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Abstract—We address the problem of compactly storing a large
number of versions (snapshots) of a collection of keyed documents
or records in a distributed environment, while efficiently answer-
ing a variety of retrieval queries over those, including retrieving
full or partial versions, and evolution histories for specific keys.
We motivate the increasing need for such a system in a variety
of application domains, carefully explore the design space for
building such a system and the various storage-computation-
retrieval trade-offs, and discuss how different storage layouts
influence those trade-offs. We propose a novel system architecture
that satisfies the key desiderata for such a system, and offers
simple tuning knobs that allow adapting to a specific data and
query workload. Our system is intended to act as a layer on top
of a distributed key-value store that houses the raw data as well
as any indexes. We design novel off-line storage layout algorithms
for efficiently partitioning the data to minimize the storage costs
while keeping the retrieval costs low. We also present an online
algorithm to handle new versions being added to system. Using
extensive experiments on large datasets, we demonstrate that our
system operates at the scale required in most practical scenarios
and often outperforms standard baselines, including a delta-
based storage engine, by orders-of-magnitude.

I. INTRODUCTION

The desire to derive valuable insights from large and diverse

datasets produced in nearly all application domains today,

has led to large collaborative efforts, often spanning multiple

organizations. The iterative and exploratory nature of the

data science process, combined with an increasing need to

support debugging, historical queries, auditing, provenance,

and reproducibility, means that a large number of versions of a

dataset need to stored and queried. This realization has led to

many efforts at building data management systems that support

versioning as a first-class construct, both in academia [3], [4],

[5], [6] and in industry (e.g., git, Datomic, noms). Unlike

archival storage systems which also maintain large histo-

ries, these systems typically support rich versioning/branching

functionality and, in some cases, complex queries over ver-

sioned information.

We motivate the design and development of our system

using a concrete example from a real-life scenario.

Example 1: A healthcare provider who wants to perform
different types of diagnostic and prognostic analytics may
need to continuously maintain and analyze Electronic Health
Records (EHRs) of thousands to millions of patients. The EHR
dataset is continuously changing through addition/deletion of
new patient EHRs and updates to existing ones. For many
practical reasons, results of applying any analytics are usually

stored in the same EHR documents. Data analysts usually
target a particular group of people when running analytical
tasks in order to minimize the number of variables, e.g., people
between age 50 - 60, belonging to a given ethnicity, with
certain other characteristics, etc. As a result the number of
updates per version usually remains restricted to a small
percentage w.r.t the total pool of patients. Different teams of
data scientists, with different goals, may be tweaking, training,
and applying predictive models to those documents at the
same time. Because of decentralized nature of the updates
and increased use of collaborative analytics, the resulting
version histories are mostly “branched". For accountability
and debugging, it is essential that the precise details and
provenance of all of those steps are maintained; e.g., an
analyst must be able to clearly identify which versions of the
EHRs were used to train a particular model, or which models
were used to derive a specific individual prediction. It is also
necessary for them to retrieve all or a subset of past versions
of patients to analyze them for insights. Further, looking up
a patient history from the point it enters their system is a
very common query for them. The EHR schemas also evolve
continuously when new data points that correspond to non-
existing attributes are added in the form of new medical tests
or measurements to a subset of the EHRs. Given the scale of
the data, continuously evolving and semi-structured schema,
and a desire to support distributed collaboration, key-value
stores are often a natural option for storing such data (an
extraction step to convert from the highly normalized relational
databases where the original data is stored is quite common).

Similar requirements are beginning to arise in diverse appli-

cation domains such as knowledge bases, content management

systems, computation biology, and many others. Although

there has been much work on version control systems in

recent years, none of those prior systems are designed for

hosting versions of a collection of keyed records or docu-

ments in a distributed environment, while providing querying

functionality similar to the wildly popular key-value stores.

Key-value stores, a term loosely used here to describe any

SQL/NoSQL system that supports key-based retrieval [7] (e.g.,

Apache Cassandra, HBase, MongoDB) are appealing in many

collaborative scenarios spanning geographically distributed

teams, since they offer centralized hosting of the data, are

resilient to failures, can easily scale out, and can handle a large

number of queries efficiently. However, those do not offer rich

versioning and branching functionality akin to hosted version

389

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00043



control systems (VCS) like GitHub. The necessity of main-

taining document versions have resulted in several quick and

dirty extensions of systems like MongoDB and Couchbase,

to satisfy immediate user needs [8], [9]. Unfortunately, the

solutions presented there have several limitations and fail to

provide any guarantees on the quality of the solution.

In this paper, our primary focus is to provide versioning

and branching support for collections of records with unique

identifiers that can act as primary keys. Like popular NoSQL

systems, we aim to support a flexible data model, records

with varying sizes from a few bytes to a few MBs, and

a variety of retrieval queries to cover a wide range of use

cases. Specifically, similar to NoSQL systems, we aim to

support efficient retrieval of a specific record in a specific

version (given a key and a version identifier), or the entire

evolution history for a given key. Similar to VCS, we aim

to support retrieving all the records belonging to a specific

version to support use cases that require updating a large

number of the records (e.g., by applying a data cleaning

step). Finally, since retrieval of an entire version might be

unnecessary and expensive, we also aim to support partial
version retrieval given a range of keys and a version identifier.

In addition, we aim to support efficient ingest (“commit”) of

new versions from users, where the change from the previous

version (“delta”) may be a small update to one record, or

updates to a large subset of the records.

We begin with a careful exploration of the design space, out-

line the different trade-offs, and discuss the limitations of the

baseline alternatives with respect to the desired requirements

listed above. As observed in prior work (e.g., [4]), there is

a natural trade-off between the storage requirements and the

querying efficiency. However, the baseline approaches suffer

from more fundamental limitations. (a) First, most of those

approaches cannot directly support point queries targetting

a specific record in a specific version (and by extension,

full or partial version retrieval queries), without constructing

and maintaining explicit indexes. (b) Second, all the viable

baselines fundamentally require too many back-and-forths

between the retrieval module and the backend key-value store;

this is because the desired set of records cannot be succintly

described. (c) Third, ingest of new versions is difficult for most

of the baseline approaches. (d) Finally, exploiting “record-level

compression” is difficult or impossible in those approaches;

this is crucial to be able to handle common use cases where

large records (e.g., documents) are updated frequently with

relatively small changes.

To address these problems, we investigate a new architecture

that partitions the distinct records into approximately equal-

sized “chunks”, with the goal to minimize the number of

chunks that need to be retrieved for a given query workload.

We show how the system can adapt to different data and

workload requirements through a few simple tuning knobs.

The key computational challenge boils down to deciding how

to optimally partition the records into chunks; we draw con-

nections to well-studied problems like compressing bipartitite

graphs and hypergraph partitioning to show that the problem

is NP-Hard in general. We then present a novel algorithm, that

exploits the structure of the version graph, to find an effective

partitioning of the records. We have built a working prototype

of our system, called RSTORE, on top of the Apache Cas-

sandra key-value store. RSTORE can handle arbitrary types of

records, including semi-structured (JSON/XML) documents,

and text or binary files. We conduct an extensive experimental

evaluation over a large number of synthetically constructed

datasets to show the effectiveness of our system and to validate

our design decisions.

Our key contributions are as follows: (1) We systematically

explore the design space for supporting versioning as a first-

class construct in distributed key-value stores; (2) We present

a detailed analysis of the different trade-offs and how differ-

ent baselines fare with respect to those; (3) We propose a

flexible system architecture that supports the key desiderata

through use of “chunking”; (4) We design novel partitioning

algorithms that exploit the similarities between versions; (5)

We present an online algorithm to keep the partitioning and

the indexes up-to-date as new versions are committed. (6)

We have built a working prototype, called RSTORE, on top

of Apache Cassandra that we use to empirically validate our

design decisions. We expect that RSTORE, like many NoSQL

stores, will primarily be deployed in a distributed environment;

however, it can also be used in a local cluster.

II. SYSTEM DESIGN

A. Data and Query Model

Data Model. The primary unit of storage and retrieval in

our system is a record, which may refer to a tuple/row in a

tabular dataset, a JSON document in a document collection, or

a time series. A record is considered to be immutable, and any

change to it results in a new version of the record. We make

no assumptions about the structure, type, or size of a record,

except for assuming the existence of a primary key, denoted

Ki, that can be used to uniquely identify a specific record

within a collection of records. For simplicity, we assume there

is a single such collection (also called a dataset) that the

system needs to manage, that is being parallely modified by a

team of users in a collaborative fashion, resulting in a set of

versions over time; each version is identified uniquely by a

version-id (either an auto-incremented value, or hashes as in

git). We assume there is a single root version of the dataset

(which may be empty), from which all versions are derived.

Thus, a new version is derived from an existing version

through an update or a transformation, that essentially boils

down to modifying/deleting existing records and/or adding a

new set of records. We denote the set of changes from version

Vi to version Vj by Δi,j , referred to as the delta from Vi to Vj .

Note that in this case, Δi,j is symmetric, i.e., Δi,j may be used

to derive Vi from Vj as well, thus making Δi,j = Δj,i. These

derivations are encoded as a directed version graph (Fig. 1).

Composite Keys. Since a record may be unchanged from one

version to the next, to be able to refer to a specific version

of a specific record, we use a composite key: 〈primarykey,
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Fig. 1. An Example Version Graph with 5 Versions

version-id〉; here the second part refers to the version-id of

the version where the record was created. This allows us to

uniquely reference records within a global address space. We

chose to use version-id of the originating version instead of

an auto-incremented value as the latter introduces additional

synchronization overhead in a decentralized setting with no

obvious benefits.

Query Model. In a collaborative setting with large datasets,

the query workload may consist of a variety of queries, with

differing characteristics.

• Record Retrieval: Analagous to a key-value store, a

user/application may want to retrieve a record with a

specific primary key K from a specific version V . Note that

we cannot simply look for the record with the composite

key 〈K,V 〉, since the record may have originated in one of

the predecessor versions to V . This, in fact, forms a major

challenge in this setting.

• Version Retrieval: Analogous to typical VCS, here the

goal is to retrieve the entire version given a version-id, i.e.,

all the records that belong to the version.

• Range Retrieval: Retrieves a version partially, by speci-

fying a range of primary keys and a version-id.

• Record Evolution: Finally, we may want to analyze the

evolution of a record from its point of origin to its current

state; i.e., given a primary key, find all the different records

with that primary key across all versions.

Example 2: Fig. 1 displays a version graph with five ver-

sions V0 (root), V1, V2, V3, V4, with a total of nine distinct
records. We create composite keys for the records in V0 by

adding V0 as the second component to the keys. V1 is derived

by modifying K3 of V0 and adding a new record 〈K4, V1〉.
In this case Δ0,1 = {+〈K3, V1〉,+〈K4, V1〉,−〈K3, V0〉}. V2

is derived from V0 (and after V1) by modifying K3 as well,

adding a new record 〈K5, V2〉, and deleting record 〈K2, V0〉,
and so on. Note that the derived version forms the version

identifier component in the composite key, which is also the

version in which the particular record appears for the first time.

To retrieve a specific record, say K3 from version V3, it is not

sufficient to look for composite key 〈K3, V3〉 (which does not

exist), rather, we need to maintain a version-to-record mapping

(Fig. 1), that must be consulted to identify the composite key

to be retrieved (〈K3, V1〉 in this case).

B. Key Trade-Offs

We begin with a brief discussion of the key trade-offs in

storing such versioned datasets in a distributed setting, and

then evaluate three baseline options with respect to those trade-

offs.

• Storage and compression. There are two somewhat re-

lated issues here. First, ideally we only store a single copy

of a record that appears in multiple versions; this however

complicates the performance of version retrieval queries

since the required records may be stored all over the place.

Second, there may be only small differences between two

different versions of a record, especially when records are

large (e.g., only a single attribute may be updated in a

large JSON document). One way to exploit this overlap

is to store the two versions of the record together in a

“compressed” fashion, with specific compression technique

chosen according to the data properties (e.g., one may

store “deltas” between the two records, or use an off-the-

shelf compression tool that in effect does the same thing).

Such compression, however, negatively impacts the query

performance by restricting the data placement opportunities.
• Query performance. Different partitioning and layout

schemes are appropriate for the different classes of queries

above. Record evolution queries are best served by grouping

together all the different records with the same primary

key, whereas full version retrieval queries prefer grouping

together all records that belong to the same version. A

general-purpose system must offer knobs that allow adapting

to a specific query workload.
• Online updates. The data structures used by the system

should be easily updatable when new versions are added.

This is, in general, difficult to achieve while guaranteeing

good query performance. Ideally the cost of incorporating a

new version should be proportional to the size of the update

itself, i.e., the difference between the new version and the

version it derives from.

Next, we discuss a few baselines that serve as layers on top

of a key-value store, and how they fare w.r.t. these trade-offs.

• Single address space: Perhaps the simplest option is to

store the records directly, using the composite key as the

key for the underlying key-value store. Although simple to

implement and offering best performance for updates (in-

gest), this approach has several disadvantages. First, there is

no way to use compression to reduce storage requirements,

since different records with the same primary key are stored

separately. Second, given a specific version V and a specific

primary key K, retrieving the record with that primary key

from that version (if present) requires an additional index.

This is because of the way composite keys are generated –

we first need to identify the predecessor version to V where

that primary key was last modified. This complicates the

execution of all the queries listed above. Not only does the

index have to be repeatedly consulted, we may need to issue

many queries against the backend key-value store.
• “Sub-chunk” approach: Here, we group together all

the records with the same primary key K, and store
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Algorithms Storage Space Random Version (total data, #queries) Point Query
Independent w/chunking nmvs mvs, mvs/sc sc, 1

DELTA mvs+ cd(n− 1)mvs mvs+ cd(n− 1)mvs/2, n/2 mvs+ cd(n− 1)mvs/2, n/2
SUBCHUNK mvs+ cd(n− 1)mvs mv(s+ cd(n− 1)s), mv s+ cd(n− 1)s, 1

Single-address space mvs+ d(n− 1)mvs mvs, mvs s, 1

TABLE I
COMPARING DIFFERENT OPTIONS FOR STORING VERSIONED RECORDS UNDER SIMPLIFYING ASSUMPTIONS. n = # VERSIONS (ARRANGED IN A CHAIN); mv = # RECORDS IN A

VERSION (CONSTANT), d = % RECORDS THAT ARE UPDATED IN EVERY VERSION UPDATE, c = COMPRESSION RATIO (TYPICALLY c, d � 1), s = SIZE OF A RECORD, sc = SIZE

OF A CHUNK. FOR QUERIES, THE TABLE SHOWS: AMOUNT OF DATA RETRIEVED, # QUERIES. WE ASSUME THE COST OF CONSULTING ANY INDEXES IS NEGLIGIBLE.

it in compressed fashion using K as the key; we call

such a group of records with the same primary key a

sub-chunk. This approach has the best storage cost and

best performance for record evolution queries (and possibly

single record queries, if the average number of different

records per primary key is small). However, full or partial

version retrieval queries require retrieving significant

amounts of irrelevant data, especially if the data is not

highly compressible (i.e., different records with the same

primary key are more different than similar). Further, ingest

is expensive since each of the relevant sub-chunks must be

retrieved, de-compressed, and compressed after adding the

appropriate record.

• Delta approach: Here, analogous to how version control

systems like git work, for each version, we store the dif-

ference from its predecessor version, i.e., the “delta” that

allows us to get to the version from the predecessor version.

The predecessor version itself may be stored as a delta from

its predecessor and so on, forming delta chains. The main

advantage of this approach is that updates are easy to handle,

especially since we assume that a new version is presented as

a delta from its predecessor version. Assuming that the delta

is computed by exploiting similarities at the level of records,

this approach naturally accrues the benefits of compression.

However, performance of key-centric queries, i.e., specific

record queries and record evaluation queries, is very poor

for this approach. Even partial retrieval queries are difficult

to do with this approach.

Table I summarizes some of these trade-offs, by showing

expressions for various different costs assuming a version

with mv records, with a sequence of changes each updating a

fraction d of the records; thus the version graph is a “chain”.

C. Too Many Queries Problem

None of the baseline approaches are thus appropriate for

storing and querying a large number of versions of keyed

records. Further, all these approaches require making a large
number of queries to the underlying key-value store for full or

partial version retrieval. This is because the records belonging

to a specific version V cannot be easily described. For exam-

ple, in the first approach (and the partial sub-chunk approach),

we need to use separate indexes to identify the “keys” that

must be retrieved, and all of those must be retrieved separately

from each other (efficient support for large IN queries from

the key-value store may help, but only shifts the problem to

the key-value store). Similarly, in the Delta approach, all the

requisite deltas must be retrieved one-by-one.

Fig. 2. System Architecture

To validate our claim, we performed a simple experiment

using Apache Cassandra. Each version in the dataset has about

100K 100-byte records, with a total of 1 million unique records

stored in the KVS. The query here is to reconstruct a version,

i.e., we need to retrieve around 100K records for every version

reconstruction query from the KVS. In the naive setting, we

maintain a chunk of unit size and issue around 100K requests

to the KVS. In comparison, if we create larger sized chunks

using a random assignment of records to chunks, we need

to retrieve more records than required to recreate a version.

However the overhead of retrieving the (fewer) chunks and

scanning through them to extract the records is significantly

less. This illustrates the benefits of reducing the number of

queries made to the key-value store. Unfortunately, because

of the aforementioned problem, this problem must be solved

by explicitly creating “chunks” of records, where records

belonging to the same set of versions are grouped together.

Chunk size 1 10 100 1000 10000
Time (in secs.) 65.42 14.18 3.10 1.07 0.56

D. Architecture

Figure 2 shows the high-level architecture of our system.

Next, we describe its primary components as well as the

different design choices we made while building the system.

Backend Key-value Store: Our system is intended to act as

a layer on an extant distributed key-value store (KVS), in

order to leverage the significant research and implementation

that has gone into designing scalable, fault-tolerant systems.

Our implementation specifically builds on top of Apache

Cassandra, but we only assume basic get/put functionality

from it. As shown in Figure 2, the basic unit of storage in

the KVS is a chunk of records, with the keys called chunk-
ids; chunk-ids are generated internally and are not intended to

be semantically meaningful. Each chunk is divided into sub-

chunks, each of which corresponds to records with the same

primary key, stored in a compressed fashion; sub-chunks often

may contain only one record. In addition, a chunk also contains
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a mapping that indicates, for each record, which versions

it belongs to (as a list of version-ids). Such a mapping is

essential since a record may belong to multiple versions, and as

discussed above, there is no easy way to identify which records

belong to which versions. This design was motivated by the

desire to address the shortcomings of the baseline approaches

discussed above, by having several tuning knobs that could

be used to adapt to different data and query workloads. The

main motivation behind chunking was to address the problem

of too many queries.

Application Server (AS): The application server serves as

the interface between the clients and the backend KVS, and

comprises of three main modules described next. It uses the

KVS for persisting any of its data structures. Multiple copies

of AS could co-exist, with the standard caveat that any data

structures must be kept consistent across them (not currently

supported in RSTORE).

AS currently provides a basic set of VCS commands. A

user can pull any specific version by specifying its ID, or may

pull the latest version in a branch (including the main master
branch). Unlike a typical VCS, AS also provides the ability to

retrieve partial versions or evolution history of a specific key

as discussed in Section II(A). Any changes made by the user

can be committed as a new version as discussed below.

Data Ingest Module: Whenever a user commits a version,

a version-id is generated by AS and is returned to the user

after the commit process is complete. Even if two versions

committed are exactly the same, AS will generate different

version-ids for the two different commits (to account for

different users, times at which they are committed, etc.). AS

only requires the “delta” from the previous (parent) version

from the client; if the client is unable to provide the delta,

then the server needs to retrieve the prior version and perform

a diff operation to check which records have been modified.

Since updating the KVS and all the indexes for every new

version would be impractical, the received deltas are kept in

a separate storage area, that are processed as a batch by the

data placement module.

Data Placement Module: This module is responsible for

organizing the ingested data for efficient query processing, for

placing them into appropriate chunks, and for constructing the

required indexes. The chunks and associated indexes are stored

in the KVS separately, in two distinct tables.

Indexes and Query Processing Module: After the partition-

ing is completed, the system needs to know which chunks

must be retrieved to extract the records belonging to a version.

As discussed above, such an index is required even in the

simplest approach, to be able to store any specific record

only once even if it appears in multiple versions. As depicted

in Fig. 2, we maintain two lossy projections or indexes for

query answering, (i) version to chunk map (IV C): a mapping

between versions and chunks that tells us which chunks

contain records from a given version, (ii) primary key to chunk

map (IPKC): a mapping between primary keys and chunks

that tells us which chunks contain records for a given primary

key. Query processing itself is straightforward given these

indexes. For version retrieval, IV C is consulted to identify

which chunks need to be retrieved, and appropriate queries

are issued in parallel to the KVS. The chunk maps are then

used to extract the required records from the chunks. Record

evolution queries proceed similarly, but use IPKC instead.

Range or single record retrieval utilizes both maps (analogous

to “index-ANDing”) to reduce the number of chunks that need

to be brought in to AS. Note that, it is possible for us to retrieve

a chunk and, after analyzing the chunk map, discover that it

contains no records of interest – this is an artifact of these

being lossy projections.

The size of the version-to-chunk mapping is essentially

the sum total version span across all versions, assuming the

mappings are stored as adjacency lists. For dataset C0 in

Table II (one of our bigger datasets), this results in a total

index size of 11.25MB, compared to a total dataset size of

16GB after deduplicating. The size of the primary key-to-
chunk mapping is governed by the number of primary keys

and the number of different chunks they belong to, which in

turn is depends on the size of the chunk and the degree of

compression. The size of the map for dataset C0 ranges from

25MB to 75MB. Thus even with significantly larger datasets

and numbers of versions, these indexes can easily fit in the

large main memory machines that are available today. In fact,

with larger datasets, we would typically use larger chunk sizes

and sub-chunk sizes, both of which directly lead to lower index

sizes. We further note that these sizes are before compressing

the indexes themselves – standard techniques from inverted
indexes literature can be used to compress the adjacency lists

without compromising performance.

E. Formalizing the Optimization Problem

The key computational challenge here is deciding how to

partition the records into chunks to minimize the storage

cost and maximize the query performance (or minimize the

retrieval costs). As we discussed in Section II-B, both the

amount of data retrieved and the number of chunks queried are

crucial performance factors from the perspective of querying,

whereas compressing records by putting different records

with the same primary key in the same chunk is crucial for

minimizing storage costs. To achieve predictable performance,

we made the following design decision.

(Fixed chunk size assumption) All chunks are assumed to

be approximately the same size, denoted C, with variations of

upto 25% allowed.

This variation in the chunk size gives us flexibility while

assigning variable-sized records to chunks, and ensures that

we are not forced to do frequent reorganization when adding

new versions. We recommend that the specific percentage be

chosen based on the ratio of the average record size and the

chunk size, so that a small number of records could be added

to an already full chunk while staying within the limit; for our

datasets, 25% ends up being a somewhat conservative number,

and in our experimental evaluation, the chunks were rarely

more than 5-10% overfull.
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Fig. 3. Converting a version DAG to a version tree

Storage Cost. The storage cost is dominated by the sizes of

the chunks; the different indexes required for query processing

constitute a relatively small and largely fixed overhead. Due to

the fixed chunk size assumption, we use the number of chunks
required as a proxy for the total storage cost.

Retrieval Costs. For a query, let θi denote the total number of

chunks that need to be queried (and accessed) for answering

it. The total retrieval cost is comprised of the communication
cost, which in turn depends on the number of queries made to

the backend (θi) plus the total number of bytes transferred,

and the CPU cost of extracting the relevant records from

the chunks. Once again, it is difficult to express this cost

analytically; however, given the fixed chunk size assumption,

the overall cost is largely proportional to θi, and we use that

as our retrieval cost metric.

Since there are 2 different objectives here, analogously

to [4], we can formalize optimization problems differently.

However, the fixed chunk size assumption simplifies the prob-

lem somewhat if there is no compression.

Case 1: No Record-Level Compression. The total number

of chunks is approximately equal to the total number of

bytes across all the records divided by the size of a chunk

(C). Thus the optimization problem can simply be stated

as minimizing the retreival cost for a query workload by

appropriately assigning records to the chunks.

Case 2: Record-Level Compression Allowed. In this case,

the number of chunks required depends on how much com-

pression can be obtained by grouping together the records with

the same primary key. In this paper, we do not attempt to solve

the problem in its full generality. Instead, we simplify the

problem by assuming that a parameter, denoted k, is provided

that controls how many records with the same primary key

may be compressed together. (k = 1 corresponds to No

Record-level Compression case). We use this parameter to

partition the records with the same primary key into sub-
chunks that are compressed together in a first phase. Then, the

problem of assigning sub-chunks to chunks reduces to Case 1,

since the total number of chunks required is once again fixed.

Converting Version Graphs to Version Trees. Several of

our proposed algorithms exploit the fact that versions that are

close to each other in the version graph are more similar. Due

to the inherent complexity of the problem, we assume that

the version graphs have no merges (henceforth referred to as

version trees). Figure 3 demonstrates how we deal with merges

in version graph. Versions V5, V6 and V7 form the list of

parents of V8. To convert the DAG to a tree, we choose a parent

of V8 arbitrarily (in this case V6) retaining the edge between

them while deleting the other two edges. In this process, there

are records in V8 that arrived exclusively from V5 and V7

which are renamed to make them appear as newly inserted

records. This conversion is solely used during the partitioning

phase and the original version graph is still used to answer

any queries afterwards.

F. Discussion

In our discussion so far and in our prototype implemen-

tation, we assume that the backend KVS supports only a

basic get/put interface. This raises the question of whether

KV stores with richer functionality like range queries or

stored procedure may negate the need for our approach.

Although the trade-offs would be somewhat different, the

key aspects of our approach are fundamental to the problem

setting of maintaining versioned collections of records. Any

system that aims to solve the problem must contain four

features: (1) exploit overlap across versions by not duplicating

unchanged records, (2) support retrieving a specific record

from a specific version through appropriate indexes, (3) solve

too many queries problem, and (4) compress multiple versions

of large records without compromising retrieval performance.

Support for range queries does not obviate the need for any

of these, because the list of chunks or sub-chunks that need

to be retrieved for a query cannot be encapsulated as a range

(see Figure 1). Efficient support for large IN queries reduces,

but does not eliminate, the need for (3) – that problem instead

shifts to the KVS since there will be too many queries between

the server that is collecting the query answer and the backend

servers that host the data. Finally, stored procedures cannot

help here unless a large amount of the logic in RSTORE,

including indexes, compression/decompression modules, and

query module, is duplicated there.

III. PARTITIONING ALGORITHMS

A. Shingles-based Partitioning

To minimize the average number of chunks that a version

is spread across, records that are common to a large number

of versions should be placed together. This is equivalent to

finding large bi-cliques in the version-record bipartite graph.

This algorithm adapts a standard technique for finding bi-

cliques based on shingles or min-hashing, which provide an

estimate of the similarity between large sets [11]. Briefly, for

each distinct record, we compute l min-hashes to summarize

the set of versions that it belongs to, and use this sequence

of min-hashes to sort the records in lexicographical fashion.

This ordering places records whose version sets have high

similarity (i.e., overlap) in close proximity to each other, and

is then used to place the records into the chunks.

We also build the chunk maps after all records have been

assigned to their chunks. For every record in version Vi, we

determine the chunk Ci that it belongs to and add it to set of

composite keys for that chunk. After scanning the full version,
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we visit every chunk that contained records from Vi and write

the version to composite key list to the corresponding chunk

map file on disk. After this process is repeated for every

version, we have the complete chunk map file for every chunk.

The adjacency list in each chunk map file is then converted

to a bitmap, compressed and stored in the KVS. Note that

we use this algorithm for constructing the chunk maps for the

subsequent partitioning algorithms as well.

Complexity. The overall time complexity of this algorithm

can be shown to be O(nm′ +ml logml), where n,m denote

the number of versions and distinct records respectively, and

m′ denotes the average number of records per version.

B. Bottom-Up Traversal
In this approach, we partition the records in the versions by

traversing the version tree bottom-up1. The key idea here is to

identify and chunk records that do not belong to versions above

as we move up through the versions in the version tree. For

simplicity, we will first describe the approach for 1-ary version

trees and then extend it to general trees. Let us consider a

version Vi as depicted in Fig. 4 which needs to be processed.

Since we follow a bottom-up approach, the versions below

Vi in the version tree have already been processed. Let Si

denote the set of records in Vi. The collection of sets πi+1 =
{S1

i+1, S
2
i+1, . . . , S

p
i+1} contain the records that are returned

by version Vi+1 and denote the following:

S1
i+1 : records present in Vi+1 but not in any version below.

S2
i+1 : records present in Vi+1, Vi+2 but not in any version below.

:
Sp
i+1 : records present in Vi+1, Vi+2, . . . , Vi+p.

Here p denotes the number of versions from the current version
(in this case Vi+1) up to the leaf version. Similarly, Vi needs
to return these sets to its parent Vi−1. In the present iteration,
we compute the collection πi = {S1

i , S
2
i , . . . , S

p
i } as:

S1
i = Si \ (S2

i ∪ S3
i . . . ∪ Sp

i ) : in Vi but in no version below

S2
i = S1

i+1 ∩ Si : in Vi, Vi+1 but not in any version below.

S3
i = S2

i+1 ∩ Si : in Vi, Vi+1, Vi+1 but not in any version below.

:

Sk
i : records present in Vi, Vi+1, . . . , Vi+k.

These sets can be directly computed from the deltas between
versions. Specifically, a delta Δ between Vi and Vj can be
split into two disjoint sets: Δ+

ij denoting records that were

added, and Δ−
ij denoting records that were deleted (an update

is treated as a delete followed by an insert). Assuming deltas
are consistent [14], i.e., Δ+

ij ∩Δ−
ij = φ, we have that:

S1
i = Δ−

i,i+1, S2
i = Δ−

i+1,i+2 \Δi,i+1

Sp
i : Vn \

p−1⋃

j=0

Δi+j,i+(j+1)

For general trees, computing πi changes slightly only for

versions which have more than one child, where S1
i is the

union of the Δ− between version Vi and its children.

1The Bottom-Up algorithm is inspired by [12] that gives an algorithm for
partitioning a graph into two equal-sized partitions. In general, partitioning
even trees is NP-hard [13].

Given the collection of sets obtained from Vi+1 and the sets
computed at Vi, it is now possible to determine the records
that exclusively belong to certain versions, denoted by ψi =
{α1

i , α
2
i , . . . , α

p
i }. Thus we have,

α1
i = S1

i+1 \ S2
i (records present only in Vi+1)

:
αp
i = Sp

i+1 \ Sp
i (records present in Vi+1, Vi+2, . . . , Vi+p)

Lemma 1: Given a linear chain of versions, we have⋂p
j=1 α

j
i = φ, at any version i.

Since the records in α1
i to αp

i are not present in any version

from Vi or above, we can chunk these records now. The

records in set αp
i must be chunked first, followed by those

in αp−1
i and so on. This is because records in αp

i belong to

p consecutive versions, followed by records in αp−1
i which

belong to p− 1 consecutive versions and so on, the chunking

process at any given version starts filling a new chunk (or bin).

This is to ensure that access to highly common records during

version reconstruction is not split across multiple chunks,

which in turn results in increasing the version span. The partial

chunks that may get created are merged at the end to reduce

fragmentation.

Example 3: In Fig. 4, boxes represent records within ver-

sions and the colored boxes are the records which appear in

Vi+1 and not in any prior version. Therefore the colored boxes

represent the records in ψi with the purple box representing

α1
i , and blue box representing α2

i and so on. Per our heuristic,

records in red are chunked first, followed by the records in

green box and so on.

For general trees, the primary difference lies in processing

versions with more than one child. If Vi has λ children, then it

may receive upto λ×p sets from its children. Unlike in linear

chains (Lemma 1), a given record may be present in more than

one set (and no more than λ sets, one from each child) for

general trees. In the presence of multiple sets obtained from

multiple children, we assign a count to every record based on

the number of consecutive versions it belongs to, and use it

to sort the records.

Controlling the subtree of a version. The size of the subtree

corresponding to a version in the tree dictates the amount of

processing that needs to be done per version. For general trees,

the size of subtrees is significantly larger compared to linear

chains due to the presence of multiple branches per version on

an average. In order to bound the amount of processing, we

may choose to have at most β nodes (or sets) in the subtree;

the subtree can be reduced by merging nodes within it. Due

to space limitations, we refer the reader to [10] for a detailed

explanation.

Complexity. At every version, the number of set operations

we perform is proportional to the the number of versions below

it. Each set operation can be bounded by O(m′) although in

practice this is significantly less as this is proportional to the

size of a delta. Thus the total complexity of set operations for

all versions is O(nβm′). Constructing chunks & chunk maps

is O(nm′) as before.

395



�!��

�!��

�!

�"��

�!��
#
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Fig. 5. Version Tree Partitioning, using BFS (C1(a)) & DFS (C1(b))

C. Depth-First/Breadth-First Traversal

To see if the benefits of the Bottom-up approach could

be obtained using a simpler algorithm, we designed two

algorithms which also use the version tree but make the

partitioning choices greedily. These approaches traverse the

version tree starting from the root in a depth-first or a breadth-

first fashion, and chunk the records as they are encountered.

We illustrate this with an example.

Example 4: Consider the version tree in Fig. 5, and assume

the chunk size is 4 records. As the the root version V0 is

visited, all the records are placed in the first chunk C0. Next,

we visit one of the descendants of V0, say V1 and place the

2 records in the next available chunk C1. Now, we have two

options here, (a) visit version V2 (breadth-first traversal) and

place the two records in the remaining space in chunk C1,

(b) visit version V3 (depth-first traversal) and place the two

records in the remaining space in the chunk C1. Note that

going with option (a) implies that any descendant of V1 will

not access any of the records from V2. Similarly, none of the

descendants of V2 will access any of the records added to

chunk C1(a) from V2 resulting in the possibility of increasing

the span of the versions. In contrast, option (b) admits all the

descendants of V3 to acces all the records in chunk C1(b).

Complexity. The complexity of this algorithm, including

chunk map construction, is O(nm′).
D. Partitioning Compressed Records

Next, we show how we handle the case where k > 1, i.e.,

we wish to exploit compression by putting together records

with the same primary key in the same chunk. As discussed

in Section 2.5, we use a two-phase approach, where we first

create the sub-chunks by grouping together records with the

same primary key (with at most k per sub-chunk), and then

choose one of the partitioning algorithms discussed so far

for the chunking itself by treating the sub-chunks as records.

Similar to records, we assign composite keys to these sub-

chunks. One issue here is that, the original version tree may

not be valid any more, and must be transformed (as discussed

below) before the partitioning algorithms are invoked.

We impose the following constraint on any sub-chunk:

the records that are grouped together are “connected” in

the version tree, i.e., the versions that they belong to form

a connected subgraph of the version tree. This is done to

increase potential compression (since records are likely to be

more similar to their immediate ancestors/descedants) and to

maintain the version tree semantics during transformation.

Due to lack of space, we sketch the algorithms here, and

refer to [10] for details and examples.

Sub-chunk Creation. This algorithm traverses the original

version tree bottom-up. At a given version, for a record r
that was inserted or updated in that version, let a denote the

total number of distinct records with the same primary key in

the descendant versions that are not already sub-chunked. If

a+1 ≥ k, then we create one of more sub-chunks with those

records and r while obeying the constraint above. If a+1 < k,

then we create sub-chunk if the record r denotes an insert

(i.e., not an update), otherwise we postpone the decision to an

ancestor version.

Transformed Version Tree. Next, we construct the trans-

formed version tree TV T from the original tree OV T by

treating the sub-chunks as individual records. Each sub-chunk

is assigned a representative composite key 〈Ki, Vi〉, where Vi

is denotes the oldest version among the records in that sub-

chunk, and the deltas are appropriately adjusted (see example

below). These adjustments may lead to two versions becoming

identical (either the delta from parent is empty, or it has the

same delta from the parent as a sibling), and we remove such

duplicate versions from the tree. Different values of k lead

to different transformations of OV T . The original partitioning

algorithms can now be executed on this transformed dataset.

Complexity. The complexity of the sub-chunk construction

algorithm, including creating a transformed version tree, can

be shown to be is O(nm′ +m logm) [10].

IV. ONLINE PARTITIONING

The main challenge with keeping the partitioning up-to-

date with every new version is that, even if a version Vc

differs from its parent version Vp by just a few records, all

the chunks that contain Vp’s records need to be updated (if

only to update the chunk maps). As discussed earlier, we

instead incorporate new versions in a batched fashion, by

maintaining the deltas corresponding to the new versions in

a separate write store, called a delta store, and by using an

adapted version of a partitioning algorithm when the number

of versions reaches a certain size (called the batch size, a user-

configurable parameter). To exploit the possibly high overlap

across versions in the current batch, we compute a union of

the chunk maps that need to be updated and then update every

chunk map only once per batch. In order for a chunk map
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to be updated if it already exists, it has to be fetched from

the KVS, updated and then written back again. Instead, every

time a chunk map needs to be updated per batch, we recreate

the chunk index from scratch and then write it back to KVS,

saving the cost of fetching the chunk indexes from the KVS.

This is possible by maintaining the required indexes around

due to its small memory footprint. The complexity of the

background process is determined by the size of the batch and

the choice of the partitioning algorithm. In general, a smaller

batch size would result in faster partitioning, however the

quality of partitioning degrades with respect to a larger batch

as more versions in a batch is beneficial for making better

record placement decisions. Note that we do not re-partition

records once they have been partitioned, however record re-

partitioning, although expensive, may result in improving the

overall version span. We leave this problem for future work.

V. EXPERIMENTS

Next we present a comprehensive evaluation of RSTORE.

We use a distributed installation of Cassandra across upto

16 dual-core 16GB memory nodes for storing the partitioned

records and their associated indexes. The application server

was hosted on a 2.2GHz Intel Xeon E5-2430 server with 64GB

memory, running 64-bit RedHat Enterprise Linux 6.5.

A. Datasets

We use a collection of synthetically generated datasets

for the experiments. For each dataset, we first generate a

corresponding version graph by starting with a single version,

and then generate a set of modifications to it using the method

outlined in [4], which closely follows real-life version graphs

generated in a data science setting. Thereafter, we create a

set of records for the base (root) version where each record is

created as a JSON document. Every record in the base version

is assigned an auto-incremented primary key and a randomly

generated value of the requisite size. Each of the other versions

is generated by updating or deleting a set of records in its

parent, or inserting new records. The selection of records for

updating and deleting either follows a random or a skewed

(Zipf) distribution.

We have generated a wide spectrum of version graphs and

corresponding datasets that mimics real-world use cases. They

differ primarily along five factors: 1) branching factor (linear

to highly branched), 2) average version graph depth (56 to

300), 3) nature and percentage of updates (random vs skewed

updates with 1 − 50% change), 4) number of records in a
version (from a few thousand to hundreds of thousands of

records), and 5) number of versions (from a few hundred to

several thousand). The size of the records in the dataset also

vary widely from a few bytes to several kilobytes. The number

of unique records in the dataset varies from a little more than

1M records to around 17M records and total size of a dataset

varies from ≈ 30 GB to close to 1 TB. We refer to Table II

for a detailed description of the datasets.

Dataset #V AD RPV %U UT #UR
(M)

URS
(GB)

TS
(GB)

A0 300 300 100K 50 R 12.3 11.9 31.67

A1 300 300 100K 5 S 1.51 5.77 140.14

A2 300 300 100K 5 R 1.34 5.14 141.26

B0 1001 293.5 100K 5 S 4.17 8 192.24

B1 1001 293.5 100K 5 R 4.22 8.07 193.77

B2 1001 293.5 100K 10 R 8.35 8.02 195.69

C0 10001 143 20K 10 R 16.53 15.95 196.46

C1 10001 143 20K 1 R 1.75 1.69 193.01

C2 10001 143 20K 5 S 8.17 7.87 193.05

D0 10002 94.4 20K 10 R 16.62 16.03 196.48

D1 10002 94.4 20K 1 R 1.77 1.71 193.07

D2 10002 94.4 20K 5 S 8.20 7.90 193.09

E 10001 170 20K 10 R 16.52 78.96 972.84

F 1001 56 100K 20 R 16.67 79.64 981.11

TABLE II
DESCRIPTION OF DATASETS: 1) #V: #VERSIONS, 2) AD: AVERAGE DEPTH, 3) RPV:

∼RECORDS PER VERSION, 4) %U: %UPDATES, 5) UT: UPDATE TYPE (R: RANDOM,

S: SKEWED), 6) #UR: UNIQUE RECORDS (IN MILLION), 7) URS: SIZE OF UNIQUE

RECORDS (IN GB), 8) TS: TOTAL SIZE (IN GB)

B. Evaluation of Partitioning Algorithms

Comparison based on Total Version Span. We begin with

comparing the performance of the partitioning algorithms:

BOTTOM-UP, SHINGLE, DEPTHFIRST, and BREADTHFIRST.

Here, we use the total version span (i.e., the total number of

chunks retrieved for reconstructing all versions) for comparing

the algorithms while fixing the chunk size to 1MB (we chose

this chunk size since it provides a good balance between the

number of queries and amount of data retrieved). In addition

to algorithms that partition the record space for minimizing

the version span, we also show performance of the DELTA

baseline. We omit the SUBCHUNK baseline since the total

version span for that approach is very high (all chunks must

be retrieved for any version query). We also omit the results

of the Single Address Space technique due to the relatively

high version retrieval times as a result of "too many queries"

to the KVS.

In Fig. 6, we observe that BOTTOM-UP, SHINGLE and

DEPTHFIRST outperform DELTA across all datasets, thus

establishing that DELTA is inferior as a technique for han-

dling keyed datasets (BOTTOM-UP outperforms DELTA by

upto 8.21× and on an average by about 3.56× across all

datasets). The performance of SHINGLE degrades with a

decrease in the average depth of the version trees, while that

of DEPTHFIRST improves. However unlike BOTTOM-UP,
none of these techniques perform uniformly well across all
datasets. BREADTHFIRST is always worse than DEPTHFIRST

(for reasons described in Sec. III-C) except for linear chains

where they are identical.

Effect of Subtree size on performance. We vary the size of

the subtree (β) for BOTTOM-UP and observe the total version

span (Fig. 7). As the subtree size decreases, the total version

span increases as expected (Sec. III-B). The total time taken by

the algorithm first decreases with decrease in subtree size (due

to decrease in processing per node) and then increases. The

increase in total time for β < 20 can be attributed to increased

processing time for merging the nodes. As β decreases, the

number of nodes needed to merge also increases.
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(a) (b)

Fig. 6. Comparison of Total Version Span (without compression)
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Fig. 7. Effect of sub-tree size on performance of BOTTOM-UP (Dataset B0)

C. Effect of Compression on Partitioning

We now attempt to understand the performance of the

partitioning algorithms on the compressed representation (Ta-

ble III). The degree of compression in the datasets is affected

by two factors: (i) the number of records in the sub-chunk

(i.e., its size), (ii) the amount of relative difference introduced

between records due to updates. We simulate the second factor

by generating datasets such that when a record is updated, the

amount of change w.r.t to the parent record is limited by a

certain percentage, denoted by Pd. For a given version tree, we

generate three datasets by setting Pd to 10%, 5% and 1%. For

each such dataset, we vary the sizes of the sub-chunks from

1− 50 and measure the total version span at each sub-chunk

value. We also plot the compression ratio of the dataset at

every value of sub-chunk size. There are two factors that affect

the total version span: (1) Sub-chunk size (k): As the number

of records in each sub-chunk increases, the total version span

increases due to a decrease in the number of records fetched

per chunk. (2) Compression Ratio: Compressing the sub-

chunks brings down the total number of chunks required to

store the records. As a result, with increasing compression

ratio the total version span is also expected to decrease. Note

that we do not compare against DELTA as it is not possible to

perform compression of records across multiple versions.

We observe that across all datasets, BOTTOM-UP has the

best performance in terms of total version span. As Pd

decreases, the total version span for same sub-chunk values

decreases across all partitioning techniques and across all

datasets. For example consider dataset C0, the total version

span at max sub-chunk size 50 decreases steadily with Pd

across all the partitioning techniques. This is because Factor

2 outperforms Factor 1 stated above and results in an overall

decrease in total version span. However if we just consider the

values corresponding to Pd = 10% we observe an increase in

total version span with k which can be attributed to Factor

1 which is dominant here. But as the degree of compression

increases in Pd = 5% the effect of Factor 2 helps in reducing

the effect of Factor 1, resulting in an overall reduction in

total version span compared to the previous figure. Finally

in Pd = 1%, Factor 2 dominates Factor 1 as the total version

span now decreases with an increase in k. This was observed

for Dataset D0 and several other datasets [10]. However, for

A0, which is a linear chain, Factor 2 has a higher influence

due to better compression ratios.

D. Query Processing Performance

In the following experiments (Table IV), we evaluate the

query processing performance of BOTTOM-UP, DEPTHFIRST,

SHINGLE, DELTA and SUBCHUNK for three types of queries,

namely, 1) Full Version Retrieval (Q1), 2) Partial Version

Retrieval (Q2) and, 3) Record Evolution (Q3) on two different

datasets. In all of these experiments we vary k from 1 to 50

and measure the query execution time against a randomly gen-

erated workload. Since intra-record compression is a limitation

for DELTA, we restrict the DELTA experiment only to when k
= 1. We observe that BOTTOM-UP outperforms DEPTHFIRST,

SHINGLE and DELTA in terms of the query performance for

Q1 and Q2; the performance curve of Q2 is similar to that

of Q1 as partial version span is loosely proportional to full

version span. Note that time taken by DELTA for Q2 is greater

than Q1. This is because in the worst-case the full version is

first reconstructed and then the required records are filtered.

Recall that we fetch all the records corresponding to a

primary key for Q3. Therefore storage representations with

increasing values of k results in better Q3 performance. For

DELTA, we need to reconstruct all the versions that contain the

queried primary key and then filter out the required records

which renders execution of Q3 impractical. Note that the

results for SUBCHUNK technique is independent of k as every

version of a record (of a primary key) is stored in a sub-chunk.

Although the full and partial version retrieval queries performs

the worst for SUBCHUNK, it outperforms all other techniques

for record evolution query.

E. Scalability of RSTORE

To demonstrate scalability of RSTORE, we ran a series of

experiments where we doubled the cluster size starting at 1

up to 16, and then approximately double the amount of data
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Pd = 10% (total version span in million) Pd = 5% (total version span in million) Pd = 1% (total version span in million)
Dataset A0 Max. sub-chunk size (k) Max. sub-chunk size (k) Max. sub-chunk size (k)

1 2 5 12 25 50 1 2 5 12 25 50 1 2 5 12 25 50

BOTTOM-UP 0.23 0.25 0.31 0.39 0.46 0.46 0.23 0.24 0.27 0.31 0.34 0.34 0.23 0.24 0.24 0.24 0.25 0.25
DEPTHFIRST 1.16 0.82 0.61 0.56 0.51 0.51 1.16 0.78 0.54 0.45 0.39 0.39 1.16 0.76 0.49 0.36 0.29 0.29

SHINGLE 0.26 0.64 0.58 0.55 0.50 0.50 0.26 0.60 0.52 0.44 0.38 0.38 0.26 0.58 0.47 0.35 0.29 0.29

COMP. RATIO 1.0 1.72 3.0 4.12 4.62 4.62 1.0 1.79 3.38 4.98 5.78 5.78 1.0 1.86 3.75 5.98 7.24 7.24

Dataset C0 1 2 5 12 25 50 1 2 5 12 25 50 1 2 5 12 25 50

BOTTOM-UP 1.50 1.50 1.53 1.72 2.22 2.94 1.50 1.47 1.39 1.44 1.59 1.95 1.50 1.45 1.29 1.16 1.11 1.08
DEPTHFIRST 2.13 1.84 1.73 2.07 2.74 3.70 2.13 1.79 1.54 1.64 1.93 2.36 2.13 1.73 1.39 1.28 1.28 1.27

SHINGLE 1.83 2.80 2.66 2.94 3.55 4.52 1.83 2.74 2.47 2.47 2.73 3.16 1.83 2.68 2.31 2.10 2.09 2.08

COMP. RATIO 1.0 1.43 2.18 3.0 3.68 4.21 1.0 1.47 2.33 3.39 4.32 5.12 1.0 1.50 2.47 3.77 5.03 6.19

TABLE III
PARTITIONING QUALITY AND COMPRESSION RATIOS AS SUB-CHUNK SIZE IS VARIED FOR DIFFERENT ALGORITHMS

Q1 (query time in secs.) Q2 (query time in secs.) Q3 (query time in secs.)
Dataset A0 Max. sub-chunk size (k) Max. sub-chunk size (k) Max. sub-chunk size (k)

1 2 5 12 25 1 2 5 12 25 1 2 5 12 25

BOTTOM-UP 35.5 45.06 57.99 68.43 78.28 21.26 25.62 28.03 32.16 35.86 0.49 0.19 0.09 0.05 0.03

DEPTHFIRST 141.2 120.32 96.64 88.78 84.14 57.12 47.16 41.18 39.78 37.94 0.53 0.26 0.16 0.08 0.05

SHINGLE 40.53 108.67 92.56 85.89 83.12 26.87 45.29 40.45 38.98 37.12 0.59 0.22 0.15 0.07 0.05

DELTA 207.51 - - - - 216.68 - - - - - - - - -

SUBCHUNK 4075.68 132.42 0.0058
Dataset C0 1 2 5 12 25 50 1 2 5 12 25 50 1 2 5 12 25 50

BOTTOM-UP 5.2 6.37 8.02 11.05 16.46 24.99 4.62 4.71 5.98 8.04 11.61 15.81 8.30 4.48 3.04 2.00 1.81 1.22

DEPTHFIRST 7.26 7.63 8.89 13.13 20.8 32.59 5.29 5.10 6.89 8.94 12.73 16.37 8.83 4.67 2.93 2.31 1.96 1.40

SHINGLE 4.93 10.13 12.24 16.97 24.62 36.88 5.35 6.23 7.82 10.49 13.45 17.30 8.07 4.91 3.17 2.95 2.10 1.54

DELTA 7.87 - - - - - 8.07 - - - - - - - - - - -

SUBCHUNK 406.17 107.23 0.03

TABLE IV
QUERY PROCESSING PERFORMANCE

Query Worload Dataset # nodes in cluster
Avg. Version Span 1 2 4 8 12 16

Q1 (in secs.) G 7.35 7.95 8.99 10.49 10.97 11.39
Avg. version span 507.99 559.49 622.88 702.92 710.24 702.21

Q3 (in secs.) G 0.35 0.48 0.49 0.46 0.63 0.48
Avg. key span 21 32 34 33 46 34

Q1 (in secs.) H 61.83 63.24 64.38 73.71 74.30 78.86
Avg. version span 400.24 436.48 451.20 554.92 561.60 594.92

Q3 (in secs.) H 0.98 1.33 2.29 2.38 2.69 3.05
Avg. key span 6 9 16 18 21 24

Fig. 8. Scalability Experiments

by doubling the number of versions. We used two datasets

specifically for this experiment, whose 16-node configurations

were as follows: (a) Dataset G: size of the unique records

= 255 GB, with 10K versions having ≈ 50K records each

(version size: ∼275 GB, total size: 2.6 TB), (c) Dataset H:

size of unique records = 280 GB, with 2K versions having

approx 100K records each (version size: ∼2.86 GB, total

size: 5.76 TB). We partition the records using BOTTOM-UP

approach. At each cluster configuration, we measure the full

version retrieval times (partial version retrieval times showed

similar behavior) and the record evolution times. As Fig. 8

shows, RSTORE exhibits good weak scalability, and is able

to handle appropriate larger datasets with larger clusters; the

increased query times are largely attributable to increased

version or key spans. We also note that RSTORE currently

processes the retrieved chunks sequentially (in the client) while

constructing the query result and cannot benefit from the in-

creased parallelism; support for parallel processing of retrieved

chunks in the client will result in further improvements in

query latencies.

Batch # of versions
Size 250 500 750 1001

125 1.13 1.36 1.52 1.63

250 1.00 1.12 1.23 1.32

500 - 1.00 - 1.10

(a) Dataset B1

Batch # of versions
Size 2500 5000 7500 10001

1250 1.04 1.05 1.06 1.08

2500 1.00 1.004 1.001 1.018

5000 - 1.00 - 1.005

(b) Dataset C1

Fig. 9. Online Partitioning Performance

F. Online Partitioning

In this experiment (Fig. 9), we measure the performance of

the online partitioning algorithm under different batch sizes for

two datasets using the BOTTOM-UP partitioning technique.

To measure the partitioning quality at a given point, we

compute the ratio of the total version span obtained by online

partitioning using that batch size, to that obtained by running

an offline version of BOTTOM-UP for the same number of

versions. Overall, even with small batch sizes, we observe rea-

sonable penalties, with the partitioning quality improving with

an increase in batch size. Thus, online partitioning without

repartitioning, combined with a full repartitioning periodically,

presents a pragmatic approach to handling updates.

VI. RELATED WORK

Although there has been much work on NoSQL systems,

to our knowledge, no existing system provides complete or

systematic support for versioning. Recently, there have been

several attempts at supporting naive forms of versioning using

the existing APIs (e.g., [9], [8] describe how to implement ver-

sioning features in Couchbase and MongoDB). The techniques

described are similar and advocate storing previous versions of

the record in a separate shadow collection before overwriting

it with the updated value. A version number property (an

int32 called _version) is added to the document to record
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different versions. A downside of the approach as described is

that records cannot be updated in batches and older versions

are more expensive to retrieve. It is also not clear if they

support compressing multiple versions of the same record.

There has been significant work on workload-aware par-

titioning in recent years [15], [16], [17], [18], with several

of those approaches mapping the problem to a hypergraph

partitioning problem with data items (records) as vertices and

queries as hyperedges. Conceptually, the problem we address

is identical, with the query workload defined by the version

retrieval queries. However, the sizes of the hyperedges for

us are very large (since a version may contain millions of

records) and those prior algorithms (which implicitly assume

small hyperedges) cannot be used. Our algorithms also exploit

the inherent structure in the version graph.

There has been much prior work on versioning of XML,

RDF and graph datasets [3], [19], [20], [21]. The focus of

most of that work is on compactly representing (compressing)

different versions of a document by merging them, and they

can usually only support a linear (temporal) chain of versions.

Further, that prior work has not looked at developing a

distributed VCS that can support the range of retrieval queries

that we consider here. Similarly, there is extensive work on

temporal databases [22], [23], [24] that manages a linear

version chain and supports “time-travel” queries. There, a

specific version of a record/tuple is associated with a time

interval, whereas in versioned databases, it is associated with

a set of version-ids. This seemingly small difference leads to

fundamentally different challenges – e.g., whereas one could

use an interval tree for indexing intervals optimally (e.g., to

find all timestamps where a record is alive), doing the same

for “sets" is considered nearly impossible [2]. An experimental

evaluation in DEX [1] reveals that the techniques developed

for linear chains [3] do not extend to branched version graphs.

Several version control systems geared towards handling

different types of datasets have been recently developed,

for unstructured files [4], relational databases [5], [25], ar-

rays [26]. Our work explores a different design point in that

space, with a focus on storing versions of a collection of semi-

structured or unstructured records in a distributed setting and

supporting efficient key-based access to them. Among these,

OrpheusDB [25] also addresses somewhat similar partitioning

issues; however, the trade-offs there are significantly different

as they focus on a single-machine disk-based system.

There has also been much work on de-duplication in

archival systems [27]; however, the focus of that work is on

achiving high ingest rates and high compression, and those

only support rudimentary retrieval queries.
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VII. CONCLUSIONS

Our work is motivated by the popularity of key-value stores

for storing large collections of keyed records or documents, the

increasing trend towards maintaining histories of all changes

that have been made to the data at a fine granularity, and the

desire to collaboratively analyze and simultaneously modify or

transform datasets. We showed that simple baseline approaches

to adapting a key-value store to add versioning functionality

suffer from serious limitations, and proposed a flexible and

tunable framework intended to be used as a layer on top of any

key-value store. We also designed several novel algorithms for

solving the key optimization problem of partitioning records

into chunks. Through an extensive set of experiments, we

validated our claims, design decisions, and our partitioning

algorithms.
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