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Abstract—We address the problem of compactly storing a large
number of versions (snapshots) of a collection of keyed documents
or records in a distributed environment, while efficiently answer-
ing a variety of retrieval queries over those, including retrieving
full or partial versions, and evolution histories for specific keys.
We motivate the increasing need for such a system in a variety
of application domains, carefully explore the design space for
building such a system and the various storage-computation-
retrieval trade-offs, and discuss how different storage layouts
influence those trade-offs. We propose a novel system architecture
that satisfies the key desiderata for such a system, and offers
simple tuning knobs that allow adapting to a specific data and
query workload. Our system is intended to act as a layer on top
of a distributed key-value store that houses the raw data as well
as any indexes. We design novel off-line storage layout algorithms
for efficiently partitioning the data to minimize the storage costs
while keeping the retrieval costs low. We also present an online
algorithm to handle new versions being added to system. Using
extensive experiments on large datasets, we demonstrate that our
system operates at the scale required in most practical scenarios
and often outperforms standard baselines, including a delta-
based storage engine, by orders-of-magnitude.

I. INTRODUCTION

The desire to derive valuable insights from large and diverse
datasets produced in nearly all application domains today,
has led to large collaborative efforts, often spanning multiple
organizations. The iterative and exploratory nature of the
data science process, combined with an increasing need to
support debugging, historical queries, auditing, provenance,
and reproducibility, means that a large number of versions of a
dataset need to stored and queried. This realization has led to
many efforts at building data management systems that support
versioning as a first-class construct, both in academia [3], [4],
[51, [6] and in industry (e.g., git, Datomic, noms). Unlike
archival storage systems which also maintain large histo-
ries, these systems typically support rich versioning/branching
functionality and, in some cases, complex queries over ver-
sioned information.

We motivate the design and development of our system
using a concrete example from a real-life scenario.

Example 1: A healthcare provider who wants to perform
different types of diagnostic and prognostic analytics may
need to continuously maintain and analyze Electronic Health
Records (EHRs) of thousands to millions of patients. The EHR
dataset is continuously changing through addition/deletion of
new patient EHRs and updates to existing ones. For many
practical reasons, results of applying any analytics are usually
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stored in the same EHR documents. Data analysts usually
target a particular group of people when running analytical
tasks in order to minimize the number of variables, e.g., people
between age 50 - 60, belonging to a given ethnicity, with
certain other characteristics, etc. As a result the number of
updates per version usually remains restricted to a small
percentage w.r.t the total pool of patients. Different teams of
data scientists, with different goals, may be tweaking, training,
and applying predictive models to those documents at the
same time. Because of decentralized nature of the updates
and increased use of collaborative analytics, the resulting
version histories are mostly “branched". For accountability
and debugging, it is essential that the precise details and
provenance of all of those steps are maintained; e.g., an
analyst must be able to clearly identify which versions of the
EHRs were used to train a particular model, or which models
were used to derive a specific individual prediction. It is also
necessary for them to retrieve all or a subset of past versions
of patients to analyze them for insights. Further, looking up
a patient history from the point it enters their system is a
very common query for them. The EHR schemas also evolve
continuously when new data points that correspond to non-
existing attributes are added in the form of new medical tests
or measurements to a subset of the EHRs. Given the scale of
the data, continuously evolving and semi-structured schema,
and a desire to support distributed collaboration, key-value
stores are often a natural option for storing such data (an
extraction step to convert from the highly normalized relational
databases where the original data is stored is quite common).
Similar requirements are beginning to arise in diverse appli-
cation domains such as knowledge bases, content management
systems, computation biology, and many others. Although
there has been much work on version control systems in
recent years, none of those prior systems are designed for
hosting versions of a collection of keyed records or docu-
ments in a distributed environment, while providing querying
functionality similar to the wildly popular key-value stores.
Key-value stores, a term loosely used here to describe any
SQL/NoSQL system that supports key-based retrieval [7] (e.g.,
Apache Cassandra, HBase, MongoDB) are appealing in many
collaborative scenarios spanning geographically distributed
teams, since they offer centralized hosting of the data, are
resilient to failures, can easily scale out, and can handle a large
number of queries efficiently. However, those do not offer rich
versioning and branching functionality akin to hosted version
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control systems (VCS) like GitHub. The necessity of main-
taining document versions have resulted in several quick and
dirty extensions of systems like MongoDB and Couchbase,
to satisfy immediate user needs [8], [9]. Unfortunately, the
solutions presented there have several limitations and fail to
provide any guarantees on the quality of the solution.

In this paper, our primary focus is to provide versioning
and branching support for collections of records with unique
identifiers that can act as primary keys. Like popular NoSQL
systems, we aim to support a flexible data model, records
with varying sizes from a few bytes to a few MBs, and
a variety of retrieval queries to cover a wide range of use
cases. Specifically, similar to NoSQL systems, we aim to
support efficient retrieval of a specific record in a specific
version (given a key and a version identifier), or the entire
evolution history for a given key. Similar to VCS, we aim
to support retrieving all the records belonging to a specific
version to support use cases that require updating a large
number of the records (e.g., by applying a data cleaning
step). Finally, since retrieval of an entire version might be
unnecessary and expensive, we also aim to support partial
version retrieval given a range of keys and a version identifier.
In addition, we aim to support efficient ingest (‘“commit”) of
new versions from users, where the change from the previous
version (“delta”) may be a small update to one record, or
updates to a large subset of the records.

We begin with a careful exploration of the design space, out-
line the different trade-offs, and discuss the limitations of the
baseline alternatives with respect to the desired requirements
listed above. As observed in prior work (e.g., [4]), there is
a natural trade-off between the storage requirements and the
querying efficiency. However, the baseline approaches suffer
from more fundamental limitations. (a) First, most of those
approaches cannot directly support point queries targetting
a specific record in a specific version (and by extension,
full or partial version retrieval queries), without constructing
and maintaining explicit indexes. (b) Second, all the viable
baselines fundamentally require too many back-and-forths
between the retrieval module and the backend key-value store;
this is because the desired set of records cannot be succintly
described. (c) Third, ingest of new versions is difficult for most
of the baseline approaches. (d) Finally, exploiting “record-level
compression” is difficult or impossible in those approaches;
this is crucial to be able to handle common use cases where
large records (e.g., documents) are updated frequently with
relatively small changes.

To address these problems, we investigate a new architecture
that partitions the distinct records into approximately equal-
sized “chunks”, with the goal to minimize the number of
chunks that need to be retrieved for a given query workload.
We show how the system can adapt to different data and
workload requirements through a few simple tuning knobs.
The key computational challenge boils down to deciding how
to optimally partition the records into chunks; we draw con-
nections to well-studied problems like compressing bipartitite
graphs and hypergraph partitioning to show that the problem
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is NP-Hard in general. We then present a novel algorithm, that
exploits the structure of the version graph, to find an effective
partitioning of the records. We have built a working prototype
of our system, called RSTORE, on top of the Apache Cas-
sandra key-value store. RSTORE can handle arbitrary types of
records, including semi-structured (JSON/XML) documents,
and text or binary files. We conduct an extensive experimental
evaluation over a large number of synthetically constructed
datasets to show the effectiveness of our system and to validate
our design decisions.

Our key contributions are as follows: (1) We systematically
explore the design space for supporting versioning as a first-
class construct in distributed key-value stores; (2) We present
a detailed analysis of the different trade-offs and how differ-
ent baselines fare with respect to those; (3) We propose a
flexible system architecture that supports the key desiderata
through use of “chunking”; (4) We design novel partitioning
algorithms that exploit the similarities between versions; (5)
We present an online algorithm to keep the partitioning and
the indexes up-to-date as new versions are committed. (6)
We have built a working prototype, called RSTORE, on top
of Apache Cassandra that we use to empirically validate our
design decisions. We expect that RSTORE, like many NoSQL
stores, will primarily be deployed in a distributed environment;
however, it can also be used in a local cluster.

II. SYSTEM DESIGN
A. Data and Query Model

Data Model. The primary unit of storage and retrieval in
our system is a record, which may refer to a tuple/row in a
tabular dataset, a JSON document in a document collection, or
a time series. A record is considered to be immutable, and any
change to it results in a new version of the record. We make
no assumptions about the structure, type, or size of a record,
except for assuming the existence of a primary key, denoted
K;, that can be used to uniquely identify a specific record
within a collection of records. For simplicity, we assume there
is a single such collection (also called a dataset) that the
system needs to manage, that is being parallely modified by a
team of users in a collaborative fashion, resulting in a set of
versions over time; each version is identified uniquely by a
version-id (either an auto-incremented value, or hashes as in
git). We assume there is a single root version of the dataset
(which may be empty), from which all versions are derived.
Thus, a new version is derived from an existing version
through an update or a transformation, that essentially boils
down to modifying/deleting existing records and/or adding a
new set of records. We denote the set of changes from version
Vi to version V; by A, ;, referred to as the delta from V; to Vj.
Note that in this case, A; ; is symmetric, i.e., A; ; may be used
to derive V; from V; as well, thus making A; ; = A; ;. These
derivations are encoded as a directed version graph (Fig. 1).

Composite Keys. Since a record may be unchanged from one
version to the next, to be able to refer to a specific version
of a specific record, we use a composite key: (primarykey,
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Fig. 1. An Example Version Graph with 5 Versions
version-id); here the second part refers to the version-id of
the version where the record was created. This allows us to
uniquely reference records within a global address space. We
chose to use version-id of the originating version instead of
an auto-incremented value as the latter introduces additional
synchronization overhead in a decentralized setting with no
obvious benefits.

Query Model. In a collaborative setting with large datasets,
the query workload may consist of a variety of queries, with
differing characteristics.

e Record Retrieval: Analagous to a key-value store, a
user/application may want to retrieve a record with a
specific primary key K from a specific version V. Note that
we cannot simply look for the record with the composite
key (K, V), since the record may have originated in one of
the predecessor versions to V. This, in fact, forms a major
challenge in this setting.

e Version Retrieval: Analogous to typical VCS, here the
goal is to retrieve the entire version given a version-id, i.e.,
all the records that belong to the version.

e Range Retrieval: Retrieves a version partially, by speci-
fying a range of primary keys and a version-id.

e Record Evolution: Finally, we may want to analyze the
evolution of a record from its point of origin to its current
state; i.e., given a primary key, find all the different records
with that primary key across all versions.

Example 2: Fig. 1 displays a version graph with five ver-
sions Vp (root), Vi, Va, V3, Vy, with a total of nine distinct
records. We create composite keys for the records in Vj by
adding V}y as the second component to the keys. V; is derived
by modifying K3 of V and adding a new record (K4, V7).
In this case Ao = {+(K3, V1), +(K4, V1), — (K3, Vo) }. Va
is derived from V; (and after V;) by modifying K3 as well,
adding a new record (K3, V4), and deleting record (K3, Vj),
and so on. Note that the derived version forms the version
identifier component in the composite key, which is also the
version in which the particular record appears for the first time.
To retrieve a specific record, say K3 from version V3, it is not
sufficient to look for composite key (K3, V3) (which does not
exist), rather, we need to maintain a version-to-record mapping
(Fig. 1), that must be consulted to identify the composite key
to be retrieved ((K3,V}) in this case).
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B. Key Trade-Offs

We begin with a brief discussion of the key trade-offs in
storing such versioned datasets in a distributed setting, and
then evaluate three baseline options with respect to those trade-
offs.

e Storage and compression. There are two somewhat re-
lated issues here. First, ideally we only store a single copy
of a record that appears in multiple versions; this however
complicates the performance of version retrieval queries
since the required records may be stored all over the place.
Second, there may be only small differences between two
different versions of a record, especially when records are
large (e.g., only a single attribute may be updated in a
large JSON document). One way to exploit this overlap
is to store the two versions of the record together in a
“compressed” fashion, with specific compression technique
chosen according to the data properties (e.g., one may
store “deltas” between the two records, or use an off-the-
shelf compression tool that in effect does the same thing).
Such compression, however, negatively impacts the query
performance by restricting the data placement opportunities.

e Query performance. Different partitioning and layout
schemes are appropriate for the different classes of queries
above. Record evolution queries are best served by grouping
together all the different records with the same primary
key, whereas full version retrieval queries prefer grouping
together all records that belong to the same version. A
general-purpose system must offer knobs that allow adapting
to a specific query workload.

e Online updates. The data structures used by the system
should be easily updatable when new versions are added.
This is, in general, difficult to achieve while guaranteeing
good query performance. Ideally the cost of incorporating a
new version should be proportional to the size of the update
itself, i.e., the difference between the new version and the
version it derives from.

Next, we discuss a few baselines that serve as layers on top

of a key-value store, and how they fare w.r.t. these trade-offs.

o Single address space: Perhaps the simplest option is to
store the records directly, using the composite key as the
key for the underlying key-value store. Although simple to
implement and offering best performance for updates (in-
gest), this approach has several disadvantages. First, there is
no way to use compression to reduce storage requirements,
since different records with the same primary key are stored
separately. Second, given a specific version V' and a specific
primary key K, retrieving the record with that primary key
from that version (if present) requires an additional index.
This is because of the way composite keys are generated —
we first need to identify the predecessor version to V' where
that primary key was last modified. This complicates the
execution of all the queries listed above. Not only does the
index have to be repeatedly consulted, we may need to issue
many queries against the backend key-value store.

e “Sub-chunk” approach: Here, we group together all
the records with the same primary key K, and store




Algorithms Storage Space Random Version (total data, #queries) Point Query
Independent w/chunking nMy S MyS, MyS/Sec Se, 1
DELTA mys + cd(n — 1)mys mys + cd(n — 1)mys/2, n/2 mys + cd(n — 1)mys/2, n/2
SUBCHUNK mys + cd(n — 1)mys my(s+cd(n —1)s), my, s+ecdin—1)s, 1
Single-address space mys + d(n — 1)mys MyS, MyS s, 1
TABLE I

COMPARING DIFFERENT OPTIONS FOR STORING VERSIONED RECORDS UNDER SIMPLIFYING ASSUMPTIONS. n = # VERSIONS (ARRANGED IN A CHAIN); m,, = # RECORDS IN A
VERSION (CONSTANT), d = % RECORDS THAT ARE UPDATED IN EVERY VERSION UPDATE, ¢ = COMPRESSION RATIO (TYPICALLY ¢, d < 1), s = SIZE OF A RECORD, s. = SIZE
OF A CHUNK. FOR QUERIES, THE TABLE SHOWS: AMOUNT OF DATA RETRIEVED, # QUERIES. WE ASSUME THE COST OF CONSULTING ANY INDEXES IS NEGLIGIBLE.

it in compressed fashion using K as the key; we call
such a group of records with the same primary key a
sub-chunk. This approach has the best storage cost and
best performance for record evolution queries (and possibly
single record queries, if the average number of different
records per primary key is small). However, full or partial
version retrieval queries require retrieving significant
amounts of irrelevant data, especially if the data is not
highly compressible (i.e., different records with the same
primary key are more different than similar). Further, ingest
is expensive since each of the relevant sub-chunks must be
retrieved, de-compressed, and compressed after adding the
appropriate record.

e Delta approach: Here, analogous to how version control
systems like git work, for each version, we store the dif-
ference from its predecessor version, i.e., the “delta” that
allows us to get to the version from the predecessor version.
The predecessor version itself may be stored as a delta from
its predecessor and so on, forming delta chains. The main
advantage of this approach is that updates are easy to handle,
especially since we assume that a new version is presented as
a delta from its predecessor version. Assuming that the delta
is computed by exploiting similarities at the level of records,
this approach naturally accrues the benefits of compression.
However, performance of key-centric queries, i.e., specific
record queries and record evaluation queries, is very poor
for this approach. Even partial retrieval queries are difficult
to do with this approach.

Table I summarizes some of these trade-offs, by showing
expressions for various different costs assuming a version
with m,, records, with a sequence of changes each updating a
fraction d of the records; thus the version graph is a “chain”.

C. Too Many Queries Problem

None of the baseline approaches are thus appropriate for
storing and querying a large number of versions of keyed
records. Further, all these approaches require making a large
number of queries to the underlying key-value store for full or
partial version retrieval. This is because the records belonging
to a specific version V' cannot be easily described. For exam-
ple, in the first approach (and the partial sub-chunk approach),
we need to use separate indexes to identify the “keys” that
must be retrieved, and all of those must be retrieved separately
from each other (efficient support for large IN queries from
the key-value store may help, but only shifts the problem to
the key-value store). Similarly, in the Delta approach, all the
requisite deltas must be retrieved one-by-one.
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Fig. 2. System Architecture

To validate our claim, we performed a simple experiment
using Apache Cassandra. Each version in the dataset has about
100K 100-byte records, with a total of 1 million unique records
stored in the KVS. The query here is to reconstruct a version,
i.e., we need to retrieve around 100K records for every version
reconstruction query from the KVS. In the naive setting, we
maintain a chunk of unit size and issue around 100K requests
to the KVS. In comparison, if we create larger sized chunks
using a random assignment of records to chunks, we need
to retrieve more records than required to recreate a version.
However the overhead of retrieving the (fewer) chunks and
scanning through them to extract the records is significantly
less. This illustrates the benefits of reducing the number of
queries made to the key-value store. Unfortunately, because
of the aforementioned problem, this problem must be solved
by explicitly creating ‘“chunks” of records, where records
belonging to the same set of versions are grouped together.

10 100 | 1000 | 10000
14.18 | 3.10 | 1.07 0.56

Chunk size 1
Time (in secs.) | 65.42

D. Architecture

Figure 2 shows the high-level architecture of our system.
Next, we describe its primary components as well as the
different design choices we made while building the system.

Backend Key-value Store: Our system is intended to act as
a layer on an extant distributed key-value store (KVS), in
order to leverage the significant research and implementation
that has gone into designing scalable, fault-tolerant systems.
Our implementation specifically builds on top of Apache
Cassandra, but we only assume basic get /put functionality
from it. As shown in Figure 2, the basic unit of storage in
the KVS is a chunk of records, with the keys called chunk-
ids; chunk-ids are generated internally and are not intended to
be semantically meaningful. Each chunk is divided into sub-
chunks, each of which corresponds to records with the same
primary key, stored in a compressed fashion; sub-chunks often
may contain only one record. In addition, a chunk also contains



a mapping that indicates, for each record, which versions
it belongs to (as a list of version-ids). Such a mapping is
essential since a record may belong to multiple versions, and as
discussed above, there is no easy way to identify which records
belong to which versions. This design was motivated by the
desire to address the shortcomings of the baseline approaches
discussed above, by having several tuning knobs that could
be used to adapt to different data and query workloads. The
main motivation behind chunking was to address the problem
of too many queries.

Application Server (AS): The application server serves as
the interface between the clients and the backend KVS, and
comprises of three main modules described next. It uses the
KVS for persisting any of its data structures. Multiple copies
of AS could co-exist, with the standard caveat that any data
structures must be kept consistent across them (not currently
supported in RSTORE).

AS currently provides a basic set of VCS commands. A
user can pull any specific version by specifying its ID, or may
pull the latest version in a branch (including the main master
branch). Unlike a typical VCS, AS also provides the ability to
retrieve partial versions or evolution history of a specific key
as discussed in Section II(A). Any changes made by the user
can be committed as a new version as discussed below.

Data Ingest Module: Whenever a user commits a version,
a version-id is generated by AS and is returned to the user
after the commit process is complete. Even if two versions
committed are exactly the same, AS will generate different
version-ids for the two different commits (to account for
different users, times at which they are committed, etc.). AS
only requires the “delta” from the previous (parent) version
from the client; if the client is unable to provide the delta,
then the server needs to retrieve the prior version and perform
a diff operation to check which records have been modified.
Since updating the KVS and all the indexes for every new
version would be impractical, the received deltas are kept in
a separate storage area, that are processed as a batch by the
data placement module.

Data Placement Module: This module is responsible for
organizing the ingested data for efficient query processing, for
placing them into appropriate chunks, and for constructing the
required indexes. The chunks and associated indexes are stored
in the KVS separately, in two distinct tables.

Indexes and Query Processing Module: After the partition-
ing is completed, the system needs to know which chunks
must be retrieved to extract the records belonging to a version.
As discussed above, such an index is required even in the
simplest approach, to be able to store any specific record
only once even if it appears in multiple versions. As depicted
in Fig. 2, we maintain two lossy projections or indexes for
query answering, (i) version to chunk map (Zy ¢): a mapping
between versions and chunks that tells us which chunks
contain records from a given version, (ii) primary key to chunk
map (Zpxc): a mapping between primary keys and chunks
that tells us which chunks contain records for a given primary
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key. Query processing itself is straightforward given these
indexes. For version retrieval, Ty ¢ is consulted to identify
which chunks need to be retrieved, and appropriate queries
are issued in parallel to the KVS. The chunk maps are then
used to extract the required records from the chunks. Record
evolution queries proceed similarly, but use Zpx ¢ instead.
Range or single record retrieval utilizes both maps (analogous
to “index-ANDing”) to reduce the number of chunks that need
to be brought in to AS. Note that, it is possible for us to retrieve
a chunk and, after analyzing the chunk map, discover that it
contains no records of interest — this is an artifact of these
being lossy projections.

The size of the version-to-chunk mapping is essentially
the sum total version span across all versions, assuming the
mappings are stored as adjacency lists. For dataset CO in
Table II (one of our bigger datasets), this results in a total
index size of 11.25MB, compared to a total dataset size of
16GB after deduplicating. The size of the primary key-to-
chunk mapping is governed by the number of primary keys
and the number of different chunks they belong to, which in
turn is depends on the size of the chunk and the degree of
compression. The size of the map for dataset CO ranges from
25MB to 75SMB. Thus even with significantly larger datasets
and numbers of versions, these indexes can easily fit in the
large main memory machines that are available today. In fact,
with larger datasets, we would typically use larger chunk sizes
and sub-chunk sizes, both of which directly lead to lower index
sizes. We further note that these sizes are before compressing
the indexes themselves — standard techniques from inverted
indexes literature can be used to compress the adjacency lists
without compromising performance.

E. Formalizing the Optimization Problem

The key computational challenge here is deciding how to
partition the records into chunks to minimize the storage
cost and maximize the query performance (or minimize the
retrieval costs). As we discussed in Section II-B, both the
amount of data retrieved and the number of chunks queried are
crucial performance factors from the perspective of querying,
whereas compressing records by putting different records
with the same primary key in the same chunk is crucial for
minimizing storage costs. To achieve predictable performance,
we made the following design decision.

(Fixed chunk size assumption) All chunks are assumed to
be approximately the same size, denoted C, with variations of

upto 25% allowed.

This variation in the chunk size gives us flexibility while
assigning variable-sized records to chunks, and ensures that
we are not forced to do frequent reorganization when adding
new versions. We recommend that the specific percentage be
chosen based on the ratio of the average record size and the
chunk size, so that a small number of records could be added
to an already full chunk while staying within the limit; for our
datasets, 25% ends up being a somewhat conservative number,
and in our experimental evaluation, the chunks were rarely
more than 5-10% overfull.
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Fig. 3. Converting a version DAG to a version tree

Storage Cost. The storage cost is dominated by the sizes of
the chunks; the different indexes required for query processing
constitute a relatively small and largely fixed overhead. Due to
the fixed chunk size assumption, we use the number of chunks
required as a proxy for the total storage cost.

Retrieval Costs. For a query, let 6; denote the total number of
chunks that need to be queried (and accessed) for answering
it. The total retrieval cost is comprised of the communication
cost, which in turn depends on the number of queries made to
the backend (#;) plus the total number of bytes transferred,
and the CPU cost of extracting the relevant records from
the chunks. Once again, it is difficult to express this cost
analytically; however, given the fixed chunk size assumption,
the overall cost is largely proportional to 6;, and we use that
as our retrieval cost metric.

Since there are 2 different objectives here, analogously
to [4], we can formalize optimization problems differently.
However, the fixed chunk size assumption simplifies the prob-
lem somewhat if there is no compression.

Case 1: No Record-Level Compression. The total number
of chunks is approximately equal to the total number of
bytes across all the records divided by the size of a chunk
(C). Thus the optimization problem can simply be stated
as minimizing the retreival cost for a query workload by
appropriately assigning records to the chunks.

Case 2: Record-Level Compression Allowed. In this case,
the number of chunks required depends on how much com-
pression can be obtained by grouping together the records with
the same primary key. In this paper, we do not attempt to solve
the problem in its full generality. Instead, we simplify the
problem by assuming that a parameter, denoted k, is provided
that controls how many records with the same primary key
may be compressed together. (k¢ = 1 corresponds to No
Record-level Compression case). We use this parameter to
partition the records with the same primary key into sub-
chunks that are compressed together in a first phase. Then, the
problem of assigning sub-chunks to chunks reduces to Case 1,
since the total number of chunks required is once again fixed.

Converting Version Graphs to Version Trees. Several of
our proposed algorithms exploit the fact that versions that are
close to each other in the version graph are more similar. Due
to the inherent complexity of the problem, we assume that
the version graphs have no merges (henceforth referred to as
version trees). Figure 3 demonstrates how we deal with merges
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in version graph. Versions V5, Vs and V7 form the list of
parents of V. To convert the DAG to a tree, we choose a parent
of Vg arbitrarily (in this case Vj) retaining the edge between
them while deleting the other two edges. In this process, there
are records in Vg that arrived exclusively from V5 and V7
which are renamed to make them appear as newly inserted
records. This conversion is solely used during the partitioning
phase and the original version graph is still used to answer
any queries afterwards.

F. Discussion

In our discussion so far and in our prototype implemen-
tation, we assume that the backend KVS supports only a
basic get/put interface. This raises the question of whether
KV stores with richer functionality like range queries or
stored procedure may negate the need for our approach.
Although the trade-offs would be somewhat different, the
key aspects of our approach are fundamental to the problem
setting of maintaining versioned collections of records. Any
system that aims to solve the problem must contain four
features: (1) exploit overlap across versions by not duplicating
unchanged records, (2) support retrieving a specific record
from a specific version through appropriate indexes, (3) solve
too many queries problem, and (4) compress multiple versions
of large records without compromising retrieval performance.
Support for range queries does not obviate the need for any
of these, because the list of chunks or sub-chunks that need
to be retrieved for a query cannot be encapsulated as a range
(see Figure 1). Efficient support for large IN queries reduces,
but does not eliminate, the need for (3) — that problem instead
shifts to the KVS since there will be too many queries between
the server that is collecting the query answer and the backend
servers that host the data. Finally, stored procedures cannot
help here unless a large amount of the logic in RSTORE,
including indexes, compression/decompression modules, and
query module, is duplicated there.

III. PARTITIONING ALGORITHMS
A. Shingles-based Partitioning

To minimize the average number of chunks that a version
is spread across, records that are common to a large number
of versions should be placed together. This is equivalent to
finding large bi-cliques in the version-record bipartite graph.
This algorithm adapts a standard technique for finding bi-
cliques based on shingles or min-hashing, which provide an
estimate of the similarity between large sets [11]. Briefly, for
each distinct record, we compute [ min-hashes to summarize
the set of versions that it belongs to, and use this sequence
of min-hashes to sort the records in lexicographical fashion.
This ordering places records whose version sets have high
similarity (i.e., overlap) in close proximity to each other, and
is then used to place the records into the chunks.

We also build the chunk maps after all records have been
assigned to their chunks. For every record in version V;, we
determine the chunk C; that it belongs to and add it to set of
composite keys for that chunk. After scanning the full version,



we visit every chunk that contained records from V; and write
the version to composite key list to the corresponding chunk
map file on disk. After this process is repeated for every
version, we have the complete chunk map file for every chunk.
The adjacency list in each chunk map file is then converted
to a bitmap, compressed and stored in the KVS. Note that
we use this algorithm for constructing the chunk maps for the
subsequent partitioning algorithms as well.

Complexity. The overall time complexity of this algorithm
can be shown to be O(nm’ + mllogml), where n, m denote
the number of versions and distinct records respectively, and
m’ denotes the average number of records per version.

B. Bottom-Up Traversal
In this approach, we partition the records in the versions by

traversing the version tree bottom-up'. The key idea here is to
identify and chunk records that do not belong to versions above
as we move up through the versions in the version tree. For
simplicity, we will first describe the approach for 1-ary version
trees and then extend it to general trees. Let us consider a
version V; as depicted in Fig. 4 which needs to be processed.
Since we follow a bottom-up approach, the versions below
V; in the version tree have already been processed. Let 5;
denote the set of records in V;. The collection of sets m; 11 =
{S}.1,52,1,..., 5,1} contain the records that are returned
by version V;;; and denote the following:

1 . . .
Sit+1 : records present in V;41 but not in any version below.

S?H : records present in Vi1, Viy2 but not in any version below.

SfH : records present in Viy1, Viga, ..., Vigp.

Here p denotes the number of versions from the current version
(in this case V;11) up to the leaf version. Similarly, V; needs
to return these sets to its parent V;_;. In the present iteration,
we compute the collection m; = {S}, SZ,...,S"} as:

S} =S5\ (S?US?...USP):in V; but in no version below
Si2 = Sil+1 N.S; :in V3, Vi1 but not in any version below.

52 = 82,, NS, :in Vi, Viy1, Vig1 but not in any version below.

S¥ : records present in Vi, Viq1,..., Vitk.
These sets can be directly computed from the deltas between
versions. Specifically, a delta A between V; and V; can be
split into two disjoint sets: Aj;- denoting records that were

added, and A;; denoting records that were deleted (an update
is treated as a delete followed by an insert). Assuming deltas

are consistent [14], i.e., Aji N A;J = ¢, we have that:

1 — 2 —
Si = Ai,i+17 Si = Ai+1,i+2 \ Ai,iﬂ
p—1
P .
SP:Va\ | Aitgirgan
J=0

For general trees, computing m; changes slightly only for
versions which have more than one child, where Si1 is the
union of the A~ between version V; and its children.

The Bottom-Up algorithm is inspired by [12] that gives an algorithm for
partitioning a graph into two equal-sized partitions. In general, partitioning
even trees is NP-hard [13].
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Given the collection of sets obtained from V;;; and the sets
computed at V;, it is now possible to determine the records
that exclusively belong to certain versions, denoted by );
{a},a?,...,al}. Thus we have,

o = Si11\ S (records present only in Viy1)

af = 57,1\ S7 (records present in Vi1, Viga, ..., Vigp)

Lemma 1: Given a linear chain of versions, we have

_, a] = ¢, at any version i.

Since the records in o to ol are not present in any version
from V; or above, we can chunk these records now. The
records in set af must be chunked first, followed by those
in of ~! and so on. This is because records in of belong to
p consecutive versions, followed by records in a’i’ 1 which
belong to p — 1 consecutive versions and so on, the chunking
process at any given version starts filling a new chunk (or bin).
This is to ensure that access to highly common records during
version reconstruction is not split across multiple chunks,
which in turn results in increasing the version span. The partial
chunks that may get created are merged at the end to reduce
fragmentation.

Example 3: In Fig. 4, boxes represent records within ver-
sions and the colored boxes are the records which appear in
Vi4+1 and not in any prior version. Therefore the colored boxes
represent the records in 1; with the purple box representing
a}, and blue box representing a? and so on. Per our heuristic,
records in red are chunked first, followed by the records in
green box and so on.

For general trees, the primary difference lies in processing
versions with more than one child. If V; has A children, then it
may receive upto A X p sets from its children. Unlike in linear
chains (Lemma 1), a given record may be present in more than
one set (and no more than )\ sets, one from each child) for
general trees. In the presence of multiple sets obtained from
multiple children, we assign a count to every record based on
the number of consecutive versions it belongs to, and use it
to sort the records.

Controlling the subtree of a version. The size of the subtree
corresponding to a version in the tree dictates the amount of
processing that needs to be done per version. For general trees,
the size of subtrees is significantly larger compared to linear
chains due to the presence of multiple branches per version on
an average. In order to bound the amount of processing, we
may choose to have at most 5 nodes (or sets) in the subtree;
the subtree can be reduced by merging nodes within it. Due
to space limitations, we refer the reader to [10] for a detailed
explanation.

Complexity. At every version, the number of set operations
we perform is proportional to the the number of versions below
it. Each set operation can be bounded by O(m’) although in
practice this is significantly less as this is proportional to the
size of a delta. Thus the total complexity of set operations for
all versions is O(nfBm’). Constructing chunks & chunk maps
is O(nm’) as before.
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Fig. 5. Version Tree Partitioning, using BFS (C4(a)) & DFS (C1 (b))

C. Depth-First/Breadth-First Traversal

To see if the benefits of the Bottom-up approach could
be obtained using a simpler algorithm, we designed two
algorithms which also use the version tree but make the
partitioning choices greedily. These approaches traverse the
version tree starting from the root in a depth-first or a breadth-
first fashion, and chunk the records as they are encountered.
We illustrate this with an example.

Example 4: Consider the version tree in Fig. 5, and assume
the chunk size is 4 records. As the the root version Vj is
visited, all the records are placed in the first chunk Cj. Next,
we visit one of the descendants of V{, say V; and place the
2 records in the next available chunk C;. Now, we have two
options here, (a) visit version V5 (breadth-first traversal) and
place the two records in the remaining space in chunk C',
(b) visit version V3 (depth-first traversal) and place the two
records in the remaining space in the chunk C;. Note that
going with option (a) implies that any descendant of V; will
not access any of the records from V5. Similarly, none of the
descendants of V5 will access any of the records added to
chunk Cj(a) from V5 resulting in the possibility of increasing
the span of the versions. In contrast, option (b) admits all the
descendants of V3 to acces all the records in chunk C(b).

Complexity. The complexity of this algorithm, including
chunk map construction, is O(nm’).
D. Fartitioning Compressed Records

Next, we show how we handle the case where k > 1, i.e.,
we wish to exploit compression by putting together records
with the same primary key in the same chunk. As discussed
in Section 2.5, we use a two-phase approach, where we first
create the sub-chunks by grouping together records with the
same primary key (with at most k£ per sub-chunk), and then
choose one of the partitioning algorithms discussed so far
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for the chunking itself by treating the sub-chunks as records.
Similar to records, we assign composite keys to these sub-
chunks. One issue here is that, the original version tree may
not be valid any more, and must be transformed (as discussed
below) before the partitioning algorithms are invoked.

We impose the following constraint on any sub-chunk:
the records that are grouped together are ‘“connected” in
the version tree, i.e., the versions that they belong to form
a connected subgraph of the version tree. This is done to
increase potential compression (since records are likely to be
more similar to their immediate ancestors/descedants) and to
maintain the version tree semantics during transformation.

Due to lack of space, we sketch the algorithms here, and
refer to [10] for details and examples.

Sub-chunk Creation. This algorithm traverses the original
version tree bottom-up. At a given version, for a record r
that was inserted or updated in that version, let a denote the
total number of distinct records with the same primary key in
the descendant versions that are not already sub-chunked. If
a+1 > k, then we create one of more sub-chunks with those
records and r while obeying the constraint above. If a+1 < k,
then we create sub-chunk if the record » denotes an insert
(i.e., not an update), otherwise we postpone the decision to an
ancestor version.

Transformed Version Tree. Next, we construct the trans-
formed version tree Ty from the original tree Oy by
treating the sub-chunks as individual records. Each sub-chunk
is assigned a representative composite key (K, V;), where V;
is denotes the oldest version among the records in that sub-
chunk, and the deltas are appropriately adjusted (see example
below). These adjustments may lead to two versions becoming
identical (either the delta from parent is empty, or it has the
same delta from the parent as a sibling), and we remove such
duplicate versions from the tree. Different values of k lead
to different transformations of Oy . The original partitioning
algorithms can now be executed on this transformed dataset.

Complexity. The complexity of the sub-chunk construction
algorithm, including creating a transformed version tree, can
be shown to be is O(nm’ + mlogm) [10].

IV. ONLINE PARTITIONING

The main challenge with keeping the partitioning up-to-
date with every new version is that, even if a version V,
differs from its parent version V}, by just a few records, all
the chunks that contain V},’s records need to be updated (if
only to update the chunk maps). As discussed earlier, we
instead incorporate new versions in a batched fashion, by
maintaining the deltas corresponding to the new versions in
a separate write store, called a delta store, and by using an
adapted version of a partitioning algorithm when the number
of versions reaches a certain size (called the batch size, a user-
configurable parameter). To exploit the possibly high overlap
across versions in the current batch, we compute a union of
the chunk maps that need to be updated and then update every
chunk map only once per batch. In order for a chunk map



to be updated if it already exists, it has to be fetched from
the KVS, updated and then written back again. Instead, every
time a chunk map needs to be updated per batch, we recreate
the chunk index from scratch and then write it back to KVS,
saving the cost of fetching the chunk indexes from the KVS.
This is possible by maintaining the required indexes around
due to its small memory footprint. The complexity of the
background process is determined by the size of the batch and
the choice of the partitioning algorithm. In general, a smaller
batch size would result in faster partitioning, however the
quality of partitioning degrades with respect to a larger batch
as more versions in a batch is beneficial for making better
record placement decisions. Note that we do not re-partition
records once they have been partitioned, however record re-
partitioning, although expensive, may result in improving the
overall version span. We leave this problem for future work.

V. EXPERIMENTS

Next we present a comprehensive evaluation of RSTORE.
We use a distributed installation of Cassandra across upto
16 dual-core 16GB memory nodes for storing the partitioned
records and their associated indexes. The application server
was hosted on a 2.2GHz Intel Xeon E5-2430 server with 64GB
memory, running 64-bit RedHat Enterprise Linux 6.5.

A. Datasets

We use a collection of synthetically generated datasets
for the experiments. For each dataset, we first generate a
corresponding version graph by starting with a single version,
and then generate a set of modifications to it using the method
outlined in [4], which closely follows real-life version graphs
generated in a data science setting. Thereafter, we create a
set of records for the base (root) version where each record is
created as a JSON document. Every record in the base version
is assigned an auto-incremented primary key and a randomly
generated value of the requisite size. Each of the other versions
is generated by updating or deleting a set of records in its
parent, or inserting new records. The selection of records for
updating and deleting either follows a random or a skewed
(Zipf) distribution.

We have generated a wide spectrum of version graphs and
corresponding datasets that mimics real-world use cases. They
differ primarily along five factors: 1) branching factor (linear
to highly branched), 2) average version graph depth (56 to
300), 3) nature and percentage of updates (random vs skewed
updates with 1 — 50% change), 4) number of records in a
version (from a few thousand to hundreds of thousands of
records), and 5) number of versions (from a few hundred to
several thousand). The size of the records in the dataset also
vary widely from a few bytes to several kilobytes. The number
of unique records in the dataset varies from a little more than
IM records to around 17M records and total size of a dataset
varies from ~ 30 GB to close to 1 TB. We refer to Table II
for a detailed description of the datasets.

397

Dataset| #V AD RPV %U | UT | #UR URS TS
™M) | (GB) | (GB)
A0 300 300 100K | 50 R 12.3 11.9 31.67
Al 300 300 100K 5 S 1.51 5.71 140.14
A2 300 300 100K 5 R 1.34 5.14 141.26
BO 1001 293.5 | 100K 5 S 4.17 8 192.24
Bl 1001 293.5 | 100K 5 R 4.22 8.07 193.77
B2 1001 293.5 | 100K | 10 R 8.35 8.02 195.69
CO 10001 143 20K R 16.53 | 15.95 | 196.46
Cl 10001 | 143 20K 1 R 1.75 1.69 193.01
C2 10001 143 20K ) S 8.17 7.87 193.05
DO 10002 | 94.4 20K 10 R 16.62 | 16.03 | 196.48
DI 10002 | 94.4 20K 1 R 1.77 1.71 193.07
D2 10002 | 94.4 20K 5 S 8.20 7.90 193.09
E 10001 170 20K 10 R 16.52 | 78.96 | 972.84
F 1001 56 100K | 20 R 16.67 | 79.64 | 981.11
TABLE II

DESCRIPTION OF DATASETS: 1) #V: #VERSIONS, 2) AD: AVERAGE DEPTH, 3) RPV:

~RECORDS PER VERSION, 4) %U: %UPDATES, 5) UT: UPDATE TYPE (R: RANDOM,

S: SKEWED), 6) #UR: UNIQUE RECORDS (IN MILLION), 7) URS: SIZE OF UNIQUE
RECORDS (IN GB), 8) TS: TOTAL SIZE (IN GB)

B. Evaluation of Partitioning Algorithms

Comparison based on Total Version Span. We begin with
comparing the performance of the partitioning algorithms:
BorToM-UP, SHINGLE, DEPTHFIRST, and BREADTHFIRST.
Here, we use the total version span (i.e., the total number of
chunks retrieved for reconstructing all versions) for comparing
the algorithms while fixing the chunk size to IMB (we chose
this chunk size since it provides a good balance between the
number of queries and amount of data retrieved). In addition
to algorithms that partition the record space for minimizing
the version span, we also show performance of the DELTA
baseline. We omit the SUBCHUNK baseline since the total
version span for that approach is very high (all chunks must
be retrieved for any version query). We also omit the results
of the Single Address Space technique due to the relatively
high version retrieval times as a result of "too many queries"”
to the KVS.

In Fig. 6, we observe that BOTTOM-UP, SHINGLE and
DEPTHFIRST outperform DELTA across all datasets, thus
establishing that DELTA is inferior as a technique for han-
dling keyed datasets (BOTTOM-UP outperforms DELTA by
upto 8.21x and on an average by about 3.56x across all
datasets). The performance of SHINGLE degrades with a
decrease in the average depth of the version trees, while that
of DEPTHFIRST improves. However unlike BoTTOM-UP,
none of these techniques perform uniformly well across all
datasets. BREADTHFIRST is always worse than DEPTHFIRST
(for reasons described in Sec. III-C) except for linear chains
where they are identical.

Effect of Subtree size on performance. We vary the size of
the subtree (/3) for BOTTOM-UP and observe the total version
span (Fig. 7). As the subtree size decreases, the total version
span increases as expected (Sec. III-B). The total time taken by
the algorithm first decreases with decrease in subtree size (due
to decrease in processing per node) and then increases. The
increase in total time for 5 < 20 can be attributed to increased
processing time for merging the nodes. As § decreases, the
number of nodes needed to merge also increases.
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C. Effect of Compression on Partitioning

We now attempt to understand the performance of the
partitioning algorithms on the compressed representation (Ta-
ble IIT). The degree of compression in the datasets is affected
by two factors: (i) the number of records in the sub-chunk
(i.e., its size), (ii) the amount of relative difference introduced
between records due to updates. We simulate the second factor
by generating datasets such that when a record is updated, the
amount of change w.r.t to the parent record is limited by a
certain percentage, denoted by P;. For a given version tree, we
generate three datasets by setting P; to 10%, 5% and 1%. For
each such dataset, we vary the sizes of the sub-chunks from
1 — 50 and measure the total version span at each sub-chunk
value. We also plot the compression ratio of the dataset at
every value of sub-chunk size. There are two factors that affect
the total version span: (1) Sub-chunk size (k): As the number
of records in each sub-chunk increases, the total version span
increases due to a decrease in the number of records fetched
per chunk. (2) Compression Ratio: Compressing the sub-
chunks brings down the total number of chunks required to
store the records. As a result, with increasing compression
ratio the total version span is also expected to decrease. Note
that we do not compare against DELTA as it is not possible to
perform compression of records across multiple versions.

We observe that across all datasets, BOTTOM-UP has the
best performance in terms of total version span. As Py
decreases, the total version span for same sub-chunk values
decreases across all partitioning techniques and across all
datasets. For example consider dataset C0, the total version
span at max sub-chunk size 50 decreases steadily with Py
across all the partitioning techniques. This is because Factor
2 outperforms Factor 1 stated above and results in an overall
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decrease in total version span. However if we just consider the
values corresponding to P; = 10% we observe an increase in
total version span with & which can be attributed to Factor
1 which is dominant here. But as the degree of compression
increases in Py = 5% the effect of Factor 2 helps in reducing
the effect of Factor 1, resulting in an overall reduction in
total version span compared to the previous figure. Finally
in P; = 1%, Factor 2 dominates Factor 1 as the total version
span now decreases with an increase in k. This was observed
for Dataset DO and several other datasets [10]. However, for
A0, which is a linear chain, Factor 2 has a higher influence
due to better compression ratios.

D. Query Processing Performance

In the following experiments (Table IV), we evaluate the
query processing performance of BOTTOM-UP, DEPTHFIRST,
SHINGLE, DELTA and SUBCHUNK for three types of queries,
namely, 1) Full Version Retrieval (Q1), 2) Partial Version
Retrieval (Q2) and, 3) Record Evolution (Q3) on two different
datasets. In all of these experiments we vary k from 1 to 50
and measure the query execution time against a randomly gen-
erated workload. Since intra-record compression is a limitation
for DELTA, we restrict the DELTA experiment only to when &
= 1. We observe that BOTTOM-UP outperforms DEPTHFIRST,
SHINGLE and DELTA in terms of the query performance for
Q1 and Q2; the performance curve of Q2 is similar to that
of Q1 as partial version span is loosely proportional to full
version span. Note that time taken by DELTA for Q2 is greater
than Q1. This is because in the worst-case the full version is
first reconstructed and then the required records are filtered.

Recall that we fetch all the records corresponding to a
primary key for Q3. Therefore storage representations with
increasing values of k results in better Q3 performance. For
DELTA, we need to reconstruct all the versions that contain the
queried primary key and then filter out the required records
which renders execution of Q3 impractical. Note that the
results for SUBCHUNK technique is independent of k as every
version of a record (of a primary key) is stored in a sub-chunk.
Although the full and partial version retrieval queries performs
the worst for SUBCHUNK, it outperforms all other techniques
for record evolution query.

E. Scalability of RSTORE

To demonstrate scalability of RSTORE, we ran a series of
experiments where we doubled the cluster size starting at 1
up to 16, and then approximately double the amount of data



P, = 10% (total version span in million) P, = 5% (total version span in million) P, = 1% (total version span in million)
Dataset A0 Max. sub-chunk size (k) Max. sub-chunk size (k) Max. sub-chunk size (k)

I [ 2 T 5 ] 12 17 25 ] 5 I [ 2 ] 5] 12 1725 ] 5 I [T 2 [ 5121732 50
BorToM-UP 0.23| 0.25 | 0.31 0.39 0.46 0.46 023 | 0.24| 0.27| 0.31 0.34 0.34 0.23| 0.24| 0.24| 0.24| 0.25| 0.25
DEPTHFIRST 1.16| 0.82 | 0.61 0.56 0.51 0.51 1.16 | 0.78]| 0.54| 045 0.39 0.39 1.16| 0.76| 0.49] 0.36| 0.29| 0.29
SHINGLE 0.26| 0.64 | 0.58 0.55 0.50 0.50 026 | 0.60| 0.52| 0.44 0.38 0.38 0.26| 0.58| 0.47| 0.35| 0.29| 0.29

\ COMP. RATIO H 1.0 \ 1.72 \ 3.0 \ 4.12 \ 4.62 \ 4.62 H 1.0 \ 1.79 \ 3.38 \ 4.98 \ 5.78 \ 5.78 H 1.0 \ 1.86 \ 3.75 \ 5.98 \ 7.24 \ 7.24 \

\ Dataset C0 H 1 \ 2 \ 5 \ 12 \ 25 \ 50 H 1 \ 2 \ 5 \ 12 \ 25 \ 50 H 1 \ 2 \ 5 \ 12 \ 25 \ 50 \
BorToM-UP 1.50| 1.50 | 1.53 1.72 2.22 2.94 1.50 | 1.47| 1.39| 1.44 1.59 1.95 150 1.45| 1.29| 1.16| 1.11| 1.08
DEPTHFIRST 2.13| 1.84 | 1.73 2.07 2.74 3.70 213 | 1.79| 1.54| 1.64 1.93 2.36 2.13| 1.73| 1.39| 1.28| 1.28] 1.27
SHINGLE 1.83] 2.80 | 2.66 2.94 3.55 4.52 1.83 | 2.74| 2.47| 247 2.73 3.16 1.83] 2.68| 2.31| 2.10| 2.09| 2.08

\ COMP. RATIO H 1.0 \ 1.43 \ 2.18 \ 3.0 \ 3.68 \ 421 H 1.0 \ 1.47 \ 2.33 \ 3.39 \ 4.32 \ 5.12 H 1.0 \ 1‘50\ 2.47 \ 3.77 \ 5.03 \ 6.19 \

TABLE III
PARTITIONING QUALITY AND COMPRESSION RATIOS AS SUB-CHUNK SIZE IS VARIED FOR DIFFERENT ALGORITHMS
Q1 (query time in secs.) Q2 (query time in secs.) Q3 (query time in secs.)
Dataset A0 Max. sub-chunk size (k) Max. sub-chunk size (k) Max. sub-chunk size (k)
1 [ 2 5 [ 12 ] 25 1 [ 2 5 [ 12 ] 325 I [ 2 ] 5 [ 1217325

BorToM-UP 35.5 45.06 57.99 | 68.43 | 78.28 21.26 25.62 | 28.03 | 32.16 | 35.86 0.49 | 0.19 0.09 | 0.05 0.03

DEPTHFIRST 141.2 120.32 | 96.64 | 88.78 84.14 57.12 47.16 | 41.18 39.78 37.94 0.53 026 | 0.16 | 0.08 | 0.05

SHINGLE 40.53 108.67 | 92.56 | 85.89 83.12 26.87 4529 | 4045 38.98 37.12 0.59 | 022 | 0.15 0.07 | 0.05

DELTA 207.51 - - - - 216.68 - - - - - - - - -

SUBCHUNK 4075.68 132.42 0.0058

Dataset C0 1 \ 2 \ 5 \ 12 \ 25 \ 50 1 \ 2 \ 5 \ 12 \ 25 \ 50 1 \ 2 \ 5 \ 12 \ 25 \ 50 \
BorTOoM-UP 52 | 637 | 8.02 | 11.05 | 16.46 | 24.99 462 | 4.71| 598| 8.04 11.61 | 15.81 830| 4.48| 3.04| 2.00| 1.81| 1.22
DEPTHFIRST 7.26| 7.63 | 889 | 13.13 | 20.8 32.59 529 | 5.10 6.89| 8.94 12.73 | 16.37 8.83| 4.67| 2.93| 231| 1.96| 1.40

SHINGLE 493 10.13| 12.24| 1697 | 24.62 | 36.88 535 ] 6.23| 7.82| 1049 | 1345 | 17.30 8.07| 491| 3.17| 2.95| 2.10| 1.54

DELTA 7.87 - - - - - 8.07 - - - - - - - - - - -

SUBCHUNK 406.17 107.23 0.03

TABLE 1V
QUERY PROCESSING PERFORMANCE
Query Worload Dataset | # nodes in cluster \ ’ Batch ‘ # of versions | ’ Batch “ # of versions |
Avg. Version Span [ T | 2 [ 4 8 [ 12 | 16 | Size || 250 [ 500 [ 750 ] 100I | | Size |[ 2500 [ 5000 [ 7500 [ 1000I |
QI (in secs.) G 735 7.95 8.99 1049 | 1097 | 11.39 125 1.13| 1.36] 1.52| 1.63 1250 1.04 1.05 1.06 1.08
Avg. version span 507.99| 559.49] 622.88] 702.92| 710.24| 702.21 250 1.00| 1.12] 1.23] 1.32 2500 1.00 1.004| 1.001| 1.018
Q3 (in secs.) G 0.35 0.48 0.49 0.46 0.63 0.48 500 - 1.00[ - 1.10 5000 - 1.00 - 1.005
Avg. key span 21 32 34 33 46 34 Dataset Bl b) Dataset C1
QT (in secs) H | 6183 | 6324 | 6438 | 7371 | 7430 | 78.86 (a) Datase (b) Datase
Avg. version span 400.24] 436.48] 451.20] 554.92] 561.60| 594.92 Fig. 9. Online Partitioning Performance
Q3 (in secs.) H 0.98 1.33 2.29 2.38 2.69 3.05
Avg. key span 6 9 16 18 21 24 . o .
g o F. Online Partitioning
Fig. 8. Scalability Experiments

by doubling the number of versions. We used two datasets
specifically for this experiment, whose 16-node configurations
were as follows: (a) Dataset G: size of the unique records
= 255 GB, with 10K versions having ~ 50K records each
(version size: ~275 GB, total size: 2.6 TB), (c) Dataset H:
size of unique records = 280 GB, with 2K versions having
approx 100K records each (version size: ~2.86 GB, total
size: 5.76 TB). We partition the records using BOTTOM-UP
approach. At each cluster configuration, we measure the full
version retrieval times (partial version retrieval times showed
similar behavior) and the record evolution times. As Fig. 8
shows, RSTORE exhibits good weak scalability, and is able
to handle appropriate larger datasets with larger clusters; the
increased query times are largely attributable to increased
version or key spans. We also note that RSTORE currently
processes the retrieved chunks sequentially (in the client) while
constructing the query result and cannot benefit from the in-
creased parallelism; support for parallel processing of retrieved
chunks in the client will result in further improvements in
query latencies.
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In this experiment (Fig. 9), we measure the performance of
the online partitioning algorithm under different batch sizes for
two datasets using the BOTTOM-UP partitioning technique.
To measure the partitioning quality at a given point, we
compute the ratio of the total version span obtained by online
partitioning using that batch size, to that obtained by running
an offline version of BOTTOM-UP for the same number of
versions. Overall, even with small batch sizes, we observe rea-
sonable penalties, with the partitioning quality improving with
an increase in batch size. Thus, online partitioning without
repartitioning, combined with a full repartitioning periodically,
presents a pragmatic approach to handling updates.

VI. RELATED WORK

Although there has been much work on NoSQL systems,
to our knowledge, no existing system provides complete or
systematic support for versioning. Recently, there have been
several attempts at supporting naive forms of versioning using
the existing APIs (e.g., [9], [8] describe how to implement ver-
sioning features in Couchbase and MongoDB). The techniques
described are similar and advocate storing previous versions of
the record in a separate shadow collection before overwriting
it with the updated value. A version number property (an
int 32 called _version) is added to the document to record



different versions. A downside of the approach as described is
that records cannot be updated in batches and older versions
are more expensive to retrieve. It is also not clear if they
support compressing multiple versions of the same record.

There has been significant work on workload-aware par-
titioning in recent years [15], [16], [17], [18], with several
of those approaches mapping the problem to a hypergraph
partitioning problem with data items (records) as vertices and
queries as hyperedges. Conceptually, the problem we address
is identical, with the query workload defined by the version
retrieval queries. However, the sizes of the hyperedges for
us are very large (since a version may contain millions of
records) and those prior algorithms (which implicitly assume
small hyperedges) cannot be used. Our algorithms also exploit
the inherent structure in the version graph.

There has been much prior work on versioning of XML,
RDF and graph datasets [3], [19], [20], [21]. The focus of
most of that work is on compactly representing (compressing)
different versions of a document by merging them, and they
can usually only support a linear (temporal) chain of versions.
Further, that prior work has not looked at developing a
distributed VCS that can support the range of retrieval queries
that we consider here. Similarly, there is extensive work on
temporal databases [22], [23], [24] that manages a linear
version chain and supports “time-travel” queries. There, a
specific version of a record/tuple is associated with a time
interval, whereas in versioned databases, it is associated with
a set of version-ids. This seemingly small difference leads to
fundamentally different challenges — e.g., whereas one could
use an interval tree for indexing intervals optimally (e.g., to
find all timestamps where a record is alive), doing the same
for “sets" is considered nearly impossible [2]. An experimental
evaluation in DEX [1] reveals that the techniques developed
for linear chains [3] do not extend to branched version graphs.

Several version control systems geared towards handling
different types of datasets have been recently developed,
for unstructured files [4], relational databases [5], [25], ar-
rays [26]. Our work explores a different design point in that
space, with a focus on storing versions of a collection of semi-
structured or unstructured records in a distributed setting and
supporting efficient key-based access to them. Among these,
OrpheusDB [25] also addresses somewhat similar partitioning
issues; however, the trade-offs there are significantly different
as they focus on a single-machine disk-based system.

There has also been much work on de-duplication in
archival systems [27]; however, the focus of that work is on
achiving high ingest rates and high compression, and those
only support rudimentary retrieval queries.
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VII. CONCLUSIONS

Our work is motivated by the popularity of key-value stores
for storing large collections of keyed records or documents, the
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increasing trend towards maintaining histories of all changes
that have been made to the data at a fine granularity, and the
desire to collaboratively analyze and simultaneously modify or
transform datasets. We showed that simple baseline approaches
to adapting a key-value store to add versioning functionality
suffer from serious limitations, and proposed a flexible and
tunable framework intended to be used as a layer on top of any
key-value store. We also designed several novel algorithms for
solving the key optimization problem of partitioning records
into chunks. Through an extensive set of experiments, we
validated our claims, design decisions, and our partitioning
algorithms.
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