 

understood by considering how the electric fields of all the light pulses interact with a molecule’s 

wavefunction. Figure 1 shows one sequence of three pulses and a radiated signal field. Since 

fields are amplitudes for photon number states, incoherent processes involving four fields can be 

considered as two-photon processes (for example, absorption of one photon to populate one 

excited state followed by incoherent relaxation to populate a lower state before subsequent 

radiation of another photon). Unless the relaxation time T greatly exceeds the longest 

decoherence time, a coherent wave picture is needed for both molecule and fields. The easiest 

way to make sure the signal depends on all three pulses is to focus parallel beams on three 

corners of a square into the sample and then detect the signal field that emerges on the fourth 

corner (1). This widely used method(22) requires a fourth pulse for interference detection of the 

signal field, but uniquely defines the relative signs of the frequencies through phase matching, 

detects changes in both absorption and refraction, and allows independent control of the 

polarization for each pulse. 

In isotropic media, there are three independent elements of the nonlinear response tensor (42) 

and three polarization sequences (43) that measure population (the isotropic signal measured at 

the magic angle), orientation (the difference between up and down), and alignment (the 

difference between up/down and right/left measured by the polarization anisotropy) (44–47). The 

all-parallel and the (−π/4, π/4, π/2, 0) polarization sequence (43) are most often used (48, 49). 

The orientational average for a given sequence of molecular transition dipoles and pulse 

polarizations depends on a cyclic set of transition dipoles (50) and can be calculated using 

equation 10 of Reference 51. Group theory can determine symmetries from the two-photon 

tensor (52). 

Real 2D relaxation spectra establish that excitation at τω  causes a subsequent increase 

(positive signal) or decrease (negative signal) in light transmitted through the sample at tω . 

Because 2D spectra are measured from the signal field and Fourier transforms are linear, the 2D 

spectrum for an ensemble is obtained by adding the 2D spectra for all molecules in the ensemble 

(this is not true for absolute value 2D spectra). Inhomogeneous dephasing from this addition can 

be eliminated by rephasing with opposite frequencies during τ  and t , but inhomogeneous 

dephasing is not removed for oscillations during the one relaxation time T  (3). 
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Figure 2 shows part of the 2DFT spectrum for a model dimer (105). The changes in 

transmission detected in 2D spectra can arise from three effects after the excitation pulse pair 

excites some fraction of molecules: Stimulated emission from molecules in the excited state 

effectively increases sample transmission [positive signal from excited-state emission (ESE)]; 

the corresponding depletion of the ground state decreases sample absorption [positive signal 

from ground-state bleaching (GSB)]; and molecules in the excited state can absorb light in 

transitions to higher-lying states [negative signal from excited-state absorption (ESA)]. Figure 2 

shows only the real part of the GSB signal for a rephasing pulse sequence, where tω  and τω  

have opposite signs. However, rephasing scans are incomplete, covering only positive τ , so the 

discontinuity at 0τ =  generates ringing artifacts visible as negative regions. The key feature in 

Figure 2 is the set of four resolved positive peaks. Two peaks lie on the diagonal, with 

11,480t τω ω≈ − ≈  cm−1 and 11,680 cm−1, respectively. These frequencies match the two maxima 

in the electronic absorption spectrum of the dimer. These diagonal peaks arise because exciting a 

transition depletes the ground state for that transition. There are also two off-diagonal cross 

peaks in which the frequency of each transition is cross-matched with the other. These arise 

because the two transitions in the dimer share a common ground state, so that exciting one 

depletes the ground state for the other, and vice versa. The complete rephasing 2DFT spectrum 

would include four more peaks from ESE plus four more peaks from ESA. 

All four peaks are elongated parallel to the diagonal, partly because different dimers in the 

ensemble have different electronic excitation energies (inhomogeneous broadening). The peak 

cross-widths perpendicular to the diagonal reflect homogeneous broadening intrinsic to a single 

dimer, but are also distorted by ringing. Absorption-mode 2DFT spectra can be recorded using 

scans that cover positive and negative τ  to balance rephasing versus nonrephasing coherence 

and minimize ringing (1, 2). The cross-width perpendicular to the diagonal in absorption-mode 

2DFT spectra measures optical decoherence between the ground and excited electronic states for 

a selected diagonal frequency (4, 19).  This decoherence timescale is typically on the order of 

~100 fs for molecules in room-temperature solution (3). 

QUANTUM BEATS AND INHOMOGENEOUS DEPHASING 

In 2DFT spectra, molecular coherence manifests as oscillatory changes in peak amplitude, peak 
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shape, or both as a function of the relaxation time. The oscillatory beats in 2DFT spectroscopy 

are a type of quantum beat (53–58), much as occurs in emission after excitation of a coherent 

superposition state with a transform-limited pulse. If the pulse coherently excites state 0 to states 

1 and 2 and the emission lines are not distinguished at the detector, then interference can be 

detected. For a single molecule, the time-dependent emission probability back to state 0 has the 

form (59, equation 13.6 with φ = 0; see also 57)  

1 0 2 0 1 0 2 0( ; ) ( ) ( ) 2 ( ) ( ) cos( ),I t I t I t I t I t t− − − −∆ = + + ∆  (1) 

where 1 0 ( )I t−  is the 1–0 emission probability. The last term is quantum beating of the emission at 

21 20 10( )ω ω ω∆ = = − , the difference between excitation frequencies. If the inhomogeneous 

broadening of 20ω  and 10ω  is fully correlated so that the splitting 21ω  is constant, the quantum 

beats are unaffected by ensemble averaging. This often occurs in solution, where vibrational 

frequencies are almost unaffected by electronic inhomogeneities that obscure the vibrational 

progression (11, 60). Transient absorption quantum beats decay by dephasing between the 

excited states (60).  

If the splitting 21ω  varies across the ensemble, then the addition of cosines with different beat 

frequencies will cause faster quantum beat decay (dephasing). This total dephasing between two 

states in an ensemble of systems is necessarily as fast as, or faster than, the decoherence between 

those two states in the individual systems within the ensemble. Since each system is 

characterized by an average transition frequency and a splitting, the ensemble has some joint 

probability distribution ( , )p ω ∆ . The marginal distribution of average frequencies is 

( ) ( , )dp pω ω ω= ∆ ∆∫  (2) 

and reflects only correlated inhomogeneity, while the marginal distribution of splittings 

( ) ( , )dp p ω ω∆ ∆ = ∆∫  (3) 

reflects only anticorrelated inhomogeneity. Averaging the quantum beats in Equation 1 over this 

distribution gives 
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1 0 2 0 1 0 2 0

( ) ( ; ) ( , )d d ( ; ) ( )d

( ) ( ) 2 ( ) ( ) ( ) cos( )d .

I t I t p I t p

I t I t I t I t p t

ω ω ∆

− − − − ∆

= ∆ ∆ ∆ = ∆ ∆ ∆

= + + ∆ ∆ ∆

∫∫ ∫
∫

 (4) 

The integral in the last term is the Fourier cosine transform of the splitting marginal, 

( ) ( ) cos( )dp t p t∆ ∆= ∆ ∆ ∆∫ , which hastens ensemble average quantum beat decay through 

inhomogeneous dephasing of the anticorrelated inhomogeneity. This type of inhomogeneous 

quantum beat decay was proposed by Savikhin et al. (61) as the explanation for a 140–180 fs 

decay of excitonic quantum beats in the femtosecond pump–probe polarization anisotropy of the 

FMO (Fenna–Matthews–Olson) antenna protein at 19K.  These anisotropy beats had large 

amplitudes of 0.1–0.2 in comparison to the subsequent relaxed anisotropies of ~0.3. [For 

reference, the standard dipolar anisotropy is 0.4 and the maximum possible anisotropy beat 

amplitude for a dimer with two equal and orthogonal transition dipoles is 0.3 (50, 62, 63).] For a 

Gaussian decay of the excitonic quantum beats, 2 2
0( ) exp[ / 2]cos( )p t t tσ∆ ∆= − ∆ , this yields a 

Gaussian inhomogeneous distribution of excitonic splittings, 
2 1/2 2 2

0( ) (2 ) exp[ ( ) / 2 ]p πσ σ−
∆ ∆ ∆∆ = − ∆ −∆ .   

Using the formalism of References 21, 64, 65, this can be generalized to dynamic splittings 

for both dimers and square symmetric molecules with Jahn–Teller distortions (66–68), yielding 

0( ) cos( ) exp[ 4 ( )],p t t g t∆ ∆= ∆ −  (5) 

where ( )g t∆  is the anticorrelated lineshape function. In the high-temperature limit, 

2

0 0
( ) d d ( )

t t
g t t t M tσ

′

∆ ∆ ∆′ ′′ ′′= ∫ ∫  depends on the variance of the anticorrelated splitting [ 2σ∆ ] and the 

double integral of the normalized correlation function for the anticorrelated splitting [ ( )M t∆ ].The 

low-temperature lineshape function is given in References 69, 70. Since the correlation function 

is normalized at t = 0, a high time resolution measurement of the quantum beat decay can 

provide separate information about the splitting distribution and its correlation function 

(81)now(70a). Since ( )M t∆  decays from (0) 1M∆ = , anticorrelated fluctuations actually slow the 

quantum beat decay compared to a static splitting distribution.  

JAHN–TELLER DYNAMICS 



 9 

Symmetric/Asymmetric and Correlated/Anticorrelated Vibrations 
Jahn & Teller (71) showed that the electronic potential energy surfaces for orbitally degenerate 

electronic states lift the degeneracy by adopting a lower-symmetry geometry. In a Jahn–Teller 

system, vibrational normal modes can be rigorously classified according to their point-group 

symmetry. Only totally symmetric vibrations are Franck–Condon active in absorption and 

emission. Totally symmetric vibrations have exactly the same effect on both Jahn–Teller 

degenerate states and play no role in coupling them or destroying coherence between them. Only 

certain asymmetric vibrations are involved in Jahn–Teller distortions toward lower-symmetry 

molecular geometries. The Jahn–Teller active asymmetric vibrations can couple electronic states 

to transfer population or tune their energies in opposite directions to destroy coherence. A similar 

interaction, the pseudo-Jahn–Teller effect, occurs for nearly degenerate electronic states (72). 

The Hamiltonians for energy transfer and pseudo-Jahn–Teller coupling are interconverted by an 

electronic basis set transformation (73–75). 

Viewing donor and acceptor together as one supermolecule, electronic energy transfer is a 

kind of internal conversion (76) (105). This analogy suggests that intramolecular vibrations of 

the supermolecule play a dominant energetic role, just as they do in internal conversion (77). In a 

degenerate homodimer, symmetry requires that the intramolecular vibrations of the dimer be 

delocalized linear combinations of the monomer vibrations that are symmetric or antisymmetric 

under exchange of identical monomers. The symmetric and antisymmetric vibrations of the 

dimer play roles that are precisely analogous to the totally symmetric and Jahn-Teller active 

asymmetric vibrations of pseudo-Jahn–Teller systems (73–75).  In the symmetric delocalized 

vibration, each corresponding stretch or bend has precisely the same amplitude and phase on 

both monomers, so both monomer energies go up and down together. This has no effect on 

energy transfer. In the antisymmetric delocalized vibration, each corresponding stretch or bend 

has precisely the same amplitude but opposite phase, so that one monomer’s energy goes up 

while the other monomer’s energy is going down. This causes decoherence and drives energy 

transfer by tuning the energy gap between excitons. Asymmetric means neither symmetric nor 

antisymmetric; for example, the b1g or b2g vibrations in the D4h point group (which are symmetric 

under some point group rotations and antisymmetric under others) or the e vibrations in the C3v 

point group (which are degenerate) are asymmetric (78). If the homodimer is nondegenerate, 

symmetry and antisymmetry generalize to correlated and anticorrelated vibrations that are in-
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phase and out-of-phase, but may have unequal amplitudes (and are thus asymmetric). 

Identifying Vibrational Symmetry with the Polarization Anisotropy 
Within the Franck–Condon principle (78), only totally symmetric vibrations are excited upon 

electronic excitation. The forbidden nontotally symmetric vibrations are usually weak in both the 

Raman effect and femtosecond vibrational wavepacket signals. However, only asymmetric 

vibrations can couple electronic states of different symmetries, and nonadiabatic coupling can 

excite large-amplitude antisymmetric vibrations in a dimer (79). In frequency domain Raman 

spectroscopy, the depolarization ratio can be used to determine vibrational symmetry (79a). In 

the time domain, vibrational symmetry can be identified through the polarization dependence of 

vibrational quantum beats. Khalil et al. (80) obtained depolarization ratios from off-resonant 

ground electronic state quantum beat amplitudes in liquid CCl4. Farrow et al. used the quantum 

beat polarization anisotropy (81) to identify symmetric and asymmetric vibrations on different 

electronic states at different stages of their electronic relaxation (82) through a Jahn–Teller 

conical intersection. In the large fourfold symmetric silicon naphthalocyanine molecule (SiNc) 

studied by Farrow et al., molecular rotation is slow, and electronic dynamics at the conical 

intersection drives the initial decay of the polarization anisotropy. In the aftermath of this 

nonadiabatic electronic process, vibrations persisted on the electronic ground state for 

picoseconds. 

Vibrations can appear in the anisotropy if they modulate which polarization is absorbed—for 

example, increasing probe absorption polarized parallel to the pump while decreasing probe 

absorption polarized perpendicular to the pump and vice versa. In SiNc, three Jahn–Teller active 

asymmetric vibrations caused strong anisotropic quantum beats in precisely this manner. If a 

vibration modulates the parallel and perpendicular signals as 

( ) ( ) cos( ) ( ),i i v v v v
i v

S T A f T A T f Tω φ= + −∑ ∑
  (new#6)

 

where the ( )f T  are monotonically decaying functions with (0) 1f ≡ , then the vibrational 

quantum beat anisotropy is defined by 

cos( )
.

2 cos( )
v v v v

v
v v v v

A A
r

A A
φ φ
φ φ

⊥ ⊥

⊥ ⊥

− −
=

+ −
 

    (new#7)
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A quantum beat’s anisotropy depends on its two polarization-dependent amplitudes ( , )v vA A ⊥  

and phases ( , )v vφ φ ⊥ . After the electronic coherence has decayed, two totally symmetric 

vibrations have 1/10vr =  within error [ (4 / 3)v vA A ⊥≈  with v vφ φ ⊥≈ ], while the three 

anisotropic vibrations have vr = ∞  within error [ 2v vA A ⊥≈  with πv vφ φ ⊥− ≈ , which causes a 

vanishing denominator]. The maximum amplitude of these vibrational quantum beats in the 

anisotropy is about 0.007 (81), well over an order of magnitude smaller than the excitonic 

anisotropy quantum beats reported by Savikhin et al. (61). The vibrational anisotropies match 

group theoretical predictions, based on the two-photon tensor, for vibrations on the ground 

electronic state. 

Polarization Insights into Coupled Vibrations and Electronic Dynamics 
Are there vibrations on the excited electronic state? On the doubly degenerate excited electronic 

state, the Jahn–Teller effect nonadiabatically couples asymmetric vibrations and electronic 

excitations to form mixed vibrational-electronic or vibronic states. Totally symmetric vibrations 

are not coupled by the Jahn–Teller effect and can still be called vibrations. On the excited 

electronic state, vibronic and vibrational quantum beats have polarization anisotropies that are 

sensitive to electronic relaxation. 

The strongest totally symmetric mode coherently vibrates on the ground and excited 

electronic states for picoseconds (81), but it has a time-dependent vibrational anisotropy 

consistent with excited-state electronic equilibration on a 200-fs timescale (81, 82). The 

picosecond survival of totally symmetric vibrations in the face of a 200-fs electronic 

equilibration can be understood because both excited-state adiabatic potential energy surfaces are 

exactly the same for totally symmetric coordinates; totally symmetric vibrations just lower their 

vibrational anisotropy as they equilibrate between excited electronic states. This measure of 

electronic equilibration has intriguing differences from that provided by the electronic 

polarization anisotropy (see 82, table 6). 

In contrast, the predicted asymmetric quantum beat anisotropies would conflict with 

experiment if vibronic coherence survived much longer than indicated by the electronic and 

totally symmetric vibrational anisotropies; similarly, the asymmetric quantum beat phases would 

conflict with experiment if excited-state vibrational coherence survived (82). Importantly, the 
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asymmetric vibrations on the ground electronic state characterized the Jahn–Teller stabilization 

energies for the excited-state conical intersection, which accurately predicted the coherent 

electronic anisotropy over the first 100 fs (during which it decayed by 2/3) without any 

adjustable parameters (81). Just as symmetric vibrations on the ground electronic state can 

characterize the initial vibrational motion on a single excited electronic state (16), asymmetric 

vibrational quantum beats on the ground electronic state can characterize the initial electronic 

dynamics in Jahn–Teller coupled excited electronic states. 

For SiNc, the asymmetric vibrational quantum beat amplitudes give Jahn-Teller stabilization 

energies on the order of a meV, which drive anisotropy decay on a 100 fs timescale.  The 

corresponding Jahn-Teller distortions are much smaller than the range of vibrational zero point 

motion.  The electronic dynamics at the Jahn-Teller conical intersection are remarkably fast for 

such a small driving energy. 

Modeling the 2DFT spectra of SiNc showed that nonadiabatic Jahn–Teller dynamics destroys 

electronic coherence between the ground and excited states more slowly than it destroys the 

electronic alignment (83). In the Jahn–Teller model, coherent electronic interference could still 

occur after nonadiabatic electronic realignment of the emission dipole. As a result, the 

decoherence between the ground and excited electronic states (as measured by the antidiagonal 

cross-width in the 2DFT spectra) was dominated by low-frequency totally symmetric vibrational 

and solvent motion. This nonexponential decoherence was characterized with a Brownian 

oscillator model. The Brownian oscillator model is based on harmonic vibrations subject to 

damping and random forces that are linked by the fluctuation-dissipation theorem (15)(18, 70). 

The non-exponential damped parts of the response function indicate a 1/e decoherence time of 

~180 fs, though it is probable that some of the damped response in the model represents low-

frequency underdamped modes. 

Similar pump–probe results were obtained in a free-base naphthalocyanine with D2h 

symmetry (84). This molecule has a pseudo-Jahn–Teller effect (72, 85, 86) in which the x- and y-

polarized electronic states are slightly split, but quasi-resonantly coupled by an asymmetric 

vibration. In this case, the v = 0 vibrational level of the lowest electronic state is isolated and 

does not completely equilibrate within 200 fs, but higher vibronic levels do. On the excited state, 

the vibrational motion has larger amplitude than the adiabatic potential surfaces would suggest 

and the direction of vibrational motion changes with the laser polarization in the molecular frame 



 13 

(87). The pseudo-Jahn–Teller Hamiltonian can be transformed by an electronic basis set rotation 

so that it becomes the Hamiltonian for a degenerate homodimer (73, 74, 86). This transformation 

suggests similar mechanisms for decoherence in dimers. 

QUANTUM BEATS IN ENERGY TRANSFER 

In 2007, Engel et al. (88) reported that 2DFT spectra of the photosynthetic FMO antenna protein 

exhibited quantum beats with an unexpectedly large amplitude (about 10% of the maximum 2D 

amplitude) and a lifetime exceeding 600 fs at 80 K. Since the Franck–Condon displacements of 

the bacteriochlorophyll a pigments in FMO are small (an order of magnitude less than the range 

of zero-point motion) (89, 90), it was argued that the protein must somehow be preserving 

electronic coherence between excitonic states beyond both the typical electronic decoherence 

timescale and the FMO energy transfer timescale. It was suggested that long-lived electronic 

coherence was functionally important for the high quantum efficiency of photosynthetic light 

harvesting (88). Many experiments were devised and carried out to test these hypotheses. 

Experiments on one-pigment proteins indicated that the coherence spans more than one pigment 

(91). Others indicated that Franck–Condon active vibrations of isolated bacteriochlorophyll a are 

too weak to explain the quantum beats (92). By late 2012, nine proposed 2DFT signatures of 

photosynthetic energy transfer had been reported in various antenna proteins (49, 93–96). The 

experiments had also spawned theoretical efforts to explain the underlying energy transfer (36, 

97, 98). 

Vibrational-Excitonic Resonance 
In a key paper, Womick & Moran (99) showed that resonance between a vibration and the 

electronic energy gap between two excitons increased the energy transfer rate in one 

phycocyanin by an order of magnitude compared to a phycocyanin without vibrational-excitonic 

resonance. The standard one-particle vibronic exciton model (100, 101) they used explicitly 

assumes that energy transfer from donor to acceptor excites a localized vibration on the excited 

electronic state of the acceptor. Their calculations used modified Redfield theory (101a) to treat 

relaxation, which requires weak system-bath couplings. Womick and Moran found that inclusion 

of the resonant vibration in the electronic system was critical; such inclusion implicitly assumes 

the vibrational-excitonic resonance interaction is stronger than the remaining system-bath 
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couplings. Figure 3 shows that vibronic state to vibronic state energy transfer rate constants and 

excitonic delocalization sharply increase for vibrational-excitonic resonance. 

The Thick Plottens 
At around this time, the experiments became even more puzzling. Improved 2DFT experiments 

showed that the oscillations lasted for picoseconds (95) and reported a π/2 phase relationship 

between oscillations of the diagonal peaks and oscillations of the cross-peaks (95). This phase 

relationship could not be explained by electronic coherence, but it was suggested that it might be 

explained by a quantum transport process (102) in which energy flows between pigments and the 

environment (95). However, in the calculated 2D spectra for quantum transport (102), cross-

peaks oscillated in phase with diagonal peaks. With the coherence lifetime in the usual realm for 

coherent vibrations, Christensson et al. (103) proposed that vibronic coherence might explain the 

long-lived quantum beats. These are modifications of the original electronic coherence 

hypothesis. Butkus et al. (104) showed that the π phase shift between opposite cross-peaks 

reported in Reference 94 was not a consequence of electronic coherence and could not be 

reproduced by electronic coherence models. At this point, no single hypothesis could explain all 

nine reported 2D signatures of photosynthetic energy transfer, and some reported signatures were 

unexplained. 

A Fully Alternative Hypothesis 
In 2013, Tiwari et al. (105) proposed that vibrational-excitonic resonance on the excited state of 

photosynthetic antennas could amplify femtosecond Raman excitation of vibrations on the 

electronic ground state. This is what happens in the Jahn–Teller and pseudo-Jahn–Teller 

molecules, where asymmetric vibrational quantum beats bear a resemblance to electronic 

quantum beats, but live for picoseconds on the ground electronic state. It is the fully alternative 

hypothesis to that proposed in 2007 and explains beats with amplitude too large for Franck–

Condon vibrations but lasting too long for electronic coherence by invoking nonadiabatic 

amplification of vibrations rather than preservation of electronic coherence. 

This hypothesis was backed by nonadiabatic calculations of 2DFT spectra that used a dimer 

model with parameters based on the low-temperature absorption and emission spectra of the 

FMO protein and the Raman spectrum of its isolated pigment, bacteriochlorophyll a. These 

independently established a vibrational-excitonic resonance in FMO similar to that in 
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allophycocyanin. Tiwari et al. also included both donor and acceptor vibrations. This allows 

energy transfer in which the vibration is left behind on the ground electronic state of the donor 

(41, 105, 106). The relationship to the pseudo-Jahn–Teller Hamiltonian reveals that the key 

vibrations are delocalized over both pigments in the dimer: Correlated vibrations are analogous 

to totally symmetric vibrations and decoupled from the nonadiabatic dynamics; anticorrelated 

vibrations are analogous to asymmetric vibrations and coupled into the nonadiabatic dynamics.  

Correlated vibrations can survive energy transfer (106a) but derive their amplitude only from 

adiabatic potential energy surface displacement in accord with the Franck-Condon principle. 

Figure 4 shows how localized coordinates are related to delocalized coordinates (41). 

Anticorrelated Vibrations in Energy Transfer 
In a localized electronic and vibrational basis, the Hamiltonian for a nondegenerate homodimer 

with one vibration on each pigment can be written as 

2 2

,

ˆ( )1ˆ ˆˆ ˆ( ) .
ˆ2 ( )

A A
A

X X B B
A B B

E d q J
H q p I

J E d q
ω

ω
ω

 −
= + +  − 
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Here, ω  is the common vibrational frequency for the two identical pigments; ˆAq  and ˆBq  ( ˆ Ap  

and ˆ Bp ) are the vibrational coordinates (momenta) in the two pigments; and the pigments have 

localized electronic excitation energies AE  and BE , localized displacements Ad  and Bd , and a 

Coulombic coupling J . For large distances between pigments, the Coulombic coupling can be 

calculated from Förster’s transition-dipole approximation. The difference ( )B AE E∆ = −  

between localized electronic excitation energies is caused by the protein, as is any difference 

between localized displacements.  The energy gap between excitons is 2 2 1/2[ 4 ]EX J∆ = ∆ +  ( EX∆   

should be used as the splitting ∆  in Eq. 1-5.)  Transforming to the delocalized vibrational 

coordinates shown in Figure 4, this becomes 
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Only the anticorrelated vibration q−  is involved in energy transfer; the correlated vibrational 
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coordinate q+  factors out. Conversely, the vibrational displacements for the anticorrelated 

coordinates are reduced by excitonic delocalization (and partially transformed into off-diagonal 

couplings), while the correlated vibrations are unaffected by excitonic delocalization (41, 106). 

Thus, correlated and anticorrelated coordinates provide a different perspective (41, 106) on the 

standard measures of excitonic delocalization (107, 108). Vibrational delocalization is driven by 

the energy transfer coupling. 

The above discussion concentrates on intramolecular vibrations. The harmonic oscillator 

displacement is related to the Marcus reorganization energy 2(1/ 2) dλ ω=  and the Huang–Rhys 

factor 2/ 2S d= . Both can be summed to assess the total impact of all displaced vibrations. In 

the high-temperature limit, the total reorganization energy is half the Stokes shift between 

absorption and emission maxima. The total Huang–Rhys factor gives the vibrational overlap 

between zero-point states as 0 0 exp( / 2)A Bv v S= = = − . For bacteriochlorophyll a, 

intramolecular vibrations have a greater reorganization energy than the solvent, but the two have 

similar total Huang–Rhys factors ( 0.3S ≈ ) (109). Comparing S  and λ , low-frequency modes of 

the solvent or protein environment have more impact on decoherence than they have on energetic 

stabilization. This is mitigated by the requirement that low frequency/long wavelength modes 

must impact pigments differently to have any effect on energy transfer (110). 

Figure 5 shows the potentials and the real-valued nonadiabatic eigenstates of the dimer 

Hamiltonian as a function of the anticorrelated coordinate. The Hamiltonian parameters are 

150∆ =  cm−1, 66J =  cm−1, 200ω =  cm−1, and 0.22A Bd d= ≈ . These give adiabatic electronic 

states separated by ~200 cm−1 at 0q− = , so that the excitonic energy gap is resonant with the 

200-cm−1 vibrational frequency. The displacements upon electronic excitation are obtained from 

the Raman spectrum and are smaller than the classical turning points for zero-point vibration (

1q = ± ), so that the donor potential curve is nested inside the acceptor potential curve, forming a 

nested funnel. In order to show both the electronic and vibrational character of the nonadiabatic 

eigenfunctions ( ) ( )m m mq a q A b q Bψ− − −= + , Figure 5 plots the overall vibrational 

amplitude 

2 2Þ ( ) | ( ) | | ( ) |m m mq a q b q− − −= +  
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and uses color to show both the electronic character and sign of the eigenfunction at each 

coordinate 

( ) atan2[ ( ), ( )],m m mq b q a q− − −Θ ≡  

where atan2 is the extended arctangent function with a 2π range from two arguments. Together, 

the vibrational amplitude and electronic angle show the complete nonadiabatic eigenfunction 

(87). This is a form of exact factorization (111–114), in which the vibrational amplitude acquires 

a nodeless character for strong nonadiabatic mixing. The resonant pairs of nonadiabatic 

eigenstates in Figure 5 have very similar nodeless vibrational amplitudes and strong variation in 

electronic character as a function of the anticorrelated coordinate. 

The coordinate-dependent electronic character in Figure 5 indicates a complete breakdown 

of Förster’s adiabatic framework for energy transfer (105). In Förster’s strong-coupling adiabatic 

limit, vibrational motion to coordinates with different electronic character is required for energy 

transfer (23), whereas in Förster’s weak coupling nonadiabatic limit, vibrational motion to 

coordinates with a localized nonadiabatic coupling is required for energy transfer (23); in 

contrast, Figure 5 shows that, with a vibrational-excitonic resonance, energy transfer can take 

place at all vibrational coordinates. There is no need for energetically costly  vibrational motion 

with amplitude much larger than the zero point range of motion. 

Nonadiabatic Raman Enhancements in 2D Fourier Transform Spectra 
This extensive mixing causes a nonadiabatic enhancement of the femtosecond Raman processes 

that excite coherent vibrations on the ground electronic state. Figure 6 shows four wave-mixing 

energy ladder diagrams (115) that take into account the nonadiabatic coupling in Figure 5 using 

the same color coding. The basis states for Figure 6 have anticorrelated vibrations on localized 

electronic states. The diagrams are arranged to correspond to the four peaks in the 2D spectrum 

in Figure 2. In these diagrams, the length of the arrows indicates the transition frequency and the 

color of the arrows indicates the transition dipole direction for pigments A and B. The cross-peak 

labeled CP12 has a fully electronically allowed path in which all of the transition dipoles have 

strong 0v∆ =  Franck–Condon overlaps. In this pathway, the first field transfers some 

wavefunction amplitude to the excited electronic state using a 0v− =  to 0v− =  transition on the 

donor; nonadiabatic mixing with 1v− =  of the electronically excited acceptor allows the second 
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field to use a 1v− =  to 1v− =  transition to transfer some wavefunction amplitude to 1v− =  on the 

ground electronic state of the dimer (in which neither pigment is excited). The third pulse 

parallels the action of the first, and the radiated signal parallels the action of the second. During 

each of the three time intervals between molecule–field interactions, the molecular frequency can 

be read off as the signed difference between the energies at the heads of the last solid and dashed 

arrows. For these diagrams, the first (excitation) and second (relaxation) frequencies are both 

negative, while the third (detection) frequency is positive. Each diagram for Raman excitation of 

an anticorrelated vibration has the same excitation/detection frequencies and sequence of 

transition dipole directions as the corresponding diagram for electronic coherence on the excited 

state. This similarity shows how quantum beats from nonadiabatically excited anticorrelated 

vibrations could  easily have beenmistaken for quantum beats from electronic coherence. 

Figure 6 also shows that the diagrams for Raman modulations of the other 2D peaks predict 

weaker beats because they contain 0v−∆ ≠  transitions. It is well known that arguments based on 

a representative diagram can be misleading because diagrams often fully or partly cancel each 

other in the sum (18). However, calculated 2DFT spectra show that the predicted modulations 

are qualitatively correct. While the nonadiabatic Raman enhancement of anticorrelated vibrations 

resembles electronic coherence for the cross-peak in which the excitation frequency is greater 

than the detection frequency, the Raman enhancement is weaker for the other 2D peaks. In 

contrast to the electronic coherence hypothesis, Figure 6 predicts weak vibrational quantum 

beats on the diagonal peaks in the rephasing 2D spectrum. It also predicts that the anti-Stokes 

cross-peak (detection frequency magnitude greater than excitation frequency magnitude) is even 

weaker, while both cross-peaks should have the same strength for electronic coherence. These 

predictions for nonadiabatic Raman enhancement were in accord with unexplained aspects of 

prior experimental reports (94, 95). Investigation showed that all nine reported 2D signatures of 

photosynthetic energy transfer were predicted by nonadiabatic Raman enhancement of 

anticorrelated vibrations (105). Electronic coherence only accounts for five of them. 

FMO subunits hold 7 bacteriochlorophyll a pigments in close proximity. Low-temperature 

absorption/circular dichroism and Raman/fluorescence line narrowing spectra also provide 

evidence for vibrational-excitonic resonances with a 165-cm−1 gap (106). This establishes 

vibrational-excitonic resonance for both frequencies at which ~π/2 phase shifts for quantum 

beats on the diagonal peaks were reported by Engel and coworkers. This raises the question of 
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whether such resonances are common. For FMO, five distinct quantum beat frequencies had 

been reported on seven cross-peaks or shoulders in the 2DFT spectra. Within error, these 

matched the five observed Raman/Franck–Condon active vibrations of bacteriochlorophyll a in 

the same frequency range (105). 

No Evidence for Long-Lived Electronic Coherence 
With this scenario, Tiwari et al. (105) calculated that in FMO, at the cryogenic temperature of 

80K used for many experiments, 2DFT signatures of electronic coherence between excitons 

would inhomogeneously dephase on approximately the 160-fs timescale measured by Savikhin 

et al. (61), suggested that signatures of vibronic coherence might persist somewhat longer, and 

explained that anticorrelated vibrations on the ground electronic state could persist for 

picoseconds. With vibrational-excitonic resonance, the electronic, vibronic, and ground-state 

vibrational quantum beats all occur at approximately the same frequency. Crucially, the 

calculations by Tiwari et al. left no experimental evidence for long-lived electronic coherence in 

photosynthetic proteins.  However, the inhomogeneous dephasing of 2DFT excitonic coherence 

signatures does not imply decay of the underlying excitonic coherence (in fact, there was no 

decay of the underlying electronic coherence in the model used by Tiwari et al.).  Even without 

including this excitonic decoherence [which must be slower than the excitonic dephasing 

characterized by Savikhin et al. (61)] this calculation of the nonadiabatic Raman enhancement 

should be reasonably accurate because the time window for Raman excitation is limited by the 

~100 fs timescale for optical decoherence between the ground and excited electronic states.  

Tiwari et al. included this optical decoherence phenomenologically by using a Brownian 

oscillator for correlated vibrational and environmental motions.  However, the speed and 

efficiency of energy transfer between pigments depends on the interplay between the longer 

quantum population transfer time (~600 fs from the resonant splitting in Figure 5) and the 

timescales for vibrational relaxation (35), loss of vibrational anti-correlation (105), and single 

protein vibronic decoherence (41),.  

Vibrational Aftermath 
The nonadiabatic calculation of anticorrelated beats on the electronic ground state in 2DFT 

spectra was soon confirmed by Plenio et al. (116). In 2014, Miller (117) and coworkers reported 

experiments in which they isolated vibronic coherence in the excited-state absorption region of 
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the 2DFT spectra for a degenerate bis-cyanine homodimer. This was the first report that isolated 

2DFT signatures of excited-state coherence (118), and the reported vibronic dephasing lifetime 

was short (~80 fs at room temperature). This model system differs from the photosynthetic 

proteins because the vibrational displacements are larger in cyanines than in chlorophylls, so 

faster decoherence could be expected. A theoretical study by Mukamel and coworkers found 

reasonable agreement with the electronic dephasing time, calculated that picosecond-lived 

vibrations might be found in cyanine dimers, and suggested a similar picture for photosynthetic 

complexes (119). 

Fleming and coworkers examined the effect of damped excitonic energy gap fluctuations on 

nonadiabatic enhancement of energy transfer and vibrations in the 2D spectra of a model 

dimer(120). Fluctuations were incorporated through bilinear coupling to a continuous harmonic 

bath (120a) that was chosen to rapidly damp excitonic coherence. [These bath parameters 

generate a larger Stokes’ shift than is observed for stable FMO proteins (120b), thus speeding up 

decoherence.] Vibrational beats were resonantly enhanced in the calculated 2D spectra at 77K. 

However, these bath parameters did not yield a vibrational-excitonic resonance enhancement of 

the energy transfer (energy transfer is slower than Raman vibrational excitation and thus more 

susceptible to damped fluctuations), and both enhancements were suppressed by larger 

fluctuations at physiological temperatures. Fleming and co-workers concluded that the 

picosecond oscillations in the 2D spectra are vibrational, but that enhancement of vibrational 

beats in 2D spectra need not indicate vibrational enhancement of energy transfer (120).  Lee and 

Troisi used a surrogate Hamiltonian with a discrete set of bath modes to include fluctuations of 

the energy transfer coupling (120c).  With parameters chosen to model the phycocyanins studied 

by Womick and Moran (99), Lee and Troisi reported partial suppression of vibronic 

enhancement in the efficiency of energy transfer between pigments. At present, the interactions 

driving vibronic decoherence and relaxation still need to be carefully characterized in order to 

assess whether specific vibrational-excitonic resonances play a significant role in energy transfer 

for any given system,.  

For the photosystem II (PS II) reaction center of higher plants, which performs the primary 

charge separation in oxygenic photosynthesis (121), the Ogilvie (122) and van Grondelle (123) 

groups simultaneously reported systematic coincidences between vibrational frequencies and 

excitonic energy gaps in 2D oscillation maps. For reasons that are not yet clear, the frequencies 



 21 

reported by the two groups for PS II do not all agree. Although prior work indicated larger, 

nonspecific couplings in the primary charge transfer of bacterial photosynthesis (124), both 

groups discussed a 120-cm−1 or 127-cm−1 frequency as possibly vibronic and suggested 

vibrational-excitonic resonances might be important for charge transfer in PS II. 

A report of long-lived (picosecond) coherence in two-color three-pulse echoes from oxidized 

bacterial reaction centers was interpreted in terms of vibrational-excitonic resonance amplifying 

femtosecond Raman excitation of ground-state vibrations (125). This assignment was based on 

the 100-fs lifetime for the excited state of the oxidized special pair. However, the 2DFT spectra 

for this system show beats of equal amplitude on both cross-peaks (126). This implicates 

generation via the excited electronic state, not the Raman mechanism discussed above for FMO. 

Paleček et al. (126) proposed that energy transfer from the accessory bacteriochlorophyll donor 

to the oxidized special pair acceptor leaves the ground state of the donor coherently vibrating (as 

for a vibrational-excitonic resonance), and have named this process ETICS, (energy transfer–

induced coherence shift). It is not clear whether there is vibrational resonance with the donor–

acceptor electronic energy gap in this system or how general ETICS is. 

2D OSCILLATION MAPS 

The true 3D Fourier transform electronic spectra measured by Turner et al. (127) could be 

manipulated to view slices showing 2D electronic spectra as a function of Raman frequency. 

Later, Davis et al. (128) used phase retrieval to obtain a series of 2D spectra for positive 

relaxation times and Fourier transformed the series with respect to T. This produced a similar set 

of 2D oscillation maps showing the amplitude and phase of relaxation time oscillations across 

the 2D spectrum. The set has three frequency dimensions (two electronic and one Raman) and 

can be manipulated via projections and slices (3, 13, 129) like a 3DFT spectrum (130). The 

Raman dimension can show frequencies for vibrational coherences on either the ground or 

excited electronic states, for excitonic coherences between excitons with the same number of 

excitations, or vibronic coherences between vibrations on different excitons.  A variety of 2D 

oscillation maps are possible depending on the type of 2D spectrum [absorptive/refractive (96), 

rephasing (95, 130, 131), or nonrephasing (130, 131)] and on whether the real (95) or complex 

(96, 131) 2D data set is transformed. Mančal et al. (132) developed theory for oscillations from 

excitonic and weak Franck–Condon active vibrations in 2D spectra. Butkus et al. (104) Fourier 
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transformed the real part of separate rephasing and nonrephasing 2D spectra to develop 2D 

oscillation map signatures for excitonic, vibronic, and vibrational coherences. As suggested by 

some of the frequencies involved in Figure 6, some 2D oscillations can require that the excitation 

pulse spectra have amplitude outside the frequency range of the 2D spectra used for the map; this 

can generate insidious filtering effects on 2D oscillation maps (132a). 2D oscillation maps have 

been used to study aggregates (133) and photosynthetic systems (122, 123, 126, 134–136). 

In rephasing 2D oscillation maps, electronic, vibronic, and vibrational coherences are 

expected to have different signatures when the frequencies are separated (104, 137). Electronic 

quantum beats are expected to have equal amplitudes, the same phase, and opposite frequencies 

on opposite sides of the diagonal. In the low-temperature limit, vibrational quantum beats on the 

ground electronic state occur only on the Stokes side of the diagonal, while vibrational quantum 

beats on the excited electronic state occur on both sides of the diagonal, like electronic 

coherence. As a result, vibrational quantum beats have asymmetric 2D oscillation maps. 

Vibronic quantum beats with a mixed character can occur at a frequency equal to the difference 

between the vibrational frequency and the excitonic energy gap frequency. Figure 7 illustrates 

these features of 2D oscillation maps for a molecular nanoring (133). 

Duan et al. (138) reported 2D oscillation maps for FMO at an ambient temperature of 296 K 

that show a number of frequencies above ~600 cm−1, but no lower frequencies. They assign the 

observed frequencies to weak bacteriochlorophyll a molecular vibrations. Their reported 2DFT 

spectrum at 0T =  has a very similar cross-width to that of SiNc (83) at room temperature, which 

is reasonable given the structural and electronic similarities between SiNc and 

bacteriochlorophyll a pigments. 

Recently, Zigmantas and coworkers (135) obtained rephasing 2D oscillation maps for FMO 

at 77 K using the all-parallel and double-crossed polarization sequences. Oscillations at ~170 

cm−1 and ~210 cm−1, which coincide with both vibrations and excitonic energy gaps, are 

prominent. For both polarization sequences, quantum beats that decay with an ~100-fs time 

constant appear with similarly large amplitudes on both sides of the diagonal. These were 

assigned to electronic coherence. The all-parallel maps are dominated by fairly sharp 2D peaks 

with negative frequencies (−170 cm−1 and −210 cm−1) on the Stokes side of the diagonal. These 

quantum beats persist for about 2 ps. Their assignment to vibrations on the ground electronic 

state is supported by the square pattern of peaks predicted in Reference 104. In contrast, the 
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double-crossed maps have quantum beats that persist for ~600 fs and an asymmetry that favors 

the Stokes side of the diagonal, with a slightly weaker peak on the anti-Stokes side. These were 

assigned to vibronic coherence on the excited state, but the calculated 2D maps do not yet 

reproduce their amplitude on the anti-Stokes side of the diagonal [the calculations included only 

one explicitly coupled vibration per pigment and used the single-particle approximation of the 

vibronic-exciton model (100, 101), which has systematic errors that grow with vibrational 

quantum number (106)]. A second puzzle (contrasting with the ambient temperature results of 

Reference 138) is that predicted high-frequency vibrational modes (included in the calculations 

as Brownian oscillators) are absent in the experiment. Further investigation of the beats assigned 

to vibronic coherence may shed additional light on the timescale and energetic amplitude for 

environmental fluctuations that determine how important nonadiabatic couplings and vibrational-

excitonic resonances are for the energy transfer process in FMO. Overall, this study appears to 

provide a startling confirmation of the scenario outlined by Tiwari et al. in reference 105. 

 

Note added in proof: A recent paper describes use of mutagenesis to alter the excitonic structure of 

FMO. (143)  Two pump-probe quantum beat frequencies (160 and 195 cm-1) with picosecond dephasing 

times were reported for all-parallel polarization.  The authors concluded that both arose from vibrations 

on the ground electronic state. 

CONCLUSION 

There has been substantial progress in understanding the 2DFT spectra of nonadiabatically 

coupled states in molecules, dimers, and photosynthetic complexes. The maximal nonadiabatic 

Raman enhancement of vibrational amplitudes on the ground electronic state requires only that 

vibronic coherence between resonant vibrational-excitonic states survive longer than optical 

coherence between the ground and excited electronic states. This criterion is readily met, and the 

resulting resonantly amplified vibrational coherences have provided vital evidence for a 

widespread photosynthetic coupling. Subsequent studies on several systems (including some of 

the same systems in which long-lived electronic coherence was initially reported) have 

concluded that the longest lived oscillations in the 2D spectra arise from vibrational coherence 

(119)(120)(125)(126)(133)(138), though it is not yet proven that all of these reported vibrations 

are delocalized or amplified by resonant couplings. Polarization studies and comparisons to the 



 24 

isolated pigments should be useful for quantifying vibrational delocalization and amplification of 

anticorrelated vibrations. The question of whether vibronic coherence survives long enough for 

optimal nonadiabatic energy transfer through vibrational-excitonic resonances is not yet settled, 

and will depend on the various vibrational and correlation relaxation mechanisms that localize 

energy transfer on the acceptor. Investigations that focus on the shorter-lived excited-state 

coherences will be vital in refining hypotheses about efficient energy transfer in natural and 

artificial systems. Work so far points to a new nonadiabatic energy transfer regime that lies 

outside the adiabatic framework for energy transfer developed by Förster. With vibrational-

electronic resonances, large-amplitude motions are not required for fast nonadiabatic electronic 

transitions. Similar nonadiabatic regimes are likely to be relevant for many charge transfer and 

internal conversion processes. 
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SIDEBAR: DECOHERENCE 

Decoherence refers to the decay in magnitude for an off-diagonal element of the reduced density 
matrix of the system (32). This reduced density matrix definition involves only one system, not 
an ensemble average. For a coupled system and bath, decoherence between two states of the 
system arises from the partial trace over bath degrees of freedom used to generate the reduced 
density matrix of the system alone, ˆ ˆ( ) Tr [ ( )]S Bt t . Mathematically, decoherence arises from 
either bath-induced relative phase uncertainty for the system or system-induced changes in bath 
overlap (39, 40). (The uncertainty arises from phase variation with bath coordinates.) We define 
a positive real-valued decoherence function between states R and P of a system S as 

1/2 1/2

ˆ ( )
( ) .

ˆ ˆ( ) ( )
SRP

S
S S

R t P
D t

R t R P t P
 

This definition has precedent in References 30, 31, though others omit the absolute value (38, 
39). This decoherence function decays with the possibility of interference between reactants R 
and products P, independent of the extent of reaction. It can be used to prove that transferring 
degrees of freedom from the bath to the system slows decoherence between the more completely 
specified system states. As a corollary, if the electronic states and initial conditions are the same, 
vibronic decoherence is always slower than electronic decoherence (41).  
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TERMS AND DEFINITIONS 

Adiabatic: separable vibrational-electronic states in which the electronic wavefunction depends 
only on the vibrational coordinates 
Anisotropy: for linearly polarized excitation, the ratio ( ) ( ) ( ) / ( ) 2 ( )r t t t t t  
calculated from the signals for parallel and perpendicular probing 
Asymmetric vibration: asymmetric vibrational coordinates have an (antisymmetric) sign 
change under some point group rotation operations but are unchanged  (symmetric) under others 
Dephasing: the decay of an oscillatory signal from an ensemble by both decoherence and the 
addition of signals with different frequencies 
Exciton: an excited electronic state that is delocalized over more than one pigment 
Funnel: a region of potential energy surfaces where nonadiabatic transitions between electronic 
states are faster than vibrational relaxation 
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Figure 1 Pulse sequence for two-dimensional Fourier transform (2DFT) spectroscopy. Three 
noncollinear pulses a, b, c generate a nonlinear polarization with wavevector ˆ ˆ ˆ ˆ

p c b ak k k k , 

which radiates the signal field. The pulse centers arrive at the sample at times , ,a bt t  and 0ct . 
The time interval b at t  between the first two pulses is positive for rephasing 2D spectra, 
negative for nonrephasing 2D spectra, and scanned over both positive and negative delays to 
obtain 2D correlation and relaxation spectra with real absorption peak shapes  and imaginary 
refraction peak shapes. The relaxation time min(| |,| |)a bT t t  is held fixed during a 2D scan [T = 
0 for a 2D correlation spectrum]. A 2DFT spectrum is obtained by Fourier transformation of 
each signal field with respect to the time t  (conjugate to the detection frequency t ) and Fourier 
transformation of the array of signals with respect to  (conjugate to the excitation frequency 
). 

Figure 2 Real part of the ground electronic state contribution to the rephasing two-dimensional 
(2D) electronic spectrum for a model dimer at a temperature of 80 K. The vertical axis is the 
excitation frequency – , and the horizontal axis is the detection frequency t. The amplitude of 
the 2D spectrum for each frequency pair is indicated by color and via contours at the 0, 2, 4, 6, 8, 
10–90% levels. Positive and negative contours are solid and dashed, respectively. The relaxation 
time is T = 0 fs. The 2D spectra are dominated by four resolved peaks, which oscillate in 
amplitude and shape with T. Diagonal peak maxima are marked with an o; cross-peak maxima 
are marked with an x. Figure adapted from Reference 105. 

Figure 3 (a) Energy transfer rate constants from modified Redfield theory for allophycocyanin 
(APC) and C-phycocyanin (CPC) as a function of the dimer electronic energy gap. The state-to-
state rate constants were computed using a one-particle vibronic exciton Hamiltonian. Subscripts 
1–4 indicate delocalized vibrational-excitonic states derived from localized basis states with 
energies E , E , E , and E , respectively. On the rate constants, the rightmost 
subscript indicates the initial state and the leftmost subscript indicates the final state. (b) 
Participation ratios for vibrational-excitonic states (calculated from equation 16 of Reference 99) 
show excitonic delocalization for all states (1–4) through purely excitonic resonance at zero 
dimer electronic energy gap and delocalization for states 2 and 3 through their vibrational-
excitonic resonance when the dimer electronic energy gap matches a vibrational quantum. 
Empirical site energy differences for APC and CPC, shown in purple, indicate a vibrational-
excitonic resonance in APC. Figure adapted from Reference 99 with permission. Copyright 2011 
American Chemical Society. 
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Figure 4 Geometrical relationships between vibrational coordinates localized on each pigment 
and the delocalized correlated and anticorrelated vibrational coordinates for unequal pigment 
displacements. Here, qA and qB mark the displacements of the localized vibrations on pigments A 
and B from the equilibrium geometry of the ground electronic state at (0,0). The equilibrium 
intramolecular vibrational coordinates of pigments A and B in their localized electronically 
excited states are (qA, qB) = (dA, 0) and (0, dB), respectively. The doubly excited electronic state 
has equilibrium vibrational coordinate (dA, dB). The anticorrelated coordinate q– is defined by the 
gradient in the A–B electronic energy gap and parallel to the diagonal with length A Bd . The 
correlated coordinate q+ is perpendicular to the anticorrelated coordinate; motion along q+ causes 
no change in the A–B electronic energy gap. In the (q+, q–) coordinate system, the doubly excited 
electronic state has equilibrium coordinate (2 , ),ABd d  and the excited states localized on A and 

B have equilibrium coordinates of [ , ( ) / 2]AB A Bd d d  and [ , ( ) / 2]AB A Bd d d , respectively. 

With excitonic mixing angle d , this spacing shrinks from A Bd  to cos(2 )A B
dd , moving the 

exciton minima symmetrically inward to the locations d  and d  marked with crosses. Adapted 
from Reference 41 with permission from AIP Publishing.  

Figure 5 A vibrational-excitonic resonance for energy transfer. (a) The uncoupled donor and 
acceptor potential energy surfaces are shown as functions of the anticorrelated vibrational 
coordinate q , with the donor B in orange and the acceptor A in purple (see color wheel in panel 
d). Vibrational energy levels are marked by dotted lines, and corresponding eigenfunctions are 
shown. The donor and acceptor curves are split by an energy gap . (b) In the adiabatic 
approximation, the coupled donor (red) and acceptor (indigo) form partially delocalized exciton 
states with an avoided crossing between potential curves at upper left, a larger energy gap EX, 
and resonant vibrational energy levels shown as coincident red and indigodotted lines. (c) The 
exact nonadiabatic states of the coupled system have nodeless vibrational amplitudes and strong 
variation in electronic character (as indicated by the color wheel in panel d) with coordinate. (d) 
Color wheel corresponding to panels a–c. 
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Figure 6 Wave-mixing pathways for the oscillatory ground state two-dimensional (2D) signal 
(D3 in Reference 3) showing resonant enhancement by nonadiabatic coupling of vibrational and 
electronic levels. For each diagram, the vertical axis is energy and time runs from left to right 
(neither drawn to scale). The pathways are arranged to correspond with peaks in the rephasing 
2D spectrum (Figure 2). Delocalized, anticorrelated vibrational levels on each electronic state 
are indicated by solid lines for v  = 0, dashed lines for v  = 1, and dotted lines for v  = 2; their 
purple and orange colors indicate localized electronic basis states on pigments A and B, 
respectively. As in Figure 5, resonant pairs of levels couple to form the nonadiabatic states [the 
first pair is roughly 1/21 0 / 2A Bv v ]. The purple (or orange) vertical lines in the 

figure represent field–matter interactions utilizing the A (or B) electronic character of a mixed 
level, with no change in v , yielding a vibrational overlap integral approaching one. Thus, the 
cross-peak at upper left is fully electronically enhanced at every step, with all frequencies and 
transition dipole directions matching those for purely electronic coherence. Vertical lines in 
black represent weaker field–matter interactions; these have small vibrational overlap or lack 
vibrational-electronic resonance. As a result, oscillations of the other three peaks are not fully 
electronically enhanced. Figure adapted from Reference 105. 

 

Figure 7 Coherences revealed by absolute value two-dimensional (2D) oscillation maps obtained 
from rephasing 2D Fourier transfer (FT) spectra from a nanoring of six covalently linked 
porphyrins. Dashed vertical and horizontal lines indicate transition frequencies for five of the six 
excitonic states. Calculations including only the second and third lowest excitons (top row) are 
compared to experiment (bottom row). The oscillation amplitude at each point of a map is 
indicated by the color bar. Each 2D oscillation map is independently normalized to its maximum 
amplitude. Contours show the rephasing 2DFT spectrum at waiting time T = 30 fs. In contrast to 
Figure 2, the excitation frequency axis is horizontal and the detection frequency axis is vertical. 
(a) Oscillation maps for the electronic coherence at ω2 = ±615 cm−1. To show the symmetry 
across the diagonal, the maps were obtained by Fourier transforming the real part of the 
rephasing 2DFT spectra with respect to the waiting time. (b) Vibrational coherences at ω2 = 

380 cm−1 and ω2 = +380 cm−1. These maps were obtained by Fourier transforming the 
complex-valued rephasing 2DFT spectra in order to separate frequencies that are signed relative 
to the positive sign of ω3 and negative sign of ω1. (c) Vibronic coherences at ω2 = 235 cm−1 and 
ω2 = +235 cm−1. In each panel, dashed lines parallel to the diagonal are separated by ω2. Figure 
adapted from Reference 133 with permission. Copyright 2017 American Chemical Society. 
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